JP2015191057A - Variable power optical system, imaging apparatus, and method for manufacturing the variable power optical system - Google Patents

Variable power optical system, imaging apparatus, and method for manufacturing the variable power optical system Download PDF

Info

Publication number
JP2015191057A
JP2015191057A JP2014067073A JP2014067073A JP2015191057A JP 2015191057 A JP2015191057 A JP 2015191057A JP 2014067073 A JP2014067073 A JP 2014067073A JP 2014067073 A JP2014067073 A JP 2014067073A JP 2015191057 A JP2015191057 A JP 2015191057A
Authority
JP
Japan
Prior art keywords
lens group
lens
optical system
focal length
conditional expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014067073A
Other languages
Japanese (ja)
Other versions
JP6507479B2 (en
Inventor
智希 伊藤
Tomoki Ito
智希 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2014067073A priority Critical patent/JP6507479B2/en
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to CN201910777692.3A priority patent/CN110596873B/en
Priority to EP15770184.8A priority patent/EP3125011B1/en
Priority to PCT/JP2015/001718 priority patent/WO2015146176A1/en
Priority to CN201580016772.7A priority patent/CN106133578B/en
Publication of JP2015191057A publication Critical patent/JP2015191057A/en
Priority to US15/256,738 priority patent/US10466454B2/en
Application granted granted Critical
Publication of JP6507479B2 publication Critical patent/JP6507479B2/en
Priority to US16/599,107 priority patent/US11428911B2/en
Priority to US17/879,741 priority patent/US20220373774A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Adjustment Of Camera Lenses (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a variable power optical system having high optical performance, an imaging apparatus, and a method for manufacturing the variable power optical system.SOLUTION: A variable power optical system includes, in order from an object side, a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, and a third lens group G3 having positive refractive power. When varying power from a wide angle end state to a telephoto end state, the variable power optical system moves the first lens group G1 in a direction toward an object in an optical axis direction and satisfies the following conditional expressions (1) and (2): (1) 0.14<fw/f1<0.26 and (2) 0.77<fw/f3<1.05, where fw is the focal length of the entire system in the wide angle end state, f1 is the focal length of the first lens group G1, and f3 is the focal length of the third lens group G3.

Description

本発明は、変倍光学系、撮像装置及び変倍光学系の製造方法に関する。   The present invention relates to a variable magnification optical system, an imaging apparatus, and a method for manufacturing the variable magnification optical system.

従来、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した変倍光学系が提案されている(例えば、特許文献1参照)。   Conventionally, a variable magnification optical system suitable for a photographic camera, an electronic still camera, a video camera, and the like has been proposed (see, for example, Patent Document 1).

特開2012−42557号公報JP 2012-42557 A

しかしながら、従来の変倍光学系は、変倍時の収差変動が大きいという問題があった。   However, the conventional variable magnification optical system has a problem that aberration variation at the time of zooming is large.

本発明は、このような問題に鑑みてなされたものであり、高い光学性能を有する変倍光学系、撮像装置及び変倍光学系の製造方法を提供することを目的とする。   The present invention has been made in view of such problems, and an object thereof is to provide a variable magnification optical system, an imaging apparatus, and a method for manufacturing the variable magnification optical system having high optical performance.

このような目的を達成するため、本発明に係る変倍光学系は、物体側から順に並んだ、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、広角端状態から望遠端状態への変倍に際し、前記第1レンズ群を光軸方向に沿って物体方向に移動させ、次の条件式を満足する。   In order to achieve such an object, a variable magnification optical system according to the present invention includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, arranged in order from the object side, A third lens group having a positive refractive power, and when zooming from the wide-angle end state to the telephoto end state, the first lens group is moved in the object direction along the optical axis direction. Satisfied.

0.14 < fw/f1 < 0.26
0.77 < fw/f3 < 1.05
但し、
fw:広角端状態における全系の焦点距離、
f1:前記第1レンズ群の焦点距離、
f3:前記第3レンズ群の焦点距離。
0.14 <fw / f1 <0.26
0.77 <fw / f3 <1.05
However,
fw: focal length of the entire system in the wide-angle end state,
f1: the focal length of the first lens group,
f3: focal length of the third lens group.

本発明に係る変倍光学系は、前記第1レンズ群と前記第2レンズ群との空気間隔と、前記第2レンズ群と前記第3レンズ群との空気間隔と、前記第3レンズ群と前記第4レンズ群との空気間隔とを変化させることにより、変倍を行うことが好ましい。   The zoom optical system according to the present invention includes an air gap between the first lens group and the second lens group, an air gap between the second lens group and the third lens group, and the third lens group. It is preferable to perform zooming by changing the air gap from the fourth lens group.

本発明に係る変倍光学系は、前記第2レンズ群の少なくとも一部または前記第3レンズ群の少なくとも一部を、像ブレを補正するための防振レンズ群として、光軸と垂直方向の成分を持つように移動可能に構成することが好ましい。   In the variable magnification optical system according to the present invention, at least a part of the second lens group or at least a part of the third lens group is used as an anti-vibration lens group for correcting image blur in the direction perpendicular to the optical axis. It is preferable to be configured to be movable so as to have components.

本発明に係る変倍光学系は、前記第3レンズ群の少なくとも一部を光軸方向に沿って移動させることにより合焦を行うことが好ましい。   In the zoom optical system according to the present invention, it is preferable that focusing is performed by moving at least a part of the third lens group along the optical axis direction.

本発明に係る変倍光学系において、前記第3レンズ群は、物体側から順に並んだ、第31レンズ群と、第32レンズ群と、第33レンズ群とからなり、前記第32レンズ群を、前記防振レンズ群として、光軸と垂直方向の成分を持つように移動可能に構成することが好ましい。   In the zoom optical system according to the present invention, the third lens group includes a thirty-first lens group, a thirty-second lens group, and a thirty-third lens group, which are arranged in order from the object side. The anti-vibration lens group is preferably configured to be movable so as to have a component perpendicular to the optical axis.

本発明に係る変倍光学系において、前記第32レンズ群は、負の屈折力を有することが好ましい。   In the zoom optical system according to the present invention, it is preferable that the thirty-second lens group has a negative refractive power.

本発明に係る変倍光学系は、次の条件式を満足することが好ましい。   The variable magnification optical system according to the present invention preferably satisfies the following conditional expression.

2.00 < (−f32)/f3 < 6.00
但し、
f32:前記第32レンズ群の焦点距離、
f3:前記第3レンズ群の焦点距離。
2.00 <(− f32) / f3 <6.00
However,
f32: focal length of the thirty-second lens group,
f3: focal length of the third lens group.

本発明に係る変倍光学系は、次の条件式を満足することが好ましい。   The variable magnification optical system according to the present invention preferably satisfies the following conditional expression.

0.50 < |f31|/f3 < 2.00
但し、
f31:前記第31レンズ群の焦点距離、
f3:前記第3レンズ群の焦点距離。
0.50 <| f31 | / f3 <2.00
However,
f31: focal length of the thirty-first lens group,
f3: focal length of the third lens group.

本発明に係る変倍光学系は、次の条件式を満足することが好ましい。   The variable magnification optical system according to the present invention preferably satisfies the following conditional expression.

1.00 < |f33|/f3
但し、
f33:前記第33レンズ群の焦点距離、
f3:前記第3レンズ群の焦点距離。
1.00 <| f33 | / f3
However,
f33: focal length of the thirty-third lens group,
f3: focal length of the third lens group.

本発明に係る変倍光学系において、前記第32レンズ群は、単レンズから構成されることが好ましい。   In the zoom optical system according to the present invention, it is preferable that the thirty-second lens group is composed of a single lens.

本発明に係る変倍光学系において、前記第31レンズ群は、物体側から順に並んだ、正の屈折力を有する前群と、後群とからなり、前記前群を光軸方向に沿って移動させることにより合焦を行うことが好ましい。   In the variable magnification optical system according to the present invention, the thirty-first lens group includes a front group having a positive refractive power and a rear group arranged in order from the object side, and the front group is arranged along the optical axis direction. It is preferable to perform focusing by moving it.

本発明に係る変倍光学系は、絞りを有し、前記絞りは、変倍時に前記第3レンズ群と一体となって光軸方向に沿って移動することが好ましい。   The zoom optical system according to the present invention preferably includes a diaphragm, and the diaphragm moves along the optical axis direction together with the third lens group during zooming.

本発明に係る変倍光学系は、絞りを有し、前記絞りは、前記第2レンズ群と像面との間に配置されていることが好ましい。   The zoom optical system according to the present invention preferably includes a stop, and the stop is disposed between the second lens group and the image plane.

本発明に係る変倍光学系は、次の条件式を満足することが好ましい。   The variable magnification optical system according to the present invention preferably satisfies the following conditional expression.

30.00° <ωw< 80.00°
但し、
ωw:広角端状態における半画角。
30.00 ° <ωw <80.00 °
However,
ωw: Half angle of view in the wide-angle end state.

本発明に係る変倍光学系は、次の条件式を満足することが好ましい。   The variable magnification optical system according to the present invention preferably satisfies the following conditional expression.

2.00 <ft/fw< 15.00
但し、
ft:無限遠合焦時における望遠端状態の全系の焦点距離。
2.00 <ft / fw <15.00
However,
ft: The focal length of the entire system in the telephoto end state when focusing on infinity.

本発明に係る撮像装置は、上記いずれかの変倍光学系を備える。   An imaging apparatus according to the present invention includes any one of the above-described variable magnification optical systems.

本発明に係る変倍光学系の製造方法は、物体側から順に並んだ、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する変倍光学系の製造方法であって、広角端状態から望遠端状態への変倍に際し、前記第1レンズ群を光軸方向に沿って物体方向に移動させ、次の条件式を満足するように、レンズ鏡筒内に各レンズを配置する。   The variable magnification optical system manufacturing method according to the present invention includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power, which are arranged in order from the object side. A variable magnification optical system having a third lens group, wherein the first lens group is moved in the object direction along the optical axis direction upon zooming from the wide-angle end state to the telephoto end state. Each lens is arranged in the lens barrel so as to satisfy the conditional expression (1).

0.14 < fw/f1 < 0.26
0.77 < fw/f3 < 1.05
但し、
fw:広角端状態における全系の焦点距離、
f1:前記第1レンズ群の焦点距離、
f3:前記第3レンズ群の焦点距離。
0.14 <fw / f1 <0.26
0.77 <fw / f3 <1.05
However,
fw: focal length of the entire system in the wide-angle end state,
f1: the focal length of the first lens group,
f3: focal length of the third lens group.

本発明によれば、高い光学性能を有する変倍光学系、撮像装置及び変倍光学系の製造方法を提供することができる。   According to the present invention, it is possible to provide a variable magnification optical system, an imaging apparatus, and a method for manufacturing the variable magnification optical system having high optical performance.

第1実施例に係る変倍光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the variable magnification optical system which concerns on 1st Example. 第1実施例に係る変倍光学系の広角端状態(f=18.500)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は近距離合焦時(撮影倍率β=-0.0196)の諸収差図、(c)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図を示す。FIG. 6 is an aberration diagram in the wide-angle end state (f = 18.500) of the variable magnification optical system according to Example 1, (a) Various aberration diagrams at the time of focusing on infinity, and (b) at the time of focusing at a short distance (imaging magnification) Aberration diagrams (β = −0.0196), (c) shows a coma aberration diagram when image blur correction is performed at the time of focusing on infinity (correction angle θ = 0.30 °). 第1実施例に係る変倍光学系の中間焦点距離状態(f=35.000)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は近距離合焦時(撮影倍率β=-0.0365)の諸収差図、(c)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図を示す。FIG. 4A is an aberration diagram in an intermediate focal length state (f = 35.000) of the variable magnification optical system according to the first example. FIG. 5A is a diagram illustrating various aberrations at the time of focusing on infinity, and FIG. Aberration diagrams with a magnification β = −0.0365), and FIG. 9C shows a coma aberration diagram when image blur correction is performed at the time of focusing on infinity (correction angle θ = 0.30 °). 第1実施例に係る変倍光学系の望遠端状態(f=53.500)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は近距離合焦時(撮影倍率β=-0.0554)の諸収差図、(c)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図を示す。FIG. 4A is an aberration diagram in the telephoto end state (f = 53.500) of the variable magnification optical system according to the first example. FIG. 5A is a diagram illustrating various aberrations at the time of focusing on infinity, and FIG. Aberration diagrams (β = −0.0554), (c) shows a coma aberration diagram when image blur correction is performed at the time of focusing on infinity (correction angle θ = 0.30 °). 第2実施例に係る変倍光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the variable magnification optical system which concerns on 2nd Example. 第2実施例に係る変倍光学系の広角端状態(f=18.500)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は近距離合焦時(撮影倍率β=-0.0196)の諸収差図、(c)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図を示す。FIG. 6 is an aberration diagram in the wide-angle end state (f = 18.500) of the variable magnification optical system according to Example 2, (a) Various aberration diagrams at the time of focusing on infinity, and (b) at the time of focusing at a short distance (imaging magnification) Aberration diagrams (β = −0.0196), (c) shows a coma aberration diagram when image blur correction is performed at the time of focusing on infinity (correction angle θ = 0.30 °). 第2実施例に係る変倍光学系の中間焦点距離状態(f=34.176)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は近距離合焦時(撮影倍率β=-0.0358)の諸収差図、(c)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図を示す。FIG. 6A is an aberration diagram in the intermediate focal length state (f = 34.176) of the variable magnification optical system according to the second example. FIG. 4A is a diagram illustrating various aberrations at the time of focusing on infinity, and FIG. Aberration diagrams with a magnification β = −0.0358), and FIG. 10C shows a coma aberration diagram when image blur correction is performed at the time of focusing on infinity (correction angle θ = 0.30 °). 第2実施例に係る変倍光学系の望遠端状態(f=53.500)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は近距離合焦時(撮影倍率β=-0.0556)の諸収差図、(c)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図を示す。FIG. 6A is an aberration diagram in the telephoto end state (f = 53.500) of the zoom optical system according to Example 2; FIG. 5A is a diagram illustrating various aberrations at the time of focusing on infinity, and FIG. (c = -0.0556) shows various aberration diagrams, and (c) shows a coma aberration diagram when image blur correction is performed at the time of focusing on infinity (correction angle θ = 0.30 °). 第3実施例に係る変倍光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the variable magnification optical system which concerns on 3rd Example. 第3実施例に係る変倍光学系の広角端状態(f=18.477)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は近距離合焦時(撮影倍率β=-0.0194)の諸収差図、(c)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図を示す。FIG. 10 is an aberration diagram in the wide-angle end state (f = 18.477) of the variable magnification optical system according to Example 3, (a) Various aberration diagrams at the time of focusing on infinity, and (b) when focusing at a short distance (imaging magnification) Aberration diagrams (β = −0.0194), (c) shows a coma aberration diagram when image blur correction is performed at the time of focusing on infinity (correction angle θ = 0.30 °). 第3実施例に係る変倍光学系の中間焦点距離状態(f=34.000)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は近距離合焦時(撮影倍率β=-0.0355)の諸収差図、(c)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図を示す。FIG. 6A is an aberration diagram in an intermediate focal length state (f = 34.000) of the variable magnification optical system according to the third example. FIG. 5A is a diagram illustrating various aberrations at the time of focusing on infinity, and FIG. Aberration diagrams with a magnification β = −0.0355), and FIG. 8C shows a coma aberration diagram when image blur correction is performed at the time of focusing on infinity (correction angle θ = 0.30 °). 第3実施例に係る変倍光学系の望遠端状態(f=53.500)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は近距離合焦時(撮影倍率β=-0.0552)の諸収差図、(c)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図を示す。FIG. 6A is an aberration diagram in the telephoto end state (f = 53.500) of the zoom optical system according to Example 3; FIG. 5A is a diagram illustrating aberrations at the time of focusing on infinity, and FIG. Aberration diagrams (β = −0.0552), (c) shows a coma aberration diagram when image blur correction is performed at infinity focusing (correction angle θ = 0.30 °). 第4実施例に係る変倍光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the variable magnification optical system which concerns on 4th Example. 第4実施例に係る変倍光学系の広角端状態(f=18.500)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は近距離合焦時(撮影倍率β=-0.0194)の諸収差図、(c)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図を示す。FIG. 9A is an aberration diagram in the wide-angle end state (f = 18.500) of the zoom optical system according to Example 4; FIG. 9A is a diagram illustrating various aberrations at the time of focusing on infinity, and FIG. Aberration diagrams (β = −0.0194), (c) shows a coma aberration diagram when image blur correction is performed at the time of focusing on infinity (correction angle θ = 0.30 °). 第4実施例に係る変倍光学系の中間焦点距離状態(f=34.061)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は近距離合焦時(撮影倍率β=-0.0355)の諸収差図、(c)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図を示す。FIG. 10A is an aberration diagram in the intermediate focal length state (f = 34.061) of the zoom optical system according to Example 4; FIG. 10A is a diagram illustrating various aberrations at the time of focusing on infinity, and FIG. Aberration diagrams with a magnification β = −0.0355), and FIG. 8C shows a coma aberration diagram when image blur correction is performed at the time of focusing on infinity (correction angle θ = 0.30 °). 第4実施例に係る変倍光学系の望遠端状態(f=53.500)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は近距離合焦時(撮影倍率β=-0.0556)の諸収差図、(c)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図を示す。FIG. 10A is an aberration diagram in the telephoto end state (f = 53.500) of the variable magnification optical system according to Example 4; (a) Various aberration diagrams at the time of focusing on infinity, and (b) (c = -0.0556) shows various aberration diagrams, and (c) shows a coma aberration diagram when image blur correction is performed at the time of focusing on infinity (correction angle θ = 0.30 °). 本実施形態に係るカメラの構成を示す略断面図である。It is a schematic sectional drawing which shows the structure of the camera which concerns on this embodiment. 本実施形態に係る変倍光学系の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the variable magnification optical system which concerns on this embodiment.

