JP5923698B2 - Manufacturing method of semiconductor device using noble metal paste - Google Patents

Manufacturing method of semiconductor device using noble metal paste Download PDF

Info

Publication number
JP5923698B2
JP5923698B2 JP2010228309A JP2010228309A JP5923698B2 JP 5923698 B2 JP5923698 B2 JP 5923698B2 JP 2010228309 A JP2010228309 A JP 2010228309A JP 2010228309 A JP2010228309 A JP 2010228309A JP 5923698 B2 JP5923698 B2 JP 5923698B2
Authority
JP
Japan
Prior art keywords
noble metal
joining
paste
manufacturing
metal paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010228309A
Other languages
Japanese (ja)
Other versions
JP2012084633A (en
Inventor
篠原 俊朗
俊朗 篠原
伊藤 健
健 伊藤
正幸 宮入
正幸 宮入
伸之 秋山
伸之 秋山
克二 稲垣
克二 稲垣
俊典 小柏
俊典 小柏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Kanagawa Prefecture
Original Assignee
Tanaka Kikinzoku Kogyo KK
Kanagawa Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK, Kanagawa Prefecture filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2010228309A priority Critical patent/JP5923698B2/en
Publication of JP2012084633A publication Critical patent/JP2012084633A/en
Application granted granted Critical
Publication of JP5923698B2 publication Critical patent/JP5923698B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Description

本発明は、貴金属ペーストを用いて基板と半導体素子とを接合する半導体デバイスの製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor device in which a substrate and a semiconductor element are bonded using a noble metal paste.

貴金属を用いて基板と半導体素子とを接合する半導体デバイスの製造方法としては、ろう材を用いる方法が知られている。ろう材としては、フラックスレスのろう材であるAuSn系ろう材が一般に用いられており、ろう材を介して接合する一対の部材を配置した後、ろう材が溶融する融点以上(約300℃以上)の温度に加熱してろう材を融着させる方法が一般的である。しかしながら、このように接合部材を高温に加熱する方法では、接合後に加わる熱応力により、半導体素子等の部材において電気的特性の変動という問題を生じる場合があった。   As a method for manufacturing a semiconductor device for bonding a substrate and a semiconductor element using a noble metal, a method using a brazing material is known. As the brazing material, an AuSn brazing material, which is a flux-less brazing material, is generally used. After arranging a pair of members to be joined via the brazing material, the melting point or higher (about 300 ° C. or higher) The method of fusing the brazing material by heating to a temperature of However, in the method of heating the bonding member to a high temperature as described above, there is a case where a problem of variation in electrical characteristics occurs in a member such as a semiconductor element due to a thermal stress applied after the bonding.

このような理由から、できるだけ低温の加熱で部材を接合することが望まれていた。特許文献1には、貴金属粉を銀粉として、銀粉とエポキシ樹脂とを含む銀ペーストを用いる方法が記載されており、かかる銀ペーストを用いた場合、100〜200℃という比較的低温で接合可能となっている。   For these reasons, it has been desired to join the members with heating as low as possible. Patent Document 1 describes a method using silver paste containing noble metal powder as silver powder and containing silver powder and an epoxy resin. When such silver paste is used, bonding is possible at a relatively low temperature of 100 to 200 ° C. It has become.

また、本発明者等は、接合材料として、ろう材に替えて、所定の純度及び粒径を有する金粉と、有機溶剤とを含む金ペーストを用いる製造方法を提案している(特許文献2)。この文献では、半導体素子を接合する際、金ペーストを接合部材に塗布し、乾燥・焼結させた後、他方の部材を配置して、加熱及び加圧して両部材を接合する方法を採用しており、従来のろう材を用いた接合に比べ比較的低温での接合が可能となる。   In addition, the present inventors have proposed a manufacturing method using a gold paste containing a gold powder having a predetermined purity and particle size and an organic solvent instead of a brazing material as a bonding material (Patent Document 2). . In this document, when bonding semiconductor elements, a method is adopted in which a gold paste is applied to a bonding member, dried and sintered, the other member is then placed, and both members are bonded by heating and pressing. Therefore, it is possible to join at a relatively low temperature as compared with the joining using the conventional brazing material.

特開2004−359830号公報JP 2004-359830 A 特開2007−324523号公報JP 2007-324523 A

しかしながら、特許文献1のように樹脂を含む貴金属ペーストを用いた接合方法であると、接合時の加熱では樹脂が完全に分解せず、接合後の部材に残る場合があった。このため、半導体チップ等の部材では、残存した樹脂が汚染原因となり、半導体性能等に影響することがあった。   However, in the case of a joining method using a noble metal paste containing a resin as in Patent Document 1, there is a case where the resin is not completely decomposed by heating during joining and remains on the member after joining. For this reason, in a member such as a semiconductor chip, the remaining resin may be a cause of contamination and affect semiconductor performance and the like.

一方、特許文献2の接合方法では、樹脂を含まない貴金属ペーストを用いることで、上記汚染の問題は解決できる一方、樹脂を含まない場合、接合部材にペーストを塗布した後、貴金属粒子の凝集が比較的進行しやすい傾向や、塗布したペーストから有機溶剤がしみ出てしまう場合があった。また、特許文献2の接合方法では、塗布後の貴金属ペーストの成形性、ハンドリング性を向上するために乾燥工程を要する等、比較的多くの工程を要するものであった。   On the other hand, in the joining method of Patent Document 2, the above-mentioned contamination problem can be solved by using a noble metal paste that does not contain a resin. On the other hand, when no resin is contained, after the paste is applied to the joining member, noble metal particles aggregate. In some cases, the organic solvent tended to progress relatively easily and the organic solvent oozed out from the applied paste. Further, the joining method of Patent Document 2 requires a relatively large number of processes, such as a drying process in order to improve the formability and handling of the precious metal paste after application.

そこで本発明では、接合後に部材汚染を生じることなく接合可能となる半導体デバイスの製造方法であって、接合部材に対し均一に塗布可能としつつ、簡便なプロセスで接合可能となる技術の提供を目的とする。   Therefore, the present invention provides a method for manufacturing a semiconductor device that can be joined without causing contamination of the member after joining, and aims to provide a technique that can be applied to the joining member uniformly and can be joined by a simple process. And

上記課題を解決する本発明は、基板と半導体素子とを接合部材として接合する半導体デバイスの製造方法において、下記工程を含むことを特徴とする方法である。
(a)一方の接合部材に、純度99.9質量%以上、平均粒径0.1〜0.5μmである貴金属粉と、沸点200〜350℃である有機溶剤とからなり、回転粘度計による23℃におけるシェアレート40/sの粘度に対する4/sの粘度の測定値から算出されるチクソトロピー指数(TI)値が6.0以上である貴金属ペーストを塗布する工程。
(b)前記貴金属ペーストを介して前記一方の接合部材と他方の接合部材とを配置し、少なくとも焼結体を80〜350℃に加熱しながら一方向又は双方向から加圧して接合する工程。
The present invention for solving the above-described problems is a method for manufacturing a semiconductor device in which a substrate and a semiconductor element are bonded as a bonding member, the method including the following steps.
(A) One joining member is composed of a noble metal powder having a purity of 99.9% by mass or more and an average particle size of 0.1 to 0.5 μm, and an organic solvent having a boiling point of 200 to 350 ° C. A step of applying a noble metal paste having a thixotropy index (TI) value of 6.0 or more calculated from a measured value of a viscosity of 4 / s with respect to a viscosity of a shear rate of 40 / s at 23 ° C.
(B) The process of arrange | positioning said one joining member and the other joining member through the said noble metal paste, and pressurizing and joining from one direction or both directions, heating at least a sintered compact at 80-350 degreeC.

