JP2021188071A - Joint material, method for producing joint material and joining method - Google Patents

Joint material, method for producing joint material and joining method Download PDF

Info

Publication number
JP2021188071A
JP2021188071A JP2020092126A JP2020092126A JP2021188071A JP 2021188071 A JP2021188071 A JP 2021188071A JP 2020092126 A JP2020092126 A JP 2020092126A JP 2020092126 A JP2020092126 A JP 2020092126A JP 2021188071 A JP2021188071 A JP 2021188071A
Authority
JP
Japan
Prior art keywords
metal
bonding material
particle powder
material according
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020092126A
Other languages
Japanese (ja)
Other versions
JP7487011B2 (en
Inventor
卓 岡野
Taku Okano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2020092126A priority Critical patent/JP7487011B2/en
Publication of JP2021188071A publication Critical patent/JP2021188071A/en
Application granted granted Critical
Publication of JP7487011B2 publication Critical patent/JP7487011B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Powder Metallurgy (AREA)

Abstract

To provide a joint material that can form a metal joint layer with very few voids by a non-pressure joining process.SOLUTION: A joint material contains metal particle powder and a solvent. When measured at 25°C and 0.157 s-1, the joint material has a viscosity of 1000 Pa s or less.SELECTED DRAWING: None

Description

本発明は接合材、接合材の製造方法及び接合方法に関する。 The present invention relates to a joining material, a method for producing the joining material, and a joining method.

近年、Power LEDや高周波デバイス、インバーター等のパワーデバイスの分野などにおいて、デバイスの小型化及び高出力化に伴い、デバイスの発熱の問題が大きくなってきており、このサーマルマネジメントの議論が活発になってきている。また、他の半導体デバイスにおいても、従来のシリコン系素子から化合物半導体素子への変更の検討も進み、ジャンクション温度が高くなる傾向にある。 In recent years, in the field of power devices such as power LEDs, high-frequency devices, and inverters, the problem of heat generation of devices has become more serious with the miniaturization and higher output of devices, and the discussion of thermal management has become active. It's coming. Further, in other semiconductor devices as well, studies on changing from conventional silicon-based devices to compound semiconductor devices are progressing, and the junction temperature tends to increase.

これらの技術的背景のもとに、各種半導体デバイスと基板等を接合する材料に求められてくるのは、放熱性及び接合信頼性である。昨今、焼結銀などの金属微粒子粉末を用いた接合材はこの放熱性と接合信頼性とを実現し得る材料として注目されている。またこのような接合材は低温で焼結して金属接合層を形成するので、基板として耐熱性の低いものを使用し得るという点でも注目されている。 Based on these technical backgrounds, heat dissipation and bonding reliability are required for materials for bonding various semiconductor devices and substrates. Recently, a bonding material using metal fine particle powder such as sintered silver has been attracting attention as a material capable of realizing this heat dissipation property and bonding reliability. Further, since such a bonding material is sintered at a low temperature to form a metal bonding layer, attention is also paid to the fact that a substrate having low heat resistance can be used.

前記の通り、接合材から形成される金属接合層について、接合強度や接合信頼性が求められている。金属接合層におけるボイドを減らすことは、これらを高めるのに有効である。 As described above, the metal bonding layer formed from the bonding material is required to have bonding strength and bonding reliability. Reducing voids in the metal bonding layer is effective in increasing these.

また、接合方法として、基板上に接合材を塗布し、形成された塗膜上に半導体素子等を載置し、これを強い力(例えば10MPaといった圧力)で押圧しながら焼成して接合材中の金属微粒子を焼結させ、金属接合層を形成する加圧式の接合方法がある(例えば特許文献1及び2参照)。これによれば、ボイドの少ない金属接合層を形成することができる。 Further, as a bonding method, a bonding material is applied on a substrate, a semiconductor element or the like is placed on the formed coating film, and the material is fired while being pressed with a strong force (for example, a pressure of 10 MPa) in the bonding material. There is a pressure-type bonding method for forming a metal bonding layer by sintering the metal fine particles of the above (see, for example, Patent Documents 1 and 2). According to this, it is possible to form a metal bonding layer having few voids.

しかし、このような強い力を半導体素子等及びその下の基板等にかけると、これらがダメージを受け、接合して製造された製品について信頼性の点で懸念がある。そこで、加圧するにしても弱い力で加圧する、又は加圧しないで接合を実施するための、接合材や接合方法についての検討がなされている(例えば特許文献3〜6)。 However, when such a strong force is applied to a semiconductor element or the like and a substrate under the semiconductor element or the like, these are damaged, and there is a concern in terms of reliability of a product manufactured by joining them. Therefore, studies have been made on joining materials and joining methods for performing joining with a weak force even when pressed or without pressing (for example, Patent Documents 3 to 6).

特開2011−046770号公報Japanese Unexamined Patent Publication No. 2011-046770 特開2019−149529号公報Japanese Unexamined Patent Publication No. 2019-149529 特開2017−214609号公報Japanese Unexamined Patent Publication No. 2017-214609 特開2020−035721号公報Japanese Unexamined Patent Publication No. 2020-035721 特開2016−054098号公報Japanese Unexamined Patent Publication No. 2016-054098 特開2011−175871号公報Japanese Unexamined Patent Publication No. 2011-175871

前記の加圧によるダメージの懸念から、本発明者も無加圧方式の接合方法を検討した。接合(焼成)時のボイドの形成箇所として、金属接合層と基板等の隙間が考えられる。加圧式接合なら(焼結して金属接合層を形成中の)塗膜が基板等に押し付けられ、これらの隙間はつぶされて無くなり、ボイドの抑制された金属接合層が形成される。しかし無加圧方式の接合では、このようなことが期待できず、実際ボイドが発生してしまった。 The present inventor also examined a non-pressurized joining method because of the concern about damage caused by the above-mentioned pressurization. As a void formation location during bonding (firing), a gap between the metal bonding layer and the substrate or the like can be considered. In the case of pressure bonding, the coating film (which is being sintered to form a metal bonding layer) is pressed against the substrate or the like, and these gaps are crushed and disappear to form a metal bonding layer in which voids are suppressed. However, in the case of non-pressurized joining, such a thing cannot be expected, and voids actually occur.

そこで本発明は、無加圧方式の接合にてボイドの非常に少ない金属接合層を形成することのできる接合材を提供することを課題とする。 Therefore, it is an object of the present invention to provide a bonding material capable of forming a metal bonding layer having very few voids by bonding without pressure.

本発明者は上記課題を解決するために鋭意検討したところ、接合材の粘度測定において広く採用されている領域のせん断速度で測定した粘度が同じ接合材同士でも、非常に低いせん断速度で粘度測定した場合の粘度は異なることがあること、そのような低せん断速度で測定した粘度が小さい接合材が、無加圧方式の接合に使用したとき、(金属接合層と基板等との間における)ボイドの非常に少ない金属接合層を形成することができることを見出し、本発明を完成するに至った。 As a result of diligent studies to solve the above problems, the present inventor measured the viscosity at a very low shear rate even between the bonding materials having the same viscosity measured at the shear rate in the region widely used in the viscosity measurement of the bonding material. When used for non-pressurized bonding (between the metal bonding layer and the substrate, etc.), a bonding material with a low viscosity measured at such a low shear rate may have different viscosities. We have found that it is possible to form a metal bonding layer with very few voids, and have completed the present invention.

即ち本発明は、以下のとおりである。
[1]金属粒子粉末及び溶剤を含む接合材であって、25℃で0.157s−1にて測定した粘度が1000Pa・s以下である、接合材。
That is, the present invention is as follows.
[1] A bonding material containing a metal particle powder and a solvent, which has a viscosity of 1000 Pa · s or less as measured at 0.157 s-1 at 25 ° C.

[2]前記金属粒子粉末の一部が、平均一次粒子径が150nm以下の金属微粒子粉末である、[1]に記載の接合材。 [2] The bonding material according to [1], wherein a part of the metal particle powder is a metal fine particle powder having an average primary particle diameter of 150 nm or less.

[3]前記接合材中の金属微粒子粉末の含有量が、2〜45質量%である、[2]に記載の接合材。 [3] The bonding material according to [2], wherein the content of the metal fine particle powder in the bonding material is 2 to 45% by mass.

[4]前記粘度が800Pa・s以下である、[1]〜[3]のいずれかに記載の接合材。 [4] The bonding material according to any one of [1] to [3], wherein the viscosity is 800 Pa · s or less.

[5]前記粘度が500Pa・s以下である、[1]〜[4]のいずれかに記載の接合材。 [5] The bonding material according to any one of [1] to [4], wherein the viscosity is 500 Pa · s or less.

[6]前記金属粒子粉末の一部が、充填率が65.0%以上であり、レーザー回折型粒度分布測定装置により測定した体積基準の累積50%粒子径(D50)が0.8〜3.2μmである金属大粒子粉末である、[1]〜[5]のいずれかに記載の接合材。 [6] A part of the metal particle powder has a filling rate of 65.0% or more, and a volume-based cumulative 50% particle diameter (D50) measured by a laser diffraction type particle size distribution measuring device is 0.8 to 3. The bonding material according to any one of [1] to [5], which is a large metal particle powder having a thickness of 2 μm.

[7]前記接合材中の金属大粒子粉末の含有量が、40〜88質量%である、[6]に記載の接合材。 [7] The bonding material according to [6], wherein the content of the large metal particle powder in the bonding material is 40 to 88% by mass.

[8]前記金属大粒子粉末の充填率が66.5%以上である、[6]又は[7]に記載の接合材。 [8] The bonding material according to [6] or [7], wherein the filling rate of the large metal particle powder is 66.5% or more.

[9]前記金属が、金、銀及び銅からなる群より選ばれる少なくとも一種である、[1]〜[8]のいずれかに記載の接合材。 [9] The bonding material according to any one of [1] to [8], wherein the metal is at least one selected from the group consisting of gold, silver and copper.

[10]前記金属が銀である、[1]〜[9]のいずれかに記載の接合材。 [10] The bonding material according to any one of [1] to [9], wherein the metal is silver.

[11]無加圧方式の接合に使用される、[1]〜[10]のいずれかに記載の接合材。 [11] The joining material according to any one of [1] to [10], which is used for joining in a non-pressurized method.

[12]前記接合材中の金属粒子粉末の含有量が、90〜96質量%である、[1]〜[11]のいずれかに記載の接合材。 [12] The bonding material according to any one of [1] to [11], wherein the content of the metal particle powder in the bonding material is 90 to 96% by mass.

[13]平均一次粒子径が150nm以下の金属微粒子粉末と、充填率が65.0%以上であり、レーザー回折型粒度分布測定装置により測定した体積基準の累積50%粒子径(D50)が0.8〜3.2μmである金属大粒子粉末と、溶剤とを混合する、接合材の製造方法。 [13] Metal fine particle powder having an average primary particle diameter of 150 nm or less, a filling rate of 65.0% or more, and a volume-based cumulative 50% particle diameter (D50) measured by a laser diffraction type particle size distribution measuring device are 0. A method for producing a bonding material, in which a large metal particle powder having a size of 0.8 to 3.2 μm and a solvent are mixed.