以下、本実施形態について、図面を参照しながら説明する。本実施形態に係る変倍光学系ZLは、図1に示すように、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とを有する。   Hereinafter, the present embodiment will be described with reference to the drawings. As shown in FIG. 1, the variable magnification optical system ZL according to this embodiment includes a first lens group G1 having a positive refractive power and a second lens group G2 having a negative refractive power, which are arranged in order from the object side. And a third lens group G3 having a positive refractive power.

この構成により、広角端状態における鏡筒の小型化を実現することができる。   With this configuration, it is possible to reduce the size of the lens barrel in the wide-angle end state.

本実施形態に係る変倍光学系ZLは、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1を光軸方向に沿って物体方向に移動させる。   The zoom optical system ZL according to the present embodiment moves the first lens group G1 in the object direction along the optical axis direction when zooming from the wide-angle end state to the telephoto end state.

この構成により、十分な変倍比を確保することができる。   With this configuration, a sufficient zoom ratio can be ensured.

そして、上記構成のもと、次の条件式(1),(2)を満足する。     The following conditional expressions (1) and (2) are satisfied under the above configuration.

0.14 < fw/f1 < 0.26 …(1)
0.77 < fw/f3 < 1.05 …(2)
但し、
fw:広角端状態における全系の焦点距離、
f1:第1レンズ群G1の焦点距離、
f3:第3レンズ群G3の焦点距離。
0.14 <fw / f1 <0.26 (1)
0.77 <fw / f3 <1.05 (2)
However,
fw: focal length of the entire system in the wide-angle end state,
f1: Focal length of the first lens group G1
f3: focal length of the third lens group G3.

条件式(1)は、第1レンズ群G1の焦点距離に対する、適正な広角端状態における全系の焦点距離を規定するものである。条件式(1)を満足することにより、良好な光学性能と、光学系の小型化を達成することができる。   Conditional expression (1) defines the focal length of the entire system in the proper wide-angle end state with respect to the focal length of the first lens group G1. By satisfying conditional expression (1), it is possible to achieve good optical performance and downsizing of the optical system.

条件式(1)の下限値を下回ると、第1レンズ群G1の屈折力が弱くなり、鏡筒の小型化が困難となる。小型化するために、第2レンズ群G2の屈折力を強くすると、コマ収差、非点収差、像面湾曲の補正が困難となるため好ましくない。   If the lower limit value of conditional expression (1) is not reached, the refractive power of the first lens group G1 becomes weak, and it becomes difficult to reduce the size of the lens barrel. If the refractive power of the second lens group G2 is increased in order to reduce the size, it is not preferable because correction of coma, astigmatism, and field curvature becomes difficult.

条件式(1)の下限値を0.15に設定することにより、本実施形態の効果を確実なものとすることができる。   By setting the lower limit value of conditional expression (1) to 0.15, the effect of this embodiment can be ensured.

条件式(1)の上限値を上回ると、第1レンズ群G1の屈折力が強くなり、望遠端状態におけるコマ収差、非点収差、像面湾曲の補正が困難となるため好ましくない。   Exceeding the upper limit of conditional expression (1) is not preferable because the refractive power of the first lens group G1 becomes strong and it becomes difficult to correct coma, astigmatism, and field curvature in the telephoto end state.

条件式(1)の上限値を0.25に設定することにより、本実施形態の効果を確実なものとすることができる。   By setting the upper limit value of conditional expression (1) to 0.25, the effect of this embodiment can be ensured.

条件式(2)は、第3レンズ群G3の焦点距離に対する、適正な広角端状態における全系の焦点距離を規定するものである。条件式(2)を満足することにより、良好な光学性能と、光学系の小型化を達成することができる。   Conditional expression (2) defines the focal length of the entire system in the proper wide-angle end state with respect to the focal length of the third lens group G3. Satisfying conditional expression (2) makes it possible to achieve good optical performance and downsizing of the optical system.

条件式(2)の下限値を下回ると、第3レンズ群G3の屈折力が弱くなり、鏡筒の小型化が困難となる。小型化するために、第1レンズ群G1と第2レンズ群G2の屈折力を強くすると、コマ収差、非点収差、像面湾曲の補正が困難となるため好ましくない。   If the lower limit of conditional expression (2) is not reached, the refractive power of the third lens group G3 becomes weak, and it becomes difficult to reduce the size of the lens barrel. If the refractive power of the first lens group G1 and the second lens group G2 is increased in order to reduce the size, it is not preferable because correction of coma, astigmatism, and field curvature becomes difficult.

条件式(2)の下限値を0.80に設定することにより、本実施形態の効果を確実なものとすることができる。   By setting the lower limit value of conditional expression (2) to 0.80, the effect of this embodiment can be ensured.

条件式(2)の上限値を上回ると、第3レンズ群G3の屈折力が強くなり、球面収差、コマ収差、非点収差の補正が困難となるため好ましくない。   Exceeding the upper limit of conditional expression (2) is not preferable because the refractive power of the third lens group G3 increases and it becomes difficult to correct spherical aberration, coma aberration, and astigmatism.

条件式(2)の上限値を1.02に設定することにより、本実施形態の効果を確実なものとすることができる。   By setting the upper limit of conditional expression (2) to 1.02, the effect of this embodiment can be ensured.

本実施形態に係る変倍光学系ZLは、第1レンズ群G1と第2レンズ群G2との空気間隔と、第2レンズ群G2と第3レンズ群G3との空気間隔と、第3レンズ群G3と第4レンズ群G4との空気間隔とを変化させることにより、変倍を行うことが好ましい。   The zoom optical system ZL according to the present embodiment includes an air gap between the first lens group G1 and the second lens group G2, an air gap between the second lens group G2 and the third lens group G3, and a third lens group. It is preferable to perform zooming by changing the air gap between G3 and the fourth lens group G4.

この構成により、変倍時の球面収差、像面湾曲の変動を抑えつつ、十分な変倍比を確保することができる。   With this configuration, it is possible to ensure a sufficient zoom ratio while suppressing variations in spherical aberration and field curvature during zooming.

本実施形態に係る変倍光学系ZLは、第2レンズ群G2の少なくとも一部または第3レンズ群G3の少なくとも一部を、(手振れ等により生じる)像ブレを補正するための防振レンズ群として、光軸と垂直方向の成分を持つように移動可能に構成することが好ましい。   The variable magnification optical system ZL according to the present embodiment includes an anti-vibration lens group for correcting image blur (caused by camera shake) on at least part of the second lens group G2 or at least part of the third lens group G3. As such, it is preferable to be configured to be movable so as to have a component perpendicular to the optical axis.

この構成により、防振レンズ群を含む、像ブレ補正機構の小型化を図ることができる。   With this configuration, it is possible to reduce the size of the image blur correction mechanism including the image stabilizing lens group.

本実施形態に係る変倍光学系ZLは、第3レンズ群G3の少なくとも一部を光軸方向に沿って移動させることにより合焦を行うことが好ましい。   The zoom optical system ZL according to the present embodiment preferably performs focusing by moving at least a part of the third lens group G3 along the optical axis direction.

この構成により、合焦時の収差変動(例えば、球面収差)を抑えることができる。   With this configuration, aberration variation (for example, spherical aberration) during focusing can be suppressed.

本実施形態に係る変倍光学系ZLにおいて、第3レンズ群G3は、物体側から順に並んだ、第31レンズ群G31と、第32レンズ群G32と、第33レンズ群G33とからなり、第32レンズ群G32を、前記防振レンズ群として、光軸と垂直方向の成分を持つように移動可能に構成することが好ましい。   In the zoom optical system ZL according to the present embodiment, the third lens group G3 includes a thirty-first lens group G31, a thirty-second lens group G32, and a thirty-third lens group G33, which are arranged in order from the object side. It is preferable that the 32 lens group G32 is configured to be movable so as to have a component in a direction perpendicular to the optical axis as the vibration-proof lens group.

この構成により、像ブレ補正(防振)時において良好な光学性能を実現することができる。また、像ブレ補正機構の小型化を図ることができる。   With this configuration, it is possible to achieve good optical performance during image blur correction (anti-vibration). Further, the image blur correction mechanism can be reduced in size.

本実施形態に係る変倍光学系ZLにおいて、第32レンズ群G32は、負の屈折力を有することが好ましい。   In the zoom optical system ZL according to this embodiment, it is preferable that the thirty-second lens group G32 has a negative refractive power.

この構成により、像ブレ補正(防振)時において良好な光学性能を実現することができる。   With this configuration, it is possible to achieve good optical performance during image blur correction (anti-vibration).

本実施形態に係る変倍光学系ZLは、次の条件式(3)を満足することが好ましい。   The zoom optical system ZL according to the present embodiment preferably satisfies the following conditional expression (3).

2.00 < (−f32)/f3 < 6.00 …(3)
但し、
f32:第32レンズ群G32の焦点距離、
f3:第3レンズ群G3の焦点距離。
2.00 <(− f32) / f3 <6.00 (3)
However,
f32: focal length of the thirty-second lens group G32.
f3: focal length of the third lens group G3.

条件式(3)は、第3レンズ群G3の焦点距離に対する、適正な第32レンズ群G32の焦点距離を規定するものである。条件式(3)を満足することにより、像ブレ補正(防振)時における良好な光学性能と、光学系の小型化を達成することができる。   Conditional expression (3) defines an appropriate focal length of the thirty-second lens group G32 with respect to the focal length of the third lens group G3. By satisfying conditional expression (3), it is possible to achieve good optical performance during image blur correction (anti-vibration) and downsizing of the optical system.

条件式(3)の下限値を下回ると、第3レンズ群G3の屈折力が弱くなり、鏡筒の小型化が困難となる。小型化するために、第1レンズ群G1と第2レンズ群G2の屈折力を強くすると、コマ収差、非点収差、像面湾曲の補正が困難となるため好ましくない。   If the lower limit of conditional expression (3) is not reached, the refractive power of the third lens group G3 becomes weak, and it becomes difficult to reduce the size of the lens barrel. If the refractive power of the first lens group G1 and the second lens group G2 is increased in order to reduce the size, it is not preferable because correction of coma, astigmatism, and field curvature becomes difficult.

条件式(3)の下限値を2.50に設定することにより、本実施形態の効果を確実なものとすることができる。   By setting the lower limit value of conditional expression (3) to 2.50, the effect of this embodiment can be ensured.

条件式(3)の上限値を上回ると、第3レンズ群G3の屈折力が強くなり、望遠端状態における球面収差、コマ収差の補正が困難となる。また、第32レンズ群G32の屈折力が弱くなり、像ブレ補正(防振)時のシフト量が増え、鏡筒の小型化が困難となるため好ましくない。   If the upper limit of conditional expression (3) is exceeded, the refractive power of the third lens group G3 will become strong, and it will be difficult to correct spherical aberration and coma in the telephoto end state. Further, the refractive power of the thirty-second lens group G32 becomes weak, the shift amount during image blur correction (anti-vibration) increases, and it becomes difficult to reduce the size of the lens barrel.

条件式(3)の上限値を4.00に設定することにより、本実施形態の効果を確実なものとすることができる。   By setting the upper limit value of conditional expression (3) to 4.00, the effect of the present embodiment can be ensured.

本実施形態に係る変倍光学系ZLは、次の条件式(4)を満足することが好ましい。   The variable magnification optical system ZL according to the present embodiment preferably satisfies the following conditional expression (4).

0.50 < |f31|/f3 < 2.00 …(4)
但し、
f31:第31レンズ群G31の焦点距離、
f3:第3レンズ群G3の焦点距離。
0.50 <| f31 | / f3 <2.00 (4)
However,
f31: focal length of the 31st lens group G31,
f3: focal length of the third lens group G3.

条件式(4)は、第3レンズ群G3の焦点距離に対する、適正な第31レンズ群G31の焦点距離を規定するものである。条件式(4)を満足することにより、良好な光学性能と、光学系の小型化を達成することができる。   Conditional expression (4) defines an appropriate focal length of the 31st lens group G31 with respect to the focal length of the third lens group G3. Satisfying conditional expression (4) makes it possible to achieve good optical performance and downsizing of the optical system.

条件式(4)の下限値を下回ると、第3レンズ群G3の屈折力が弱くなり、鏡筒の小型化が困難となる。小型化するために第1レンズ群G1と第2レンズ群G2の屈折力を強くすると、コマ収差、非点収差、像面湾曲の補正が困難となるため好ましくない。   If the lower limit value of conditional expression (4) is not reached, the refractive power of the third lens group G3 becomes weak, and it becomes difficult to reduce the size of the lens barrel. If the refractive power of the first lens group G1 and the second lens group G2 is increased in order to reduce the size, it is difficult to correct coma, astigmatism, and field curvature.

条件式(4)の下限値を0.70に設定することにより、本実施形態の効果を確実なものとすることができる。   By setting the lower limit of conditional expression (4) to 0.70, the effect of the present embodiment can be ensured.

条件式(4)の上限値を上回ると、第3レンズ群G3の屈折力が強くなり、望遠端状態における球面収差、コマ収差の補正が困難となるため好ましくない。   Exceeding the upper limit of conditional expression (4) is not preferable because the refractive power of the third lens group G3 increases and it becomes difficult to correct spherical aberration and coma in the telephoto end state.

条件式(4)の上限値を1.50に設定することにより、本実施形態の効果を確実なものとすることができる。   By setting the upper limit of conditional expression (4) to 1.50, the effect of this embodiment can be ensured.

本実施形態に係る変倍光学系ZLは、次の条件式(5)を満足することが好ましい。   The variable magnification optical system ZL according to the present embodiment preferably satisfies the following conditional expression (5).

1.00 < |f33|/f3 …(5)
但し、
f33:第33レンズ群G33の焦点距離、
f3:第3レンズ群G3の焦点距離。
1.00 <| f33 | / f3 (5)
However,
f33: focal length of the 33rd lens group G33,
f3: focal length of the third lens group G3.