本発明では、貴金属ペーストを接合部材に塗布した後、貴金属ペーストを介して一対の接合部材を配置して加熱及び加圧することで接合できる。すなわち、適度なTI値(チクソトロピー性)の貴金属ペーストを用いるため、接合部材に塗布したペーストの成形性が良好となる。このため、従来の接合方法において必要とされていた乾燥工程を省略することができ、製造工程の簡略化を実現できる。また、接合部材を接合する際の加圧についても、低圧で高い接合強度を実現できる。以下、本発明の半導体デバイスの製造方法について詳細に説明する。   In this invention, after apply | coating a noble metal paste to a joining member, it can join by arrange | positioning a pair of joining member through a noble metal paste, and heating and pressurizing. That is, since a noble metal paste having an appropriate TI value (thixotropic property) is used, the moldability of the paste applied to the joining member is improved. For this reason, the drying process required in the conventional joining method can be omitted, and the manufacturing process can be simplified. Moreover, also about the pressurization at the time of joining a joining member, high joining strength is realizable by low pressure. Hereinafter, the semiconductor device manufacturing method of the present invention will be described in detail.

本発明の方法で接合可能な半導体デバイスとしては、LEDや、整流ダイオード、パワートランジスタ等のいわゆるパワーデバイス等がある。これら半導体デバイスは、シリコンウェーハ等の各種基板と半導体素子とを接合部材として接合して製造される。   Examples of semiconductor devices that can be bonded by the method of the present invention include so-called power devices such as LEDs, rectifier diodes, and power transistors. These semiconductor devices are manufactured by bonding various substrates such as silicon wafers and semiconductor elements as bonding members.

これらの接合部材に貴金属ペーストを塗布する方法としては、スピンコート法、スクリーン印刷法、インクジェット法、ペーストを滴下後にヘラ等で広げる方法、または接合対象物をそのままマウントする方法等、接合部の大きさに対応させて種々の方法を用いることができる。   As a method of applying the noble metal paste to these joining members, the size of the joining portion, such as a spin coating method, a screen printing method, an ink jet method, a method of spreading the paste with a spatula after dropping, or a method of mounting an object to be joined as it is, Various methods can be used depending on the situation.

本発明によれば、貴金属ペーストを塗布した後、乾燥工程等を行うことなく、塗布したペースト上に半導体素子等の接合対象物をマウントし(載せ)、加熱及び加圧して、接合部材を接合できる。この加熱処理により、ペースト中の有機溶剤の蒸発、及び貴金属粉の焼結が進行する。本発明によれば、この際にボイド等を生じることなく蒸発及び焼結が均一に進行し、緻密化した接合部を形成できる。加熱温度は、80〜350℃とするのが好ましい。80℃未満では接合が不十分になる場合があり、350℃を越えると冷却時の熱歪の影響が大きくなる。   According to the present invention, after applying a noble metal paste, a bonding object such as a semiconductor element is mounted (mounted) on the applied paste without performing a drying process, and the bonding member is bonded by heating and pressing. it can. By this heat treatment, evaporation of the organic solvent in the paste and sintering of the noble metal powder proceed. According to the present invention, evaporation and sintering can proceed uniformly without forming voids and the like at this time, and a densely joined portion can be formed. The heating temperature is preferably 80 to 350 ° C. If the temperature is less than 80 ° C., bonding may be insufficient. If the temperature exceeds 350 ° C., the influence of thermal strain during cooling increases.

また、本発明の製造方法では、上記した接合工程において、従来よりも低圧条件で接合可能となる。具体的には、1つの焼結体当り1MPa以下の加圧条件であっても、充分な強度となるよう接合できる。これに対し、従来の貴金属ペーストを用いた接合方法では、十分な接合強度とするために、1つの焼結体当り数十MPa程度での加圧を行う必要があった。従来法では、貴金属ペースト塗布後に真空乾燥等を行っており、この乾燥工程でペースト表面に凹凸が生じてしまっていたため、本発明よりも高い加圧条件が必要であったものと考えられる。   Moreover, in the manufacturing method of this invention, in the above-mentioned joining process, it becomes possible to join on low-pressure conditions than before. Specifically, even under pressure conditions of 1 MPa or less per sintered body, bonding can be performed with sufficient strength. On the other hand, in the conventional joining method using the noble metal paste, it was necessary to pressurize at about several tens of MPa per sintered body in order to obtain sufficient joining strength. In the conventional method, vacuum drying or the like is performed after applying the noble metal paste, and unevenness is generated on the paste surface in this drying step. Therefore, it is considered that higher pressure conditions than those of the present invention were necessary.

また、本発明では、ペースト塗布後接合前((a)工程と(b)工程の間)に、任意の焼結工程を行ってもよい。プロセスの簡易化を重視する場合には、乾燥工程のみならず焼結工程も省略することができるが、一方、焼結工程を行った場合には、貴金属粒子同士、及び接合部材の接合面(ペースト塗布面)と貴金属粒子との間に、互いに点接触した近接状態を形成した焼結体とすることができる。このため、焼結後の接合工程において、加熱及び加圧により各粒子間の接触部に塑性変形を生じさせると共に、変形界面で貴金属原子間の結合を生じさせて、緻密な接合を実現できる。   Moreover, in this invention, you may perform arbitrary sintering processes before joining after paste application | coating (between (a) process and (b) process). When importance is attached to the simplification of the process, not only the drying step but also the sintering step can be omitted. On the other hand, when the sintering step is performed, the noble metal particles and the joining surface of the joining member ( It can be set as the sintered compact which formed the proximity state which carried out point contact mutually between the paste application surface) and the noble metal particle. For this reason, in the joining process after sintering, a plastic deformation is generated at the contact portion between the particles by heating and pressurization, and a bond between noble metal atoms is generated at the deformation interface, thereby realizing a precise bonding.