[14]前記金属微粒子粉末及び金属大粒子粉末の使用量が、前記接合材中の金属微粒子粉末及び金属大粒子粉末の含有量が、それぞれ2〜45質量%及び40〜88質量%となる量である、[13]に記載の接合材の製造方法。 [14] The amount of the metal fine particle powder and the metal large particle powder used is such that the contents of the metal fine particle powder and the metal large particle powder in the bonding material are 2 to 45% by mass and 40 to 88% by mass, respectively. The method for producing a bonding material according to [13].

[15]前記金属微粒子粉末及び金属大粒子粉末の使用量の合計が、前記接合材中の金属微粒子粉末及び金属大粒子粉末の含有量の合計が90〜96質量%となる量である、[13]又は[14]に記載の接合材の製造方法。 [15] The total amount of the metal fine particle powder and the metal large particle powder used is such that the total content of the metal fine particle powder and the metal large particle powder in the bonding material is 90 to 96% by mass. 13] or [14], the method for producing a bonding material.

[16]前記金属大粒子粉末の充填率が66.5%以上である、[13]〜[15]のいずれかに記載の接合材の製造方法。 [16] The method for producing a bonding material according to any one of [13] to [15], wherein the filling rate of the large metal particle powder is 66.5% or more.

[17]前記金属が、金、銀及び銅からなる群より選ばれる少なくとも一種である、[13]〜[16]のいずれかに記載の接合材の製造方法。 [17] The method for producing a bonding material according to any one of [13] to [16], wherein the metal is at least one selected from the group consisting of gold, silver and copper.

[18]2つの被接合部材を接合する接合方法であって、一方の前記被接合部材上に[1]〜[12]のいずれかに記載の接合材又は[13]〜[17]のいずれかに記載の接合材の製造方法で製造された接合材を塗布して塗膜を形成する工程と、該塗膜上に他方の前記被接合部材を載置する工程と、該他方の被接合部材が載置された塗膜を160〜350℃で焼成して、前記塗膜から金属接合層を形成する工程とを有する、接合方法。 [18] A joining method for joining two members to be joined, wherein the joining material according to any one of [1] to [12] or any of [13] to [17] is placed on one of the members to be joined. A step of applying a bonding material manufactured by the method for manufacturing a bonding material described in 1 to form a coating film, a step of placing the other member to be bonded on the coating film, and a step of placing the other member to be bonded on the coating film. A bonding method comprising a step of firing a coating film on which a member is placed at 160 to 350 ° C. to form a metal bonding layer from the coating film.

[19]前記塗膜を焼成して金属接合層を形成する際に、前記2つの被接合部材及び塗膜に圧力を加えない、[18]に記載の接合方法。 [19] The joining method according to [18], wherein no pressure is applied to the two members to be joined and the coating film when the coating film is fired to form a metal bonding layer.

[20]前記一方の被接合部材が基板であり、前記他方の被接合部材が半導体素子である、[18]又は[19]に記載の接合方法。 [20] The joining method according to [18] or [19], wherein one of the members to be joined is a substrate and the other member to be joined is a semiconductor element.

本発明によれば、無加圧方式の接合にてボイドの非常に少ない金属接合層を形成することのできる接合材が提供される。 According to the present invention, there is provided a bonding material capable of forming a metal bonding layer having very few voids by non-pressurizing bonding.

以下、本発明の実施の形態について、詳細に説明する。
[接合材]
本発明の接合材の実施の形態は、金属粒子粉末及び溶剤を含んでおり、非常に低いせん断速度で測定した粘度(後述する0.157s−1、25℃の条件で測定した粘度、以下「低せん断粘度」とも言う)が低いことを特徴としている。
Hereinafter, embodiments of the present invention will be described in detail.
[Joining material]
The embodiment of the bonding material of the present invention contains a metal particle powder and a solvent, and has a viscosity measured at a very low shear rate (0.157s -1 , which will be described later, a viscosity measured under the condition of 25 ° C., hereinafter “ It is also characterized by low shear viscosity).

<低せん断粘度>
本発明の接合材の実施の形態の、せん断速度0.157s−1、温度25℃にて測定した粘度は、1000Pa・s以下である。このように非常に低いせん断速度は、基板等の被接合物に接合材が塗布され形成された塗膜にかかる重力におよそ対応するものと考えられる。このようなせん断力(それに対応するせん断速度)での粘度がある程度低ければ、塗膜が自重により被接合物上に濡れ広がると考えられる。これにより被接合物(基板等)と塗膜の間に隙間(ギャップ)ができず、金属接合層が形成されるときに、前記ギャップ由来のボイドが形成されないものと考えられる。
<Low shear viscosity>
The viscosity of the embodiment of the bonding material of the present invention measured at a shear rate of 0.157 s -1 and a temperature of 25 ° C. is 1000 Pa · s or less. It is considered that such a very low shear rate substantially corresponds to the gravity applied to the coating film formed by applying the bonding material to the object to be bonded such as a substrate. If the viscosity at such a shearing force (corresponding shear rate) is low to some extent, it is considered that the coating film wets and spreads on the object to be joined due to its own weight. As a result, it is considered that a gap is not formed between the object to be joined (such as a substrate) and the coating film, and when the metal bonding layer is formed, the void derived from the gap is not formed.

ボイド低減の観点から、低せん断粘度は好ましくは800Pa・s以下、より好ましくは500Pa・s以下、特に好ましくは450Pa・s以下である。また低せん断粘度は好ましくは10Pa・s以上である。なお低せん断粘度は、E型の回転式粘度計を用いて測定するものとする。低せん断粘度は上述の通り、接合材を基板等に塗布後、自己流動して基板等の表面形状に追従する際の流動し易さを指標化したものであるため、粘度計により、せん断速度が低い領域で、安定して粘度を測定することができる必要がある。低せん断粘度の評価では、せん断速度0.157s−1で粘度計のコーンを回転させたときの、回転開始から60秒後の時点のせん断応力から低せん断粘度を算出する。なお測定データの信頼性担保の観点から、せん断速度が、回転開始から30秒後〜60秒後の30秒の間、設定値である0.157s−1の±1%以内のせん断速度に収まっていることを測定条件とする。 From the viewpoint of void reduction, the low shear viscosity is preferably 800 Pa · s or less, more preferably 500 Pa · s or less, and particularly preferably 450 Pa · s or less. The low shear viscosity is preferably 10 Pa · s or more. The low shear viscosity shall be measured using an E-type rotary viscometer. As described above, the low shear viscosity is an index of the ease of flow when the bonding material is applied to a substrate or the like and then self-flows to follow the surface shape of the substrate or the like. Therefore, the shear rate is measured by a viscometer. It is necessary to be able to measure the viscosity stably in the low region. In the evaluation of low shear viscosity, the low shear viscosity is calculated from the shear stress 60 seconds after the start of rotation when the cone of the viscometer is rotated at a shear rate of 0.157 s- 1. From the viewpoint of ensuring the reliability of the measured data, the shear rate is within ± 1% of the set value of 0.157s -1 for 30 seconds from 30 seconds to 60 seconds after the start of rotation. The measurement condition is that.

<金属粒子粉末>
本発明の接合材の実施の形態は金属粒子粉末を含んでおり、基本的にはこれが焼成により焼結することで、金属接合層となる。
<Metal particle powder>
The embodiment of the bonding material of the present invention contains metal particle powder, which is basically sintered by firing to form a metal bonding layer.

接合材中の金属粒子粉末の含有量は、好ましくは70〜98質量%、より好ましくは80〜97質量%、更に好ましくは90〜96質量%である。接合材中の金属粒子粉末の含有量が多いと、接合材中のそれ以外の有機成分(溶剤等であり、焼成時に揮発していくか残存して、いずれの場合も有機成分が存在した部分がボイドになり得る)の含有量が少なく、このことはボイド低減の観点で有利である。 The content of the metal particle powder in the bonding material is preferably 70 to 98% by mass, more preferably 80 to 97% by mass, and further preferably 90 to 96% by mass. When the content of the metal particle powder in the bonding material is high, other organic components (solvents, etc., which are volatilized or remain during firing, and the organic components are present in the bonding material) are present. Can be voids), which is advantageous in terms of void reduction.

金属粒子粉末の構成金属は、導電性や熱伝導性の観点から、好ましくは金、銀、銅またはこれらの2種以上の合金である。更にコストや耐酸化性の観点から、特に好ましいのは銀である。後述する金属大粒子粉末及び金属微粒子粉末の場合も同様である。 The constituent metal of the metal particle powder is preferably gold, silver, copper or an alloy of two or more of these from the viewpoint of conductivity and thermal conductivity. Further, silver is particularly preferable from the viewpoint of cost and oxidation resistance. The same applies to the large metal particle powder and the fine metal particle powder described later.

金属粒子粉末の形状は特に制限されない。略球状、フレーク状、不定形などいずれの形状でもよいが、略球状の金属粒子粉末が、接合材中での粒子の充填性の観点から好ましい。後述する金属大粒子粉末及び金属微粒子粉末の場合も同様である。 The shape of the metal particle powder is not particularly limited. It may have any shape such as substantially spherical, flake-shaped, and amorphous, but substantially spherical metal particle powder is preferable from the viewpoint of packing properties of particles in the bonding material. The same applies to the large metal particle powder and the fine metal particle powder described later.

(金属大粒子粉末)
以上説明した金属粒子粉末の一部は、レーザー回折型粒度分布測定装置により測定した体積基準の累積50%粒子径(D50)が0.8〜3.2μmであり、充填率が65.0%以上である金属大粒子粉末であることが好ましい。
(Metallic large particle powder)
Some of the metal particle powders described above have a cumulative 50% particle diameter (D50) of 0.8 to 3.2 μm on a volume basis measured by a laser diffraction type particle size distribution measuring device, and a filling rate of 65.0%. It is preferable that the metal large particle powder described above is used.

金属大粒子粉末の累積50%粒子径(D50)が0.8μm以上であると、接合材の粘度(低せん断粘度ではなく、接合材の印刷時のせん断力に対応するようなせん断速度で測定した場合の粘度)が下がって印刷に適したものとなり、また累積50%粒子径(D50)が3.2μm以下であれば、金属大粒子粉末に若干の焼結性を持たせて接合強度に優れた金属接合層の形成が可能である。以上の観点から、金属大粒子粉末の累積50%粒子径(D50)は、好ましくは1.0〜2.2μmである。 When the cumulative 50% particle diameter (D50) of the large metal particle powder is 0.8 μm or more, the viscosity of the bonding material (not the low shear viscosity, but the shear rate corresponding to the shearing force at the time of printing of the bonding material is measured. If the cumulative 50% particle size (D50) is 3.2 μm or less, the large metal particle powder is given some shearability to improve the bonding strength. It is possible to form an excellent metal bonding layer. From the above viewpoint, the cumulative 50% particle diameter (D50) of the large metal particle powder is preferably 1.0 to 2.2 μm.

