JP2015193888A - Recovery method of platinum group element - Google Patents

Recovery method of platinum group element Download PDF

Info

Publication number
JP2015193888A
JP2015193888A JP2014072580A JP2014072580A JP2015193888A JP 2015193888 A JP2015193888 A JP 2015193888A JP 2014072580 A JP2014072580 A JP 2014072580A JP 2014072580 A JP2014072580 A JP 2014072580A JP 2015193888 A JP2015193888 A JP 2015193888A
Authority
JP
Japan
Prior art keywords
selenium
reduction
platinum group
tellurium
group elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014072580A
Other languages
Japanese (ja)
Other versions
JP6229847B2 (en
Inventor
亮介 佐藤
Ryosuke Sato
亮介 佐藤
岡田 智
Satoshi Okada
智 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2014072580A priority Critical patent/JP6229847B2/en
Publication of JP2015193888A publication Critical patent/JP2015193888A/en
Application granted granted Critical
Publication of JP6229847B2 publication Critical patent/JP6229847B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide a recovery method having an enhanced recovery ratio of selenium, rhodium, and ruthenium while suppressing reduction of tellurium.SOLUTION: In a recovery method of platinum group elements and selenium where selenium scum is precipitated by adding a reducer to an original liquid containing the platinum group elements, selenium, and tellurium, the selenium and the platinum group elements are reduced while suppressing reduction of the tellurium by setting a terminal concentration of selenium of 3 g/L-20 g/L in the original liquid. For example, an oxidation reduction potential of 520 mV-420 mV is set as a terminal point, or an oxidation reduction potential of 490 mV-470 mV is set as a terminal point in the presence of activated carbon in the recovery method of platinum group elements and selenium.

Description

本発明は、銅電解スライムなどの白金族元素とセレンを含有する液からセレンと共に白金族元素を効果的に回収する方法に関する。 The present invention relates to a method for effectively recovering a platinum group element together with selenium from a liquid containing a platinum group element such as copper electrolytic slime and selenium.

銅電解スライムには金銀や白金族元素などの貴金属が含まれている。そこで、例えば、このスラムを湿式処理して銀を分離し、残液から金を溶媒抽出している。この金抽出後液にはまだ多量のセレンとテルルおよび白金族元素が含まれているので、金抽出後液からセレンおよび白金族元素を回収する以下の方法が知られている。 Copper electrolytic slime contains noble metals such as gold and silver and platinum group elements. Therefore, for example, this slum is wet treated to separate silver, and gold is solvent extracted from the remaining liquid. Since this gold-extracted solution still contains a large amount of selenium, tellurium and platinum group elements, the following methods for recovering selenium and platinum group elements from the gold-extracted solution are known.

(イ)銅電解殿物からの金抽出後液に特定条件下で亜硫酸ガスを吹き込んで白金族および金を還元滓化して回収し、これを固液分離した後液に特定条件下で亜硫酸ガスを吹き込んでセレンを還元滓化して固液分離し、この後液に亜硫酸ガスを吹き込んでテルル還元滓化する方法(特許文献1)。
(ロ)銅電解スライムの浸出液から金を抽出し、陰イオン交換樹脂で白金族元素を吸着させた後、その吸着後残液に亜硫酸水素ナトリウムを添加してパラジウムを含む沈殿物を濾過して分離し、得られた濾液に二酸化硫黄を吹き込んでセレンを還元して回収する方法(特許文献2)。
(ハ)金溶媒抽出後液から銀を鉄還元して滓化した後に熔錬し、セレンを亜硫酸で還元した後に減圧蒸留し、白金族元素は溶媒抽出によって回収する方法(非特許文献1)。
(B) Sulfurous acid gas was blown into the liquid after copper extraction from copper electrolytic deposits under specific conditions to recover and recover the platinum group and gold, and after this was solid-liquid separated, the liquid was separated into sulfurous acid gas under specific conditions. Selenium is reduced and solidified by solid-liquid separation, and then sulfurous acid gas is blown into the liquid to perform tellurium reduction and hatching (Patent Document 1).
(B) After extracting gold from the leaching solution of copper electrolytic slime and adsorbing platinum group elements with an anion exchange resin, sodium bisulfite is added to the residual liquid after the adsorption, and the precipitate containing palladium is filtered. A method of separating and recovering selenium by blowing sulfur dioxide into the obtained filtrate (Patent Document 2).
(C) A method in which silver is iron-reduced and converted from the solution after gold solvent extraction and then melted, selenium is reduced with sulfurous acid and then distilled under reduced pressure, and platinum group elements are recovered by solvent extraction (Non-patent Document 1) .