接合前((a)工程と(b)工程の間)に焼結工程を行う場合には、焼結温度を80〜350℃とするのが好ましい。80℃未満では上記のような点接触が生じにくい。一方、350℃を超えると、焼結が過度に進行し、金属粉末間のネッキングが進行して強固に結合してしまい、その後に加圧しても緻密な接合部にならないことに加え、加圧の際に歪が残留し易くなるからである。焼結温度は、300℃以下で行われることがより好ましい。本発明は、そもそも接合部材を保護する観点から300℃以下での接合を目指すものだからである。尚、焼結の際の加熱時間は、5〜120分とするのが好ましい。短時間では焼結炉の温度が安定せず十分な焼結ができず、あまりに長時間とすると生産性が損なわれるからである。また、この焼結は、圧力の負荷のない状態で行なうのが好ましい。焼結温度は、前記した好適範囲内であれば、焼結開始時から終了時まで同じ温度としても、焼結開始後に昇温又は降温しても良い。   When the sintering step is performed before joining (between the steps (a) and (b)), the sintering temperature is preferably 80 to 350 ° C. If it is less than 80 degreeC, the above point contacts will not arise easily. On the other hand, if it exceeds 350 ° C., the sintering proceeds excessively, the necking between the metal powders proceeds and bonds firmly, and even after pressing, it does not become a dense joint, This is because distortion tends to remain at the time. More preferably, the sintering temperature is 300 ° C. or lower. This is because the present invention aims at joining at 300 ° C. or lower from the viewpoint of protecting the joining member in the first place. The heating time during sintering is preferably 5 to 120 minutes. This is because in a short time, the temperature of the sintering furnace is not stable and sufficient sintering cannot be performed, and if the time is too long, productivity is impaired. In addition, this sintering is preferably performed in a state where no pressure is applied. The sintering temperature may be the same temperature from the start to the end of sintering, or may be increased or decreased after the start of sintering, as long as it is within the above-described preferred range.

次に、以上の本発明で使用する貴金属ペーストについて詳細に説明する。本発明では、純度99.9質量%以上、平均粒径0.1〜0.5μmの貴金属粉と、沸点200〜350℃の有機溶剤とからなり、回転粘度計による23℃におけるシェアレート40/sの粘度に対する4/sの粘度の測定値から算出されるチクソトロピー指数(TI)値が、6.0以上である貴金属ペーストを用いる。かかる貴金属ペーストは、接合部材の汚染原因となりうる各種樹脂を含むことなく、接合部材に対し均一に塗布可能となる。部材に塗布した後も、貴金属粒子の分散性を均一に維持でき、接合時の加熱の際にも、有機溶剤の不均一な蒸発や貴金属粉の不均一な焼結等によるボイドの発生を抑制できる。   Next, the noble metal paste used in the present invention will be described in detail. In the present invention, it consists of a noble metal powder having a purity of 99.9% by mass or more and an average particle size of 0.1 to 0.5 μm, and an organic solvent having a boiling point of 200 to 350 ° C. A noble metal paste having a thixotropy index (TI) value calculated from a measured value of the viscosity of 4 / s with respect to the viscosity of s of 6.0 or more is used. Such noble metal paste can be uniformly applied to the joining member without including various resins that may cause contamination of the joining member. Even after being applied to the material, the dispersibility of the precious metal particles can be maintained uniformly, and even during heating during bonding, generation of voids due to non-uniform evaporation of organic solvents and non-uniform sintering of precious metal powder is suppressed. it can.

ここで、「TI(チクソトロピー指数)値」について説明する。貴金属等のペーストでは、測定時にペーストに対して与えるせん断速度が大きくなるに従って、粘度が低下する傾向にある。このような背景の下、TI値は、せん断速度が異なる2種の回転速度により測定した粘度の値を用いて、両者の粘度の比として算出される。このためTI値は、回転速度に対する粘度変化を示す値となり、すなわち、チクソトロピー性の高さを表す指標となる。   Here, the “TI (thixotropic index) value” will be described. In pastes such as noble metals, the viscosity tends to decrease as the shear rate applied to the paste during measurement increases. Under such a background, the TI value is calculated as the ratio of the two viscosities using the values of the viscosities measured at two rotational speeds having different shear rates. For this reason, the TI value is a value indicating a change in viscosity with respect to the rotation speed, that is, an index representing the high thixotropic property.

本発明の貴金属ペーストは、TI値6.0以上であり、チクソトロピー性が適度に高い。このため、本発明の塗布工程において貴金属ペーストの成形性を維持することができ、また、接合の際も貴金属の焼結を均一に進行させて、接合部を緻密な状態にすることができる。このため、本発明は、特に貴金属ペーストの塗布面積の大きいダイボンド接合に好適となる。貴金属ペーストのTI値は、6.0未満であると、貴金属ペーストを接合部材に塗布する際に溶剤がしみ出る(ブリードアウト)場合がある。また、TI値の上限としては、20以下であることが好ましい。20を超えると、貴金属ペースト塗布前の混錬時に取り扱い困難な傾向となる。   The noble metal paste of the present invention has a TI value of 6.0 or more, and has a reasonably high thixotropic property. For this reason, the moldability of the noble metal paste can be maintained in the coating step of the present invention, and the sintering of the noble metal can be uniformly progressed during the joining, so that the joined portion can be in a dense state. For this reason, the present invention is particularly suitable for die bond bonding with a large application area of the noble metal paste. When the TI value of the noble metal paste is less than 6.0, the solvent may ooze out (bleed out) when the noble metal paste is applied to the joining member. Further, the upper limit of the TI value is preferably 20 or less. When it exceeds 20, it tends to be difficult to handle at the time of kneading before applying the noble metal paste.

また、TI値を算出する前提となるシェアレート4/sの粘度については、100〜1000Pa・sであることが好ましい。100Pa・s未満であると、貴金属粉が沈降して溶剤と分離しやすい傾向があり、1000Pa・sを超えると、ハンドリング性が低下しやすい。   Moreover, it is preferable that it is 100-1000 Pa.s about the viscosity of the share rate 4 / s used as the premise which calculates TI value. If it is less than 100 Pa · s, the precious metal powder tends to settle and easily separate from the solvent, and if it exceeds 1000 Pa · s, the handling property tends to deteriorate.

上記貴金属ペーストを構成する有機溶剤は、沸点200〜350℃(大気圧下)のものとする。有機溶剤の沸点が200℃未満であると、接合時に有機溶剤の蒸発速度が速く、貴金属粒子の凝集制御が困難となる他、場合によっては、常温でも有機溶剤が蒸発してしまうため塗布工程における取り扱いが難しくなる。一方、有機溶剤の沸点が350℃を超えると、接合後の部材に有機溶剤が残る場合がある。有機溶剤は、かかる沸点の範囲内であれば、1種又は2種以上のものを含むことができる。ここで、本発明の有機溶剤について、「沸点200〜350℃」とあるのは、2種以上の有機溶剤が含まれる場合においては、含有する全ての種類の有機溶剤が、それぞれ沸点200〜350℃の範囲内にあることを意味する。   The organic solvent constituting the noble metal paste has a boiling point of 200 to 350 ° C. (under atmospheric pressure). When the boiling point of the organic solvent is less than 200 ° C., the evaporation rate of the organic solvent is high at the time of bonding, and it becomes difficult to control the aggregation of the noble metal particles. In some cases, the organic solvent evaporates even at room temperature, so in the coating process. Handling becomes difficult. On the other hand, when the boiling point of the organic solvent exceeds 350 ° C., the organic solvent may remain in the joined member. If it is in the range of this boiling point, the organic solvent can contain 1 type, or 2 or more types. Here, regarding the organic solvent of the present invention, “boiling point 200 to 350 ° C.” means that when two or more organic solvents are included, all kinds of organic solvents contained have boiling points 200 to 350, respectively. It means being within the range of ° C.