条件式(5)は、第3レンズ群G3の焦点距離に対する、適正な第33レンズ群G33の焦点距離を規定するものである。条件式(5)を満足することにより、良好な光学性能と、光学系の小型化を達成することができる。   Conditional expression (5) defines an appropriate focal length of the 33rd lens group G33 with respect to the focal length of the third lens group G3. Satisfying conditional expression (5) makes it possible to achieve good optical performance and downsizing of the optical system.

条件式(5)の下限値を下回ると、第3レンズ群G3の屈折力が弱くなり、鏡筒の小型化が困難となる。小型化するために第1レンズ群G1と第2レンズ群G2の屈折力を強くすると、コマ収差、非点収差、像面湾曲の補正が困難となるため好ましくない。   If the lower limit of conditional expression (5) is not reached, the refractive power of the third lens group G3 becomes weak, and it becomes difficult to reduce the size of the lens barrel. If the refractive power of the first lens group G1 and the second lens group G2 is increased in order to reduce the size, it is difficult to correct coma, astigmatism, and field curvature.

条件式(5)の下限値を2.00に設定することにより、本実施形態の効果を確実なものとすることができる。   By setting the lower limit value of conditional expression (5) to 2.00, the effect of this embodiment can be ensured.

本実施形態に係る変倍光学系ZLにおいて、第32レンズ群G32は、単レンズから構成されることが好ましい。   In the variable magnification optical system ZL according to the present embodiment, the thirty-second lens group G32 is preferably composed of a single lens.

この構成により、像ブレ補正時の偏心コマ収差及び像面変動を良好に補正することができる。また、像ブレ補正機構を小型化することができる。   With this configuration, it is possible to satisfactorily correct decentration coma and image plane fluctuation during image blur correction. In addition, the image blur correction mechanism can be reduced in size.

本実施形態に係る変倍光学系ZLにおいて、第31レンズ群G31は、物体側から順に並んだ、正の屈折力を有する前群G3Fと、後群G3Rとからなり、前群G3Fを光軸方向に沿って移動させることにより合焦を行うことが好ましい。   In the zoom optical system ZL according to the present embodiment, the thirty-first lens group G31 includes a front group G3F having a positive refractive power and a rear group G3R, which are arranged in order from the object side. It is preferable to perform focusing by moving along the direction.

この構成により、合焦時の収差変動(例えば、球面収差)を抑えることができる。   With this configuration, aberration variation (for example, spherical aberration) during focusing can be suppressed.

本実施形態に係る変倍光学系ZLは、絞りSを有し、前記絞りSは、変倍時に第3レンズ群G3と一体となって光軸方向に沿って移動することが好ましい。   The zoom optical system ZL according to the present embodiment preferably includes a stop S, and the stop S moves along the optical axis direction integrally with the third lens group G3 during zooming.

この構成により、鏡筒構造を簡素化でき、鏡筒の小型化を図ることができる。   With this configuration, the lens barrel structure can be simplified, and the size of the lens barrel can be reduced.

本実施形態に係る変倍光学系ZLは、絞りSを有し、前記絞りSは、第2レンズ群G2と像面Iとの間に配置されていることが好ましい。   The zoom optical system ZL according to the present embodiment preferably includes a stop S, and the stop S is preferably disposed between the second lens group G2 and the image plane I.

この構成により、像面湾曲及び非点収差を良好に補正することができる。   With this configuration, field curvature and astigmatism can be corrected well.

本実施形態に係る変倍光学系ZLは、次の条件式(6)を満足することが好ましい。   The zoom optical system ZL according to the present embodiment preferably satisfies the following conditional expression (6).

30.00° <ωw< 80.00° …(6)
但し、
ωw:広角端状態における半画角。
30.00 ° <ωw <80.00 ° (6)
However,
ωw: Half angle of view in the wide-angle end state.

条件式(6)は、広角端状態における画角の値を規定する条件である。この条件式(6)を満足することにより、広い画角を有しつつ、コマ収差、歪曲収差、像面湾曲を良好に補正することができる。   Conditional expression (6) is a condition that defines the value of the angle of view in the wide-angle end state. By satisfying this conditional expression (6), coma aberration, distortion aberration, and field curvature can be favorably corrected while having a wide angle of view.

条件式(6)の下限値を33.00°に設定することにより、より良好な収差補正が可能になる。条件式(6)の下限値を36.00°に設定することにより、さらに良好な収差補正が可能になる。   By setting the lower limit of conditional expression (6) to 33.00 °, better aberration correction can be achieved. By setting the lower limit value of conditional expression (6) to 36.00 °, it becomes possible to perform better aberration correction.

条件式(6)の上限値を77.00°に設定することにより、より良好な収差補正が可能になる。   By setting the upper limit value of conditional expression (6) to 77.00 °, better aberration correction can be performed.

本実施形態に係る変倍光学系ZLは、次の条件式(7)を満足することが好ましい。   The zoom optical system ZL according to the present embodiment preferably satisfies the following conditional expression (7).

2.00 <ft/fw< 15.00 …(7)
但し、
ft:望遠端状態の全系の焦点距離、
fw:広角端状態の全系の焦点距離。
2.00 <ft / fw <15.00 (7)
However,
ft: focal length of the entire system in the telephoto end state,
fw: focal length of the entire system in the wide-angle end state.

条件式(7)は、望遠端状態の全系の焦点距離と、広角端状態の全系の焦点距離との比を規定する条件である。本変倍光学系ZLは、条件式(7)を満足することにより、高いズーム比を得ることができるとともに、球面収差、コマ収差を良好に補正することができる。   Conditional expression (7) is a condition that defines the ratio between the focal length of the entire system in the telephoto end state and the focal length of the entire system in the wide-angle end state. The present variable magnification optical system ZL can obtain a high zoom ratio by satisfying conditional expression (7), and can satisfactorily correct spherical aberration and coma.

条件式(7)の下限値を2.30に設定することにより、より良好な収差補正が可能になる。条件式(7)の下限値を2.50に設定することにより、さらに良好な収差補正が可能になる。条件式(7)の下限値を2.70に設定することにより、本実施形態の効果を最大限に発揮できる。   By setting the lower limit of conditional expression (7) to 2.30, better aberration correction becomes possible. By setting the lower limit value of conditional expression (7) to 2.50, better aberration correction can be achieved. By setting the lower limit of conditional expression (7) to 2.70, the effect of the present embodiment can be maximized.

条件式(7)の上限値を10.00に設定することにより、より良好な収差補正が可能になる。条件式(7)の上限値を7.00に設定することにより、さらに良好な収差補正が可能になる。   By setting the upper limit of conditional expression (7) to 10.00, better aberration correction becomes possible. By setting the upper limit value of conditional expression (7) to 7.00, even better aberration correction can be achieved.

以上のような本実施形態によれば、高い光学性能を有する変倍光学系ZLを実現することができる。   According to the present embodiment as described above, a variable magnification optical system ZL having high optical performance can be realized.

次に、図17を参照しながら、上述の変倍光学系ZLを備えたカメラ(撮像装置)1について説明する。カメラ1は、図17に示すように、撮影レンズ2として上述の変倍光学系ZLを備えたレンズ交換式のカメラ(所謂ミラーレスカメラ)である。   Next, a camera (imaging device) 1 including the above-described variable magnification optical system ZL will be described with reference to FIG. As shown in FIG. 17, the camera 1 is a lens interchangeable camera (so-called mirrorless camera) provided with the above-described variable magnification optical system ZL as the photographing lens 2.

カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光され、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部3の撮像面上に被写体像を形成する。そして、撮像部3に設けられた光電変換素子によって被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられたEVF(Electronic view finder:電子ビューファインダ)4に表示される。これにより、撮影者はEVF4を介して被写体を観察することができる。   In the camera 1, light from an object (subject) (not shown) is collected by the photographing lens 2, and the subject is placed on the imaging surface of the imaging unit 3 via an OLPF (Optical low pass filter) not shown. Form an image. Then, the subject image is photoelectrically converted by the photoelectric conversion element provided in the imaging unit 3 to generate an image of the subject. This image is displayed on an EVF (Electronic view finder) 4 provided in the camera 1. Thus, the photographer can observe the subject via the EVF 4.

また、撮影者によって不図示のレリーズボタンが押されると、撮像部3で生成された被写体の画像が不図示のメモリに記憶される。このようにして、撮影者は、本カメラ1による被写体の撮影を行うことができる。   When the release button (not shown) is pressed by the photographer, the subject image generated by the imaging unit 3 is stored in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.

カメラ1に撮影レンズ2として搭載した本実施形態に係る変倍光学系ZLは、後述の各実施例からも分かるように、その特徴的なレンズ構成によって、高い光学性能を有している。したがって、本カメラ1によれば、高い光学性能を有する撮像装置を実現することができる。   The variable magnification optical system ZL according to this embodiment mounted on the camera 1 as the photographing lens 2 has high optical performance due to its characteristic lens configuration, as can be seen from each example described later. Therefore, according to the camera 1, an imaging device having high optical performance can be realized.

なお、クイックリターンミラーを有し、ファインダ光学系によって被写体を観察する一眼レフタイプのカメラに、上述の変倍光学系ZLを搭載した場合でも、上記カメラ1と同様の効果を奏することができる。また、ビデオカメラに、上述の変倍光学系ZLを搭載した場合でも、上記カメラ1と同様の効果を奏することができる。   Even when the above-described variable magnification optical system ZL is mounted on a single-lens reflex camera that has a quick return mirror and observes a subject with a finder optical system, the same effect as the camera 1 can be obtained. Further, even when the above-described variable magnification optical system ZL is mounted on a video camera, the same effects as the camera 1 can be obtained.

続いて、図18を参照しながら、上記構成の変倍光学系ZLの製造方法について概説する。まず、レンズ鏡筒内に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とを有するように、各レンズを配置する(ステップST10)。このとき、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1が光軸方向に沿って物体方向に移動するように、レンズ鏡筒内に各レンズを配置する(ステップST20)。また、次の条件式(1),(2)を満足するように、レンズ鏡筒内に各レンズを配置する(ステップST30)。   Next, an outline of a method for manufacturing the variable magnification optical system ZL having the above configuration will be described with reference to FIG. First, the lens barrel includes a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group G3 having a positive refractive power. Each lens is arranged (step ST10). At this time, in zooming from the wide-angle end state to the telephoto end state, each lens is arranged in the lens barrel so that the first lens group G1 moves in the object direction along the optical axis direction (step ST20). . Further, each lens is arranged in the lens barrel so as to satisfy the following conditional expressions (1) and (2) (step ST30).

0.14 < fw/f1 < 0.26 …(1)
0.77 < fw/f3 < 1.05 …(2)
但し、
fw:広角端状態における全系の焦点距離、
f1:第1レンズ群G1の焦点距離、
f3:第3レンズ群G3の焦点距離。
0.14 <fw / f1 <0.26 (1)
0.77 <fw / f3 <1.05 (2)
However,
fw: focal length of the entire system in the wide-angle end state,
f1: Focal length of the first lens group G1
f3: focal length of the third lens group G3.

本実施形態におけるレンズ配置の一例を挙げると、図1に示すように、第1レンズ群G1として、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合レンズを配置する。第2レンズ群G2として、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹レンズL22と、両凸レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とを配置する。第3レンズ群G3として、物体側から順に、物体側に凹面を向けた正メニスカスレンズL31と、両凸レンズL32と両凹レンズL33との接合レンズと、両凹レンズL34と、両凸レンズL35と、両凸レンズL36と、物体側に凹面を向けた負メニスカスレンズL37とを配置する。また、条件式(1),(2)を満足するように、各レンズを配置する(条件式(1)の対応値は0.22、条件式(2)の対応値は0.90)。   As an example of the lens arrangement in the present embodiment, as shown in FIG. 1, as the first lens group G1, in order from the object side, a negative meniscus lens L11 having a convex surface on the object side and a convex surface on the object side are directed. A cemented lens with the positive meniscus lens L12 is disposed. As the second lens group G2, in order from the object side, a negative meniscus lens L21 having a convex surface facing the object side, a biconcave lens L22, a biconvex lens L23, and a negative meniscus lens L24 having a concave surface facing the object side are arranged. . As the third lens group G3, in order from the object side, a positive meniscus lens L31 having a concave surface directed toward the object side, a cemented lens of a biconvex lens L32 and a biconcave lens L33, a biconcave lens L34, a biconvex lens L35, and a biconvex lens L36 and a negative meniscus lens L37 having a concave surface facing the object side are arranged. Further, the lenses are arranged so as to satisfy the conditional expressions (1) and (2) (the corresponding value of the conditional expression (1) is 0.22 and the corresponding value of the conditional expression (2) is 0.90).

以上のような本実施形態に係る変倍光学系の製造方法によれば、高い光学性能を有する変倍光学系ZLを得ることができる。   According to the method for manufacturing a variable magnification optical system according to the present embodiment as described above, a variable magnification optical system ZL having high optical performance can be obtained.

以下、本実施形態に係る各実施例について、図面に基づいて説明する。以下に、表1〜表4を示すが、これらは第1実施例〜第4実施例における各諸元の表である。   Hereinafter, each example according to the present embodiment will be described with reference to the drawings. Tables 1 to 4 are shown below, but these are tables of specifications in the first to fourth examples.

図1、図5、図9及び図13は、各実施例に係る変倍光学系ZL(ZL1〜ZL4)の構成を示す断面図である。これら変倍光学系ZL1〜ZL4の断面図では、広角端状態(W)から望遠端状態(T)に変倍する際の各レンズ群の光軸に沿った移動軌跡を矢印で示す。   1, FIG. 5, FIG. 9 and FIG. 13 are cross-sectional views showing a configuration of a variable magnification optical system ZL (ZL1 to ZL4) according to each example. In the cross-sectional views of the zoom optical systems ZL1 to ZL4, the movement trajectory along the optical axis of each lens unit when zooming from the wide-angle end state (W) to the telephoto end state (T) is indicated by an arrow.

第1実施例に係る図1に対する各参照符号は、参照符号の桁数の増大による説明の煩雑化を避けるため、実施例ごとに独立して用いている。ゆえに、他の実施例に係る図面と共通の参照符号を付していても、それらは他の実施例とは必ずしも共通の構成ではない。   Each reference code for FIG. 1 according to the first embodiment is used independently for each embodiment in order to avoid complication of explanation due to an increase in the number of digits of the reference code. Therefore, even if the same reference numerals as those in the drawings according to the other embodiments are given, they are not necessarily in the same configuration as the other embodiments.

各実施例では収差特性の算出対象として、d線(波長587.5620nm)、g線(波長435.8350nm)を選んでいる。   In each embodiment, d-line (wavelength 587.5620 nm) and g-line (wavelength 435.8350 nm) are selected as the calculation targets of the aberration characteristics.

表中の[レンズデータ]において、面番号は光線の進行する方向に沿った物体側からの光学面の順序、rは各光学面の曲率半径、Dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔、νdは光学部材の材質のd線を基準とするアッベ数、ndは光学部材の材質のd線に対する屈折率を示す。(可変)は可変の面間隔、曲率半径の「∞」は平面又は開口、(絞りS)は開口絞りSを示す。空気の屈折率(d線)「1.000000」は省略する。光学面が非球面である場合には、面番号の左側に「*」を付し、曲率半径rの欄には近軸曲率半径を示す。   In [Lens data] in the table, the surface number is the order of the optical surfaces from the object side along the traveling direction of the light beam, r is the radius of curvature of each optical surface, D is the next optical surface from each optical surface (or The distance between the surfaces on the optical axis to the image plane), νd is the Abbe number based on the d-line of the material of the optical member, and nd is the refractive index of the material of the optical member with respect to the d-line. (Variable) indicates a variable surface interval, “∞” of the radius of curvature indicates a plane or an aperture, and (aperture S) indicates an aperture aperture S. The refractive index of air (d-line) “1.000000” is omitted. When the optical surface is an aspherical surface, “*” is attached to the left side of the surface number, and the paraxial radius of curvature is shown in the column of the radius of curvature r.

