JP6354257B2 - Variable magnification optical system and imaging apparatus - Google Patents

Variable magnification optical system and imaging apparatus Download PDF

Info

Publication number
JP6354257B2
JP6354257B2 JP2014067080A JP2014067080A JP6354257B2 JP 6354257 B2 JP6354257 B2 JP 6354257B2 JP 2014067080 A JP2014067080 A JP 2014067080A JP 2014067080 A JP2014067080 A JP 2014067080A JP 6354257 B2 JP6354257 B2 JP 6354257B2
Authority
JP
Japan
Prior art keywords
lens group
lens
optical system
conditional expression
variable magnification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014067080A
Other languages
Japanese (ja)
Other versions
JP2015191064A (en
Inventor
山本 浩史
浩史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2014067080A priority Critical patent/JP6354257B2/en
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to EP15770184.8A priority patent/EP3125011B1/en
Priority to CN201910777692.3A priority patent/CN110596873B/en
Priority to CN201580016772.7A priority patent/CN106133578B/en
Priority to PCT/JP2015/001718 priority patent/WO2015146176A1/en
Publication of JP2015191064A publication Critical patent/JP2015191064A/en
Priority to US15/256,738 priority patent/US10466454B2/en
Application granted granted Critical
Publication of JP6354257B2 publication Critical patent/JP6354257B2/en
Priority to US16/599,107 priority patent/US11428911B2/en
Priority to US17/879,741 priority patent/US20220373774A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Description

本発明は、変倍光学系及び撮像装置に関する。 The present invention relates to a variable magnification optical system and an imaging equipment.

従来、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した変倍光学系が提案されている(例えば、特許文献1参照)。   Conventionally, a variable magnification optical system suitable for a photographic camera, an electronic still camera, a video camera, and the like has been proposed (see, for example, Patent Document 1).

特開昭63−298210号公報JP-A-63-298210

近年、より良好な光学性能である変倍光学系が求められている。   In recent years, a variable magnification optical system having better optical performance has been demanded.

本発明は、このような問題に鑑みてなされたものであり、良好な光学性能を有する変倍光学系及び撮像装置を提供することを目的とする。 The present invention has been made in view of such problems, and an object thereof is to provide a variable power optical system and an imaging equipment having a good optical performance.

このような目的を達成するため、本発明に係る変倍光学系は、物体側から順に並んだ、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有し、前記第3レンズ群の少なくとも一部を、像ブレを補正するための防振レンズ群として、光軸と垂直方向の成分を持つように移動可能に構成し、以下の条件式を満足する。 In order to achieve such an object, a variable magnification optical system according to the present invention includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, arranged in order from the object side, A third lens group having a positive refractive power, and at least a part of the third lens group has a component in a direction perpendicular to the optical axis as a vibration-proof lens group for correcting image blur. It is configured to be movable and satisfies the following conditional expression.

0.60 < f3/fw < 3.50
4.76 < f1/f3 < 30.00
但し、
f1:前記第1レンズ群の焦点距離、
f3:前記第3レンズ群の焦点距離、
fw:広角端状態における全系の焦点距離。
0.60 <f3 / fw <3.50
4.76 <f1 / f3 <30.00
However,
f1: the focal length of the first lens group,
f3: focal length of the third lens group,
fw: focal length of the entire system in the wide-angle end state.

本発明に係る撮像装置は、上記いずれかの変倍光学系を備える。   An imaging apparatus according to the present invention includes any one of the above-described variable magnification optical systems.

本発明によれば、良好な光学性能を有する変倍光学系及び撮像装を提供することができる。
According to the present invention, it is possible to provide a variable power optical system and an imaging equipment having a good optical performance.