具体的に利用可能な有機溶剤としては、分岐鎖状飽和脂肪族2価アルコール類、モノテルペンアルコール類が挙げられ、分岐鎖状飽和脂肪族2価アルコールとしては、プロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,2−ペンタンジオール、1,3−ペンタンジオール、1,4−ペンタンジオール、1,5−ペンタンジオール、2,3−ペンタンジオール、2,4−ペンタンジオール、1,2−ヘキサンジオール、1,3−ヘキサンジオール、1,4−ヘキサンジオール、1,5−ヘキサンジオール、1,6−ヘキサンジオールあるいはそれらの誘導体などが用いられ、モノテルペンアルコールとしてはシトロネロール、ゲラニオール、ネロール、メントール、テルピオール、カルベオール、ツイルアルコール、ピノカンフェオール、β−フェンチルアルコール、ジメチルオクタノール、ヒドロキシシトロネロール、あるいはそれらの誘導体などが用いられる。   Specific examples of usable organic solvents include branched saturated aliphatic dihydric alcohols and monoterpene alcohols. Examples of branched saturated aliphatic dihydric alcohols include propylene glycol and 1,2-butane. Diol, 1,3-butanediol, 1,2-pentanediol, 1,3-pentanediol, 1,4-pentanediol, 1,5-pentanediol, 2,3-pentanediol, 2,4-pentanediol 1,2-hexanediol, 1,3-hexanediol, 1,4-hexanediol, 1,5-hexanediol, 1,6-hexanediol, or derivatives thereof, and the monoterpene alcohol is citronellol. , Geraniol, Nellore, Menthol, Terpiol, Carveol, Twill alcohol Pinot Kang Fe ol, beta-Fen chill alcohol, dimethyl octanol, hydroxy citronellol, or a derivative thereof is used.

溶剤の沸点を考慮すると、炭素数は5〜20であることが好ましい。特に、1種の有機溶媒のみからなる場合、炭素数が5〜20の飽和脂肪族2価アルコールを用いることが好ましく、2,4−ジエチル-1,5-ペンタンジオール(製品名 日香MARS;日本香料薬品(株)、以下、MARSと記載する。)が、特に好適である。2種の有機溶媒からなる場合、炭素数が5〜20の単環式モノテルペンアルコールと2環式モノテルペンアルコールを混合して用いることが好ましく、イソボルニルシクロヘキサノール(製品名 テルソルブMTPH;日本テルペン化学(株)、以下、MTPHと記載する。)とα−テルピネオールとを質量比で1/1〜3/1の割合で混合したものが、特に好適である。   Considering the boiling point of the solvent, the carbon number is preferably 5-20. In particular, in the case of consisting of only one organic solvent, it is preferable to use a saturated aliphatic dihydric alcohol having 5 to 20 carbon atoms, 2,4-diethyl-1,5-pentanediol (product name: Nippon Mars; Nippon Perfume Pharmaceutical Co., Ltd., hereinafter referred to as MARS) is particularly suitable. In the case of comprising two kinds of organic solvents, it is preferable to use a mixture of monocyclic monoterpene alcohol having 5 to 20 carbon atoms and bicyclic monoterpene alcohol. Isobornylcyclohexanol (product name: Tersolve MTPH; Japan A mixture of Terpen Chemical Co., Ltd. (hereinafter referred to as MTPH) and α-terpineol at a mass ratio of 1/1 to 3/1 is particularly suitable.

次に、貴金属ペーストを構成する貴金属粉としては、金粉又は銀粉、あるいはその混合粉が好適である。電気的、熱的伝導性の面を考慮すると、特に金粉のみを用いることが好適である。   Next, as the noble metal powder constituting the noble metal paste, gold powder, silver powder, or a mixed powder thereof is suitable. In consideration of electrical and thermal conductivity, it is particularly preferable to use only gold powder.

貴金属粉の純度として99.9質量%以上の高純度を要求するのは、純度が低いと、Au粒子の焼結挙動が不安定になり接合強度の安定性が低下したり、接合後の接合部材が硬くなり熱衝撃等によってクラックが入りやすくなるからである。また、貴金属粉の平均粒径は、0.1〜0.5μmとする。0.5μmを超えると、ペースト中での分散状態の維持が困難となり、貴金属粉が沈降しやすくなる。また、接合時の加熱により貴金属粉を焼結する際も、好ましい近接状態を発現させ難くなる。一方、0.1μm未満では、貴金属粉の凝集を生じる場合がある。   The purity of the precious metal powder that requires a high purity of 99.9% by mass or more is that if the purity is low, the sintering behavior of Au particles becomes unstable and the stability of the bonding strength decreases, or the bonding after bonding This is because the member becomes hard and cracks easily occur due to thermal shock or the like. The average particle diameter of the noble metal powder is 0.1 to 0.5 μm. If it exceeds 0.5 μm, it will be difficult to maintain the dispersed state in the paste, and the precious metal powder will easily settle. In addition, when the noble metal powder is sintered by heating at the time of joining, it is difficult to express a preferable proximity state. On the other hand, when the thickness is less than 0.1 μm, aggregation of the noble metal powder may occur.

貴金属ペースト中における貴金属粉の体積含有率(貴金属粉の体積/貴金属ペースト全体の体積)は、26〜66体積%(v/v)であることが好ましい。このような体積含有率であると、TI値が6.0以上の貴金属ペーストとなりやすい。また、接合後の焼結体も緻密な状態となりやすく、密着性の高い接合を実現できる。金属粉の含有率は、26体積%未満であると、密着性向上の効果が得られにくく、ペーストも混錬しにくくなる。一方、金属粉の含有率が66体積%を超えると、貴金属粉の凝集を生じる場合がある。貴金属の含有量は、35〜55体積%(v/v)であると、より好ましい。   The volume content of the noble metal powder in the noble metal paste (the volume of the noble metal powder / the volume of the entire noble metal paste) is preferably 26 to 66% by volume (v / v). With such a volume content, a noble metal paste having a TI value of 6.0 or more tends to be obtained. In addition, the sintered body after joining is also likely to be in a dense state, and joining with high adhesion can be realized. When the content of the metal powder is less than 26% by volume, it is difficult to obtain the effect of improving adhesion, and the paste is also difficult to knead. On the other hand, when the content of the metal powder exceeds 66% by volume, the noble metal powder may be aggregated. The precious metal content is more preferably 35 to 55% by volume (v / v).