表中の[非球面データ]では、[レンズデータ]に示した非球面について、その形状を次式(a)で示す。ここで、yは光軸に垂直な方向の高さ、X(y)は高さyにおける光軸方向の変位量(サグ量)、rは基準球面の曲率半径(近軸曲率半径)、κは円錐定数、Anは第n次の非球面係数を示す。なお、「E-n」は「×10-n」を示し、例えば「1.234E-05」は「1.234×10-5」を示す。 In [Aspherical data] in the table, the shape of the aspherical surface shown in [Lens data] is shown by the following equation (a). Here, y is the height in the direction perpendicular to the optical axis, X (y) is the amount of displacement (sag amount) in the optical axis direction at height y, r is the radius of curvature of the reference sphere (paraxial radius of curvature), κ Denotes a conic constant, and An denotes an nth-order aspheric coefficient. “E-n” indicates “× 10 −n ”, for example “1.234E-05” indicates “1.234 × 10 −5 ”.

X(y)=(y2/r)/[1+{1−κ(y2/r2)}1/2]+A4×y4+A6×y6+A8×y8+A10×y10 …(a) X (y) = (y 2 / r) / [1+ {1−κ (y 2 / r 2 )} 1/2 ] + A 4 × y 4 + A 6 × y 6 + A 8 × y 8 + A 10 × y 10 (a)

表中の[各種データ]において、fはレンズ全系の焦点距離、FnoはFナンバー、ωは半画角(単位:°)、Yは像高、TLはレンズ系の全長(光軸上でのレンズ最前面から像面Iまでの距離)、Bfはバックフォーカス(光軸上でのレンズ最終面から像面Iまでの距離)を示す。   In [Various data] in the table, f is the focal length of the entire lens system, Fno is the F number, ω is the half angle of view (unit: °), Y is the image height, TL is the total length of the lens system (on the optical axis) Bf represents the back focus (distance from the last lens surface to the image plane I on the optical axis).

表中の[可変間隔データ]において、無限遠物体及び近距離物体(撮影距離R=1.0m)への合焦時の広角端状態、中間焦点距離状態及び望遠端状態における全系の焦点距離f又は撮影倍率βと、各可変間隔の値を示す。なお、D0は物体面から第1面までの距離、Di(但し、iは整数)は第i面と第(i+1)面の可変間隔を示す。   In the [variable interval data] in the table, the focal length f of the entire system in the wide-angle end state, the intermediate focal length state, and the telephoto end state at the time of focusing on an object at infinity and a short distance object (shooting distance R = 1.0 m) Or the imaging magnification β and the value of each variable interval are shown. D0 is the distance from the object surface to the first surface, and Di (where i is an integer) indicates the variable interval between the i-th surface and the (i + 1) -th surface.

表中の[レンズ群データ]において、群初面に各群の始面番号(最も物体側の面番号)、群焦点距離に各群の焦点距離を示す。   In [Lens Group Data] in the table, the starting surface number (most surface number on the object side) of each group is shown on the first group surface, and the focal length of each group is shown on the group focal length.

表中の[条件式対応値]において、上記の条件式(1)〜(7)に対応する値を示す。   In [Values for Conditional Expressions] in the table, values corresponding to the conditional expressions (1) to (7) are shown.

以下、全ての諸元値において、掲載されている焦点距離f、曲率半径r、面間隔D、その他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、単位は「mm」に限定されることなく、他の適当な単位を用いることが可能である。   Hereinafter, in all the specification values, “mm” is generally used for the focal length f, the radius of curvature r, the surface interval D, and other lengths, etc. unless otherwise specified, but the optical system is proportionally enlarged. Alternatively, the same optical performance can be obtained even by proportional reduction, and the present invention is not limited to this. Further, the unit is not limited to “mm”, and other appropriate units can be used.

ここまでの表の説明は全ての実施例において共通であり、以下での説明を省略する。   The description of the table so far is common to all the embodiments, and the description below is omitted.

(第1実施例)
第1実施例について、図1〜図4及び表1を用いて説明する。第1実施例に係る変倍光学系ZL(ZL1)は、図1に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する持つ第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成される。
(First embodiment)
A first embodiment will be described with reference to FIGS. As shown in FIG. 1, the variable magnification optical system ZL (ZL1) according to the first example includes a first lens group G1 having a positive refractive power arranged in order from the object side along the optical axis, and a negative lens group G1. It is composed of a second lens group G2 having a refractive power and a third lens group G3 having a positive refractive power.

第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合レンズから構成される。   The first lens group G1 includes a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a positive meniscus lens L12 having a convex surface facing the object side, which are arranged in order from the object side.

第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹レンズL22と、両凸レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とから構成される。   The second lens group G2 is composed of a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave lens L22, a biconvex lens L23, and a negative meniscus lens L24 having a concave surface directed toward the object side. Composed.

第3レンズ群G3は、物体側から順に並んだ、第31レンズ群G31と、第32レンズ群G32と、第33レンズ群G33とから構成される。   The third lens group G3 includes a thirty-first lens group G31, a thirty-second lens group G32, and a thirty-third lens group G33 arranged in order from the object side.

第31レンズ群G31は、物体側から順に並んだ、正の屈折力を有する前群G3Fと、後群G3Rとから構成される。前群G3F(合焦群)は、物体側に凹面を向けた正メニスカスレンズL31から構成される。後群G3Rは、物体側から順に並んだ、両凸レンズL32と両凹レンズL33との接合レンズから構成される。   The thirty-first lens group G31 includes a front group G3F having a positive refractive power and a rear group G3R arranged in order from the object side. The front group G3F (focusing group) includes a positive meniscus lens L31 having a concave surface directed toward the object side. The rear group G3R is composed of cemented lenses of a biconvex lens L32 and a biconcave lens L33 arranged in order from the object side.

第32レンズ群G32(防振レンズ群)は、両凹レンズL34から構成される。第33レンズ群G33は、物体側から順に並んだ、両凸レンズL35と、両凸レンズL36と、物体側に凹面を向けた負メニスカスレンズL37とから構成される。   The thirty-second lens group G32 (anti-vibration lens group) includes a biconcave lens L34. The thirty-third lens group G33 includes a biconvex lens L35, a biconvex lens L36, and a negative meniscus lens L37 having a concave surface directed toward the object side, which are arranged in order from the object side.

Fナンバーを決定する開口絞りSは、第3レンズ群G3中に設けられている。   An aperture stop S that determines the F number is provided in the third lens group G3.

像面Iは、不図示の撮像素子上に形成され、該撮像素子はCCDやCMOS等から構成される。   The image plane I is formed on an image sensor (not shown), and the image sensor is composed of a CCD, a CMOS, or the like.

第1実施例に係る変倍光学系ZL1は、第1レンズ群G1と第2レンズ群G2との空気間隔と、第2レンズ群G2と第3レンズ群G3との空気間隔とを変化させることにより、広角端状態から望遠端状態への変倍を行う。このとき、像面Iに対して、第1レンズ群G1は物体側へ単調に移動する。第2レンズ群G2は、像側に凸状の軌跡を描くように光軸に沿って移動する。第3レンズ群G3は、物体側へ単調に移動する。開口絞りSは、変倍に際して、第3レンズ群G3と一体となって物体側へ単調に移動する。   The variable magnification optical system ZL1 according to the first example changes the air gap between the first lens group G1 and the second lens group G2 and the air gap between the second lens group G2 and the third lens group G3. Thus, zooming from the wide-angle end state to the telephoto end state is performed. At this time, the first lens group G1 moves monotonously with respect to the image plane I toward the object side. The second lens group G2 moves along the optical axis so as to draw a convex locus on the image side. The third lens group G3 moves monotonously to the object side. The aperture stop S moves monotonously to the object side together with the third lens group G3 during zooming.

詳細には、第1実施例に係る変倍光学系ZL1は、第1レンズ群G1と第2レンズ群G2との空気間隔が拡大し、第2レンズ群G2と第3レンズ群G3との空気間隔が縮小するように、各レンズ群G1〜G3を光軸に沿って移動させることにより、広角端状態から望遠端状態までの変倍を行う。   Specifically, in the variable magnification optical system ZL1 according to the first example, the air gap between the first lens group G1 and the second lens group G2 is enlarged, and the air between the second lens group G2 and the third lens group G3 is expanded. Zooming from the wide-angle end state to the telephoto end state is performed by moving the lens groups G1 to G3 along the optical axis so that the interval is reduced.

第1実施例に係る変倍光学系ZL1は、第3レンズ群G3の前群G3F、すなわち物体側に凹面を向けた正メニスカスレンズL31を光軸方向に沿って移動させることにより合焦を行う構成であり、図1の矢印に示すように、無限遠物体に合焦した状態から近距離物体へ合焦する状態に変化させたときに、正メニスカスレンズL31は物体側から像側へ移動する。   The variable magnification optical system ZL1 according to the first example performs focusing by moving the front lens group G3F of the third lens group G3, that is, the positive meniscus lens L31 having a concave surface toward the object side, along the optical axis direction. The positive meniscus lens L31 moves from the object side to the image side when it is changed from a state focused on an object at infinity to a state focused on a short distance object, as indicated by an arrow in FIG. .

像ブレ発生時には、防振レンズ群として、第32レンズ群G32、すなわち両凹レンズL34を光軸と垂直方向の成分を持つように移動させることにより、像面I上の像ブレ補正(防振)を行う。   When an image blur occurs, the image blur correction (anti-vibration) on the image plane I is performed by moving the thirty-second lens group G32, that is, the biconcave lens L34, to have a component perpendicular to the optical axis. I do.

下記の表1に、第1実施例における各諸元の値を示す。表1における面番号1〜25が、図1に示すm1〜m25の各光学面に対応している。   Table 1 below shows the values of each item in the first example. Surface numbers 1 to 25 in Table 1 correspond to the optical surfaces m1 to m25 shown in FIG.

(表1)
[レンズデータ]
面番号 r D νd nd
1 41.994 1.800 23.80 1.846660
2 31.917 6.967 67.90 1.593190
3 1604.312 D3(可変)
4 79.168 1.500 32.35 1.850260
5 11.927 5.219
6 -52.994 1.000 42.73 1.834810
7 32.701 0.418
8 22.013 4.124 23.80 1.846660
9 -31.216 0.747
10 -21.084 1.000 42.73 1.834810
11 -79.290 D11(可変)
12 -459.370 1.607 49.62 1.772500
13 -32.039 D13(可変)
14 ∞ 2.000 (絞りS)
15 11.886 6.181 82.57 1.497820
16 -23.884 0.800 23.80 1.846660
17 297.976 2.028
18 -1480.750 0.800 49.62 1.772500
19 47.464 1.000
20 76.691 6.975 38.03 1.603420
21 -38.339 0.200
22 83.747 2.496 50.27 1.719990
23 -62.763 2.711
24 -9.776 1.000 42.73 1.834810
25 -16.921 Bf

[各種データ]
f 18.500 35.000 53.500
Fno 3.747 4.644 5.669
ω 39.556 21.350 14.391
Y 14.250 14.250 14.250
TL 88.166 99.495 109.353
Bf 17.445 26.392 35.677

[可変間隔データ]
(無限遠) (撮影距離1m)
広角端 中間 望遠端 広角端 中間 望遠端
f,β 18.500 35.000 53.500 -0.0196 -0.0365 -0.0554
D0 0.000 0.000 0.000 911.8 900.5 890.6
D1 1.086 12.752 18.159 1.086 12.752 18.159
D11 15.129 5.845 1.011 15.637 6.644 2.065
D13 3.924 3.924 3.924 3.416 3.125 2.871

[レンズ群データ]
群番号 群初面 群焦点距離
G1 1 83.101
G2 4 -15.594
G3 12 20.444

[条件式対応値]
条件式(1):fw/f1 = 0.22
条件式(2):fw/f3 = 0.90
条件式(3):(−f32)/f3 = 2.91
条件式(4):|f31|/f3 = 1.02
条件式(5):|f33|/f3 = 3.59
条件式(6):ωw = 39.556
条件式(7):ft/fw = 2.89
(Table 1)
[Lens data]
Surface number r D νd nd
1 41.994 1.800 23.80 1.846660
2 31.917 6.967 67.90 1.593190
3 1604.312 D3 (variable)
4 79.168 1.500 32.35 1.850 260
5 11.927 5.219
6 -52.994 1.000 42.73 1.834810
7 32.701 0.418
8 22.013 4.124 23.80 1.846660
9 -31.216 0.747
10 -21.084 1.000 42.73 1.834810
11 -79.290 D11 (variable)
12 -459.370 1.607 49.62 1.772500
13 -32.039 D13 (variable)
14 ∞ 2.000 (Aperture S)
15 11.886 6.181 82.57 1.497820
16 -23.884 0.800 23.80 1.846660
17 297.976 2.028
18 -1480.750 0.800 49.62 1.772500
19 47.464 1.000
20 76.691 6.975 38.03 1.603420
21 -38.339 0.200
22 83.747 2.496 50.27 1.719990
23 -62.763 2.711
24 -9.776 1.000 42.73 1.834810
25 -16.921 Bf

[Various data]
f 18.500 35.000 53.500
Fno 3.747 4.644 5.669
ω 39.556 21.350 14.391
Y 14.250 14.250 14.250
TL 88.166 99.495 109.353
Bf 17.445 26.392 35.677

[Variable interval data]
(Infinity) (shooting distance 1m)
Wide-angle end Medium telephoto end Wide-angle end Medium telephoto end
f, β 18.500 35.000 53.500 -0.0196 -0.0365 -0.0554
D0 0.000 0.000 0.000 911.8 900.5 890.6
D1 1.086 12.752 18.159 1.086 12.752 18.159
D11 15.129 5.845 1.011 15.637 6.644 2.065
D13 3.924 3.924 3.924 3.416 3.125 2.871

[Lens group data]
Group number Group first surface Group focal length G1 1 83.101
G2 4 -15.594
G3 12 20.444

[Conditional expression values]
Conditional expression (1): fw / f1 = 0.22
Conditional expression (2): fw / f3 = 0.90
Conditional expression (3): (−f32) /f3=2.91
Conditional expression (4): | f31 | /f3=1.02
Conditional expression (5): | f33 | /f3=3.59
Conditional expression (6): ωw = 39.556
Conditional expression (7): ft / fw = 2.89

表1から、第1実施例に係る変倍光学系ZL1は、上記条件式(1)〜(7)を満たすことが分かる。   From Table 1, it can be seen that the variable magnification optical system ZL1 according to the first example satisfies the conditional expressions (1) to (7).

図2は、第1実施例に係る変倍光学系ZL1の広角端状態(f=18.500)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は近距離合焦時(撮影倍率β=-0.0196)の諸収差図、(c)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図を示す。図3は、第1実施例に係る変倍光学系ZL1の中間焦点距離状態(f=35.000)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は近距離合焦時(撮影倍率β=-0.0365)の諸収差図、(c)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図を示す。図4は、第1実施例に係る変倍光学系ZL1の望遠端状態(f=53.500)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は近距離合焦時(撮影倍率β=-0.0554)の諸収差図、(c)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図を示す。本実施例では、防振時の光学性能を、図2(c)、図3(c)及び図4(c)のように、像高y=0.0を中心に、上下プラスマイナスの像高10.00に対応したコマ収差図で示す。   2A and 2B are aberration diagrams in the wide-angle end state (f = 18.500) of the variable magnification optical system ZL1 according to the first example. FIG. 2A is a diagram illustrating various aberrations at the time of focusing on infinity, and FIG. Aberration diagrams at the time of focusing (shooting magnification β = −0.0196), (c) shows a coma aberration diagram when image blur correction is performed at the time of focusing on infinity (correction angle θ = 0.30 °). FIG. 3 is an aberration diagram in the intermediate focal length state (f = 35.000) of the variable magnification optical system ZL1 according to the first example, (a) various aberration diagrams at the time of focusing on infinity, and (b) is a short distance diagram. Various aberration diagrams at the time of focusing (shooting magnification β = −0.0365), (c) shows a coma aberration diagram when image blur correction is performed at the time of focusing on infinity (correction angle θ = 0.30 °). 4A and 4B are aberration diagrams in the telephoto end state (f = 53.500) of the variable magnification optical system ZL1 according to the first example. FIG. 4A is an aberration diagram at the time of focusing on infinity, and FIG. Various aberration diagrams at the time of focusing (photographing magnification β = −0.0554), and FIG. 9C shows a coma aberration diagram when image blur correction is performed at the time of focusing on infinity (correction angle θ = 0.30 °). In this embodiment, the optical performance at the time of image stabilization is as follows. As shown in FIG. 2C, FIG. A coma aberration diagram corresponding to is shown.