第1実施例に係る変倍光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the variable magnification optical system which concerns on 1st Example. 第1実施例に係る変倍光学系の広角端状態(f=18.50)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は無限遠合焦時に像ブレ補正を行った時(防振レンズ群のシフト量=0.2mm)のコマ収差図、(c)は近距離合焦時(撮影倍率β=-0.009)の諸収差図を示す。FIG. 4A is an aberration diagram in the wide-angle end state (f = 18.50) of the variable magnification optical system according to the first example. FIG. 5A is a diagram illustrating various aberrations at the time of focusing on infinity, and FIG. (C) is a coma aberration diagram when the zoom lens is performed (shift amount of the anti-vibration lens group = 0.2 mm), and (c) is a graph showing various aberrations when focusing at a short distance (imaging magnification β = −0.009). 第1実施例に係る変倍光学系の中間焦点距離状態(f=34.95)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は無限遠合焦時に像ブレ補正を行った時(防振レンズ群のシフト量=0.2mm)のコマ収差図、(c)は近距離合焦時(撮影倍率β=-0.018)の諸収差図を示す。FIG. 6A is an aberration diagram in the intermediate focal length state (f = 34.95) of the variable magnification optical system according to the first example. FIG. 5A is a diagram illustrating various aberrations at the time of focusing on infinity, and FIG. A coma aberration diagram when correction is performed (shift amount of the image stabilizing lens group = 0.2 mm), and (c) shows various aberration diagrams when focusing at a short distance (imaging magnification β = −0.018). 第1実施例に係る変倍光学系の望遠端状態(f=53.50)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は無限遠合焦時に像ブレ補正を行った時(防振レンズ群のシフト量=0.2mm)のコマ収差図、(c)は近距離合焦時(撮影倍率β=-0.027)の諸収差図を示す。FIG. 5A is an aberration diagram in the telephoto end state (f = 53.50) of the zoom optical system according to the first example. FIG. 5A is a diagram illustrating various aberrations at the time of focusing on infinity, and FIG. (C) is a coma aberration diagram at the time of performing the image stabilization (shift amount of the anti-vibration lens group = 0.2 mm), and FIG. 第2実施例に係る変倍光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the variable magnification optical system which concerns on 2nd Example. 第2実施例に係る変倍光学系の広角端状態(f=18.74)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は無限遠合焦時に像ブレ補正を行った時(防振レンズ群のシフト量=0.2mm)のコマ収差図、(c)は近距離合焦時(撮影倍率β=-0.010)の諸収差図を示す。FIG. 9A is an aberration diagram in the wide-angle end state (f = 18.74) of the variable magnification optical system according to the second example. FIG. 9A is a diagram illustrating various aberrations at the time of focusing on infinity, and FIG. (C) is a coma aberration diagram when the zoom lens is used (shift amount of the image stabilizing lens group = 0.2 mm), and (c) is a graph showing various aberrations when focusing at a short distance (photographing magnification β = −0.010). 第2実施例に係る変倍光学系の中間焦点距離状態(f=34.50)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は無限遠合焦時に像ブレ補正を行った時(防振レンズ群のシフト量=0.2mm)のコマ収差図、(c)は近距離合焦時(撮影倍率β=-0.018)の諸収差図を示す。FIG. 6A is an aberration diagram in the intermediate focal length state (f = 34.50) of the variable magnification optical system according to the second example. FIG. 5A is an aberration diagram at the time of focusing on infinity, and FIG. A coma aberration diagram when correction is performed (shift amount of the image stabilizing lens group = 0.2 mm), and (c) shows various aberration diagrams when focusing at a short distance (imaging magnification β = −0.018). 第2実施例に係る変倍光学系の望遠端状態(f=52.08)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は無限遠合焦時に像ブレ補正を行った時(防振レンズ群のシフト量=0.2mm)のコマ収差図、(c)は近距離合焦時(撮影倍率β=-0.026)の諸収差図を示す。FIG. 8A is an aberration diagram in the telephoto end state (f = 52.08) of the variable magnification optical system according to Example 2; (a) various aberration diagrams when focusing on infinity; and (b) is image blur correction when focusing on infinity. (C) is a coma aberration diagram when the image stabilization is performed (shift amount of the anti-vibration lens group = 0.2 mm), and (c) is an aberration diagram when focusing at a short distance (imaging magnification β = −0.026). 第3実施例に係る変倍光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the variable magnification optical system which concerns on 3rd Example. 第3実施例に係る変倍光学系の広角端状態(f=18.72)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は無限遠合焦時に像ブレ補正を行った時(防振レンズ群のシフト量=0.2mm)のコマ収差図、(c)は近距離合焦時(撮影倍率β=-0.010)の諸収差図を示す。FIG. 10 is an aberration diagram in the wide-angle end state (f = 18.72) of the variable magnification optical system according to Example 3, (a) Various aberration diagrams when focusing on infinity, and (b) Image blur correction when focusing on infinity. (C) is a coma aberration diagram when the zoom lens is used (shift amount of the image stabilizing lens group = 0.2 mm), and (c) is a graph showing various aberrations when focusing at a short distance (photographing magnification β = −0.010). 第3実施例に係る変倍光学系の中間焦点距離状態(f=35.50)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は無限遠合焦時に像ブレ補正を行った時(防振レンズ群のシフト量=0.2mm)のコマ収差図、(c)は近距離合焦時(撮影倍率β=-0.018)の諸収差図を示す。FIG. 10A is an aberration diagram in the intermediate focal length state (f = 35.50) of the variable magnification optical system according to the third example. FIG. 10A is a diagram illustrating aberrations at the time of focusing on infinity, and FIG. A coma aberration diagram when correction is performed (shift amount of the image stabilizing lens group = 0.2 mm), and (c) shows various aberration diagrams when focusing at a short distance (imaging magnification β = −0.018). 第3実施例に係る変倍光学系の望遠端状態(f=52.00)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は無限遠合焦時に像ブレ補正を行った時(防振レンズ群のシフト量=0.2mm)のコマ収差図、(c)は近距離合焦時(撮影倍率β=-0.027)の諸収差図を示す。FIG. 6A is an aberration diagram in the telephoto end state (f = 52.00) of the zoom optical system according to Example 3; FIG. 5A is a diagram illustrating various aberrations at the time of focusing on infinity, and FIG. (C) is a coma aberration diagram at the time of performing the image stabilization (shift amount of the anti-vibration lens group = 0.2 mm), and FIG. 本実施形態に係るカメラの構成を示す略断面図である。It is a schematic sectional drawing which shows the structure of the camera which concerns on this embodiment. 本実施形態に係る変倍光学系の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the variable magnification optical system which concerns on this embodiment.