また、貴金属ペーストは、0.05〜1質量%の界面活性剤を更に含むものとしてもよい。界面活性剤を含むと、貴金属ペースト中に貴金属粉が均一に拡散した状態を維持しやすくなる。界面活性剤は0.05質量%未満であると貴金属粉の凝集抑制効果が低く、1質量%を超えると接合後の部材に界面活性剤が残ることがある。界面活性剤としては、カチオン性界面活性剤が好ましく、例えば、ドデシルトリメチルアンモニウム塩、ヘキサデシルトリメチルアンモニウム塩、オクタデシルトリメチルアンモニウム塩、ドデシルジメチルアンモニウム塩、オクタデセニルジメチルエチルアンモニウム塩、ドデシルジメチルベンジルアンモニウム塩、ヘキサデシルジメチルベンジルアンモニウム塩、オクタデシルジメチルベンジルアンモニウム塩、トリメチルベンジルアンモニウム塩、トリエチルベンジルアンモニウム塩などの第4級アンモニウム塩系、オクタデシルアミン塩、ステアリルアミン塩、N−アルキルアルキレンジアミン塩などのアルキルアミン塩系、ヘキサデシルピリジニウム塩、ドデシルピリジニウム塩などのピリジニウム塩系が使用される。その中でも、アルキル(C8−C18)アミン酢酸塩(製品名:アーマックC)、N−アルキル(C14−C18)トリメチレンジアミンオレイン酸塩(製品名:デュオミンTDO)が、特に好適である。尚、ポリマー系界面活性剤は、分解に高温を要するため、本発明には好適でない。   The noble metal paste may further contain 0.05 to 1% by mass of a surfactant. When the surfactant is included, it is easy to maintain a state in which the noble metal powder is uniformly diffused in the noble metal paste. When the surfactant is less than 0.05% by mass, the effect of suppressing the aggregation of the noble metal powder is low, and when it exceeds 1% by mass, the surfactant may remain on the member after joining. As the surfactant, a cationic surfactant is preferable. For example, dodecyltrimethylammonium salt, hexadecyltrimethylammonium salt, octadecyltrimethylammonium salt, dodecyldimethylammonium salt, octadecenyldimethylethylammonium salt, dodecyldimethylbenzylammonium salt Quaternary ammonium salts such as salt, hexadecyldimethylbenzylammonium salt, octadecyldimethylbenzylammonium salt, trimethylbenzylammonium salt, triethylbenzylammonium salt, alkyl such as octadecylamine salt, stearylamine salt, N-alkylalkylenediamine salt Pyridinium salt systems such as amine salt systems, hexadecyl pyridinium salts, dodecyl pyridinium salts are used. Among them, alkyl (C8-C18) amine acetate (product name: Armac C) and N-alkyl (C14-C18) trimethylenediamine oleate (product name: duomin TDO) are particularly suitable. In addition, since a polymer type surfactant requires high temperature for decomposition | disassembly, it is not suitable for this invention.

以上説明したように、本発明は、各種接合部材へ均一にペーストを塗布可能としつつ、接合時の加熱に際して均一に焼結を進行可能な技術となる。また、接合後の部材汚染等を生じることなく、簡便なプロセスにより、強度の高い接合を行うことができる。   As described above, the present invention is a technique that can uniformly apply a paste to various joining members and can progress sintering uniformly upon heating during joining. In addition, high-strength bonding can be performed by a simple process without causing contamination of members after bonding.

接合部の外観X線透視観察及び断面電子顕微鏡(SEM)による断面観察結果。Cross-sectional observation results by external X-ray fluoroscopic observation and cross-sectional electron microscope (SEM) of the joint. 接合強度の試験方法を示す図。The figure which shows the test method of joining strength.

以下、本発明の好適な実施形態を説明する。   Hereinafter, preferred embodiments of the present invention will be described.

[実施例1]
湿式還元法により製造した純度99.99質量%の金粉(平均粒径:0.3μm)を95質量%と、有機溶剤としてイソボルニルシクロヘキサノール(MTPH)を3.75質量%と、α−テルピネオールを1.25質量%とを混合して金ペーストを調整した。この金ペースト中における金粉の体積含有率は49.6体積%であった。使用した有機溶剤及び得られた金ペーストについて、以下の物性測定を行った。
[Example 1]
95% by mass of gold powder (average particle size: 0.3 μm) having a purity of 99.99% by mass produced by a wet reduction method, 3.75% by mass of isobornylcyclohexanol (MTPH) as an organic solvent, α- A gold paste was prepared by mixing terpineol with 1.25% by mass. The volume content of the gold powder in this gold paste was 49.6% by volume. The following physical properties were measured for the organic solvent used and the gold paste obtained.

物性測定
有機溶剤及び金ペーストの粘度は、円錐型回転粘度計(HAAKE社製、Rheostress RS75、コーンプレート:チタン製 35mm、φ1°、ギャップ0.050mmにて測定)にて、測定温度23℃、シェアレート0/sで30秒間保持した後、シェアレート4/s、20/s、40/sの順でそれぞれ30秒間保持して連続的に測定した。有機溶剤の沸点は、TG−DTA(熱重量/示差熱同時分析:Rigaku製TG8101D)により、大気下10℃/minの昇温レートで測定した。また、チクソトロピー指数(TI)値は、前記シェアレート4/s及び40/sの粘度測定値から下記式にて算出した。また、実施例1の金ペーストについて、TG−DTA(熱重量/示差熱同時分析)を行った。
TI=(シェアレート4/sの粘度)÷(シェアレート40/sの粘度)
Physical Properties Measurement The viscosity of the organic solvent and the gold paste was measured at a measurement temperature of 23 ° C. with a cone-type rotational viscometer (HAAKE, Rheoless RS75, cone plate: titanium, 35 mm, φ1 °, measured with a gap of 0.050 mm). After holding at a share rate of 0 / s for 30 seconds, the share rates of 4 / s, 20 / s, and 40 / s were held for 30 seconds, respectively, and measurement was continuously performed. The boiling point of the organic solvent was measured at a temperature increase rate of 10 ° C./min in the atmosphere by TG-DTA (thermal weight / differential thermal simultaneous analysis: TG8101D manufactured by Rigaku). Further, the thixotropy index (TI) value was calculated by the following formula from the viscosity measurement values of the share rates of 4 / s and 40 / s. Moreover, about the gold paste of Example 1, TG-DTA (thermal weight / differential thermal simultaneous analysis) was performed.
TI = (viscosity at a share rate of 4 / s) / (viscosity at a share rate of 40 / s)

以上の結果、実施例1の金ペーストのシェアレート4/sの粘度は256Pa・sであった。また、TG−DTAより、実施例1の金ペーストでは、70℃で有機溶剤の蒸発が始まり、190℃で有機成分が完全に消失したことが確認できた。   As a result, the viscosity of the gold paste of Example 1 at a shear rate of 4 / s was 256 Pa · s. From TG-DTA, it was confirmed that in the gold paste of Example 1, the evaporation of the organic solvent started at 70 ° C. and the organic component completely disappeared at 190 ° C.