特開2001−316735号公報JP 2001-316735 A 特開2012−126611号公報JP 2012-126611 A

銅澱物湿式処理技術の確立、資源と素材vol.116、p484-492(2000)Establishment of copper starch wet processing technology, resources and materials vol.116, p484-492 (2000)

従来の上記方法には以下のような課題がある。
セレン還元工程でセレン、テルル、および白金族元素を含む溶液に亜硫酸ガスを導入してセレンを還元して滓にしており、ロジウム、ルテニウムを含む白金族元素も一緒に還元されてセレン滓に移行する。このとき、セレンとテルルを分離するため、セレンの還元を8割程度に止めてテルルの還元を抑制している。セレンの還元が進み過ぎると(液の還元酸化電位が一定範囲以下になると)、テルルの還元が急激に進んで滓化し、セレン滓に混入するテルル滓量が多くなる。
The conventional method has the following problems.
In the selenium reduction process, sulfurous acid gas is introduced into the solution containing selenium, tellurium, and platinum group elements to reduce selenium, and the platinum group elements containing rhodium and ruthenium are also reduced together and transferred to selenium soot. To do. At this time, in order to separate selenium and tellurium, the reduction of selenium is stopped to about 80% to suppress the reduction of tellurium. If the reduction of selenium proceeds too much (when the reduction oxidation potential of the liquid falls below a certain range), the reduction of tellurium proceeds rapidly and hatches, increasing the amount of tellurium soot mixed in the selenium soot.

このように、セレンの還元を還元酸化電位が一定以下にならないように行うため、ロジウムやルテニウムの白金族元素の還元が進まず、白金族元素の回収率が3〜4割程度に止まると云う問題があった。 Thus, since the reduction of selenium is performed so that the reduction oxidation potential does not become below a certain level, the reduction of the platinum group elements of rhodium and ruthenium does not proceed, and the recovery rate of the platinum group elements is limited to about 30 to 40%. There was a problem.

本発明の回収方法は、従来方法の上記問題を解決したものであり、セレン、テルル、ロジウム、およびルテニウムの還元進行状態の相違に基づいて還元反応の終点を定めることによって、テルルの還元を抑制しつつ、セレンとロジウムおよびルテニウムの還元を究極まで進めてこれらの回収率を高めた回収方法を提供する。 The recovery method of the present invention solves the above-mentioned problems of conventional methods, and suppresses the reduction of tellurium by determining the end point of the reduction reaction based on the difference in the reduction progress of selenium, tellurium, rhodium, and ruthenium. However, the present invention provides a recovery method in which the reduction of selenium, rhodium, and ruthenium is advanced to the ultimate to increase the recovery rate.

本発明は、以下の構成によって上記課題を解決した白金族元素とセレンの回収方法に関する。
〔1〕白金族元素とセレンおよびテルルを含有する元液に還元剤を添加してセレン滓を沈澱させる方法において、液中のセレン濃度3g/L〜20g/Lを終点として還元を進めることによって、テルルの還元を抑制してセレンおよび白金族元素の還元を進めることを特徴とする白金族元素とセレンの回収方法。
〔2〕元液の酸化還元電位520mV〜420mVを終点として還元を進める上記[1]に記載する白金族元素とセレンの回収方法。
〔3〕活性炭の存在下で、酸化還元電位490mV〜470mVを終点として還元を進める上記[1]に記載する白金族元素とセレンの回収方法。
〔4〕還元前の元液のセレン量に対して0.03〜0.9倍量の活性炭を該元液に添加して還元を進める上記[3]に記載する白金族元素とセレンの回収方法。
〔5〕液温70℃以上〜80℃の加温下で還元を進める上記[1]〜上記[4]の何れかに記載する白金族元素とセレンの回収方法。
〔6〕白金族元素とセレンおよびテルルを含有する液が銅電解スライムの湿式処理によって生じる金抽出残液である上記[1]〜上記[5]の何れかに記載する白金族元素とセレンの回収方法。
The present invention relates to a platinum group element and selenium recovery method that solves the above-described problems with the following configuration.
[1] In a method of precipitating selenium soot by adding a reducing agent to an original solution containing a platinum group element, selenium and tellurium, by proceeding with reduction at an end point of selenium concentration of 3 g / L to 20 g / L in the solution A method for recovering platinum group elements and selenium, comprising reducing reduction of tellurium and promoting reduction of selenium and platinum group elements.
[2] The method for recovering a platinum group element and selenium according to the above [1], in which the reduction proceeds with the oxidation-reduction potential of the original solution at 520 mV to 420 mV.
[3] The method for recovering a platinum group element and selenium according to the above [1], wherein the reduction proceeds in the presence of activated carbon with an oxidation-reduction potential of 490 mV to 470 mV as the end point.
[4] Recovery of platinum group element and selenium as described in [3] above, wherein 0.03 to 0.9 times the amount of activated carbon is added to the original liquid before the reduction and the reduction proceeds. Method.
[5] The method for recovering a platinum group element and selenium according to any one of [1] to [4], wherein the reduction is advanced under heating at a liquid temperature of 70 ° C. to 80 ° C.
[6] The platinum group element, selenium and tellurium-containing liquid is a gold extraction residue produced by wet treatment of copper electrolytic slime, and the platinum group element and selenium described in any one of [1] to [5] above Collection method.