金属大粒子粉末の充填率に関して、本発明の接合材の実施の形態の低せん断粘度は、金属粒子粉末、溶剤やその他の成分の種類や量などの適切な選択により、上述した本発明で規定する範囲に調節することができるが、前記金属大粒子粉末として、充填率の高い(65.0%以上)ものを用いると、接合材の低せん断粘度を好適に前記の範囲に調節することができる。 With respect to the filling rate of the large metal particle powder, the low shear viscosity of the embodiment of the bonding material of the present invention is defined in the present invention described above by appropriate selection of the type and amount of the metal particle powder, solvent and other components. However, if the large metal particle powder having a high filling rate (65.0% or more) is used, the low shear viscosity of the bonding material can be preferably adjusted to the above range. can.

充填率とは、金属大粒子粉末のタップ密度の、その金属のバルク密度(真密度)に対する割合(タップ密度÷バルク密度×100(%))である。金属大粒子粉末として充填率が65.0%以上のものを接合材に添加すると、その低せん断粘度を1000Pa・s以下、好ましくは800Pa・s以下とすることができる。充填率が66.5%以上の金属大粒子粉末を接合材に添加すると、その低せん断粘度を500Pa・s以下や450Pa・s以下といった数値とすることができ、金属接合層のボイド低減の観点から特に好ましい。なお、金属大粒子粉末の充填率は好ましくは85.8%以下である。 The filling factor is the ratio of the tap density of the large metal particle powder to the bulk density (true density) of the metal (tap density ÷ bulk density × 100 (%)). When a large metal particle powder having a filling rate of 65.0% or more is added to the bonding material, its low shear viscosity can be 1000 Pa · s or less, preferably 800 Pa · s or less. When a large metal particle powder having a filling rate of 66.5% or more is added to the bonding material, the low shear viscosity can be set to a numerical value such as 500 Pa · s or less or 450 Pa · s or less, and the viewpoint of reducing voids in the metal bonding layer can be obtained. Is particularly preferable. The filling rate of the large metal particle powder is preferably 85.8% or less.

粉末の充填率は粉末の流動性(粒子表面の滑らかさなどにより影響を受ける)の指標となるものであり、無加圧接合に使用する接合材においてこれが高い粉末を使用することで、接合材の低せん断粘度を低減することができると考えられる。 The filling rate of the powder is an index of the fluidity of the powder (affected by the smoothness of the particle surface, etc.). It is considered that the low shear viscosity of the material can be reduced.

金属大粒子粉末程度のサイズの公知の金属粉末の多くは充填率が64.0%以下であるが、充填率が65.0%を超えるものも存在している。本発明では、上記低せん断粘度を実現するための一例として、充填率が65.0%以上と高い金属大粒子粉末を選択的に使用するものである。なお、充填率を求めるためのタップ密度の測定方法の詳細は、実施例の項で説明する。 Most of the known metal powders having a size of about the size of large metal particle powder have a filling factor of 64.0% or less, but some of them have a filling factor of more than 65.0%. In the present invention, as an example for achieving the low shear viscosity, a large metal particle powder having a high filling rate of 65.0% or more is selectively used. The details of the method for measuring the tap density for obtaining the filling rate will be described in the section of Examples.

金属大粒子粉末の接合材中の含有量は、接合材の低い低せん断粘度を実現する観点から、好ましくは40〜88質量%であり、より好ましくは50〜85質量%であり、更に好ましくは60〜82質量%である。 The content of the large metal particle powder in the bonding material is preferably 40 to 88% by mass, more preferably 50 to 85% by mass, and further preferably more preferably, from the viewpoint of achieving a low shear viscosity of the bonding material. It is 60 to 82% by mass.

接合材中での分散性を高めることで充填性を高める観点から、金属大粒子粉末は有機化合物で被覆されていてもよい。この有機化合物としては金属大粒子粉末の粒子表面を被覆可能な公知のものを特に制限なく使用可能である。前記有機化合物の例としては、ヒドロキシル基、カルボキシル基、アミノ基、チオール基及びジスルフィド基からなる群より選ばれる少なくとも1種の官能基を有する炭素数12〜24の有機化合物が挙げられる。この有機化合物は分岐を有してもよく、飽和であっても不飽和であってもよい。 The large metal particle powder may be coated with an organic compound from the viewpoint of enhancing the dispersibility in the bonding material and thereby enhancing the filling property. As the organic compound, a known organic compound capable of covering the particle surface of a large metal particle powder can be used without particular limitation. Examples of the organic compound include organic compounds having 12 to 24 carbon atoms having at least one functional group selected from the group consisting of a hydroxyl group, a carboxyl group, an amino group, a thiol group and a disulfide group. The organic compound may have branches and may be saturated or unsaturated.

(金属微粒子粉末)
本発明の接合材の実施の形態は、金属粒子粉末の一部として平均一次粒子径が150nm以下の金属微粒子粉末を含むことが好ましい。このように微小サイズの金属微粒子粉末は焼結性に優れ、これを含む接合材からは、接合強度に優れた金属接合層が形成される。
(Metal fine particle powder)
The embodiment of the bonding material of the present invention preferably contains metal fine particle powder having an average primary particle diameter of 150 nm or less as a part of the metal particle powder. As described above, the fine metal fine particle powder has excellent sinterability, and a metal bonding layer having excellent bonding strength is formed from the bonding material containing the fine metal particles.

金属微粒子粉末の平均一次粒子径は、低温での焼成による焼結性の観点から、好ましくは130nm以下であり、より好ましくは100nm以下である。また、金属微粒子粉末の平均一次粒子径は好ましくは1nm以上である。 The average primary particle size of the metal fine particle powder is preferably 130 nm or less, more preferably 100 nm or less, from the viewpoint of sinterability by firing at a low temperature. The average primary particle size of the metal fine particle powder is preferably 1 nm or more.

なお本明細書において、平均一次粒子径とは、粒子の透過型電子顕微鏡写真(TEM像)又は走査型電子顕微鏡写真(SEM像)から求められる一次粒子径の平均値(個数基準の平均一次粒子径)をいう。更に具体的には、例えば、透過型電子顕微鏡(TEM)(日本電子株式会社製のJEM−1011)又は走査型電子顕微鏡(SEM)(日立ハイテクノロジーズ株式会社製のS−4700)により粒子を所定の倍率で観察した画像(SEM像又はTEM像)上の100個以上、好ましくは250個の任意の粒子の一次粒子径(粒子と面積が同じ円(面積相当円)の直径)から平均一次粒子径を算出することができる。面積相当円の直径の算出は、例えば、画像解析ソフト(旭化成エンジニアリング株式会社製のA像くん(登録商標))により行うことができる。 In the present specification, the average primary particle size is an average value of the primary particle size (average primary particle based on the number) obtained from a transmission electron micrograph (TEM image) or a scanning electron micrograph (SEM image) of the particles. Diameter). More specifically, the particles are predetermined by, for example, a transmission electron microscope (TEM) (JEM-1011 manufactured by Nippon Denshi Co., Ltd.) or a scanning electron microscope (SEM) (S-4700 manufactured by Hitachi High-Technologies Co., Ltd.). Average primary particles from the primary particle diameter of 100 or more, preferably 250 arbitrary particles (diameter of a circle having the same area as the particle (circle equivalent to the area)) on the image (SEM image or TEM image) observed at the magnification of The diameter can be calculated. The diameter of the circle corresponding to the area can be calculated by, for example, image analysis software (A image-kun (registered trademark) manufactured by Asahi Kasei Engineering Co., Ltd.).

接合材中の金属微粒子粉末の含有量は、接合強度に優れた金属接合層を形成するとともに、接合材の低せん断粘度が高くなることを防止する観点から、好ましくは2〜45質量%、より好ましくは5〜35質量%であり、更に好ましくは8〜30質量%である。 The content of the metal fine particle powder in the bonding material is preferably 2 to 45% by mass, from the viewpoint of forming a metal bonding layer having excellent bonding strength and preventing the low shear viscosity of the bonding material from increasing. It is preferably 5 to 35% by mass, more preferably 8 to 30% by mass.

なお金属微粒子粉末は粒子径が小さいため凝集し易い傾向にある。これを防止するため、金属微粒子粉末は有機化合物で被覆されていることが好ましい。この有機化合物としては金属微粒子粉末の粒子表面を被覆可能な公知のものを特に制限なく使用可能である。前記有機化合物の例としては、ヒドロキシル基、カルボキシル基、アミノ基、チオール基及びジスルフィド基からなる群より選ばれる少なくとも1種の官能基を有する炭素数1〜18の有機化合物が挙げられる。この有機化合物は分岐を有してもよく、飽和であっても不飽和であってもよい。 Since the metal fine particle powder has a small particle diameter, it tends to easily aggregate. In order to prevent this, it is preferable that the metal fine particle powder is coated with an organic compound. As the organic compound, a known organic compound capable of covering the particle surface of the metal fine particle powder can be used without particular limitation. Examples of the organic compound include organic compounds having 1 to 18 carbon atoms having at least one functional group selected from the group consisting of a hydroxyl group, a carboxyl group, an amino group, a thiol group and a disulfide group. The organic compound may have branches and may be saturated or unsaturated.

160〜350℃程度での焼成により十分に金属微粒子粉末から分離して金属微粒子粉末の粒子同士の焼結を阻害しないように、前記有機化合物としては炭素数12以下のものが好ましく、炭素数2〜8の飽和脂肪酸もしくは不飽和脂肪酸や飽和アミンもしくは不飽和アミンがより好ましい。 The organic compound preferably has 12 or less carbon atoms and has 2 carbon atoms so that it is sufficiently separated from the metal fine particle powder by firing at about 160 to 350 ° C. and does not hinder the saturation of the metal fine particle powder particles. Saturated fatty acids or unsaturated fatty acids of -8, saturated amines or unsaturated amines are more preferred.

金属微粒子粉末の構成金属は、接合材から形成される金属接合層の構成金属を単一種類として、接合層全体にわたって熱膨張係数を実質的に一定として接合信頼性を高め得ることから、金属大粒子粉末の構成金属と同一であることが好ましい。 The constituent metal of the metal fine particle powder is a single type of constituent metal of the metal bonding layer formed from the bonding material, and the thermal expansion coefficient can be substantially constant over the entire bonding layer to improve the bonding reliability. It is preferably the same as the constituent metal of the particle powder.