[実施例2〜4、比較例1〜6]
実施例1と同じ金粉を用いて、有機溶剤として表1に示すものを用いて金ペーストを作成した。比較例6では有機溶剤としてビスアルケニルスクシンイミド(King Industries社製、商品名:KX1223C)を使用した。各実施例及び比較例について、有機溶剤の粘度及び沸点と、金ペーストの粘度及びTI値の結果を、実施例1と同様の方法で測定した。結果を表1に示す。
[Examples 2 to 4, Comparative Examples 1 to 6]
Using the same gold powder as in Example 1, a gold paste was prepared using the organic solvent shown in Table 1. In Comparative Example 6, bisalkenyl succinimide (manufactured by King Industries, trade name: KX1223C) was used as the organic solvent. For each example and comparative example, the results of the viscosity and boiling point of the organic solvent and the viscosity and TI value of the gold paste were measured in the same manner as in Example 1. The results are shown in Table 1.

以上の物性測定の結果より、実施例1〜4の貴金属ペーストは、TI値6.0以上であることが示された。これに対し、比較例1、2、4、6では、TI値が6.0未満であった。また、比較例3、5では、金粉と有機溶剤とを混合しても、貴金属粉がすぐに沈降して溶剤と分離してしまうか、あるいはハンドリング困難なものとなり、いずれもペースト化することができなかった。   From the results of the above physical property measurements, it was shown that the noble metal pastes of Examples 1 to 4 have a TI value of 6.0 or more. On the other hand, in Comparative Examples 1, 2, 4, and 6, the TI value was less than 6.0. Further, in Comparative Examples 3 and 5, even when gold powder and an organic solvent are mixed, the noble metal powder immediately settles and separates from the solvent or becomes difficult to handle, both of which can be pasted. could not.

[金粉の平均粒径]
以上の実施例及び比較例の他、金粉として、平均粒径0.7μm及び0.05μmのものを用いて、実施例1と同様に金ペーストを作成した。その結果、金粉の平均粒径が0.7μmの場合、ペースト中で金粉の分散が維持できずに沈降が生じ、0.05μmの場合、ペースト中に部分的な凝集が確認された。
[Average particle size of gold powder]
In addition to the above Examples and Comparative Examples, a gold paste was prepared in the same manner as in Example 1 using gold powder having an average particle size of 0.7 μm and 0.05 μm. As a result, when the average particle size of the gold powder was 0.7 μm, the dispersion of the gold powder could not be maintained in the paste, causing sedimentation, and when it was 0.05 μm, partial aggregation was confirmed in the paste.

[銀ペースト]
また、金粉の代わりに銀粉(86重量%;37体積%)を用いて、実施例1と同様に銀ペーストを作成し、物性測定を行った。その結果、得られた銀ペーストは、シェアレート4/sの粘度が176Pa・s、シェアレート40/sの粘度が19Pa・sであり、TI値9.3となった。
[Silver paste]
Moreover, the silver paste was created similarly to Example 1 using silver powder (86 weight%; 37 volume%) instead of gold powder, and the physical-property measurement was performed. As a result, the obtained silver paste had a viscosity at a share rate of 4 / s of 176 Pa · s, a viscosity at a share rate of 40 / s of 19 Pa · s, and a TI value of 9.3.

基板に対する塗布試験
次に、上記実施例1〜4及び比較例1、2、4の金ペーストを、100mmの半導体基板(Si)中央に、面積25mmとなるように塗布し、基板への塗布性能を評価した。尚、基板には、表面にTi(50nm)、Au(200nm)を予めスパッタリングで製膜したものを用いた。
Application Test on Substrate Next, the gold pastes of Examples 1 to 4 and Comparative Examples 1, 2, and 4 were applied to the center of a 100 mm 2 semiconductor substrate (Si) so as to have an area of 25 mm 2 . The coating performance was evaluated. In addition, the board | substrate used what formed Ti (50 nm) and Au (200 nm) on the surface by sputtering beforehand.

上記の結果、実施例1〜4の金ペーストは、適度なぬれ性があり基板に塗布しやすく、塗布後の金ペーストも十分な成形性を維持していた。一方、比較例2の金ペーストは、塗布した金ペーストから溶剤がしみ出る傾向となり、塗布後のペーストに変形の生じるものがあった。   As a result, the gold pastes of Examples 1 to 4 had moderate wettability and were easy to apply to the substrate, and the gold paste after application maintained sufficient moldability. On the other hand, the gold paste of Comparative Example 2 had a tendency for the solvent to ooze out from the applied gold paste, and some of the paste after application was deformed.

接合試験
上記によりペーストを塗布した後、乾燥及び焼結を行わずに、以下の接合試験を行った。接合試験は、塗布後のペースト上に、面積4mmのSiチップ(Ti(20nm)、Au(200nm)を予め製膜した)を載置し、加熱及び加圧して接合した。接合時の加圧は、1つのチップ当り20N(5MPa)とし、加熱は工具からの伝熱により230℃となるようにし、加熱及び加圧時間は10分間とした。
Joining Test After applying the paste as described above, the following joining test was conducted without drying and sintering. In the joining test, an Si chip (Ti (20 nm), Au (200 nm) formed in advance) having an area of 4 mm 2 was placed on the paste after coating, and joined by heating and pressing. The pressure at the time of joining was 20 N (5 MPa) per chip, the heating was 230 ° C. by heat transfer from the tool, and the heating and pressing time was 10 minutes.

上記により接合した接合部について、外観X線透視像(ユニハイトシステム社製)による組織観察を行い、下記式に基づき接合率を算出した。接合率の結果を表2に示す。また、実施例1及び比較例1のX線透過画像及び、実施例1の断面SEM観察結果を図1に示す。X線透視像では、接合部において、ボイドが発生し空隙が生じた部分は白色、接合部が密着している部分は灰色(黒色)として観察される。
接合率={密着していた部分(X線透過画像における灰色部分)の面積}÷{接合部全体(X線透過画像における灰色部分と白い部分の合計)の面積}
About the junction part joined by the above, the structure | tissue observation was performed by the external appearance X-ray fluoroscopic image (made by a Uniheight system company), and the joining rate was computed based on the following formula. The results of the bonding rate are shown in Table 2. Moreover, the X-ray transmission image of Example 1 and Comparative Example 1 and the cross-sectional SEM observation result of Example 1 are shown in FIG. In the X-ray fluoroscopic image, a void is generated and a void is generated in the bonded portion, and the portion where the bonded portion is in close contact is observed as white (gray).
Joining rate = {Area of the closely attached part (gray part in the X-ray transmission image)} ÷ {Area of the whole joining part (total of gray part and white part in the X-ray transmission image)}

実施例1では、図1の外観X線透視像より、接合部にはボイド発生による空隙に由来する白色部分がほとんど観察されず、断面SEM像においても、金属粉末が点接触に近い状態で近接していた。また、表2の接合率も90%以上であった。以上より、実施例1では、接合時の加熱による金粉の焼結が均一に進行したことを確認できた。よって、実施例1のように、基板に塗布した後の乾燥及び焼結を省略した製造方法としても、良好な接合を実現できることが示された。   In Example 1, from the external X-ray fluoroscopic image of FIG. 1, almost no white portion derived from voids due to the generation of voids is observed at the joint, and even in the cross-sectional SEM image, the metal powder is close to a point contact state. Was. Moreover, the joining rate of Table 2 was 90% or more. From the above, in Example 1, it was confirmed that the sintering of the gold powder by heating at the time of joining proceeded uniformly. Therefore, as in Example 1, it was shown that good bonding can be realized even as a manufacturing method in which drying and sintering after application to the substrate are omitted.