〔具体的な説明〕
本発明の方法は、白金族元素とセレンおよびテルルを含有する元液に還元剤を添加してセレン滓を沈澱させる方法において、上記元液のセレン濃度が3g/L〜20g/Lを終点として還元を進めることによって、テルルの還元を抑制してセレンおよび白金族元素の還元を進めることを特徴とする白金族元素とセレンの回収方法である。
[Specific description]
In the method of the present invention, a selenium soot is precipitated by adding a reducing agent to an original solution containing a platinum group element, selenium and tellurium, and the selenium concentration of the original solution is 3 g / L to 20 g / L as an end point. It is a platinum group element and selenium recovery method characterized in that the reduction of tellurium is suppressed and the reduction of selenium and the platinum group element is advanced by advancing the reduction.

白金族元素とセレンおよびテルルを含有する元液は、例えば、銅電解スライムの湿式処理によって生じる金抽出残液などを用いることができる。その他に白金族元素を含む溶液にセレンを添加した溶液を原料の含有液として用いることができる。元液に添加する還元剤は亜硫酸ソーダ、亜硫酸ガスなどを用いることができる。 As the original solution containing the platinum group element, selenium and tellurium, for example, a gold extraction residual solution generated by wet processing of copper electrolytic slime can be used. In addition, a solution obtained by adding selenium to a solution containing a platinum group element can be used as a raw material-containing solution. As the reducing agent added to the original solution, sodium sulfite, sulfurous acid gas, or the like can be used.

液中のセレン(Se)とテルル(Te)、およびロジウム(Rh)とルテニウム(Ru)の還元進行状態を図1に示す。図示する例では、酸化還元電位(ORP)645mV(Ag/AgCl)において各元素の残存率100%である。セレンは還元時間の経過(ORP値の低下)に比例して直線状に低下し、還元480分経過(ORP値約339mV)で残存率は約1%なる。 FIG. 1 shows the progress of reduction of selenium (Se) and tellurium (Te), rhodium (Rh) and ruthenium (Ru) in the liquid. In the illustrated example, the residual ratio of each element is 100% at an oxidation-reduction potential (ORP) of 645 mV (Ag / AgCl). Selenium decreases linearly in proportion to the lapse of the reduction time (decrease in ORP value), and the residual rate becomes about 1% after 480 minutes of reduction (ORP value of about 339 mV).