以上説明した通り、本発明の接合材の実施の形態においては、金属粒子粉末の一部として金属大粒子粉末を含み、金属粒子粉末の一部として金属微粒子粉末を含むことが好ましい。金属粒子粉末全体(100質量%)に占める金属大粒子粉末及び金属微粒子粉末の合計は、好ましくは80質量%以上であり、より好ましくは90質量%以上であり、更に好ましくは95質量%以上であり、特に好ましくは100質量%である。 As described above, in the embodiment of the bonding material of the present invention, it is preferable to include the metal large particle powder as a part of the metal particle powder and the metal fine particle powder as a part of the metal particle powder. The total of the large metal particle powder and the fine metal particle powder in the total metal particle powder (100% by mass) is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more. Yes, especially preferably 100% by mass.

<溶剤>
本発明の接合材の実施の形態は、溶剤を含む。この溶剤としては、金属粒子粉末を分散させることができ、接合材中の成分との反応性を実質的に有しないものを広く使用可能である。
<Solvent>
Embodiments of the bonding material of the present invention include a solvent. As the solvent, a solvent capable of dispersing the metal particle powder and having substantially no reactivity with the components in the bonding material can be widely used.

接合材中の溶剤の含有量は、1.5〜18質量%であるのが好ましく、2.5〜16質量%であるのがより好ましく、3〜9.5質量%であるのが更に好ましい。この溶剤として、極性溶剤や非極性溶剤を使用することができるが、接合材中の他の成分との相溶性や環境負荷の観点から、極性溶剤を使用するのが好ましい。 The content of the solvent in the bonding material is preferably 1.5 to 18% by mass, more preferably 2.5 to 16% by mass, and even more preferably 3 to 9.5% by mass. .. A polar solvent or a non-polar solvent can be used as this solvent, but it is preferable to use a polar solvent from the viewpoint of compatibility with other components in the bonding material and an environmental load.

極性溶剤の例としては、水;
ターピネオール、テキサノール、フェノキシプロパノール、1−オクタノール、1−デカノール、1−ドデカノール、1−テトラデカノール、テルソルブMTPH(日本テルペン化学株式会社製)、ジヒドロターピニルオキシエタノール(日本テルペン化学株式会社製)、テルソルブTOE−100(日本テルペン化学株式会社製)、テルソルブDTO−210(日本テルペン化学株式会社製)等のモノアルコール;
3−メチル−1,3−ブタンジオール、2−エチル−1,3−ヘキサンジオール(オクタンジオール)、ヘキシルジグリコール、2−エチルヘキシルグリコール、ジブチルジグリコール、グリセリン、ジヒドロキシターピネオール、3−メチルブタン−1,2,3−トリオール(イソプレントリオールA(IPTL−A)、日本テルペン化学株式会社製)、2−メチルブタン−1,2,4−トリオール(イソプレントリオールB(IPTL−B)、日本テルペン化学株式会社製)等のポリオール;
ブチルカルビトール、ジエチレングリコールモノブチルエーテル、ターピニルメチルエーテル(日本テルペン化学株式会社製)、ジヒドロターピニルメチルエーテル(日本テルペン化学株式会社製)等のエーテル化合物;
ブチルカルビトールアセテート、ジエチレングリコールモノブチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート等のグリコールエーテルアセテート;
1−メチルピロリジノン、ピリジン等の含窒素環状化合物;
γ―ブチロラクトン、メトキシブチルアセテート、メトキシプロピルアセテート、乳酸エチル、3−ヒドロキシ−3−メチルブチルアセテート、ジヒドロターピニルアセテート、テルソルブIPG−2Ac(日本テルペン化学株式会社製)、テルソルブTHA−90(日本テルペン化学株式会社製)、テルソルブTHA−70(日本テルペン化学株式会社製)等のエステル化合物;
などを使用することができる。これらは1種単独で使用しても、2種以上を組み合わせて使用してもよい。
An example of a polar solvent is water;
Tarpineol, texanol, phenoxypropanol, 1-octanol, 1-decanol, 1-dodecanol, 1-tetradecanol, Telsolve MTPH (manufactured by Nippon Terpen Chemical Co., Ltd.), dihydroterpinyloxyethanol (manufactured by Nippon Terpen Chemical Co., Ltd.) , Telsolve TOE-100 (manufactured by Nippon Telpen Chemical Co., Ltd.), Telsolve DTO-210 (manufactured by Nippon Telpen Chemical Co., Ltd.) and other monoalcohols;
3-Methyl-1,3-butanediol, 2-ethyl-1,3-hexanediol (octanediol), hexyldiglycol, 2-ethylhexylglycol, dibutyldiglycol, glycerin, dihydroxytriol, 3-methylbutane-1, 2,3-Triol (Isoplentriol A (IPTL-A), manufactured by Nippon Telpen Chemical Co., Ltd.), 2-Methylbutane-1,2,4-Triol (Isoplentriol B (IPTL-B), manufactured by Nippon Telpen Chemical Co., Ltd.) ) And other polyols;
Ether compounds such as butyl carbitol, diethylene glycol monobutyl ether, turpinylmethyl ether (manufactured by Nippon Terpen Chemical Co., Ltd.), dihydroterpinyl methyl ether (manufactured by Nippon Terpen Chemical Co., Ltd.);
Glycol ether acetate such as butyl carbitol acetate, diethylene glycol monobutyl ether acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether acetate;
Nitrogen-containing cyclic compounds such as 1-methylpyrrolidinone and pyridine;
γ-Butyrolactone, methoxybutyl acetate, methoxypropyl acetate, ethyl lactate, 3-hydroxy-3-methylbutyl acetate, dihydroterpinyl acetate, Telsolv IPG-2Ac (manufactured by Nippon Telpen Chemical Co., Ltd.), Telsolv THA-90 (Japan) Ester compounds such as Telpen Chemical Co., Ltd.) and Telsolve THA-70 (manufactured by Nippon Telpen Chemical Co., Ltd.);
Etc. can be used. These may be used alone or in combination of two or more.

<その他の成分(添加剤)>
本発明の接合材の実施の形態は、その他の成分として公知の添加剤を含んでいてもよい。添加剤として具体的には、酸系分散剤やリン酸エステル系分散剤などの分散剤、ガラスフリットなどの焼結促進剤、酸化防止剤、粘度調整剤、pH調整剤、緩衝剤、消泡剤、レベリング剤、揮発抑制剤が挙げられる。添加剤の接合材における含有量は、2質量%以下(複数種類の添加剤を含む場合は合計含有量が2質量%以下)であることが好ましい(接合材が添加剤を含む場合、その含有量は好ましくは0.005質量%以上(複数種類の添加剤を含む場合は各々の含有量が0.005質量%以上)とされる)。
<Other ingredients (additives)>
The embodiment of the bonding material of the present invention may contain additives known as other components. Specifically, as additives, dispersants such as acid-based dispersants and phosphoric acid ester-based dispersants, sintering accelerators such as glass frit, antioxidants, viscosity regulators, pH regulators, buffers, and defoamers. Examples include agents, leveling agents, and volatilization inhibitors. The content of the additive in the bonding material is preferably 2% by mass or less (when a plurality of types of additives are contained, the total content is 2% by mass or less) (when the bonding material contains an additive, the content thereof). The amount is preferably 0.005% by mass or more (when a plurality of types of additives are contained, the content of each is 0.005% by mass or more).

なお、接合材には樹脂を配合して金属粒子粉末同士のバインダーとして機能させるタイプのものがあるが、このような樹脂は、接合材から形成される金属接合層中に残存し、放熱性や導電性に悪影響を与えるおそれがある。また樹脂は金属とは熱膨張係数が大きく異なるので、金属接合層が冷熱サイクルを受けたときに前記の相違に起因して応力が発生して、接合信頼性に悪影響する。 In addition, there is a type of bonding material in which a resin is mixed to function as a binder between metal particle powders, but such a resin remains in the metal bonding layer formed from the bonding material and has heat dissipation properties. It may adversely affect the conductivity. Further, since the resin has a coefficient of thermal expansion significantly different from that of the metal, stress is generated due to the above difference when the metal bonding layer undergoes a thermal cycle, which adversely affects the bonding reliability.

以上から、本発明の接合材の実施の形態には樹脂を実質的に配合しないことが好ましい。具体的には、接合材中の樹脂の含有量は0.3質量%以下であることが好ましく、0.1質量%以下であることがより好ましく、0.05質量%以下であることが特に好ましい。 From the above, it is preferable that the resin is not substantially blended in the embodiment of the bonding material of the present invention. Specifically, the content of the resin in the bonding material is preferably 0.3% by mass or less, more preferably 0.1% by mass or less, and particularly preferably 0.05% by mass or less. preferable.

[接合材の製造方法]
本発明の接合材の実施の形態は、以上説明した、金属粒子粉末(上述の通り好ましくは金属大粒子粉末及び金属微粒子粉末を含む)及び溶剤、更に他の任意成分(添加剤等)を公知の方法で混練することで、製造することができる。なお、各成分の使用量については、接合材中の各成分の含有量が、各成分の仕込み量から計算してそれらの好ましい含有量として上記で説明したものとなる量であることが好ましい。特に、金属微粒子粉末及び金属大粒子粉末の使用量の合計が、接合材中の金属微粒子粉末及び金属大粒子粉末の含有量の合計が90〜96質量%となる量であることがボイド低減の観点から好ましい。
[Manufacturing method of joint material]
In the embodiment of the bonding material of the present invention, the metal particle powder (preferably including the metal large particle powder and the metal fine particle powder as described above), the solvent, and other optional components (additives and the like) described above are known. It can be manufactured by kneading by the method of. Regarding the amount of each component used, it is preferable that the content of each component in the bonding material is an amount calculated from the charged amount of each component and is the amount described above as a preferable content thereof. In particular, the total amount of the metal fine particle powder and the metal large particle powder used is such that the total content of the metal fine particle powder and the metal large particle powder in the bonding material is 90 to 96% by mass. Preferred from the point of view.

混練の方法は特に制限されるものではなく、例えば、各成分を個別に用意し、任意の順で、超音波分散機、ディスパー、三本ロールミル、ボールミル、ビーズミル、二軸ニーダー、プラネタリーミキサー、又は公転自転式攪拌機などで混練することによって、接合材を製造することができる。 The kneading method is not particularly limited. For example, each component is prepared individually, and in any order, an ultrasonic disperser, a disper, a three-roll mill, a ball mill, a bead mill, a twin-screw kneader, a planetary mixer, etc. Alternatively, the bonded material can be manufactured by kneading with a revolving rotation type stirrer or the like.