実施例2〜4では、表2より接合率は90%以上であり、実施例1と同様に、ボイドの発生はほとんど観察されず、焼結が均一に進行したことを確認できた。また、銀ペーストを用いた場合も、外観X線透視像より、ボイドの発生はほとんど観察されず、銀粉の焼結が均一に進行したことを確認できた。   In Examples 2 to 4, the joining rate was 90% or more from Table 2, and as in Example 1, almost no voids were observed, and it was confirmed that the sintering proceeded uniformly. Moreover, also when using a silver paste, generation | occurrence | production of a void was hardly observed from the external appearance X-ray fluoroscope image, and it has confirmed that sintering of silver powder progressed uniformly.

一方、比較例1では、表2より接合率が90%未満であり、図1の外観X線透視像では、ボイド発生による空隙に由来する白色部分が多数観察された。このため、比較例1では、有機成分由来のアウト(放出)ガスにより、多数のボイドが発生し、接合時における金粉の焼結が均一に進行しなかったものと考えられる。   On the other hand, in Comparative Example 1, the joining rate was less than 90% from Table 2, and many white portions derived from voids due to void generation were observed in the external X-ray fluoroscopic image of FIG. For this reason, in comparative example 1, it is thought that many voids were generated by the out (release) gas derived from the organic component, and the sintering of the gold powder at the time of joining did not proceed uniformly.

比較例2、4では、表2より接合率90%未満となり、ボイド発生による空隙に由来する白色部分が多数観察された。また、比較例6では、外観X線透視像より、ボイド発生の空隙に由来する白色部分が、多数観察された。   In Comparative Examples 2 and 4, the bonding rate was less than 90% from Table 2, and many white portions derived from voids due to void generation were observed. In Comparative Example 6, many white portions derived from voids generated by voids were observed from the external X-ray fluoroscopic image.

接合強度試験
次に、以上で行った接合に関して、図2に従い接合強度試験を行った。接合強度は、半導体基板10上に焼結体20を介して接合された
半導体チップ(耐熱性Siチップ)30に対し、横方向から一定速度でブレードをチップに当接、進行させ、破断(チップの剥離)が生じたときの応力の平均値(単位:N)を測定した。この測定値と破断後の接合部面積とから、単位面積あたりの接合強度の平均値(単位:MPa)を算出した。結果を表3に示す。
Bonding strength test Next, with respect to the bonding was performed at above was subjected to bonding strength test in accordance with FIG. The bonding strength is that the semiconductor chip (heat-resistant Si chip) 30 bonded to the semiconductor substrate 10 via the sintered body 20 is brought into contact with the chip at a constant speed from the lateral direction and advanced to break (chip). The average value (unit: N) of the stress at the time of occurrence of peeling was measured. From this measured value and the joint area after fracture, the average value (unit: MPa) of the joint strength per unit area was calculated. The results are shown in Table 3.

表3より、実施例1〜4では、接合部が電子部品の接合等に十分な接合強度(20MPa以上)となったことを確認できた。比較例1でも、表3の接合強度については各実施例と同程度であったものの、以上説明したように、接合率が低く(表2)、多数のボイド発生が観察された(図1)ため、電子部品の接合に好適なものではなかった。   From Table 3, in Examples 1-4, it has confirmed that a junction part became joining strength (20 Mpa or more) sufficient for joining etc. of an electronic component. Even in Comparative Example 1, the bonding strength in Table 3 was similar to that in each Example, but as described above, the bonding rate was low (Table 2), and numerous voids were observed (FIG. 1). Therefore, it was not suitable for joining electronic components.

[接合温度の検討]
次に、塗布後のペーストに半導体チップ(耐熱性Siチップ)を接合する際の接合温度を変化させた場合について、接合部の接合強度を測定した。接合温度を表4に示す温度とした以外は、実施例1と同様の方法で部材を接合し、接合率及び接合強度の試験方法も実施例1と同様に行った。結果を表4に示す。
[Examination of bonding temperature]
Next, the bonding strength of the bonded portion was measured in the case where the bonding temperature when the semiconductor chip (heat-resistant Si chip) was bonded to the paste after coating was changed. The members were joined in the same manner as in Example 1 except that the joining temperature was changed to the temperature shown in Table 4, and the joining rate and joining strength test methods were also conducted in the same manner as in Example 1. The results are shown in Table 4.

以上の結果、実施例1、5、6のように接合温度80〜350℃とした場合、接合部は電子部品の接合等に十分な接合強度となった。これに対し、比較例7のように、接合温度80℃未満とした場合は、充分な接合強度の接合部を実現できなかった。また、接合部材として耐熱性Siチップを用いた今回の測定によれば、比較例8のように、350℃を超える接合温度とした場合にも、電子部品の接合に好適な強度の接合部となったが、耐熱性のない接合部材を接合する場合には、変形や破損などを生じ、充分な接合強度とすることが困難になると考えられる。また、そもそも、比較例8のように350℃を超える高温とした場合は、電子部品の電気的特性に影響を及ぼすと考えられる。   As a result, when the bonding temperature was set to 80 to 350 ° C. as in Examples 1, 5, and 6, the bonding portion had sufficient bonding strength for bonding electronic components and the like. On the other hand, as in Comparative Example 7, when the bonding temperature was less than 80 ° C., a bonded portion having sufficient bonding strength could not be realized. Further, according to the current measurement using a heat-resistant Si chip as the bonding member, even when the bonding temperature is higher than 350 ° C. as in Comparative Example 8, the bonding portion having a strength suitable for bonding electronic components However, when joining a joining member having no heat resistance, it is considered that deformation or breakage occurs and it becomes difficult to obtain sufficient joining strength. In the first place, when the temperature is higher than 350 ° C. as in Comparative Example 8, it is considered that the electrical characteristics of the electronic component are affected.

本発明の製造方法によれば、各種の接合部材を低温で接合でき、熱応力の影響が懸念される半導体素子等の接合に有用である。   According to the manufacturing method of the present invention, various joining members can be joined at a low temperature, which is useful for joining semiconductor elements and the like that are concerned about the influence of thermal stress.