各収差図において、FNOはFナンバー、NAは第1レンズ群G1に入射する光線の開口数、Aは光線入射角すなわち半画角(単位:°)、H0は物体高(単位:mm)、Yは像高、dはd線における収差、gはg線における収差を示す。d、gの記載のないものは、d線における収差を示す。球面収差図において、実線は球面収差を、破線は正弦条件を示す。非点収差図において、実線はサジタル像面、破線はメリジオナル像面を示す。コマ収差図において、実線はメリジオナルコマを示す。以上の収差図の説明は、他の実施例においても同様とし、その説明を省略する。   In each aberration diagram, FNO is the F number, NA is the numerical aperture of the light beam incident on the first lens group G1, A is the light beam incident angle, that is, the half field angle (unit: °), H0 is the object height (unit: mm), Y is the image height, d is the aberration at the d-line, and g is the aberration at the g-line. Those without d and g indicate aberration at the d-line. In the spherical aberration diagram, the solid line indicates the spherical aberration, and the broken line indicates the sine condition. In the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane. In the coma aberration diagram, the solid line indicates the meridional coma. The explanation of the above aberration diagrams is the same in the other examples, and the explanation is omitted.

図2〜図4に示す各収差図から、第1実施例に係る変倍光学系ZL1は、広角端状態から望遠端状態にわたり諸収差が良好に補正され、高い結像性能を有することが分かる。また、像ブレ補正時にも高い結像性能を有することが分かる。   2 to 4, it can be seen that the variable magnification optical system ZL1 according to the first example has excellent imaging performance with various aberrations corrected well from the wide-angle end state to the telephoto end state. . It can also be seen that the image forming performance is high even when image blur correction is performed.

(第2実施例)
第2実施例について、図5〜図8及び表2を用いて説明する。第2実施例に係る変倍光学系ZL(ZL2)は、図5に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する持つ第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成される。
(Second embodiment)
A second embodiment will be described with reference to FIGS. As shown in FIG. 5, the variable magnification optical system ZL (ZL2) according to the second example includes a first lens group G1 having a positive refractive power and arranged in order from the object side along the optical axis. It is composed of a second lens group G2 having a refractive power and a third lens group G3 having a positive refractive power.

第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合レンズから構成される。   The first lens group G1 includes a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a positive meniscus lens L12 having a convex surface facing the object side, which are arranged in order from the object side.

第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹レンズL22と、両凸レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とから構成される。   The second lens group G2 is composed of a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave lens L22, a biconvex lens L23, and a negative meniscus lens L24 having a concave surface directed toward the object side. Composed.

第3レンズ群G3は、物体側から順に並んだ、第31レンズ群G31と、第32レンズ群G32と、第33レンズ群G33とから構成される。   The third lens group G3 includes a thirty-first lens group G31, a thirty-second lens group G32, and a thirty-third lens group G33 arranged in order from the object side.

第31レンズ群G31は、物体側から順に並んだ、正の屈折力を有する前群G3Fと、後群G3Rとから構成される。前群G3F(合焦群)は、物体側に凹面を向けた正メニスカスレンズL31から構成される。後群G3Rは、物体側から順に並んだ、両凸レンズL32と物体側に凹面を向けた負メニスカスレンズL33との接合レンズから構成される。   The thirty-first lens group G31 includes a front group G3F having a positive refractive power and a rear group G3R arranged in order from the object side. The front group G3F (focusing group) includes a positive meniscus lens L31 having a concave surface directed toward the object side. The rear group G3R is composed of a cemented lens of a biconvex lens L32 and a negative meniscus lens L33 having a concave surface facing the object side, which are arranged in order from the object side.

第32レンズ群G32(防振レンズ群)は、物体側に凸面を向けた負メニスカスレンズL34から構成される。第33レンズ群G33は、物体側から順に並んだ、両凸レンズL35と、物体側に凹面を向けた負メニスカスレンズL36とから構成される。   The thirty-second lens group G32 (anti-vibration lens group) includes a negative meniscus lens L34 having a convex surface directed toward the object side. The thirty-third lens group G33 includes a biconvex lens L35 arranged in order from the object side, and a negative meniscus lens L36 having a concave surface directed toward the object side.

Fナンバーを決定する開口絞りSは、第3レンズ群G3中に設けられている。   An aperture stop S that determines the F number is provided in the third lens group G3.

像面Iは、不図示の撮像素子上に形成され、該撮像素子はCCDやCMOS等から構成される。   The image plane I is formed on an image sensor (not shown), and the image sensor is composed of a CCD, a CMOS, or the like.

第2実施例に係る変倍光学系ZL2は、第1レンズ群G1と第2レンズ群G2との空気間隔と、第2レンズ群G2と第3レンズ群G3との空気間隔とを変化させることにより、広角端状態から望遠端状態への変倍を行う。このとき、像面Iに対して、第1レンズ群G1は物体側へ単調に移動する。第2レンズ群G2は、物体側へ単調に移動する。第3レンズ群G3は、物体側へ単調に移動する。開口絞りSは、変倍に際して、第3レンズ群G3と一体となって物体側へ単調に移動する。   The variable magnification optical system ZL2 according to the second example changes the air gap between the first lens group G1 and the second lens group G2 and the air gap between the second lens group G2 and the third lens group G3. Thus, zooming from the wide-angle end state to the telephoto end state is performed. At this time, the first lens group G1 moves monotonously with respect to the image plane I toward the object side. The second lens group G2 moves monotonously to the object side. The third lens group G3 moves monotonously to the object side. The aperture stop S moves monotonously to the object side together with the third lens group G3 during zooming.

詳細には、第2実施例に係る変倍光学系ZL2は、第1レンズ群G1と第2レンズ群G2との空気間隔が拡大し、第2レンズ群G2と第3レンズ群G3との空気間隔が縮小するように、各レンズ群G1〜G3を光軸に沿って移動させることにより、広角端状態から望遠端状態までの変倍を行う。   Specifically, in the variable magnification optical system ZL2 according to the second example, the air gap between the first lens group G1 and the second lens group G2 is enlarged, and the air between the second lens group G2 and the third lens group G3 is expanded. Zooming from the wide-angle end state to the telephoto end state is performed by moving the lens groups G1 to G3 along the optical axis so that the interval is reduced.

第2実施例に係る変倍光学系ZL2は、第3レンズ群G3の前群G3F、すなわち物体側に凹面を向けた正メニスカスレンズL31を光軸方向に沿って移動させることにより合焦を行う構成であり、図5の矢印に示すように、無限遠物体に合焦した状態から近距離物体へ合焦する状態に変化させたときに、正メニスカスレンズL31は物体側から像側へ移動する。   The zoom optical system ZL2 according to the second example performs focusing by moving the front lens group G3F of the third lens group G3, that is, the positive meniscus lens L31 having a concave surface toward the object side, along the optical axis direction. The positive meniscus lens L31 moves from the object side to the image side when it is changed from a state focused on an object at infinity to a state focused on a short distance object, as indicated by an arrow in FIG. .

像ブレ発生時には、防振レンズ群として、第32レンズ群G32、すなわち物体側に凸面を向けた負メニスカスレンズL34を光軸と垂直方向の成分を持つように移動させることにより、像面I上の像ブレ補正(防振)を行う。   When image blurring occurs, the thirty-second lens group G32, that is, the negative meniscus lens L34 having a convex surface directed toward the object side is moved so as to have a component in the direction perpendicular to the optical axis. Image blur correction (anti-vibration).

下記の表2に、第2実施例における各諸元の値を示す。表2における面番号1〜23が、図5に示すm1〜m23の各光学面に対応している。   Table 2 below shows the values of each item in the second embodiment. Surface numbers 1 to 23 in Table 2 correspond to the optical surfaces m1 to m23 shown in FIG.

(表2)
[レンズデータ]
面番号 r D νd nd
1 45.608 1.800 23.80 1.846660
2 33.721 6.519 67.90 1.593190
3 45648.551 D3(可変)
4 45.310 1.500 32.35 1.850260
5 11.154 5.514
6 -66.392 1.000 42.73 1.834810
7 28.177 0.200
8 19.025 4.190 23.80 1.846660
9 -36.189 0.897
10 -20.633 1.000 42.73 1.834810
11 -125.484 D11(可変)
12 -244.725 1.512 42.73 1.834810
13 -35.967 D13(可変)
14 ∞ 2.000 (絞りS)
15 11.692 7.246 82.57 1.497820
16 -15.635 0.800 23.80 1.846660
17 -55.007 2.028
18 119.072 0.800 55.52 1.696800
19 30.792 1.886
20 46.232 7.366 34.92 1.801000
21 -29.295 2.129
22 -9.299 1.000 35.72 1.902650
23 -17.109 Bf

[各種データ]
f 18.500 34.176 53.500
Fno 3.606 4.649 5.743
ω 38.474 21.695 14.318
Y 14.250 14.250 14.250
TL 84.418 96.972 109.393
Bf 17.330 26.452 35.995

[可変間隔データ]
(無限遠) (撮影距離1m)
広角端 中間 望遠端 広角端 中間 望遠端
f,β 18.500 34.176 53.500 -0.0196 -0.0358 -0.0556
D0 0.000 0.000 0.000 915.6 903.0 890.6
D3 1.003 12.242 19.287 1.003 12.242 19.287
D11 12.973 5.166 1.000 13.423 5.869 1.977
D13 3.717 3.717 3.717 3.266 3.013 2.739

[レンズ群データ]
群番号 群初面 群焦点距離
G1 1 89.519
G2 4 -14.853
G3 12 18.756

[条件式対応値]
条件式(1):fw/f1 = 0.21
条件式(2):fw/f3 = 0.99
条件式(3):(−f32)/f3 = 3.19
条件式(4):|f31|/f3 = 1.00
条件式(5):|f33|/f3 = 8.00
条件式(6):ωw = 38.474
条件式(7):ft/fw = 2.89
(Table 2)
[Lens data]
Surface number r D νd nd
1 45.608 1.800 23.80 1.846660
2 33.721 6.519 67.90 1.593190
3 45648.551 D3 (variable)
4 45.310 1.500 32.35 1.850 260
5 11.154 5.514
6 -66.392 1.000 42.73 1.834810
7 28.177 0.200
8 19.025 4.190 23.80 1.846660
9 -36.189 0.897
10 -20.633 1.000 42.73 1.834810
11 -125.484 D11 (variable)
12 -244.725 1.512 42.73 1.834810
13 -35.967 D13 (variable)
14 ∞ 2.000 (Aperture S)
15 11.692 7.246 82.57 1.497820
16 -15.635 0.800 23.80 1.846660
17 -55.007 2.028
18 119.072 0.800 55.52 1.696800
19 30.792 1.886
20 46.232 7.366 34.92 1.801000
21 -29.295 2.129
22 -9.299 1.000 35.72 1.902650
23 -17.109 Bf

[Various data]
f 18.500 34.176 53.500
Fno 3.606 4.649 5.743
ω 38.474 21.695 14.318
Y 14.250 14.250 14.250
TL 84.418 96.972 109.393
Bf 17.330 26.452 35.995

[Variable interval data]
(Infinity) (shooting distance 1m)
Wide-angle end Medium telephoto end Wide-angle end Medium telephoto end
f, β 18.500 34.176 53.500 -0.0196 -0.0358 -0.0556
D0 0.000 0.000 0.000 915.6 903.0 890.6
D3 1.003 12.242 19.287 1.003 12.242 19.287
D11 12.973 5.166 1.000 13.423 5.869 1.977
D13 3.717 3.717 3.717 3.266 3.013 2.739

[Lens group data]
Group number Group first surface Group focal length G1 1 89.519
G2 4 -14.853
G3 12 18.756

[Conditional expression values]
Conditional expression (1): fw / f1 = 0.21
Conditional expression (2): fw / f3 = 0.99
Conditional expression (3): (−f32) /f3=3.19
Conditional expression (4): | f31 | /f3=1.00
Conditional expression (5): | f33 | /f3=0.80
Conditional expression (6): ωw = 38.474
Conditional expression (7): ft / fw = 2.89

表2から、第2実施例に係る変倍光学系ZL2は、上記条件式(1)〜(7)を満たすことが分かる。   From Table 2, it can be seen that the zoom optical system ZL2 according to the second example satisfies the conditional expressions (1) to (7).

図6は、第2実施例に係る変倍光学系ZL2の広角端状態(f=18.500)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は近距離合焦時(撮影倍率β=-0.0196)の諸収差図、(c)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図を示す。図7は、第2実施例に係る変倍光学系ZL2の中間焦点距離状態(f=34.176)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は近距離合焦時(撮影倍率β=-0.0358)の諸収差図、(c)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図を示す。図8は、第2実施例に係る変倍光学系ZL2の望遠端状態(f=53.500)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は近距離合焦時(撮影倍率β=-0.0556)の諸収差図、(c)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図を示す。本実施例では、防振時の光学性能を、図6(c)、図7(c)及び図8(c)のように、像高y=0.0を中心に、上下プラスマイナスの像高10.0に対応したコマ収差図で示す。   6A and 6B are aberration diagrams in the wide-angle end state (f = 18.500) of the variable magnification optical system ZL2 according to the second example. FIG. 6A is a diagram illustrating various aberrations at the time of focusing on infinity, and FIG. Aberration diagrams at the time of focusing (shooting magnification β = −0.0196), (c) shows a coma aberration diagram when image blur correction is performed at the time of focusing on infinity (correction angle θ = 0.30 °). FIG. 7 is an aberration diagram in the intermediate focal length state (f = 34.176) of the variable magnification optical system ZL2 according to the second example, (a) various aberration diagrams at the time of focusing on infinity, and (b) is a short distance diagram. Various aberration diagrams at the time of focusing (photographing magnification β = −0.0358), and FIG. 9C are coma aberration diagrams when image blur correction is performed at the time of focusing on infinity (correction angle θ = 0.30 °). FIG. 8 is an aberration diagram in the telephoto end state (f = 53.500) of the variable magnification optical system ZL2 according to the second example. (A) Various aberration diagrams at the time of focusing on infinity, (b) Aberration diagrams at the time of focusing (shooting magnification β = −0.0556), (c) shows a coma aberration diagram when image blur correction is performed at the time of focusing on infinity (correction angle θ = 0.30 °). In this embodiment, the optical performance at the time of image stabilization is shown in FIG. 6C, FIG. 7C, and FIG. A coma aberration diagram corresponding to is shown.

図6〜図8に示す各収差図から、第2実施例に係る変倍光学系ZL2は、広角端状態から望遠端状態にわたり諸収差が良好に補正され、高い結像性能を有することが分かる。また、像ブレ補正時にも高い結像性能を有することが分かる。   6 to 8 show that the variable magnification optical system ZL2 according to the second example has excellent imaging performance with various aberrations corrected well from the wide-angle end state to the telephoto end state. . It can also be seen that the image forming performance is high even when image blur correction is performed.