[接合方法]
本発明の接合方法の実施の形態は、本発明の接合材の実施の形態、又は本発明の接合材の製造方法の実施の形態により製造された接合材を用いて2つの被接合部材を接合する方法である。本発明の接合方法の実施の形態は、塗膜形成工程と、載置工程と、金属接合層形成工程とを有し、その他予備乾燥工程等を実施してもよい。以下、これら各工程について説明する。
[Joining method]
In the embodiment of the joining method of the present invention, two members to be joined are joined by using the joining material manufactured by the embodiment of the joining material of the present invention or the embodiment of the method of manufacturing the joining material of the present invention. How to do it. The embodiment of the bonding method of the present invention includes a coating film forming step, a mounting step, and a metal bonding layer forming step, and may also carry out a pre-drying step and the like. Hereinafter, each of these steps will be described.

<塗膜形成工程>
本工程では、一方の被接合部材上に本発明の接合材の実施の形態又は本発明の接合材の製造方法の実施の形態により製造された接合材を、(印刷(例えばメタルマスク印刷、スクリーン印刷、ピン転写)などにより)塗布して塗膜を形成する。本発明の接合材の実施の形態は低せん断粘度が低いので、塗膜が前記一方の被接合部材に濡れ広がり、これらの間にギャップが形成されにくいと考えられる。
<Coating film forming process>
In this step, the bonding material produced according to the embodiment of the bonding material of the present invention or the method of manufacturing the bonding material of the present invention is printed on one of the members to be bonded (for example, metal mask printing, screen printing). Apply by printing, pin transfer), etc. to form a coating film. Since the embodiment of the bonding material of the present invention has a low shear viscosity, it is considered that the coating film wets and spreads on one of the members to be bonded, and a gap is unlikely to be formed between them.

前記一方の被接合部材の例としては、基板が挙げられる。基板としては、銅基板などの金属基板、銅と何らかの金属(例えばW(タングステン)やMo(モリブデン))との合金基板、銅板でSiN(窒化珪素)やAlN(窒化アルミニウム)などを挟んだセラミック基板、更にPET(ポリエチレンテレフタレート)基板などのプラスチック基板、FR4などのPCB基板などが挙げられる。さらにこれらを積層した積層基板も、本発明の接合方法において使用可能である。 An example of the one of the members to be joined is a substrate. As the substrate, a metal substrate such as a copper substrate, an alloy substrate of copper and some metal (for example, W (tungsten) or Mo (molybdenum)), or a ceramic in which SiN (silicon nitride) or AlN (aluminum nitride) is sandwiched between copper plates. Examples thereof include a substrate, a plastic substrate such as a PET (polyethylene terephthalate) substrate, and a PCB substrate such as FR4. Further, a laminated substrate in which these are laminated can also be used in the joining method of the present invention.

なお、前記一方の被接合部材の接合材が塗布される個所は、金属でメッキされていてもよい。塗膜中の金属粒子粉末との接合相性の観点からは、金属メッキは金属粒子粉末の構成金属と同じ金属のメッキであることが好ましい。 The portion to which the joining material of one of the members to be joined is applied may be plated with metal. From the viewpoint of bonding compatibility with the metal particle powder in the coating film, it is preferable that the metal plating is the same metal plating as the constituent metal of the metal particle powder.

<載置工程>
続いて、前記の一方の被接合部材上に形成された塗膜の上に、他方の被接合部材を載置する。この他方の被接合部材の例としては、SiチップやSiC、GaNチップなどの半導体素子、一方の被接合部材の例として挙げたのと同様の基板が挙げられる。前記塗膜からはボイドの低減された金属接合層が形成されることから、本発明の接合方法の実施の形態は、基板と半導体素子の接合に使用されることが好ましい。すなわち、前記他方の被接合部材としては半導体素子が好ましい。
<Placement process>
Subsequently, the other member to be joined is placed on the coating film formed on the one member to be joined. Examples of the other member to be joined include semiconductor devices such as Si chips, SiC, and GaN chips, and the same substrate as mentioned as an example of one member to be joined. Since a metal bonding layer with reduced voids is formed from the coating film, the embodiment of the bonding method of the present invention is preferably used for bonding a substrate and a semiconductor element. That is, a semiconductor element is preferable as the other member to be joined.

また、本発明の接合材の実施の形態(から形成された塗膜)は低せん断粘度が低いため、前記他方の被接合部材を塗膜上に載置したときに、塗膜が他方の被接合部材の塗膜と接する箇所(底面)の表面形状に追従して変形し、塗膜と他方の被接合部材の間にはギャップが形成されにくいと考えられる。 Further, since the embodiment of the bonding material of the present invention (the coating film formed from) has a low shear viscosity, when the other member to be bonded is placed on the coating film, the coating film is coated on the other. It is considered that the joint member is deformed following the surface shape of the portion (bottom surface) in contact with the coating film, and it is difficult to form a gap between the coating film and the other member to be joined.

他方の被接合部材の塗膜と接触する個所(底面)は、金属でメッキされていてもよい。塗膜中の金属粒子粉末との接合相性の観点からは、前記他方の被接合部材の金属メッキは、金属粒子粉末の構成金属と同じ金属のメッキであることが好ましい。また塗膜上に他方の被接合部材を載置する際には、2つの被接合部材の間に、塗膜が2つの被接合部材により圧縮される方向の圧力(例えば0.03〜0.2MPa程度の圧力)をかけてもかけなくてもよい。 The portion (bottom surface) of the other member to be joined that comes into contact with the coating film may be plated with metal. From the viewpoint of the bonding compatibility with the metal particle powder in the coating film, it is preferable that the metal plating of the other member to be bonded is the same metal plating as the constituent metal of the metal particle powder. Further, when the other member to be joined is placed on the coating film, the pressure in the direction in which the coating film is compressed by the two members to be joined (for example, 0.03 to 0. It may or may not be applied with a pressure of about 2 MPa).

<予備乾燥工程>
他方の被接合部材が載置された塗膜を焼成して金属粒子粉末を焼結させる際に、形成される金属接合層中のボイドを低減するため、塗膜上に他方の被接合部材を載置した後に(載置工程の後に)、塗膜を予備乾燥する予備乾燥工程を実施してもよい。予備乾燥は塗膜から溶剤を除去することを目的としており、溶剤が揮発し、かつ金属粒子粉末が焼結を実質的に起こさないような条件で乾燥する。このため、予備乾燥は塗膜を60〜150℃で加熱することによって実施することが好ましい。この加熱による乾燥は大気圧下で行ってもよいし、減圧ないし真空下で行ってもよい。また、次に説明する金属接合層形成工程において、焼成温度までの昇温速度が7℃/分以下程度であれば、焼成温度までの昇温をもって予備乾燥工程を実施することができる。
<Preliminary drying process>
In order to reduce voids in the metal bonding layer formed when the coating film on which the other bonded member is placed is fired to sinter the metal particle powder, the other bonded member is placed on the coating film. After mounting (after the mounting step), a pre-drying step of pre-drying the coating film may be performed. The pre-drying is intended to remove the solvent from the coating film, and is dried under conditions such that the solvent volatilizes and the metal particle powder does not substantially cause sintering. Therefore, pre-drying is preferably carried out by heating the coating film at 60 to 150 ° C. Drying by this heating may be performed under atmospheric pressure, or may be performed under reduced pressure or vacuum. Further, in the metal bonding layer forming step described below, if the rate of temperature rise to the firing temperature is about 7 ° C./min or less, the preliminary drying step can be carried out by raising the temperature to the firing temperature.

<金属接合層形成工程>
載置工程を実施して、必要に応じて予備乾燥工程を実施した後、2つの被接合部材にサンドイッチされた塗膜を160〜350℃で焼成し、金属粒子粉末(特に微細な金属微粒子粉末)を焼結させることで、金属接合層を形成し、2つの被接合部材を接合する。
<Metal bonding layer forming process>
After carrying out the mounting step and, if necessary, the pre-drying step, the coating film sandwiched between the two members to be joined is calcined at 160 to 350 ° C. to obtain metal particle powder (particularly fine metal fine particle powder). ) Is sintered to form a metal bonding layer, and the two members to be bonded are bonded.

金属接合層形成工程では、前記160〜350℃の焼成温度まで昇温し、焼成温度で例えば1分〜2時間保持して、接合材の塗膜から金属接合層を形成する。前記昇温の速度は特に限定されるものではないが、例えば1.5℃/分〜12℃/分とすることができ、2℃/分〜6℃/分とすることが好ましい。 In the metal bonding layer forming step, the temperature is raised to the firing temperature of 160 to 350 ° C., and the temperature is maintained at the firing temperature for, for example, 1 minute to 2 hours to form the metal bonding layer from the coating film of the bonding material. The rate of temperature rise is not particularly limited, but can be, for example, 1.5 ° C./min to 12 ° C./min, preferably 2 ° C./min to 6 ° C./min.

焼成温度は、形成される金属接合層の接合強度やコストの観点から、175〜280℃であることが好ましい。 The firing temperature is preferably 175 to 280 ° C. from the viewpoint of the bonding strength and cost of the formed metal bonding layer.

焼成温度で保持する時間は、形成される金属接合層の接合強度や熱コストの観点から、10〜90分であることが好ましい。なお、例えば焼成温度が280℃以上といった上記に示した焼成温度範囲のうち高めの温度であると、焼成温度に昇温するまでに金属接合層が形成される場合もある。このような場合には、焼成温度での保持時間は0分としてもよい。 The time for holding at the firing temperature is preferably 10 to 90 minutes from the viewpoint of the bonding strength of the formed metal bonding layer and the heat cost. If the firing temperature is higher than the firing temperature range shown above, for example, the firing temperature is 280 ° C. or higher, a metal bonding layer may be formed before the temperature rises to the firing temperature. In such a case, the holding time at the firing temperature may be 0 minutes.

また、上述の通り、本発明の接合材の実施の形態(から形成された塗膜)は低せん断粘度が低いため、塗膜と一方の被接合部材の間のギャップ形成は抑制されているものと考えられる。そのためこの金属接合層形成工程においては、被接合部材間に(焼結して金属接合層を形成中の塗膜が、2つの被接合部材により圧縮される方向の)圧力を加えずとも、(金属接合層を形成中の)塗膜と一方の被接合部材の界面部分を起点としたボイドが極めて形成されにくい。 Further, as described above, since the embodiment of the bonding material of the present invention (the coating film formed from) has a low shear viscosity, the formation of a gap between the coating film and one of the members to be joined is suppressed. it is conceivable that. Therefore, in this metal bonding layer forming step, even if no pressure is applied between the members to be bonded (in the direction in which the coating film being sintered to form the metal bonding layer is compressed by the two members to be bonded) ( Voids starting from the interface between the coating film (which is forming the metal bonding layer) and one of the members to be bonded are extremely difficult to form.