Claims (5)

基板と半導体素子とを接合部材として接合する半導体デバイスの製造方法において、下記工程を含むことを特徴とする方法。
(a)一方の接合部材に、純度99.9質量%以上、平均粒径0.1〜0.5μmである貴金属粉と、沸点200〜350℃である有機溶剤とからなり、
有機溶剤は、1種の飽和脂肪族2価アルコール、又は、単環式モノテルペンアルコールと2環式モノテルペンアルコールとを混合したものであり、
回転粘度計による23℃におけるシェアレート40/sの粘度に対する4/sの粘度の測定値から算出されるチクソトロピー指数(TI)値が6.0以上であり、樹脂を含まない貴金属ペーストを塗布する工程。
(b)前記貴金属ペーストを介して前記一方の接合部材と他方の接合部材とを配置し、少なくとも80〜350℃に加熱しながら一方向又は双方向から加圧して接合する工程。
In the manufacturing method of the semiconductor device which joins a board | substrate and a semiconductor element as a joining member, the following process is included, The method characterized by the above-mentioned.
(A) One joining member consists of a noble metal powder having a purity of 99.9% by mass or more and an average particle size of 0.1 to 0.5 μm, and an organic solvent having a boiling point of 200 to 350 ° C.
The organic solvent is a mixture of one kind of saturated aliphatic dihydric alcohol or monocyclic monoterpene alcohol and bicyclic monoterpene alcohol,
A thixotropy index (TI) value calculated from a viscosity measured at 4 / s with respect to a viscosity of 40 / s at a shear rate of 23 / ° C. by a rotational viscometer is 6.0 or more, and a precious metal paste containing no resin is applied. Process.
(B) A step of arranging the one joining member and the other joining member via the noble metal paste and joining them by applying pressure in one direction or both directions while heating at least 80 to 350 ° C.
(b)において接合した接合部は、X線透視像において接合部全体の面積に対する接合部のうち密着していた部分の面積の割合より算出される接合率が90%以上となる請求項1に記載の半導体デバイスの製造方法。 2. The bonding rate calculated from the ratio of the area of the bonded portion of the bonded portion with respect to the total area of the bonded portion in the X-ray fluoroscopic image is 90% or more in the bonded portion bonded in (b). The manufacturing method of the semiconductor device of description. 貴金属ペーストの貴金属粉が、金粉又は銀粉のいずれか一種以上からなる請求項1又は2に記載の半導体デバイスの製造方法。 The method for manufacturing a semiconductor device according to claim 1 or 2, wherein the noble metal powder of the noble metal paste is composed of at least one of gold powder and silver powder. 貴金属ペースト中の貴金属の体積含有率が26〜66体積%(v/v)である請求項1〜3のいずれかに記載の半導体デバイスの製造方法。 The method for manufacturing a semiconductor device according to claim 1, wherein a volume content of the noble metal in the noble metal paste is 26 to 66% by volume (v / v). 貴金属ペーストが0.05〜1質量%の界面活性剤を含む請求項1〜4のいずれかに記載の半導体デバイスの製造方法。 The manufacturing method of the semiconductor device in any one of Claims 1-4 in which a noble metal paste contains 0.05-1 mass% surfactant.
JP2010228309A 2010-10-08 2010-10-08 Manufacturing method of semiconductor device using noble metal paste Active JP5923698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010228309A JP5923698B2 (en) 2010-10-08 2010-10-08 Manufacturing method of semiconductor device using noble metal paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010228309A JP5923698B2 (en) 2010-10-08 2010-10-08 Manufacturing method of semiconductor device using noble metal paste

Publications (2)

Publication Number Publication Date
JP2012084633A JP2012084633A (en) 2012-04-26
JP5923698B2 true JP5923698B2 (en) 2016-05-25

Family

ID=46243225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010228309A Active JP5923698B2 (en) 2010-10-08 2010-10-08 Manufacturing method of semiconductor device using noble metal paste

Country Status (1)

Country Link
JP (1) JP5923698B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016093830A (en) * 2014-11-14 2016-05-26 千住金属工業株式会社 Ag NANOPASTE FOR FORMING RESIDUE-LESS TYPE JOINT
JP2017217694A (en) * 2016-06-10 2017-12-14 京セラ株式会社 Silver solder paste composition
CN110322983A (en) * 2019-06-14 2019-10-11 太原氦舶新材料有限责任公司 A kind of slug type electronic conduction gold paste and preparation method thereof
CN115394689B (en) * 2022-09-05 2023-09-01 江苏富乐华功率半导体研究院有限公司 Hot-pressing sintering device for power semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4639661B2 (en) * 2004-06-25 2011-02-23 東洋インキ製造株式会社 Method for producing metal fine particle dispersion, conductive ink using metal fine particle dispersion produced by the method, and non-contact type medium
JP4638382B2 (en) * 2006-06-05 2011-02-23 田中貴金属工業株式会社 Joining method
JP5065718B2 (en) * 2006-06-20 2012-11-07 田中貴金属工業株式会社 Hermetic sealing method of piezoelectric element and manufacturing method of piezoelectric device
JP2009102602A (en) * 2007-10-03 2009-05-14 Hitachi Chem Co Ltd Adhesive composition and semiconductor device

Also Published As

Publication number Publication date
JP2012084633A (en) 2012-04-26

Similar Documents

Publication Publication Date Title
JP4638382B2 (en) Joining method
JP5860876B2 (en) Bonding material, silver coating film using the same, and method of manufacturing bonded body
JP5613253B2 (en) Precious metal paste for semiconductor element bonding
TWI790258B (en) Composition for metal joining, metal joining laminate, and electrical control device
TW201714256A (en) Assembly and semiconductor device
JP5923698B2 (en) Manufacturing method of semiconductor device using noble metal paste
EP3016135A1 (en) Connection structure and semiconductor device
JP7082231B2 (en) A conductive composition, a conductive sintered portion, and a member provided with the conductive sintered portion.
JP6467114B1 (en) Method for producing metal bonded laminate
JP6849374B2 (en) Conductive paste for joining
EP3590633A1 (en) Bonding material and bonded body using same
JP6606514B2 (en) Conductive bonding material and conductive bonding structure using metal particles and conductive material particles
WO2018101471A1 (en) Electroconductive bonding material and method for manufacturing semiconductor device
JP2015224263A (en) Adhesive composition, semiconductor device using the same and production method of semiconductor device
WO2024029487A1 (en) Silver-containing composition and silver sintered body
JP6795362B2 (en) Conductive paste for joining
JP2024021288A (en) Metal member joining method and silver sintered body
JP6584543B2 (en) Conductive adhesive composition
JP2016056288A (en) Adhesive composition and semiconductor device using the same
JP6844973B2 (en) Conductive paste for joining
JP2021188071A (en) Joint material, method for producing joint material and joining method
JP2019149529A (en) Method for joining semiconductor chip using nano siver paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160303

R150 Certificate of patent or registration of utility model

Ref document number: 5923698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250