(第3実施例)
第3実施例について、図9〜図12及び表3を用いて説明する。第3実施例に係る変倍光学系ZL(ZL3)は、図9に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する持つ第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成される。
(Third embodiment)
A third embodiment will be described with reference to FIGS. 9 to 12 and Table 3. FIG. As shown in FIG. 9, the variable magnification optical system ZL (ZL3) according to the third example includes a first lens group G1 having positive refractive power arranged in order from the object side along the optical axis, and a negative lens group G1. It is composed of a second lens group G2 having a refractive power and a third lens group G3 having a positive refractive power.

第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合レンズから構成される。   The first lens group G1 is composed of a cemented lens composed of a negative meniscus lens L11 and a biconvex lens L12 arranged in order from the object side and having a convex surface directed toward the object side.

第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹レンズL22と、物体側に凸面を向けた正メニスカスレンズL23とから構成される。負メニスカスレンズL21の物体側面は、非球面である。   The second lens group G2 is composed of a negative meniscus lens L21 having a convex surface facing the object side, a biconcave lens L22, and a positive meniscus lens L23 having a convex surface facing the object side, which are arranged in order from the object side. The object side surface of the negative meniscus lens L21 is aspheric.

第3レンズ群G3は、物体側から順に並んだ、第31レンズ群G31と、第32レンズ群G32と、第33レンズ群G33とから構成される。   The third lens group G3 includes a thirty-first lens group G31, a thirty-second lens group G32, and a thirty-third lens group G33 arranged in order from the object side.

第31レンズ群G31は、物体側から順に並んだ、正の屈折力を有する前群G3Fと、後群G3Rとから構成される。前群G3F(合焦群)は、両凸レンズL31から構成される。後群G3Rは、物体側から順に並んだ、両凸レンズL32と物体側に凹面を向けた負メニスカスレンズL33との接合レンズから構成される。   The thirty-first lens group G31 includes a front group G3F having a positive refractive power and a rear group G3R arranged in order from the object side. The front group G3F (focusing group) includes a biconvex lens L31. The rear group G3R is composed of a cemented lens of a biconvex lens L32 and a negative meniscus lens L33 having a concave surface facing the object side, which are arranged in order from the object side.

第32レンズ群G32(防振レンズ群)は、物体側に凸面を向けた負メニスカスレンズL34から構成される。第33レンズ群G33は、物体側から順に並んだ、両凸レンズL35と、物体側に凹面を向けた負メニスカスレンズL36とから構成される。負メニスカスレンズL34の物体側面は、非球面である。負メニスカスレンズL36の物体側面は、非球面である。   The thirty-second lens group G32 (anti-vibration lens group) includes a negative meniscus lens L34 having a convex surface directed toward the object side. The thirty-third lens group G33 includes a biconvex lens L35 arranged in order from the object side, and a negative meniscus lens L36 having a concave surface directed toward the object side. The object side surface of the negative meniscus lens L34 is aspheric. The object side surface of the negative meniscus lens L36 is aspheric.

Fナンバーを決定する開口絞りSは、第3レンズ群G3中に設けられている。   An aperture stop S that determines the F number is provided in the third lens group G3.

像面Iは、不図示の撮像素子上に形成され、該撮像素子はCCDやCMOS等から構成される。   The image plane I is formed on an image sensor (not shown), and the image sensor is composed of a CCD, a CMOS, or the like.

第3実施例に係る変倍光学系ZL3は、第1レンズ群G1と第2レンズ群G2との空気間隔と、第2レンズ群G2と第3レンズ群G3との空気間隔とを変化させることにより、広角端状態から望遠端状態への変倍を行う。このとき、像面Iに対して、第1レンズ群G1は物体側へ単調に移動する。第2レンズ群G2は、物体側へ単調に移動する。第3レンズ群G3は、物体側へ単調に移動する。開口絞りSは、変倍に際して、第3レンズ群G3と一体となって物体側へ単調に移動する。   The variable magnification optical system ZL3 according to the third example changes the air gap between the first lens group G1 and the second lens group G2 and the air gap between the second lens group G2 and the third lens group G3. Thus, zooming from the wide-angle end state to the telephoto end state is performed. At this time, the first lens group G1 moves monotonously with respect to the image plane I toward the object side. The second lens group G2 moves monotonously to the object side. The third lens group G3 moves monotonously to the object side. The aperture stop S moves monotonously to the object side together with the third lens group G3 during zooming.

詳細には、第3実施例に係る変倍光学系ZL3は、第1レンズ群G1と第2レンズ群G2との空気間隔が拡大し、第2レンズ群G2と第3レンズ群G3との空気間隔が縮小するように、各レンズ群G1〜G3を光軸に沿って移動させることにより、広角端状態から望遠端状態までの変倍を行う。   Specifically, in the variable magnification optical system ZL3 according to the third example, the air distance between the first lens group G1 and the second lens group G2 is increased, and the air between the second lens group G2 and the third lens group G3 is expanded. Zooming from the wide-angle end state to the telephoto end state is performed by moving the lens groups G1 to G3 along the optical axis so that the interval is reduced.

第3実施例に係る変倍光学系ZL3は、第3レンズ群G3の前群G3F、すなわち両凸レンズL31を光軸方向に沿って移動させることにより合焦を行う構成であり、図9の矢印に示すように、無限遠物体に合焦した状態から近距離物体へ合焦する状態に変化させたときに、両凸レンズL31は物体側から像側へ移動する。   The variable magnification optical system ZL3 according to the third example is configured to perform focusing by moving the front group G3F of the third lens group G3, that is, the biconvex lens L31, along the optical axis direction. As shown in FIG. 5, when the state of focusing on an object at infinity is changed to the state of focusing on an object at a short distance, the biconvex lens L31 moves from the object side to the image side.

像ブレ発生時には、防振レンズ群として、第32レンズ群G32、すなわち物体側に凸面を向けた負メニスカスレンズL34を光軸と垂直方向の成分を持つように移動させることにより、像面I上の像ブレ補正(防振)を行う。   When image blurring occurs, the thirty-second lens group G32, that is, the negative meniscus lens L34 having a convex surface directed toward the object side is moved so as to have a component in the direction perpendicular to the optical axis. Image blur correction (anti-vibration).

下記の表3に、第3実施例における各諸元の値を示す。表3における面番号1〜22が、図9に示すm1〜m22の各光学面に対応している。   Table 3 below shows values of various specifications in the third example. Surface numbers 1 to 22 in Table 3 correspond to the optical surfaces m1 to m22 shown in FIG.

(表3)
[レンズデータ]
面番号 r D νd nd
1 54.753 1.500 23.80 1.846660
2 38.695 5.554 67.90 1.593190
3 -34295.201 D3(可変)
*4 78.694 0.160 38.09 1.553890
5 98.152 1.200 42.73 1.834810
6 10.847 3.606
7 -970.417 1.000 42.73 1.834810
8 23.052 1.059
9 17.651 2.718 25.45 1.805180
10 124.240 D10(可変)
11 756.198 1.530 44.80 1.744000
12 -42.339 D12(可変)
13 ∞ 2.000 (絞りS)
14 10.744 4.744 82.57 1.497820
15 -14.187 0.800 32.35 1.850260
16 -36.052 2.298
*17 61.167 0.800 49.26 1.743200
18 25.724 3.680
19 40.116 2.998 36.40 1.620040
20 -27.927 2.317
*21 -8.706 1.000 31.27 1.903660
22 -17.386 Bf

[非球面データ]
第4面
κ = 1.0000
A4 = -8.92993E-06
A6 = -3.84277E-08
A8 = 5.03368E-10
A10= -1.64069E-12

第17面
κ = 1.0000
A4 = 4.87068E-06
A6 = -6.89267E-08
A8 = 0.00000E+00
A10= 0.00000E+00

第21面
κ = 1.0000
A4 = -3.24561E-05
A6 = -9.10280E-07
A8 = 2.25192E-08
A10= -6.24358E-10

[各種データ]
f 18.477 34.000 53.500
Fno 3.630 4.663 5.630
ω 39.444 21.946 14.295
Y 14.250 14.250 14.250
TL 74.395 88.467 104.339
Bf 17.318 26.476 34.918

[可変間隔データ]
(無限遠) (撮影距離1m)
広角端 中間 望遠端 広角端 中間 望遠端
f,β 18.477 34.000 53.500 -0.0194 -0.0355 -0.0552
D0 0.000 0.000 0.000 925.6 911.5 895.7
D3 1.000 14.075 25.532 1.000 14.075 25.532
D10 13.187 5.026 1.000 13.679 5.760 2.066
D12 3.919 3.919 3.919 3.428 3.185 2.852

[レンズ群データ]
群番号 群初面 群焦点距離
G1 1 110.968
G2 4 -16.768
G3 11 18.415

[条件式対応値]
条件式(1):fw/f1 = 0.17
条件式(2):fw/f3 = 1.00
条件式(3):(−f32)/f3 = 3.28
条件式(4):|f31|/f3 = 0.93
条件式(5):|f33|/f3 = 7.37
条件式(6):ωw = 39.444
条件式(7):ft/fw = 2.90
(Table 3)
[Lens data]
Surface number r D νd nd
1 54.753 1.500 23.80 1.846660
2 38.695 5.554 67.90 1.593190
3 -34295.201 D3 (variable)
* 4 78.694 0.160 38.09 1.553890
5 98.152 1.200 42.73 1.834810
6 10.847 3.606
7 -970.417 1.000 42.73 1.834810
8 23.052 1.059
9 17.651 2.718 25.45 1.805180
10 124.240 D10 (variable)
11 756.198 1.530 44.80 1.744000
12 -42.339 D12 (variable)
13 ∞ 2.000 (Aperture S)
14 10.744 4.744 82.57 1.497820
15 -14.187 0.800 32.35 1.850 260
16 -36.052 2.298
* 17 61.167 0.800 49.26 1.743200
18 25.724 3.680
19 40.116 2.998 36.40 1.620040
20 -27.927 2.317
* 21 -8.706 1.000 31.27 1.903660
22 -17.386 Bf

[Aspherical data]
4th surface κ = 1.0000
A4 = -8.92993E-06
A6 = -3.84277E-08
A8 = 5.03368E-10
A10 = -1.64069E-12

17th surface κ = 1.0000
A4 = 4.87068E-06
A6 = -6.89267E-08
A8 = 0.00000E + 00
A10 = 0.00000E + 00

21st surface κ = 1.0000
A4 = -3.24561E-05
A6 = -9.10280E-07
A8 = 2.25192E-08
A10 = -6.24358E-10

[Various data]
f 18.477 34.000 53.500
Fno 3.630 4.663 5.630
ω 39.444 21.946 14.295
Y 14.250 14.250 14.250
TL 74.395 88.467 104.339
Bf 17.318 26.476 34.918

[Variable interval data]
(Infinity) (shooting distance 1m)
Wide-angle end Medium telephoto end Wide-angle end Medium telephoto end
f, β 18.477 34.000 53.500 -0.0194 -0.0355 -0.0552
D0 0.000 0.000 0.000 925.6 911.5 895.7
D3 1.000 14.075 25.532 1.000 14.075 25.532
D10 13.187 5.026 1.000 13.679 5.760 2.066
D12 3.919 3.919 3.919 3.428 3.185 2.852

[Lens group data]
Group number Group first surface Group focal length G1 1 110.968
G2 4 -16.768
G3 11 18.415

[Conditional expression values]
Conditional expression (1): fw / f1 = 0.17
Conditional expression (2): fw / f3 = 1.00
Conditional expression (3): (−f32) /f3=3.28
Conditional expression (4): | f31 | /f3=0.93
Conditional expression (5): | f33 | /f3=7.37
Conditional expression (6): ωw = 39.444
Conditional expression (7): ft / fw = 2.90

表3から、第3実施例に係る変倍光学系ZL3は、上記条件式(1)〜(7)を満たすことが分かる。   From Table 3, it can be seen that the variable magnification optical system ZL3 according to the third example satisfies the conditional expressions (1) to (7).

図10は、第3実施例に係る変倍光学系ZL3の広角端状態(f=18.477)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は近距離合焦時(撮影倍率β=-0.0194)の諸収差図、(c)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図を示す。図11は、第3実施例に係る変倍光学系ZL3の中間焦点距離状態(f=34.000)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は近距離合焦時(撮影倍率β=-0.0355)の諸収差図、(c)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図を示す。図12は、第3実施例に係る変倍光学系ZL3の望遠端状態(f=53.500)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は近距離合焦時(撮影倍率β=-0.0552)の諸収差図、(c)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図を示す。本実施例では、防振時の光学性能を、図10(c)、図11(c)及び図12(c)のように、像高y=0.0を中心に、上下プラスマイナスの像高10.0に対応したコマ収差図で示す。   FIG. 10 is an aberration diagram in the wide-angle end state (f = 18.477) of the variable magnification optical system ZL3 according to Example 3, (a) Various aberration diagrams at the time of focusing on infinity, and (b) Aberration diagrams at the time of focusing (shooting magnification β = −0.0194), (c) shows a coma aberration diagram when image blur correction is performed at the time of focusing on infinity (correction angle θ = 0.30 °). FIG. 11 is an aberration diagram in the intermediate focal length state (f = 34.000) of the variable magnification optical system ZL3 according to the third example, (a) various aberration diagrams at the time of focusing on infinity, and (b) is a short distance diagram. Various aberration diagrams at the time of focusing (photographing magnification β = −0.0355), and FIG. 10C shows a coma aberration diagram when image blur correction is performed at the time of focusing on infinity (correction angle θ = 0.30 °). FIG. 12 is an aberration diagram in the telephoto end state (f = 53.500) of the variable magnification optical system ZL3 according to Example 3, (a) Various aberration diagrams at the time of focusing on infinity, and (b) FIG. 6C shows various aberrations during focusing (shooting magnification β = −0.0552), and FIG. 8C shows a coma aberration diagram when image blur correction is performed at infinity focusing (correction angle θ = 0.30 °). In this embodiment, the optical performance at the time of image stabilization is shown in FIG. 10 (c), FIG. 11 (c), and FIG. 12 (c). A coma aberration diagram corresponding to is shown.

図10〜図12に示す各収差図から、第3実施例に係る変倍光学系ZL3は、広角端状態から望遠端状態にわたり諸収差が良好に補正され、高い結像性能を有することが分かる。また、像ブレ補正時にも高い結像性能を有することが分かる。   10 to 12, it is understood that the variable magnification optical system ZL3 according to the third example has excellent imaging performance with various aberrations corrected well from the wide-angle end state to the telephoto end state. . It can also be seen that the image forming performance is high even when image blur correction is performed.

(第4実施例)
第4実施例について、図13〜図16及び表4を用いて説明する。第4実施例に係る変倍光学系ZL(ZL4)は、図13に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する持つ第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成される。
(Fourth embodiment)
A fourth embodiment will be described with reference to FIGS. 13 to 16 and Table 4. FIG. As shown in FIG. 13, the variable magnification optical system ZL (ZL4) according to the fourth example includes a first lens group G1 having positive refractive power arranged in order from the object side along the optical axis, and a negative lens group G1. The lens unit includes a second lens group G2 having a refractive power, a third lens group G3 having a positive refractive power, and a fourth lens group G4 having a positive refractive power.

第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合レンズから構成される。   The first lens group G1 is composed of a cemented lens composed of a negative meniscus lens L11 and a biconvex lens L12 arranged in order from the object side and having a convex surface directed toward the object side.

第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹レンズL22と、物体側に凸面を向けた正メニスカスレンズL23とから構成される。負メニスカスレンズL21の物体側面は、非球面である。   The second lens group G2 is composed of a negative meniscus lens L21 having a convex surface facing the object side, a biconcave lens L22, and a positive meniscus lens L23 having a convex surface facing the object side, which are arranged in order from the object side. The object side surface of the negative meniscus lens L21 is aspheric.

第3レンズ群G3は、物体側から順に並んだ、第31レンズ群G31と、第32レンズ群G32と、第33レンズ群G33とから構成される。   The third lens group G3 includes a thirty-first lens group G31, a thirty-second lens group G32, and a thirty-third lens group G33 arranged in order from the object side.