一方、テルルは還元約470分(ORP値約350mV)でも還元が遅く、残存率は約85%であり、これより還元時間が長くなってORP値が約330mV以下になると急激に還元が進む。ロジウムも同様に還元約440分(ORP値約420mV)までは還元が遅く、残存率は約78%であり、これより還元時間が長くなってORP値が約400mV以下になると急激に還元が進む。また、ルテニウムは還元約60分(ORP値約554mV)までは還元が急激に進むが、還元約60分から約480分まで(ORP値約554〜約340mV)は還元が遅く、ORP値が339mVより下がると急激に還元が進む。 On the other hand, tellurium is slow to reduce even at a reduction of about 470 minutes (ORP value of about 350 mV), and the residual rate is about 85%. When the reduction time becomes longer and the ORP value becomes about 330 mV or less, the reduction rapidly proceeds. Similarly, the reduction of rhodium is slow until about 440 minutes (ORP value of about 420 mV), and the residual rate is about 78%, and when the reduction time becomes longer and the ORP value becomes about 400 mV or less, the reduction proceeds rapidly. . In addition, the reduction of ruthenium proceeds rapidly until the reduction is about 60 minutes (ORP value of about 554 mV), but the reduction is slow from about 60 minutes to about 480 minutes (ORP value of about 554 to about 340 mV), and the ORP value is higher than 339 mV. When it falls, the reduction proceeds rapidly.

図示するように、テルルの還元が急激に進み始めるORP値(X1)はロジウムの還元が急激に進み始めるORP値(X2)より僅かに低く、ORP値がX1になるまで還元を進めると(ORP値X1を終点として還元を進めると)、テルルの還元は抑制された状態のまま、セレンとロジウム及びルテニウムの還元を進めることができる。 As shown in the figure, the ORP value (X1) at which the reduction of tellurium begins to proceed abruptly is slightly lower than the ORP value (X2) at which the reduction of rhodium begins to proceed rapidly, and if the reduction proceeds until the ORP value reaches X1 (ORP) When the reduction proceeds with the value X1 as the end point), the reduction of selenium, rhodium, and ruthenium can proceed while the reduction of tellurium is suppressed.

本発明の方法は、このようなセレン、テルル、ロジウム、およびルテニウムの還元進行状態の相違に基づいて還元反応の終点を定めることによって、テルルの還元を抑制しつつ、セレンとロジウムおよびルテニウムの還元を究極まで進めて、これらの回収率を高めた回収方法である。具体的には、セレン濃度が3g/L〜20g/L、好ましくは4g/L〜18g/Lを終点として還元を進めることによって、テルルの還元を抑制してセレンおよび白金族元素の還元を進める。 In the method of the present invention, the reduction of selenium, rhodium and ruthenium is controlled while determining the end point of the reduction reaction based on the difference in the progress of reduction of selenium, tellurium, rhodium and ruthenium. This is a collection method that improves the collection rate by proceeding to the ultimate. Specifically, by reducing the selenium concentration from 3 g / L to 20 g / L, preferably from 4 g / L to 18 g / L, the reduction of tellurium is suppressed and the reduction of selenium and the platinum group element is advanced. .

例えば、セレン濃度68g/L、テルル濃度2.5g/L、ロジウム濃度1.5mg/L、ルテニウム濃度36mg/Lの元液について、液中のセレン濃度が3g/L〜20g/Lになるまで還元を進めると(セレン濃度3g/L〜20g/Lを終点として還元すると)、セレン残存率は概ね4%〜29%であり、図1に示すように、このときの元液の酸化還元電位は約520mV〜約420mVの範囲である。 For example, for a selenium concentration of 68 g / L, a tellurium concentration of 2.5 g / L, a rhodium concentration of 1.5 mg / L, and a ruthenium concentration of 36 mg / L, until the selenium concentration in the solution reaches 3 g / L to 20 g / L. As the reduction proceeds (when the selenium concentration is reduced from 3 g / L to 20 g / L as the end point), the selenium residual rate is approximately 4% to 29%, and as shown in FIG. 1, the redox potential of the original solution at this time Is in the range of about 520 mV to about 420 mV.

この酸化還元電位の範囲では、テルルの残存率は約80%以上であり、テルルの還元は殆ど進まないが、ロジウムは酸化還元電位が約470mV〜約420mVの範囲で急激に還元が進み、残存率約50%程度まで低下させることができ、またルテニウムは残存率約55%〜約50%まで還元を進めることができる。 In this redox potential range, the residual ratio of tellurium is about 80% or more, and the reduction of tellurium hardly progresses, but rhodium is rapidly reduced when the redox potential ranges from about 470 mV to about 420 mV. The rate can be reduced to about 50%, and the reduction of ruthenium can proceed to a residual rate of about 55% to about 50%.