被接合部材間、すなわち二つの被接合部材及び塗膜に圧力を加えると、[背景技術]で説明した通りこれらにダメージを与える恐れがあるが、本発明の接合材の実施の形態を使用すれば、前記のような加圧をせずともボイドの発生を抑制して接合が実施できる。また、加圧を行う場合に、接合の生産性の観点から同時に多数の接合を実施することを考えると、多数の被接合部材−塗膜−被接合部材のサンドイッチ構造物に対して同一の方向で同一の加圧を同時に行うこととなるが、それは容易ではなく、同時に多数の加圧接合を実施した場合には、得られる製品の品質の均一性に懸念がある。前記の加圧を行わない接合であれば、このような懸念は無い。以上から、本発明においては、加圧せずに金属接合層形成工程を実施して金属接合層を形成する、無加圧方式の接合を原則とする。 Applying pressure between the members to be joined, that is, to the two members to be joined and the coating film, may damage them as described in [Background Art]. For example, the joining can be carried out by suppressing the generation of voids without applying the above-mentioned pressurization. Further, when applying pressure, considering that a large number of joints are simultaneously performed from the viewpoint of the productivity of the joints, the same direction is applied to the sandwich structure of a large number of members to be joined-coating film-members to be joined. However, it is not easy to apply the same pressure at the same time, and there is a concern about the uniformity of the quality of the obtained product when a large number of pressure joints are performed at the same time. If the joint is not pressurized, there is no such concern. From the above, in the present invention, in principle, a non-pressurized bonding method is performed in which a metal bonding layer forming step is performed without pressurization to form a metal bonding layer.

また金属接合層形成工程は大気雰囲気中で実施しても窒素雰囲気などの不活性雰囲気中で実施してもよいが、酸化防止の観点から不活性雰囲気中で実施することが好ましい。更にコストの観点から、本工程を窒素雰囲気中で実施することがより好ましい。 The metal bonding layer forming step may be carried out in an atmospheric atmosphere or an inert atmosphere such as a nitrogen atmosphere, but it is preferably carried out in an inert atmosphere from the viewpoint of preventing oxidation. Further, from the viewpoint of cost, it is more preferable to carry out this step in a nitrogen atmosphere.

以下、実施例を参照しながら、本発明についてより具体的に説明するが、本発明はこれらにより何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

[銀微粒子粉末及び銀大粒子粉末1〜4]
以下で説明する実施例及び比較例において使用した銀微粒子粉末及び銀大粒子粉末1〜4の諸物性は、以下の表1の通りである。
[Silver fine particle powder and silver large particle powder 1-4]
The physical characteristics of the silver fine particle powder and the silver large particle powders 1 to 4 used in the examples and comparative examples described below are as shown in Table 1 below.

Figure 2021188071
Figure 2021188071

諸物性の測定方法は以下の通りである。 The method for measuring various physical properties is as follows.

<平均一次粒子径>
透過型電子顕微鏡(TEM)(日本電子株式会社製のJEM−1011)により粒子を倍率50000倍で観察した画像上の250個の任意の粒子の一次粒子径(粒子と面積が同じ円(面積相当円)の直径)から平均一次粒子径を算出した。面積相当円の直径の算出は、画像解析ソフト(旭化成エンジニアリング株式会社製のA像くん(登録商標))により行った。このとき、あわせて粒子形状も観察した。なお銀大粒子粉末1〜4の形状については、電界放出形走査電子顕微鏡(JSM−7200M、日本電子株式会社製)で倍率20000倍にて観察した。
<Average primary particle size>
Primary particle diameter of 250 arbitrary particles on an image obtained by observing particles with a transmission electron microscope (TEM) (JEM-1011 manufactured by Nippon Denshi Co., Ltd.) at a magnification of 50,000 times (a circle with the same area as the particles (equivalent to the area)) The average primary particle diameter was calculated from the diameter of the circle). The diameter of the circle equivalent to the area was calculated by image analysis software (A-kun (registered trademark) manufactured by Asahi Kasei Engineering Co., Ltd.). At this time, the particle shape was also observed. The shapes of the silver large particle powders 1 to 4 were observed with a field emission scanning electron microscope (JSM-7200M, manufactured by JEOL Ltd.) at a magnification of 20000 times.

<粒度分布>
粒度分布は、レーザー回折型粒度分布測定装置(SYMPATEC社製のへロス粒度分布測定装置(HELOS&RODOS(気流式の分散モジュール)))を使用して、分散圧5barで、焦点距離20mmのレンズを使用して試料粉末の体積基準の粒度分布を求めることで、累積10%粒子径(D10)、累積50%粒子径(D50)及び累積90%粒子径(D90)を求めた。
<Particle size distribution>
For the particle size distribution, use a laser diffraction type particle size distribution measuring device (SIMPATEC's Heros particle size distribution measuring device (HELOS & RODOS (air flow type dispersion module))), a dispersion pressure of 5 bar, and a lens with a focal length of 20 mm. By obtaining the volume-based particle size distribution of the sample powder, the cumulative 10% particle size (D10), the cumulative 50% particle size (D50), and the cumulative 90% particle size (D90) were obtained.

<タップ密度>
タップ密度は、特開2007−263860号公報に記載された方法と同様に、試料粉末を内径6mm×高さ11.9mmの有底円筒形のダイに容積の80%まで充填して粉末層を形成し、この粉末層の上面に0.160N/mの圧力を均一に加え、この圧力で粉末がこれ以上密に充填されなくなるまで前記粉末層を圧縮した後、粉末層の高さを測定し、この粉末層の高さの測定値と、充填された試料粉末の重量とから、粉末の密度を求め、これを粉末のタップ密度とした。
<Tap density>
The tap density is the same as the method described in JP-A-2007-263860, and the sample powder is filled in a bottomed cylindrical die having an inner diameter of 6 mm and a height of 11.9 mm up to 80% of the volume to form a powder layer. After forming, a pressure of 0.160 N / m 2 is uniformly applied to the upper surface of the powder layer, the powder layer is compressed until the powder is no longer densely packed at this pressure, and then the height of the powder layer is measured. Then, the density of the powder was obtained from the measured value of the height of the powder layer and the weight of the filled sample powder, and this was used as the tap density of the powder.

<充填率(%)>
求められたタップ密度の、銀のバルク密度(10.49g/cm)に対する百分率を計算することで求めた。
<Filling rate (%)>
It was determined by calculating the percentage of the determined tap density to the bulk density of silver (10.49 g / cm 3).

<比表面積>
比表面積は、BET比表面積測定器(株式会社マウンテック製のMacsorb)を使用して、測定器内に105℃で20分間窒素ガスを流して試料粉末の粒子表面に付着した物質を除去した後、窒素とヘリウムの混合ガス(N2:30体積%、He:70体積%)を流しながら、BET1点法により測定した。
<Specific surface area>
For the specific surface area, a BET specific surface area measuring instrument (Macsorb manufactured by Mountech Co., Ltd.) was used to flow nitrogen gas into the measuring instrument at 105 ° C. for 20 minutes to remove substances adhering to the particle surface of the sample powder. It was measured by the BET 1-point method while flowing a mixed gas of nitrogen and helium (N2: 30% by volume, He: 70% by volume).

[比較例(接合材の調製)]
銀微粒子粉末を17.2質量%と、銀大粒子粉末1を75.8質量%と、分散剤としてLubrizol社製SOLPLUSD−540を0.2質量%と、溶剤として、富士フィルム和光純薬株式会社製デカノールを2.35質量%、日本テルペン化学株式会社製テルソルブIPTL−Aを0.6質量%、日本テルペン化学株式会社製TOE−100を2.35質量%とを混錬して、銀ペーストを調製した。
[Comparative example (preparation of bonding material)]
17.2% by mass of silver fine particle powder, 75.8% by mass of silver large particle powder 1, 0.2% by mass of SOLPLUSD-540 manufactured by Lubrizol as a dispersant, and Fuji Film Wako Junyaku Co., Ltd. as a solvent. Silver is kneaded with 2.35% by mass of Decanol manufactured by the company, 0.6% by mass of Telsolv IPTL-A manufactured by Nippon Telpen Chemical Co., Ltd., and 2.35 mass% of TOE-100 manufactured by Nippon Telpen Chemical Co., Ltd. A paste was prepared.

この銀ペーストは印刷に適した粘度に調整するため、デカノールとTOE−100をそれぞれ0.75wt%添加して希釈して、比較例の接合材を得た。得られた接合材中の銀濃度を強熱減量法により求めたところ、93.0質量%であった。 In order to adjust the viscosity of this silver paste to be suitable for printing, 0.75 wt% of each of decanol and TOE-100 was added and diluted to obtain a bonding material of Comparative Example. The silver concentration in the obtained bonded material was determined by the ignition loss method and found to be 93.0% by mass.

[実施例1〜4(接合材の調製)]
<実施例1>
銀微粒子粉末を16.3質量%と、銀大粒子粉末2を76.8質量%と、分散剤としてLubrizol社製SOLPLUSD−540を0.2質量%と、溶剤として、富士フィルム和光純薬株式会社製デカノールを2.35質量%、日本テルペン化学株式会社製テルソルブIPTL−Aを0.6質量%、日本テルペン化学株式会社製TOE−100を2.35質量%とを混錬して、銀ペーストを調製した。
[Examples 1 to 4 (preparation of bonding material)]
<Example 1>
16.3% by mass of silver fine particle powder, 76.8% by mass of silver large particle powder 2, 0.2% by mass of SOLPLUSD-540 manufactured by Lubrizol as a dispersant, and Fuji Film Wako Junyaku Co., Ltd. as a solvent. Silver is kneaded with 2.35% by mass of Decanol manufactured by the company, 0.6% by mass of Telsolv IPTL-A manufactured by Nippon Telpen Chemical Co., Ltd., and 2.35 mass% of TOE-100 manufactured by Nippon Telpen Chemical Co., Ltd. A paste was prepared.

この銀ペーストは印刷に適した粘度に調整するため、デカノールとTOE−100をそれぞれ0.70wt%添加して希釈して、実施例1の接合材を得た。得られた接合材中の銀濃度を強熱減量法により求めたところ、93.1質量%であった。 In order to adjust the viscosity of this silver paste to be suitable for printing, 0.70 wt% of each of decanol and TOE-100 was added and diluted to obtain the bonding material of Example 1. The silver concentration in the obtained bonded material was determined by the ignition loss method and found to be 93.1% by mass.

<実施例2>
銀微粒子粉末を17.6質量%と、銀大粒子粉末2を75.5質量%と、分散剤としてLubrizol社製SOLPLUSD−540を0.2質量%と、溶剤として、富士フィルム和光純薬株式会社製デカノールを2.35質量%、日本テルペン化学株式会社製テルソルブIPTL−Aを0.6質量%、日本テルペン化学株式会社製TOE−100を2.35質量%とを混錬して、銀ペーストを調製した。
<Example 2>
17.6% by mass of silver fine particle powder, 75.5% by mass of silver large particle powder 2, 0.2% by mass of SOLPLUSD-540 manufactured by Lubrizol as a dispersant, and Fuji Film Wako Junyaku Co., Ltd. as a solvent. Silver is kneaded with 2.35% by mass of Decanol manufactured by the company, 0.6% by mass of Telsolv IPTL-A manufactured by Nippon Telpen Chemical Co., Ltd., and 2.35 mass% of TOE-100 manufactured by Nippon Telpen Chemical Co., Ltd. A paste was prepared.