第31レンズ群G31は、物体側から順に並んだ、正の屈折力を有する前群G3Fと、後群G3Rとから構成される。前群G3F(合焦群)は、両凸レンズL31から構成される。後群G3Rは、物体側から順に並んだ、両凸レンズL32と両凹レンズL33との接合レンズから構成される。   The thirty-first lens group G31 includes a front group G3F having a positive refractive power and a rear group G3R arranged in order from the object side. The front group G3F (focusing group) includes a biconvex lens L31. The rear group G3R is composed of cemented lenses of a biconvex lens L32 and a biconcave lens L33 arranged in order from the object side.

第32レンズ群G32(防振レンズ群)は、物体側に凸面を向けた負メニスカスレンズL34から構成される。第33レンズ群G33は、物体側から順に並んだ、両凸レンズL35と、両凹レンズL36とから構成される。負メニスカスレンズL36の物体側面は、非球面である。   The thirty-second lens group G32 (anti-vibration lens group) includes a negative meniscus lens L34 having a convex surface directed toward the object side. The thirty-third lens group G33 is composed of a biconvex lens L35 and a biconcave lens L36 arranged in order from the object side. The object side surface of the negative meniscus lens L36 is aspheric.

第4レンズ群G4は、両凸レンズL41から構成される。   The fourth lens group G4 includes a biconvex lens L41.

Fナンバーを決定する開口絞りSは、第3レンズ群G3中に設けられている。   An aperture stop S that determines the F number is provided in the third lens group G3.

像面Iは、不図示の撮像素子上に形成され、該撮像素子はCCDやCMOS等から構成される。   The image plane I is formed on an image sensor (not shown), and the image sensor is composed of a CCD, a CMOS, or the like.

第4実施例に係る変倍光学系ZL4は、第1レンズ群G1と第2レンズ群G2との空気間隔と、第2レンズ群G2と第3レンズ群G3との空気間隔と、第3レンズ群G3と第4レンズ群G4との空気間隔とを変化させることにより、広角端状態から望遠端状態への変倍を行う。このとき、像面Iに対して、第1レンズ群G1は物体側へ単調に移動する。第2レンズ群G2は、物体側へ単調に移動する。第3レンズ群G3は、物体側へ単調に移動する。第4レンズ群G4は、物体側へ単調に移動する。開口絞りSは、変倍に際して、第3レンズ群G3と一体となって物体側へ単調に移動する。   The variable magnification optical system ZL4 according to the fourth example includes an air gap between the first lens group G1 and the second lens group G2, an air gap between the second lens group G2 and the third lens group G3, and a third lens. By changing the air gap between the group G3 and the fourth lens group G4, zooming from the wide-angle end state to the telephoto end state is performed. At this time, the first lens group G1 moves monotonously with respect to the image plane I toward the object side. The second lens group G2 moves monotonously to the object side. The third lens group G3 moves monotonously to the object side. The fourth lens group G4 monotonously moves toward the object side. The aperture stop S moves monotonously to the object side together with the third lens group G3 during zooming.

詳細には、第4実施例に係る変倍光学系ZL4は、第1レンズ群G1と第2レンズ群G2との空気間隔が拡大し、第2レンズ群G2と第3レンズ群G3との空気間隔が縮小し、第3レンズ群G3と第4レンズ群G4との空気間隔が拡大するように、各レンズ群G1〜G4を光軸に沿って移動させることにより、広角端状態から望遠端状態までの変倍を行う。   More specifically, in the variable magnification optical system ZL4 according to the fourth example, the air gap between the first lens group G1 and the second lens group G2 is enlarged, and the air between the second lens group G2 and the third lens group G3 is expanded. By moving the lens groups G1 to G4 along the optical axis so that the distance between the third lens group G3 and the fourth lens group G4 increases, the distance between the third lens group G3 and the fourth lens group G4 increases. Perform zooming up to.

第4実施例に係る変倍光学系ZL4は、第3レンズ群G3の前群G3F、すなわち両凸レンズL31を光軸方向に沿って移動させることにより合焦を行う構成であり、図13の矢印に示すように、無限遠物体に合焦した状態から近距離物体へ合焦する状態に変化させたときに、両凸レンズL31は物体側から像側へ移動する。   The variable magnification optical system ZL4 according to the fourth example is configured to perform focusing by moving the front group G3F of the third lens group G3, that is, the biconvex lens L31, along the optical axis direction. As shown in FIG. 5, when the state of focusing on an object at infinity is changed to the state of focusing on an object at a short distance, the biconvex lens L31 moves from the object side to the image side.

像ブレ発生時には、防振レンズ群として、第32レンズ群G32、すなわち物体側に凸面を向けた負メニスカスレンズL34を光軸と垂直方向の成分を持つように移動させることにより、像面I上の像ブレ補正(防振)を行う。   When image blurring occurs, the thirty-second lens group G32, that is, the negative meniscus lens L34 having a convex surface directed toward the object side is moved so as to have a component in the direction perpendicular to the optical axis. Image blur correction (anti-vibration).

下記の表4に、第4実施例における各諸元の値を示す。表4における面番号1〜23が、図13に示すm1〜m23の各光学面に対応している。   Table 4 below shows values of various specifications in the fourth embodiment. Surface numbers 1 to 23 in Table 4 correspond to the optical surfaces m1 to m23 shown in FIG.

(表4)
[レンズデータ]
面番号 r D νd nd
1 67.912 1.500 42.73 1.834810
2 44.077 4.405 67.90 1.593190
3 -288.500 D3(可変)
*4 33.454 1.200 42.73 1.834810
5 10.199 4.749
6 -36.627 1.000 50.27 1.719990
7 36.778 0.404
8 19.164 2.419 23.80 1.846660
9 95.617 D9(可変)
10 89.310 1.766 65.44 1.603000
11 -30.641 D11(可変)
12 ∞ 2.000 (絞りS)
13 9.587 3.001 58.54 1.612720
14 -1767.044 1.000 23.80 1.846660
15 20.932 2.301
16 151.332 1.699 82.57 1.497820
17 24.318 1.805
18 16.814 3.077 69.89 1.518600
19 -24.653 1.282
*20 -12.479 1.000 35.72 1.902650
21 194.680 D21(可変)
22 41.253 2.502 23.80 1.846660
23 -90.972 Bf

[非球面データ]
第4面
κ = 1.0000
A4 = -1.31511E-05
A6 = -1.12654E-07
A8 = 7.35232E-10
A10= -2.69203E-12

第20面
κ = 1.0000
A4 = -1.69994E-04
A6 = -2.07858E-06
A8 = 6.76235E-09
A10 = -8.84176E-10

[各種データ]
f 18.500 34.061 53.500
Fno 3.568 4.700 5.851
ω 39.495 21.888 14.364
Y 14.250 14.250 14.250
TL 74.382 87.897 104.318
Bf 17.380 27.437 37.937

[可変間隔データ]
(無限遠) (撮影距離1m)
広角端 中間 望遠端 広角端 中間 望遠端
f,β 18.500 34.061 53.500 -0.0194 -0.0355 -0.0556
D0 0.000 0.000 0.000 925.6 912.1 895.7
D3 1.000 12.968 22.438 1.000 12.968 22.438
D9 14.194 5.413 1.000 14.671 6.042 1.837
D11 3.342 3.342 3.342 2.865 2.712 2.504
D21 1.346 1.617 2.481 1.346 1.617 2.481

[レンズ群データ]
群番号 群初面 群焦点距離
G1 1 112.838
G2 4 -17.024
G3 10 20.227
G4 22 33.817

[条件式対応値]
条件式(1):fw/f1 = 0.16
条件式(2):fw/f3 = 0.91
条件式(3):(−f32)/f3 = 2.89
条件式(4):|f31|/f3 = 0.92
条件式(5):|f33|/f3 = 2.97
条件式(6):ωw = 39.495
条件式(7):ft/fw = 2.89
(Table 4)
[Lens data]
Surface number r D νd nd
1 67.912 1.500 42.73 1.834810
2 44.077 4.405 67.90 1.593190
3 -288.500 D3 (variable)
* 4 33.454 1.200 42.73 1.834810
5 10.199 4.749
6 -36.627 1.000 50.27 1.719990
7 36.778 0.404
8 19.164 2.419 23.80 1.846660
9 95.617 D9 (variable)
10 89.310 1.766 65.44 1.603000
11 -30.641 D11 (variable)
12 ∞ 2.000 (Aperture S)
13 9.587 3.001 58.54 1.612720
14 -1767.044 1.000 23.80 1.846660
15 20.932 2.301
16 151.332 1.699 82.57 1.497820
17 24.318 1.805
18 16.814 3.077 69.89 1.518600
19 -24.653 1.282
* 20 -12.479 1.000 35.72 1.902650
21 194.680 D21 (variable)
22 41.253 2.502 23.80 1.846660
23 -90.972 Bf

[Aspherical data]
4th surface κ = 1.0000
A4 = -1.31511E-05
A6 = -1.12654E-07
A8 = 7.35232E-10
A10 = -2.69203E-12

20th surface κ = 1.0000
A4 = -1.69994E-04
A6 = -2.07858E-06
A8 = 6.76235E-09
A10 = -8.84176E-10

[Various data]
f 18.500 34.061 53.500
Fno 3.568 4.700 5.851
ω 39.495 21.888 14.364
Y 14.250 14.250 14.250
TL 74.382 87.897 104.318
Bf 17.380 27.437 37.937

[Variable interval data]
(Infinity) (shooting distance 1m)
Wide-angle end Medium telephoto end Wide-angle end Medium telephoto end
f, β 18.500 34.061 53.500 -0.0194 -0.0355 -0.0556
D0 0.000 0.000 0.000 925.6 912.1 895.7
D3 1.000 12.968 22.438 1.000 12.968 22.438
D9 14.194 5.413 1.000 14.671 6.042 1.837
D11 3.342 3.342 3.342 2.865 2.712 2.504
D21 1.346 1.617 2.481 1.346 1.617 2.481

[Lens group data]
Group number Group first surface Group focal length G1 1 112.838
G2 4 -17.024
G3 10 20.227
G4 22 33.817

[Conditional expression values]
Conditional expression (1): fw / f1 = 0.16
Conditional expression (2): fw / f3 = 0.91
Conditional expression (3): (−f32) /f3=2.89
Conditional expression (4): | f31 | /f3=0.92
Conditional expression (5): | f33 | /f3=2.97
Conditional expression (6): ωw = 39.495
Conditional expression (7): ft / fw = 2.89

表4から、第4実施例に係る変倍光学系ZL4は、上記条件式(1)〜(7)を満たすことが分かる。   From Table 4, it can be seen that the variable magnification optical system ZL4 according to the fourth example satisfies the conditional expressions (1) to (7).

図14は、第4実施例に係る変倍光学系ZL4の広角端状態(f=18.500)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は近距離合焦時(撮影倍率β=-0.0194)の諸収差図、(c)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図を示す。図15は、第4実施例に係る変倍光学系ZL4の中間焦点距離状態(f=34.061)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は近距離合焦時(撮影倍率β=-0.0355)の諸収差図、(c)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図を示す。図16は、第4実施例に係る変倍光学系ZL4の望遠端状態(f=53.500)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は近距離合焦時(撮影倍率β=-0.0556)の諸収差図、(c)は無限遠合焦時に像ブレ補正を行った時(補正角度θ=0.30°)のコマ収差図を示す。本実施例では、防振時の光学性能を、図14(c)、図15(c)及び図16(c)のように、像高y=0.0を中心に、上下プラスマイナスの像高10.0に対応したコマ収差図で示す。   14A and 14B are aberration diagrams in the wide-angle end state (f = 18.500) of the variable magnification optical system ZL4 according to the fourth example. FIG. 14A is a diagram illustrating various aberrations at the time of focusing on infinity, and FIG. Aberration diagrams at the time of focusing (shooting magnification β = −0.0194), (c) shows a coma aberration diagram when image blur correction is performed at the time of focusing on infinity (correction angle θ = 0.30 °). FIG. 15 is an aberration diagram in the intermediate focal length state (f = 34.061) of the variable magnification optical system ZL4 according to the fourth example. (A) Various aberration diagrams at the time of focusing on infinity, (b) is a short distance diagram. Various aberration diagrams at the time of focusing (photographing magnification β = −0.0355), and FIG. 10C shows a coma aberration diagram when image blur correction is performed at the time of focusing on infinity (correction angle θ = 0.30 °). FIG. 16 is an aberration diagram in the telephoto end state (f = 53.500) of the variable magnification optical system ZL4 according to Example 4, (a) Various aberration diagrams at the time of focusing on infinity, and (b) Aberration diagrams at the time of focusing (shooting magnification β = −0.0556), (c) shows a coma aberration diagram when image blur correction is performed at the time of focusing on infinity (correction angle θ = 0.30 °). In this embodiment, the optical performance at the time of image stabilization is shown in FIG. 14C, FIG. 15C, and FIG. A coma aberration diagram corresponding to is shown.

図14〜図16に示す各収差図から、第4実施例に係る変倍光学系ZL4は、広角端状態から望遠端状態にわたり諸収差が良好に補正され、高い結像性能を有することが分かる。また、像ブレ補正時にも高い結像性能を有することが分かる。   From FIG. 14 to FIG. 16, it can be seen that the variable magnification optical system ZL4 according to the fourth example has a high imaging performance with various aberrations corrected well from the wide-angle end state to the telephoto end state. . It can also be seen that the image forming performance is high even when image blur correction is performed.

以上の各実施例によれば、高い光学性能を有する変倍光学系が実現できる。   According to each of the above embodiments, a variable magnification optical system having high optical performance can be realized.

なお、上記の各実施例は、本実施形態に係る変倍光学系の一具体例を示しているものであり、本実施形態に係る変倍光学系はこれらに限定されるものではない。本実施形態において、下記の内容は光学性能を損なわない範囲で適宜採用可能である。   Each of the above examples shows a specific example of the variable magnification optical system according to the present embodiment, and the variable magnification optical system according to the present embodiment is not limited to these. In the present embodiment, the following contents can be appropriately adopted as long as the optical performance is not impaired.

本実施形態の数値実施例では、3群、4群構成を示したが、5群等の他の群構成にも適用可能である。例えば、最も物体側にレンズまたはレンズ群を追加した構成や、最も像側にレンズまたはレンズ群を追加した構成でも構わない。また、レンズ群とは、変倍時又は合焦時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。   In the numerical examples of the present embodiment, the three-group and four-group configurations are shown, but the present invention can also be applied to other group configurations such as five groups. For example, a configuration in which a lens or a lens group is added closest to the object side, or a configuration in which a lens or a lens group is added closest to the image side may be used. The lens group refers to a portion having at least one lens separated by an air interval that changes at the time of zooming or focusing.

本実施形態において、単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としてもよい。この合焦レンズ群は、オートフォーカスにも適用でき、オートフォーカス用の(超音波モーター等を用いた)モーター駆動にも適している。特に、第3レンズ群G3の少なくとも一部を合焦レンズ群とするのが好ましい。   In the present embodiment, a single lens group, a plurality of lens groups, or a partial lens group may be moved in the optical axis direction to be a focusing lens group that performs focusing from an object at infinity to a short distance object. This focusing lens group can be applied to autofocus, and is also suitable for driving a motor for autofocus (using an ultrasonic motor or the like). In particular, it is preferable that at least a part of the third lens group G3 is a focusing lens group.

本実施形態において、レンズ群または部分レンズ群を光軸に垂直な方向の成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手ブレによって生じる像ブレを補正する防振レンズ群としてもよい。特に、第3レンズ群G3の少なくとも一部を防振レンズ群とするのが好ましい。   In this embodiment, the lens group or the partial lens group is moved so as to have a component in a direction perpendicular to the optical axis, or rotated (swinged) in the in-plane direction including the optical axis, and is caused by camera shake. A vibration-proof lens group that corrects image blur may be used. In particular, it is preferable that at least a part of the third lens group G3 is an anti-vibration lens group.