さらに、本発明の回収方法は、元液に活性炭を添加することによって、元液の酸化還元電位490mV〜470mVを終点として還元を進めたときに、テルルの還元を抑制しつつ、図1に示す場合よりもロジウムとルテニウムの還元を進め、これらの残存率を低下させてロジウムおよびルテニウムの回収率を高めることができる。 Furthermore, the recovery method of the present invention is shown in FIG. 1 while suppressing the reduction of tellurium when the reduction proceeds by adding activated carbon to the original solution and the oxidation-reduction potential of the original solution is 490 mV to 470 mV. It is possible to promote the reduction of rhodium and ruthenium more than the case, and to reduce the residual rate of these to increase the recovery rate of rhodium and ruthenium.

活性炭を使用する際に最も効果が高いのは粉末状のものである。これは比表面積が大きいために液と活性炭の接触が増して反応が進むので好ましい。しかし、粉末状の活性炭を使用すると、セレン滓に活性炭が混入しやすくなり、後工程でセレンを蒸留させて回収する際に炭素に起因するガスが発生して安全上の懸念を招く。粒状(粒径1〜10mm程度)の活性炭を用いても十分な効果が得られるので、粒状の活性炭が好ましい。 When activated carbon is used, the powder is most effective. Since the specific surface area is large, the contact between the liquid and activated carbon is increased, and the reaction proceeds. However, when powdered activated carbon is used, the activated carbon is likely to be mixed into the selenium soot, and when the selenium is distilled and recovered in the subsequent process, a gas caused by carbon is generated, causing a safety concern. Even if granular (about 1 to 10 mm) activated carbon is used, a sufficient effect can be obtained, and granular activated carbon is preferable.

活性炭の添加量は、元液のセレン量に対して0.03〜0.9倍量が好ましい。この量が0.03倍量未満では効果が乏しく、0.9倍量を超えると効果が限界になる。 The amount of activated carbon added is preferably 0.03 to 0.9 times the amount of selenium in the original solution. If this amount is less than 0.03 times, the effect is poor, and if it exceeds 0.9 times, the effect is limited.

従来の方法では液温は70℃程度であるが、本発明の方法では液温70℃以上〜80℃が好ましい。加温して液温を高めることによって、さらにセレン、ロジウム、およびルテニウムの還元を進めることができる。 In the conventional method, the liquid temperature is about 70 ° C, but in the method of the present invention, the liquid temperature is preferably 70 ° C to 80 ° C. By heating and increasing the liquid temperature, reduction of selenium, rhodium, and ruthenium can be further promoted.

本発明の活性炭を用いる回収方法は、例えば、以下の手順で行う。
(a) セレン、テルル、および白金族元素を含む元液に活性炭を入れる。
(b) 活性炭は複合繊維の袋などに入れることにより、還元により生成する滓と分離できるようにするとよい。
(c) 液を加温(70℃以上〜80℃)する。
(d) 加温した元液に還元剤として亜硫酸ガスないし亜硫酸ソーダを添加して上記元素を還元する。
(e) 還元剤の添加速度は反応温度を監視しながら調整する。75〜80℃が好ましい。
(f) 液中のセレン濃度が3g/L〜20g/L、好ましくは4g/L〜18g/Lになった時点、あるいは酸化還元電位が490mV〜470mVになった時点で還元剤の添加を終了し、生成した滓を固液分離して回収する。
The recovery method using the activated carbon of the present invention is performed, for example, according to the following procedure.
(a) Activated carbon is added to an original solution containing selenium, tellurium, and platinum group elements.
(b) Activated carbon may be separated from the soot produced by reduction by placing it in a bag of composite fiber.
(c) The liquid is heated (70 ° C. to 80 ° C.).
(d) Sulfurous acid gas or sodium sulfite is added as a reducing agent to the heated original solution to reduce the above elements.
(e) The reducing agent addition rate is adjusted while monitoring the reaction temperature. 75-80 degreeC is preferable.
(f) When the selenium concentration in the liquid becomes 3 g / L to 20 g / L, preferably 4 g / L to 18 g / L, or when the oxidation-reduction potential becomes 490 mV to 470 mV, the addition of the reducing agent is completed. The generated soot is recovered by solid-liquid separation.

本発明の回収方法では、テルルの還元を抑制して、セレンとロジウムおよびルテニウムの還元が進むので、テルル量の少ないセレン滓を回収することができ、また、このセレン滓に含まれるロジウム滓およびルテニウム滓を増加することができる。この結果、セレンの回収率と共にロジウムとルテニウムの回収率を高めることができる。 In the recovery method of the present invention, the reduction of tellurium is suppressed, and the reduction of selenium, rhodium and ruthenium proceeds, so that selenium soot with a small amount of tellurium can be recovered, and rhodium soot and Ruthenium can be increased. As a result, the recovery rate of rhodium and ruthenium can be increased together with the recovery rate of selenium.