この銀ペーストは印刷に適した粘度に調整するため、デカノールとTOE−100をそれぞれ0.70wt%添加して希釈して、実施例2の接合材を得た。得られた接合材中の銀濃度を強熱減量法により求めたところ、93.1質量%であった。 In order to adjust the viscosity of this silver paste to be suitable for printing, 0.70 wt% of each of decanol and TOE-100 was added and diluted to obtain the bonding material of Example 2. The silver concentration in the obtained bonded material was determined by the ignition loss method and found to be 93.1% by mass.

<実施例3>
銀微粒子粉末を16.7質量%と、銀大粒子粉末3を76.4質量%と、分散剤としてLubrizol社製SOLPLUSD−540を0.2質量%と、溶剤として、富士フィルム和光純薬株式会社製デカノールを2.35質量%、日本テルペン化学株式会社製テルソルブIPTL−Aを0.6質量%、日本テルペン化学株式会社製TOE−100を2.35質量%とを混錬して、銀ペーストを調製した。
<Example 3>
16.7% by mass of silver fine particle powder, 76.4% by mass of silver large particle powder 3, 0.2% by mass of SOLPLUSD-540 manufactured by Lubrizol as a dispersant, and Fuji Film Wako Junyaku Co., Ltd. as a solvent. Silver is kneaded with 2.35% by mass of Decanol manufactured by the company, 0.6% by mass of Telsolv IPTL-A manufactured by Nippon Telpen Chemical Co., Ltd., and 2.35 mass% of TOE-100 manufactured by Nippon Telpen Chemical Co., Ltd. A paste was prepared.

この銀ペーストは印刷に適した粘度に調整するため、デカノールとTOE−100をそれぞれ0.70wt%添加して希釈して、実施例3の接合材を得た。得られた接合材中の銀濃度を強熱減量法により求めたところ、93.1質量%であった。 In order to adjust the viscosity of this silver paste to be suitable for printing, 0.70 wt% of each of decanol and TOE-100 was added and diluted to obtain the bonding material of Example 3. The silver concentration in the obtained bonded material was determined by the ignition loss method and found to be 93.1% by mass.

<実施例4>
銀微粒子粉末を17.2質量%と、銀大粒子粉末4を75.8質量%と、分散剤としてLubrizol社製SOLPLUSD−540を0.2質量%と、溶剤として、日本テルペン化学株式会社製テルソルブIPTL−Aを0.6質量%、富士フィルム和光純薬株式会社製デカノールを2.35質量%、日本テルペン化学株式会社製TOE−100を2.35質量%とを混錬して、銀ペーストを調製した。
<Example 4>
17.2% by mass of silver fine particle powder, 75.8% by mass of silver large particle powder 4, 0.2% by mass of SOLPLUSD-540 manufactured by Lubrizol as a dispersant, and 0.2% by mass of SOLPLUSD-540 manufactured by Nippon Terupen Chemical Co., Ltd. as a solvent. Silver by kneading Telsolv IPTL-A with 0.6% by mass, Fuji Film Wako Pure Chemical Co., Ltd. with 2.35% by mass, and Nippon Telpen Chemical Co., Ltd. with TOE-100 with 2.35% by mass. A paste was prepared.

この銀ペーストは印刷に適した粘度に調整するため、デカノールとTOE−100をそれぞれ0.70wt%添加して希釈して、実施例4の接合材を得た。得られた接合材中の銀濃度を強熱減量法により求めたところ、93.0質量%であった。 In order to adjust the viscosity of this silver paste to be suitable for printing, 0.70 wt% of each of decanol and TOE-100 was added and diluted to obtain the bonding material of Example 4. The silver concentration in the obtained bonded material was determined by the ignition loss method and found to be 93.0% by mass.

以上、調製した比較例1及び実施例1〜4の接合材の成分組成を下記表2に表示した。 As described above, the component compositions of the prepared bonding materials of Comparative Examples 1 and Examples 1 to 4 are shown in Table 2 below.

Figure 2021188071
Figure 2021188071

[粘度測定]
<低せん断粘度>
比較例及び実施例1〜4の接合材について、E型の回転式粘度計であるレオメーター(回転式動的粘弾性測定装置)(Thermo社製のHAAKE RheoStress 600、コーン径35mm、コーン角度2°のコーンを使用)を用い、25℃、せん断速度0.157s−1の条件で粘度(低せん断粘度)の評価を行った。粘度測定は、以下のようにしておこなった。ステージとコーンの隙間に接合材を注入し、コーンを0.157s−1で回転させたときの、回転開始から60秒後の時点のせん断応力から低せん断粘度を算出した。なおその際のせん断速度が、回転開始から30秒後〜60秒後の30秒の間、設定値である0.157s−1の±1%以内のせん断速度に収まっていることを確認したうえで、低せん断粘度を求めた。
[Viscosity measurement]
<Low shear viscosity>
For the joint materials of Comparative Examples and Examples 1 to 4, a rheometer (rotary dynamic viscometer) (HAAKE RheoStress 600 manufactured by Thermo), which is an E-type rotary viscometer, has a cone diameter of 35 mm and a cone angle of 2. The viscosity (low shear viscosity) was evaluated under the conditions of 25 ° C. and a shear rate of 0.157s -1 using a ° cone). The viscosity was measured as follows. The low shear viscosity was calculated from the shear stress 60 seconds after the start of rotation when the bonding material was injected into the gap between the stage and the cone and the cone was rotated at 0.157s-1. After confirming that the shear rate at that time is within ± 1% of the set value of 0.157s -1 for 30 seconds from 30 seconds to 60 seconds after the start of rotation. Then, a low shear viscosity was obtained.

<1rpm及び5rpmでの粘度>
更に比較例及び実施例1〜4の接合材について、上記と同様のレオメーターを用いて、25℃にて、回転数1rpm(3.1s−1)、及び5rpm(15.7s−1)での粘度及びチキソ比(1rpmでの粘度/5rpmでの粘度)を求めた。
<Viscosity at 1 rpm and 5 rpm>
Moreover for the bonding material of Comparative Example and Examples 1-4, using the above and similar rheometer at 25 ° C., the rotational speed 1rpm (3.1s -1), and at 5rpm (15.7s -1) Viscosity and thixotropy (viscosity at 1 rpm / viscosity at 5 rpm) were determined.

以上の粘度測定の結果を下記表3にまとめる。 The results of the above viscosity measurements are summarized in Table 3 below.

Figure 2021188071
Figure 2021188071

表3に示すように、比較例および実施例1〜4の接合材は、1rpm粘度や5rpm粘度並びにチキソ比ではあまり変わらないものの、低せん断粘度が大きく異なることが確認された。 As shown in Table 3, it was confirmed that the bonding materials of Comparative Examples and Examples 1 to 4 differed greatly in low shear viscosity, although they did not change much in 1 rpm viscosity, 5 rpm viscosity and thixotropic ratio.

<接合試験(ボイド評価)>
エタノールで脱脂した後に10質量%硫酸で処理した30mm×36.6mm×2.32mm(Cu/SiN/Cu=1.0mm/0.32mm/1.0mm)の大きさのDBC基板(SiN(窒化珪素)を銅板で挟んだセラミック基板)と、接合面(底面全面)にAgめっきを施した8mm×8mm×0.1mmの大きさの半導体素子を用意した。
<Joining test (void evaluation)>
A DBC substrate (SiN (nitriding) having a size of 30 mm × 36.6 mm × 2.32 mm (Cu / SiN / Cu = 1.0 mm / 0.32 mm / 1.0 mm) degreased with ethanol and then treated with 10 mass% sulfuric acid. A ceramic substrate (silicon) sandwiched between copper plates) and a semiconductor element having a size of 8 mm × 8 mm × 0.1 mm with Ag plating on the joint surface (entire surface of the bottom surface) were prepared.

次に、前記DBC基板上にメタルマスク印刷で上記比較例及び実施例1〜4の接合材をそれぞれ塗布した。DBC基板上に塗布された接合材上に、上記の半導体素子のAgめっきした部分が接合材に接するように配置した。接合材と半導体素子の間に、素子の上面全体を押すことで5Nの荷重(約0.08MPaの圧力)をかけた後、熱風循環式焼成炉により窒素雰囲気(酸素濃度500ppm以下)中において25℃から昇温速度3℃/minで250℃まで昇温させ、250℃で60分間保持する焼成を行って、銀接合層を形成し、この銀接合層によって半導体素子をDBC基板に接合した。 Next, the bonding materials of Comparative Examples and Examples 1 to 4 were applied onto the DBC substrate by metal mask printing, respectively. On the bonding material coated on the DBC substrate, the Ag-plated portion of the above-mentioned semiconductor element was arranged so as to be in contact with the bonding material. After applying a load of 5N (pressure of about 0.08 MPa) by pushing the entire upper surface of the device between the bonding material and the semiconductor device, 25 in a nitrogen atmosphere (oxygen concentration of 500 ppm or less) by a hot air circulation firing furnace. The temperature was raised from ° C. to 250 ° C. at a heating rate of 3 ° C./min and fired at 250 ° C. for 60 minutes to form a silver bonding layer, and the semiconductor element was bonded to the DBC substrate by this silver bonding layer.

得られたDBC基板−銀接合層−半導体素子の接合体について、超音波探傷検査装置(C−SAM:SONOSCAN社製のD9500)により半導体素子の上面から接合部(上から半導体素子−銀接合層−DBC基板の積層部位)を観察した。得られた画像(C−SAM像)から、DBC基板の銀接合層との界面のボイドの有無を観察した。また、同装置に付属の解析ソフトを用い、ボイド箇所の全観察部位に占める割合(百分率)を算出し、これをボイド率と規定した。なおボイド箇所とはC−SAM像において白く見えるところであり、全観察部位とは半導体素子の接合面に対応する、8mm×8mmの正方形の領域である。 The obtained DBC substrate-silver junction layer-semiconductor element junction was subjected to an ultrasonic flaw detection inspection device (C-SAM: D9500 manufactured by SONOSCAN) from the top surface of the semiconductor element to the junction (semiconductor element-silver junction layer from above). -The laminated part of the DBC substrate) was observed. From the obtained image (C-SAM image), the presence or absence of voids at the interface with the silver bonding layer of the DBC substrate was observed. In addition, using the analysis software attached to the device, the ratio (percentage) of the void points to all observation sites was calculated, and this was defined as the void rate. The void portion is a portion that appears white in the C-SAM image, and the entire observation portion is a square region of 8 mm × 8 mm corresponding to the joint surface of the semiconductor element.