本実施形態において、レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工及び組立調整が容易になり、加工及び組立調整の誤差による光学性能の劣化を防げるので好ましい。また、レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしてもよい。   In the present embodiment, the lens surface may be formed as a spherical surface, a flat surface, or an aspheric surface. When the lens surface is a spherical surface or a flat surface, lens processing and assembly adjustment are facilitated, and optical performance deterioration due to errors in processing and assembly adjustment can be prevented. If the lens surface is aspherical, the aspherical surface is an aspherical surface by grinding, a glass mold aspherical surface that is formed of glass with an aspherical shape, or a composite type nonspherical surface that is formed of a resin on the surface of glass. Any aspherical surface may be used. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

本実施形態において、開口絞りSは、第3レンズ群G3の中又は近傍に配置されるのが好ましいが、開口絞りとしての部材を設けずにレンズ枠でその役割を代用してもよい。   In the present embodiment, the aperture stop S is preferably disposed in or near the third lens group G3. However, the role may be substituted by a lens frame without providing a member as an aperture stop.

本実施形態において、各レンズ面には、フレアやゴーストを軽減して高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施してもよい。   In this embodiment, each lens surface may be provided with an antireflection film having a high transmittance in a wide wavelength region in order to reduce flare and ghost and achieve high optical performance with high contrast.

本実施形態の変倍光学系ZLは、変倍比が2〜7程度である。   The variable magnification optical system ZL of this embodiment has a variable magnification ratio of about 2 to 7.

ZL(ZL1〜ZL4) 変倍光学系
G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
S 開口絞り
I 像面
1 カメラ(撮像装置)
2 撮影レンズ(変倍光学系)
ZL (ZL1 to ZL4) Variable magnification optical system G1 First lens group G2 Second lens group G3 Third lens group G4 Fourth lens group S Aperture stop I Image plane 1 Camera (imaging device)
2 Shooting lens (variable magnification optical system)

Claims (17)

物体側から順に並んだ、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、
広角端状態から望遠端状態への変倍に際し、前記第1レンズ群を光軸方向に沿って物体方向に移動させ、
以下の条件式を満足することを特徴とする変倍光学系。
0.14 < fw/f1 < 0.26
0.77 < fw/f3 < 1.05
但し、
fw:広角端状態における全系の焦点距離、
f1:前記第1レンズ群の焦点距離、
f3:前記第3レンズ群の焦点距離。
A first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power, arranged in order from the object side;
When zooming from the wide-angle end state to the telephoto end state, the first lens group is moved in the object direction along the optical axis direction,
A zoom optical system characterized by satisfying the following conditional expression:
0.14 <fw / f1 <0.26
0.77 <fw / f3 <1.05
However,
fw: focal length of the entire system in the wide-angle end state,
f1: the focal length of the first lens group,
f3: focal length of the third lens group.
前記第1レンズ群と前記第2レンズ群との空気間隔と、前記第2レンズ群と前記第3レンズ群との空気間隔と、前記第3レンズ群と前記第4レンズ群との空気間隔とを変化させることにより、変倍を行うことを特徴とする請求項1に記載の変倍光学系。   An air gap between the first lens group and the second lens group, an air gap between the second lens group and the third lens group, and an air gap between the third lens group and the fourth lens group. The zoom optical system according to claim 1, wherein zooming is performed by changing. 前記第2レンズ群の少なくとも一部または前記第3レンズ群の少なくとも一部を、像ブレを補正するための防振レンズ群として、光軸と垂直方向の成分を持つように移動可能に構成することを特徴とする請求項1又は2に記載の変倍光学系。   At least a part of the second lens group or at least a part of the third lens group is configured to be movable so as to have a component perpendicular to the optical axis as an anti-vibration lens group for correcting image blur. The variable magnification optical system according to claim 1 or 2, wherein 前記第3レンズ群の少なくとも一部を光軸方向に沿って移動させることにより合焦を行うことを特徴とする請求項1〜3のいずれか一項に記載の変倍光学系。   4. The zoom optical system according to claim 1, wherein focusing is performed by moving at least a part of the third lens group along an optical axis direction. 5. 前記第3レンズ群は、物体側から順に並んだ、第31レンズ群と、第32レンズ群と、第33レンズ群とからなり、
前記第32レンズ群を、前記防振レンズ群として、光軸と垂直方向の成分を持つように移動可能に構成することを特徴とする請求項1〜4のいずれか一項に記載の変倍光学系。
The third lens group is composed of a thirty-first lens group, a thirty-second lens group, and a thirty-third lens group arranged in order from the object side.
5. The zoom lens according to claim 1, wherein the thirty-second lens group is configured to be movable as the vibration-proof lens group so as to have a component in a direction perpendicular to the optical axis. Optical system.
前記第32レンズ群は、負の屈折力を有することを特徴とする請求項5に記載の変倍光学系。   6. The variable magnification optical system according to claim 5, wherein the thirty-second lens group has a negative refractive power. 以下の条件式を満足することを特徴とする請求項5又は6に記載の変倍光学系。
2.00 < (−f32)/f3 < 6.00
但し、
f32:前記第32レンズ群の焦点距離、
f3:前記第3レンズ群の焦点距離。
The zoom lens system according to claim 5 or 6, wherein the following conditional expression is satisfied.
2.00 <(− f32) / f3 <6.00
However,
f32: focal length of the thirty-second lens group,
f3: focal length of the third lens group.
以下の条件式を満足することを特徴とする請求項5〜7のいずれか一項に記載の変倍光学系。
0.50 < |f31|/f3 < 2.00
但し、
f31:前記第31レンズ群の焦点距離、
f3:前記第3レンズ群の焦点距離。
The zoom lens system according to any one of claims 5 to 7, wherein the following conditional expression is satisfied.
0.50 <| f31 | / f3 <2.00
However,
f31: focal length of the thirty-first lens group,
f3: focal length of the third lens group.
以下の条件式を満足することを特徴とする請求項5〜8のいずれか一項に記載の変倍光学系。
1.00 < |f33|/f3
但し、
f33:前記第33レンズ群の焦点距離、
f3:前記第3レンズ群の焦点距離。
The zoom lens system according to claim 5, wherein the following conditional expression is satisfied.
1.00 <| f33 | / f3
However,
f33: focal length of the thirty-third lens group,
f3: focal length of the third lens group.
前記第32レンズ群は、単レンズから構成されることを特徴とする請求項5〜9のいずれか一項に記載の変倍光学系。   The variable power optical system according to any one of claims 5 to 9, wherein the thirty-second lens group includes a single lens. 前記第31レンズ群は、物体側から順に並んだ、正の屈折力を有する前群と、後群とからなり、
前記前群を光軸方向に沿って移動させることにより合焦を行うことを特徴とする請求項5〜10のいずれか一項に記載の変倍光学系。
The thirty-first lens group is composed of a front group having a positive refractive power and a rear group arranged in order from the object side,
The variable magnification optical system according to claim 5, wherein focusing is performed by moving the front group along an optical axis direction.
絞りを有し、
前記絞りは、変倍時に前記第3レンズ群と一体となって光軸方向に沿って移動することを特徴とする請求項1〜11のいずれか一項に記載の変倍光学系。
Having an aperture,
The variable magnification optical system according to any one of claims 1 to 11, wherein the diaphragm moves along the optical axis direction integrally with the third lens group at the time of zooming.
絞りを有し、
前記絞りは、前記第2レンズ群と像面との間に配置されていることを特徴とする請求項1〜12のいずれか一項に記載の変倍光学系。
Having an aperture,
The variable magnification optical system according to any one of claims 1 to 12, wherein the diaphragm is disposed between the second lens group and an image plane.
以下の条件式を満足することを特徴とする請求項1〜13のいずれか一項に記載の変倍光学系。
30.00° <ωw< 80.00°
但し、
ωw:広角端状態における半画角。
The zoom lens system according to any one of claims 1 to 13, wherein the following conditional expression is satisfied.
30.00 ° <ωw <80.00 °
However,
ωw: Half angle of view in the wide-angle end state.
以下の条件式を満足することを特徴とする請求項1〜14のいずれか一項に記載の変倍光学系。
2.00 <ft/fw< 15.00
但し、
ft:無限遠合焦時における望遠端状態の全系の焦点距離。
The zoom lens system according to any one of claims 1 to 14, wherein the following conditional expression is satisfied.
2.00 <ft / fw <15.00
However,
ft: The focal length of the entire system in the telephoto end state when focusing on infinity.
請求項1〜15のいずれか一項に記載の変倍光学系を備えたことを特徴とする撮像装置。   An imaging apparatus comprising the variable magnification optical system according to any one of claims 1 to 15. 物体側から順に並んだ、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する変倍光学系の製造方法であって、
広角端状態から望遠端状態への変倍に際し、前記第1レンズ群を光軸方向に沿って物体方向に移動させ、
以下の条件式を満足するように、レンズ鏡筒内に各レンズを配置することを特徴とする変倍光学系の製造方法。
0.14 < fw/f1 < 0.26
0.77 < fw/f3 < 1.05
但し、
fw:広角端状態における全系の焦点距離、
f1:前記第1レンズ群の焦点距離、
f3:前記第3レンズ群の焦点距離。
Manufacture of a variable magnification optical system having a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power, arranged in order from the object side A method,
When zooming from the wide-angle end state to the telephoto end state, the first lens group is moved in the object direction along the optical axis direction,
A variable magnification optical system manufacturing method, wherein each lens is arranged in a lens barrel so as to satisfy the following conditional expression:
0.14 <fw / f1 <0.26
0.77 <fw / f3 <1.05
However,
fw: focal length of the entire system in the wide-angle end state,
f1: the focal length of the first lens group,
f3: focal length of the third lens group.
JP2014067073A 2014-03-27 2014-03-27 Variable magnification optical unit and imaging apparatus Active JP6507479B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2014067073A JP6507479B2 (en) 2014-03-27 2014-03-27 Variable magnification optical unit and imaging apparatus
EP15770184.8A EP3125011B1 (en) 2014-03-27 2015-03-26 Variable power optical system, imaging device, and variable power optical system production method
PCT/JP2015/001718 WO2015146176A1 (en) 2014-03-27 2015-03-26 Variable power optical system, imaging device, and variable power optical system production method
CN201580016772.7A CN106133578B (en) 2014-03-27 2015-03-26 Variable-power optical system and photographic device
CN201910777692.3A CN110596873B (en) 2014-03-27 2015-03-26 Variable power optical system and imaging device
US15/256,738 US10466454B2 (en) 2014-03-27 2016-09-06 Zoom optical system, imaging device and method for manufacturing the zoom optical system
US16/599,107 US11428911B2 (en) 2014-03-27 2019-10-10 Zoom optical system, imaging device and method for manufacturing the zoom optical system
US17/879,741 US20220373774A1 (en) 2014-03-27 2022-08-02 Zoom optical system, imaging device and method for manufacturing the zoom optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014067073A JP6507479B2 (en) 2014-03-27 2014-03-27 Variable magnification optical unit and imaging apparatus

Publications (2)

Publication Number Publication Date
JP2015191057A true JP2015191057A (en) 2015-11-02
JP6507479B2 JP6507479B2 (en) 2019-05-08

Family

ID=54425607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014067073A Active JP6507479B2 (en) 2014-03-27 2014-03-27 Variable magnification optical unit and imaging apparatus

Country Status (1)

Country Link
JP (1) JP6507479B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000275526A (en) * 1999-03-25 2000-10-06 Konica Corp Zoom lens
JP2001281545A (en) * 1999-10-06 2001-10-10 Canon Inc Zoom lens and optical equipment using the same
JP2008181147A (en) * 2008-02-26 2008-08-07 Canon Inc Zoom lens
JP2009210691A (en) * 2008-03-03 2009-09-17 Canon Inc Zoom lens and imaging device having it
JP2013044815A (en) * 2011-08-22 2013-03-04 Nikon Corp Zoom lens, imaging device, and manufacturing method of zoom lens
JP2013145286A (en) * 2012-01-13 2013-07-25 Panasonic Corp Zoom lens system, imaging apparatus, and camera
JP2013182017A (en) * 2012-02-29 2013-09-12 Nikon Corp Variable power optical system, optical device, and method for manufacturing variable power optical system
JP2013210571A (en) * 2012-03-30 2013-10-10 Olympus Imaging Corp Zoom lens and imaging apparatus including the same
JP2014066946A (en) * 2012-09-27 2014-04-17 Sony Corp Zoom lens and imaging device
JP2015001539A (en) * 2013-06-13 2015-01-05 富士フイルム株式会社 Zoom lens and imaging apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000275526A (en) * 1999-03-25 2000-10-06 Konica Corp Zoom lens
JP2001281545A (en) * 1999-10-06 2001-10-10 Canon Inc Zoom lens and optical equipment using the same
JP2008181147A (en) * 2008-02-26 2008-08-07 Canon Inc Zoom lens
JP2009210691A (en) * 2008-03-03 2009-09-17 Canon Inc Zoom lens and imaging device having it
JP2013044815A (en) * 2011-08-22 2013-03-04 Nikon Corp Zoom lens, imaging device, and manufacturing method of zoom lens
JP2013145286A (en) * 2012-01-13 2013-07-25 Panasonic Corp Zoom lens system, imaging apparatus, and camera
JP2013182017A (en) * 2012-02-29 2013-09-12 Nikon Corp Variable power optical system, optical device, and method for manufacturing variable power optical system
JP2013210571A (en) * 2012-03-30 2013-10-10 Olympus Imaging Corp Zoom lens and imaging apparatus including the same
JP2014066946A (en) * 2012-09-27 2014-04-17 Sony Corp Zoom lens and imaging device
JP2015001539A (en) * 2013-06-13 2015-01-05 富士フイルム株式会社 Zoom lens and imaging apparatus

Also Published As

Publication number Publication date
JP6507479B2 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
CN108490592B (en) Zoom optical system
WO2014017025A1 (en) Zoom lens, optical instrument, and method for manufacturing zoom lens
JP2015191065A (en) Zoom lens, imaging apparatus, and method for manufacturing the zoom lens
WO2015146176A1 (en) Variable power optical system, imaging device, and variable power optical system production method
JP6354257B2 (en) Variable magnification optical system and imaging apparatus
WO2015122368A1 (en) Optical system, optical device, and method for producing optical system
JP2016156941A (en) Lens system, optical device, and method for manufacturing lens system
JP6354256B2 (en) Variable magnification optical system and imaging apparatus
WO2015079679A1 (en) Zoom lens, optical device, and production method for zoom lens
JP6337565B2 (en) Variable magnification optical system and imaging apparatus
JP6511722B2 (en) Variable power optical system and imaging apparatus
JP6620400B2 (en) Zoom lens and optical device
JP6435620B2 (en) Magnification optical system and imaging device
JP6265022B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP6191246B2 (en) Zoom lens, optical device
JP6507480B2 (en) Variable power optical system and imaging apparatus
JP6635180B2 (en) Variable power optical system and optical equipment
JP6507479B2 (en) Variable magnification optical unit and imaging apparatus
JP6528355B2 (en) Variable magnification optical unit and imaging apparatus
WO2014192288A1 (en) Zoom lens, optical device and method for manufacturing zoom lens
WO2012077276A1 (en) Zoom lens, imaging device, and method for producing zoom lens
JP2016156902A (en) Zoom lens, optical device, and method for manufacturing zoom lens
JP2015191062A (en) Zoom lens, imaging apparatus, and method for manufacturing the zoom lens
JP5267956B2 (en) Zoom lens, imaging apparatus, and zoom lens manufacturing method
JP6205850B2 (en) Zoom lens and optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171212

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181214

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20181225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190318

R150 Certificate of patent or registration of utility model

Ref document number: 6507479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250