さらに本発明の回収方法では、活性炭を加えることによって、さらにテルルの還元を抑制してセレンとロジウムおよびルテニウムの還元を進めることができ、これらの回収率をさらに高めることができる。 Furthermore, in the recovery method of the present invention, by adding activated carbon, the reduction of tellurium can be further suppressed and the reduction of selenium, rhodium and ruthenium can be promoted, and the recovery rate thereof can be further increased.

セレン、テルル、ロジウム、およびルテニウムの還元状態の変化を示すグラフ。The graph which shows the change of the reduction | restoration state of selenium, tellurium, rhodium, and ruthenium.

以下に本発明の実施例を示す。還元後の液に残留するセレン、白金族元素の濃度はICP−AESを用いて測定した。還元前の液の濃度と質量から各元素の物量を算出し、滓に移行した量を求めた。 Examples of the present invention are shown below. The concentrations of selenium and platinum group elements remaining in the solution after reduction were measured using ICP-AES. The amount of each element was calculated from the concentration and mass of the liquid before reduction, and the amount transferred to the soot was determined.

〔実施例1〜3〕
元液(セレン68g/L、テルル2.5g/L、ロジウム1.5mg/L、ルテニウム36mg/L)500mLを用い、この元液を液温が70℃〜80℃の範囲になるまで加温した後に酸化還元電位が519mV〜491mVになるまで亜硫酸ソーダを添加した。反応時間は亜硫酸ソーダの濃度を薄くすることによって調整した。反応中は液温が70〜80℃を維持するように亜硫酸ソーダの添加量を調整した。上記酸化還元電位に達した時点で還元剤の添加を終了し、生成した滓を固液分離した。この結果を表1に示す。
[Examples 1-3]
Using 500 mL of the original solution (selenium 68 g / L, tellurium 2.5 g / L, rhodium 1.5 mg / L, ruthenium 36 mg / L), warm this original solution until the liquid temperature is in the range of 70 ° C to 80 ° C. After that, sodium sulfite was added until the oxidation-reduction potential became 519 mV to 491 mV. The reaction time was adjusted by reducing the concentration of sodium sulfite. During the reaction, the amount of sodium sulfite added was adjusted so that the liquid temperature was maintained at 70-80 ° C. When the oxidation-reduction potential was reached, the addition of the reducing agent was terminated, and the generated soot was solid-liquid separated. The results are shown in Table 1.

〔実施例4〜11〕
実施例1〜3と同様の元液を用い、この元液500mLと、袋入り粒状活性炭10gを容器にセットし、液温が70℃になるまで加温した後に酸化還元電位が507mV〜479mVになるまで亜硫酸ソーダを添加した。反応時間は亜硫酸ソーダの濃度を薄くすることによって調整した。反応中は液温が75℃を維持するように亜硫酸ソーダの添加量を調整した。上記酸化還元電位に達した時点で還元剤の添加を終了し、生成した滓を固液分離した。この結果を表1に示す。
[Examples 4 to 11]
Using the same original solution as in Examples 1 to 3, 500 mL of this original solution and 10 g of granular activated carbon in a bag were set in a container and heated until the liquid temperature reached 70 ° C., and then the oxidation-reduction potential was reduced to 507 mV to 479 mV. Sodium sulfite was added until The reaction time was adjusted by reducing the concentration of sodium sulfite. During the reaction, the amount of sodium sulfite added was adjusted so that the liquid temperature was maintained at 75 ° C. When the oxidation-reduction potential was reached, the addition of the reducing agent was terminated, and the generated soot was solid-liquid separated. The results are shown in Table 1.