ボイド率の評価結果を下記表4に示す。なお、接合材の低せん断粘度並びに接合材中の銀大粒子粉末のタップ密度及び充填率も表4にあわせて示す。 The evaluation results of the void rate are shown in Table 4 below. Table 4 also shows the low shear viscosity of the bonding material and the tap density and filling rate of the silver large particle powder in the bonding material.

Figure 2021188071
Figure 2021188071

表4に示すように、低せん断粘度が大きな接合材を用いた比較例では、ボイド率が1.24%であったのに対して、実施例1〜4では、低せん断粘度が1000Pa・s以下である接合材を用いることで、比較例よりもボイド率を0.77%以下と低く抑え、ボイドを低減できることが確認された。また、低せん断粘度を小さくするほどボイド率を低減できる傾向が確認された。このように、接合材の低せん断粘度を小さくすることにより、ボイドを低減することができる。 As shown in Table 4, in the comparative example using the bonding material having a large low shear viscosity, the void ratio was 1.24%, whereas in Examples 1 to 4, the low shear viscosity was 1000 Pa · s. It was confirmed that by using the following bonding material, the void ratio can be suppressed to 0.77% or less, which is lower than that of the comparative example, and the void can be reduced. It was also confirmed that the smaller the low shear viscosity, the lower the void ratio. In this way, by reducing the low shear viscosity of the bonding material, voids can be reduced.

Claims (20)

金属粒子粉末及び溶剤を含む接合材であって、25℃で0.157s−1にて測定した粘度が1000Pa・s以下である、接合材。 A bonding material containing metal particle powder and a solvent, having a viscosity of 1000 Pa · s or less measured at 0.157s-1 at 25 ° C. 前記金属粒子粉末の一部が、平均一次粒子径が150nm以下の金属微粒子粉末である、請求項1に記載の接合材。 The bonding material according to claim 1, wherein a part of the metal particle powder is a metal fine particle powder having an average primary particle diameter of 150 nm or less. 前記接合材中の金属微粒子粉末の含有量が、2〜45質量%である、請求項2に記載の接合材。 The bonding material according to claim 2, wherein the content of the metal fine particle powder in the bonding material is 2 to 45% by mass. 前記粘度が800Pa・s以下である、請求項1〜3のいずれかに記載の接合材。 The bonding material according to any one of claims 1 to 3, wherein the viscosity is 800 Pa · s or less. 前記粘度が500Pa・s以下である、請求項1〜4のいずれかに記載の接合材。 The bonding material according to any one of claims 1 to 4, wherein the viscosity is 500 Pa · s or less. 前記金属粒子粉末の一部が、充填率が65.0%以上であり、レーザー回折型粒度分布測定装置により測定した体積基準の累積50%粒子径(D50)が0.8〜3.2μmである金属大粒子粉末である、請求項1〜5のいずれかに記載の接合材。 A part of the metal particle powder has a filling rate of 65.0% or more, and a volume-based cumulative 50% particle diameter (D50) measured by a laser diffraction type particle size distribution measuring device is 0.8 to 3.2 μm. The bonding material according to any one of claims 1 to 5, which is a large metal particle powder. 前記接合材中の金属大粒子粉末の含有量が、40〜88質量%である、請求項6に記載の接合材。 The bonding material according to claim 6, wherein the content of the large metal particle powder in the bonding material is 40 to 88% by mass. 前記金属大粒子粉末の充填率が66.5%以上である、請求項6又は7に記載の接合材。 The bonding material according to claim 6 or 7, wherein the filling rate of the large metal particle powder is 66.5% or more. 前記金属が、金、銀及び銅からなる群より選ばれる少なくとも一種である、請求項1〜8のいずれかに記載の接合材。 The bonding material according to any one of claims 1 to 8, wherein the metal is at least one selected from the group consisting of gold, silver and copper. 前記金属が銀である、請求項1〜9のいずれかに記載の接合材。 The bonding material according to any one of claims 1 to 9, wherein the metal is silver. 無加圧方式の接合に使用される、請求項1〜10のいずれかに記載の接合材。 The joining material according to any one of claims 1 to 10, which is used for joining in a non-pressurized method. 前記接合材中の金属粒子粉末の含有量が、90〜96質量%である、請求項1〜11のいずれかに記載の接合材。 The bonding material according to any one of claims 1 to 11, wherein the content of the metal particle powder in the bonding material is 90 to 96% by mass. 平均一次粒子径が150nm以下の金属微粒子粉末と、充填率が65.0%以上であり、レーザー回折型粒度分布測定装置により測定した体積基準の累積50%粒子径(D50)が0.8〜3.2μmである金属大粒子粉末と、溶剤とを混合する、接合材の製造方法。 Metallic fine particle powder with an average primary particle size of 150 nm or less, a filling rate of 65.0% or more, and a volume-based cumulative 50% particle size (D50) measured by a laser diffraction type particle size distribution measuring device are 0.8 to. A method for producing a bonding material, in which a large metal particle powder having a size of 3.2 μm and a solvent are mixed. 前記金属微粒子粉末及び金属大粒子粉末の使用量が、前記接合材中の金属微粒子粉末及び金属大粒子粉末の含有量が、それぞれ2〜45質量%及び40〜88質量%となる量である、請求項13に記載の接合材の製造方法。 The amount of the metal fine particle powder and the metal large particle powder used is such that the contents of the metal fine particle powder and the metal large particle powder in the bonding material are 2 to 45% by mass and 40 to 88% by mass, respectively. The method for producing a bonding material according to claim 13. 前記金属微粒子粉末及び金属大粒子粉末の使用量の合計が、前記接合材中の金属微粒子粉末及び金属大粒子粉末の含有量の合計が90〜96質量%となる量である、請求項13又は14に記載の接合材の製造方法。 13. 14. The method for producing a bonding material according to 14. 前記金属大粒子粉末の充填率が66.5%以上である、請求項13〜15のいずれかに記載の接合材の製造方法。 The method for producing a bonding material according to any one of claims 13 to 15, wherein the filling rate of the large metal particle powder is 66.5% or more. 前記金属が、金、銀及び銅からなる群より選ばれる少なくとも一種である、請求項13〜16のいずれかに記載の接合材の製造方法。 The method for producing a bonding material according to any one of claims 13 to 16, wherein the metal is at least one selected from the group consisting of gold, silver and copper. 2つの被接合部材を接合する接合方法であって、一方の前記被接合部材上に請求項1〜12のいずれかに記載の接合材又は請求項13〜17のいずれかに記載の接合材の製造方法で製造された接合材を塗布して塗膜を形成する工程と、該塗膜上に他方の前記被接合部材を載置する工程と、該他方の被接合部材が載置された塗膜を160〜350℃で焼成して、前記塗膜から金属接合層を形成する工程とを有する、接合方法。 A joining method for joining two members to be joined, wherein the joining material according to any one of claims 1 to 12 or the joining material according to any one of claims 13 to 17 is placed on one of the members to be joined. The step of applying the bonding material manufactured by the manufacturing method to form a coating film, the step of placing the other member to be joined on the coating film, and the coating on which the other member to be joined is placed. A bonding method comprising a step of firing a film at 160 to 350 ° C. to form a metal bonding layer from the coating film. 前記塗膜を焼成して金属接合層を形成する際に、前記2つの被接合部材及び塗膜に圧力を加えない、請求項18に記載の接合方法。 The joining method according to claim 18, wherein no pressure is applied to the two members to be joined and the coating film when the coating film is fired to form a metal bonding layer. 前記一方の被接合部材が基板であり、前記他方の被接合部材が半導体素子である、請求項18又は19に記載の接合方法。 The joining method according to claim 18 or 19, wherein one of the members to be joined is a substrate and the other member to be joined is a semiconductor element.
JP2020092126A 2020-05-27 2020-05-27 Bonding material, manufacturing method for bonding material, and bonding method Active JP7487011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020092126A JP7487011B2 (en) 2020-05-27 2020-05-27 Bonding material, manufacturing method for bonding material, and bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020092126A JP7487011B2 (en) 2020-05-27 2020-05-27 Bonding material, manufacturing method for bonding material, and bonding method

Publications (2)

Publication Number Publication Date
JP2021188071A true JP2021188071A (en) 2021-12-13
JP7487011B2 JP7487011B2 (en) 2024-05-20

Family

ID=78848264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020092126A Active JP7487011B2 (en) 2020-05-27 2020-05-27 Bonding material, manufacturing method for bonding material, and bonding method

Country Status (1)

Country Link
JP (1) JP7487011B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155055A1 (en) 2010-06-11 2011-12-15 Dowaエレクトロニクス株式会社 Low-temperature-sintering bonding material and bonding method using the bonding material
JP4870223B1 (en) 2010-09-02 2012-02-08 ニホンハンダ株式会社 Pasty silver particle composition, method for producing metal member assembly, and metal member assembly
JP7272834B2 (en) 2018-04-11 2023-05-12 Dowaエレクトロニクス株式会社 Silver powder and its manufacturing method

Also Published As

Publication number Publication date
JP7487011B2 (en) 2024-05-20

Similar Documents

Publication Publication Date Title
TWI705998B (en) Conductive composition and electronic component using the same
TWI636842B (en) Bonding material and bonding method using same
TWI716639B (en) Bonding material and bonding method using same
JP6884285B2 (en) Bonding composition, bonding structure of conductor and method for manufacturing the same
JP6032110B2 (en) Metal nanoparticle material, bonding material containing the same, and semiconductor device using the same
JP2023017869A (en) Sintered metal powder paste, method for producing the same, and method for producing conductive material
JP6722679B2 (en) Conductive paste
JPWO2012046641A1 (en) Precious metal paste for semiconductor element bonding
TW201911989A (en) Method for producing metal bonded laminate
WO2021125161A1 (en) Silver paste, method for producing same, and method for producing jointed article
US10821558B2 (en) Bonding material and bonding method using same
JP7487011B2 (en) Bonding material, manufacturing method for bonding material, and bonding method
JP2017172029A (en) JOINT MATERIAL AND JOINT STRUCTURE USING Ni NANOPARTICLES
JP2013149566A (en) Conductive composition and manufacturing method of junction material
JP6947280B2 (en) Silver paste and its manufacturing method and joint manufacturing method
US20200035637A1 (en) Bonding material and bonded product using same
WO2021039874A1 (en) Low temperature sinterable bonding paste and bonded structure
JP6831416B2 (en) Joining material and joining method
JP2020164894A (en) Joint material, manufacturing method of joint material, joining method, and semiconductor device
JP6280497B2 (en) Silver paste and its use
WO2018101471A1 (en) Electroconductive bonding material and method for manufacturing semiconductor device
WO2021060126A1 (en) Joining material, method for manufacturing joining material, joining method, and semiconductor device
WO2024034662A1 (en) Copper paste
JP2022003161A (en) Joining material, joining-material producing method, and joining method
JP6845385B1 (en) Metal paste for joining and joining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240508

R150 Certificate of patent or registration of utility model

Ref document number: 7487011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150