実施例1〜3では、酸化還元電位519mV〜491mVで還元終了したときに、液に残るテルル濃度を1.9g/Lに止めて、セレン濃度を9.5〜11g/Lに低下させ、ロジウム濃度を0.38〜0.76g/L、ルテニウム濃度を19〜25g/Lに低下させることができる。この結果、還元滓へのセレンの移行率84%以上であって、テルルの移行率が27%以下に抑制され、ロジウムおよびルテニウムを含む還元滓を回収することができる。 In Examples 1 to 3, when the reduction was completed at an oxidation-reduction potential of 519 mV to 491 mV, the tellurium concentration remaining in the liquid was stopped at 1.9 g / L, and the selenium concentration was reduced to 9.5 to 11 g / L. The concentration can be lowered to 0.38 to 0.76 g / L and the ruthenium concentration to 19 to 25 g / L. As a result, the transfer rate of selenium to the reduced soot is 84% or more, the transfer rate of tellurium is suppressed to 27% or less, and the reduced soot containing rhodium and ruthenium can be recovered.

実施例4〜11では、活性炭を添加することによって、酸化還元電位が507mV〜473mVになるまで還元を進めて液中のセレン濃度を4.1〜13g/Lに低下させても、テルルの還元は抑制され、液に残るテルルの濃度は1.2〜2.6g/Lに止まり、一方、ロジウムの濃度は0.03〜0.36g/L、ルテニウムの濃度は10〜24g/Lに低下し、ロジウムとルテニウムの還元が進み、ロジウムおよびルテニウムが多い滓を回収することができる。例えば、実施例5〜7、9〜10では還元滓へのセレンの移行率90%以上に向上し、一方、テルルの移行率は実施例6を除き37%以下に抑制されている。また、実施例4〜11のロジウムの移行率は74%以上と高く、ルテニウムの移行率も48%以上である。 In Examples 4 to 11, the reduction of tellurium was achieved even when the reduction of selenium in the solution was reduced to 4.1 to 13 g / L by adding activated carbon until the redox potential was reduced to 507 mV to 473 mV. Is suppressed, and the concentration of tellurium remaining in the liquid is only 1.2 to 2.6 g / L, while the concentration of rhodium is decreased to 0.03 to 0.36 g / L and the concentration of ruthenium is decreased to 10 to 24 g / L. However, the reduction of rhodium and ruthenium proceeds, and soot rich in rhodium and ruthenium can be recovered. For example, in Examples 5 to 7 and 9 to 10, the migration rate of selenium to reduced soot is improved to 90% or more, while the migration rate of tellurium is suppressed to 37% or less except in Example 6. Moreover, the transfer rate of rhodium of Examples 4-11 is as high as 74% or more, and the transfer rate of ruthenium is also 48% or more.

Figure 2015193888
Figure 2015193888

Claims (6)

白金族元素とセレンおよびテルルを含有する元液に還元剤を添加してセレン滓を沈澱させる方法において、液中のセレン濃度3g/L〜20g/Lを終点として還元を進めることによって、テルルの還元を抑制してセレンおよび白金族元素の還元を進めることを特徴とする白金族元素とセレンの回収方法。
In a method in which a reducing agent is added to an original solution containing a platinum group element, selenium and tellurium to precipitate selenium soot, by reducing the selenium concentration in the solution from 3 g / L to 20 g / L, the reduction proceeds. A method for recovering platinum group elements and selenium, characterized by suppressing reduction and promoting reduction of selenium and platinum group elements.
元液の酸化還元電位520mV〜420mVを終点として還元を進める請求項1に記載する白金族元素とセレンの回収方法。
The method for recovering platinum group elements and selenium according to claim 1, wherein the reduction proceeds with an oxidation-reduction potential of 520 mV to 420 mV of the original solution as an end point.
活性炭の存在下で、酸化還元電位490mV〜470mVを終点として還元を進める請求項1に記載する白金族元素とセレンの回収方法。
The method for recovering platinum group elements and selenium according to claim 1, wherein the reduction proceeds in the presence of activated carbon with an oxidation-reduction potential of 490 mV to 470 mV as the end point.
還元前の元液のセレン量に対して0.03〜0.9倍量の活性炭を該元液に添加して還元を進める請求項3に記載する白金族元素とセレンの回収方法。
The method for recovering platinum group elements and selenium according to claim 3, wherein 0.03 to 0.9 times the amount of activated carbon relative to the amount of selenium in the original solution before reduction is added to the original solution to proceed the reduction.
液温70℃以上〜80℃の加温下で還元を進める請求項1〜請求項4の何れかに記載する白金族元素とセレンの回収方法。
The method for recovering a platinum group element and selenium according to any one of claims 1 to 4, wherein the reduction proceeds under heating at a liquid temperature of 70 ° C to 80 ° C.
白金族元素とセレンおよびテルルを含有する液が銅電解スライムの湿式処理によって生じる金抽出残液である請求項1〜請求項5の何れかに記載する白金族元素とセレンの回収方法。 The method for recovering a platinum group element and selenium according to any one of claims 1 to 5, wherein the liquid containing the platinum group element, selenium and tellurium is a gold extraction residue produced by a wet treatment of copper electrolytic slime.
JP2014072580A 2014-03-31 2014-03-31 Method for recovering platinum group elements Active JP6229847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014072580A JP6229847B2 (en) 2014-03-31 2014-03-31 Method for recovering platinum group elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014072580A JP6229847B2 (en) 2014-03-31 2014-03-31 Method for recovering platinum group elements

Publications (2)

Publication Number Publication Date
JP2015193888A true JP2015193888A (en) 2015-11-05
JP6229847B2 JP6229847B2 (en) 2017-11-15

Family

ID=54433178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014072580A Active JP6229847B2 (en) 2014-03-31 2014-03-31 Method for recovering platinum group elements

Country Status (1)

Country Link
JP (1) JP6229847B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106282575A (en) * 2016-08-29 2017-01-04 金川集团股份有限公司 A kind of from containing the method reclaiming selenium the waste water of selenium platinum group metal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004035969A (en) * 2002-07-05 2004-02-05 Mitsubishi Materials Corp Method for refining selenium or the like
JP2005273009A (en) * 2004-02-26 2005-10-06 Mitsubishi Materials Corp Method for recovering gold and method for producing the same
JP2012126611A (en) * 2010-12-16 2012-07-05 Sumitomo Metal Mining Co Ltd Method for recovering selenium from copper electrolysis slime

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004035969A (en) * 2002-07-05 2004-02-05 Mitsubishi Materials Corp Method for refining selenium or the like
JP2005273009A (en) * 2004-02-26 2005-10-06 Mitsubishi Materials Corp Method for recovering gold and method for producing the same
JP2012126611A (en) * 2010-12-16 2012-07-05 Sumitomo Metal Mining Co Ltd Method for recovering selenium from copper electrolysis slime

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106282575A (en) * 2016-08-29 2017-01-04 金川集团股份有限公司 A kind of from containing the method reclaiming selenium the waste water of selenium platinum group metal

Also Published As

Publication number Publication date
JP6229847B2 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
JP5454461B2 (en) Method for recovering selenium from copper electrolytic slime
KR101853255B1 (en) Process for purifying zinc oxide
JP6376349B2 (en) Method for separating selenium, tellurium and platinum group elements
RU2674272C2 (en) Method of extracting gold
JP5539777B2 (en) Method for treating reduced soot containing selenium and tellurium
JP6011809B2 (en) Method for producing gold powder with high bulk density
JP6377460B2 (en) Method for treating sulfate starch
JP6810887B2 (en) Separation and recovery methods for selenium, tellurium, and platinum group elements
JP2005523992A (en) Gold collection method
JP2016163864A (en) Reactivation method of activated carbon and recovery method of gold
JP6229847B2 (en) Method for recovering platinum group elements
JP5200588B2 (en) Method for producing high purity silver
JP6264566B2 (en) Method for producing leaching product liquid containing platinum group element
JP2009097076A (en) Method for recovering valuable material from metal sulfide containing noble metal
JP5004104B2 (en) Method for recovering Ru and / or Ir from platinum group-containing solution
JP2016121399A (en) Leaching method of valuable metal contained in copper removal slime
JP5447357B2 (en) Chlorine leaching method for copper electrolytic slime
JP2005126800A (en) Method for leaching reduced slag containing selenium and tellurium
JP6933151B2 (en) How to recover selenium from copper electrolytic slime
JP2011195935A (en) Method for separating and recovering platinum group element
JP6585955B2 (en) Method for separating Ru, Rh and Ir from a selenium platinum group element-containing material
JP2015110490A (en) Method for producing selenium from copper electrolytic slime
JP6250365B2 (en) Method for concentrating rhodium and ruthenium
JP2005089808A (en) Method for refining nickel chloride aqueous solution
RU2534093C2 (en) Method of copper-electrolyte processing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171003

R150 Certificate of patent or registration of utility model

Ref document number: 6229847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150