以下、本実施形態について、図面を参照しながら説明する。本実施形態に係る変倍光学系ZLは、図1に示すように、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とを有する。   Hereinafter, the present embodiment will be described with reference to the drawings. As shown in FIG. 1, the variable magnification optical system ZL according to this embodiment includes a first lens group G1 having a positive refractive power and a second lens group G2 having a negative refractive power, which are arranged in order from the object side. And a third lens group G3 having a positive refractive power.

この構成により、鏡筒の小型化と、変倍時の収差変動を良好に補正することができる。   With this configuration, it is possible to satisfactorily correct aberration reduction during zooming and zooming.

また、変倍光学系ZLは、第3レンズ群G3の少なくとも一部(例えば、図1の物体側に凸面を向けた正メニスカスレンズL34)を、像ブレを補正するための防振レンズ群として、光軸と垂直方向の成分を持つように移動可能に構成している。   Further, the variable magnification optical system ZL uses at least a part of the third lens group G3 (for example, a positive meniscus lens L34 having a convex surface facing the object side in FIG. 1) as an anti-vibration lens group for correcting image blur. It is configured to be movable so as to have a component perpendicular to the optical axis.

この構成により、像ブレ補正時の像面湾曲の変動と、偏芯コマ収差の変動を同時に補正することができる。   With this configuration, it is possible to simultaneously correct fluctuations in the curvature of field during image blur correction and fluctuations in decentering coma.

上記構成のもと、変倍光学系ZLは、次の条件式(1)を満足する。   Under the above configuration, the variable magnification optical system ZL satisfies the following conditional expression (1).

0.60 < f3/fw < 3.50 …(1)
但し、
f3:第3レンズ群G3の焦点距離、
fw:広角端状態における全系の焦点距離。
0.60 <f3 / fw <3.50 (1)
However,
f3: focal length of the third lens group G3,
fw: focal length of the entire system in the wide-angle end state.

条件式(1)は、第3レンズ群G3の焦点距離f3と、広角端状態における全系の焦点距離fwとの比を規定するものである。本変倍光学系ZLは、条件式(1)を満足することにより、鏡筒の小型化と、良好な光学性能とを実現することができる。   Conditional expression (1) defines the ratio between the focal length f3 of the third lens group G3 and the focal length fw of the entire system in the wide-angle end state. The zooming optical system ZL can satisfy the conditional expression (1), thereby realizing downsizing of the lens barrel and good optical performance.

条件式(1)の上限値を上回ると、第3レンズ群G3の屈折力が弱くなり、鏡筒の小型化が困難になる。小型化するためには、第1レンズ群G1と第2レンズ群G2の屈折力を強めることになり、コマ収差、非点収差、像面湾曲の補正が困難となる。条件式(1)の下限値を下回ると、第3レンズ群G3の屈折力が強くなり、球面収差、コマ収差、非点収差の補正が困難になる。   When the upper limit of conditional expression (1) is exceeded, the refractive power of the third lens group G3 becomes weak, and it becomes difficult to reduce the size of the lens barrel. In order to reduce the size, the refractive power of the first lens group G1 and the second lens group G2 is increased, and it becomes difficult to correct coma, astigmatism, and field curvature. If the lower limit of conditional expression (1) is not reached, the refractive power of the third lens group G3 becomes strong, and it becomes difficult to correct spherical aberration, coma aberration, and astigmatism.

条件式(1)の下限値を0.75に設定することにより、より良好な収差補正が可能になる。条件式(1)の下限値を0.85に設定することにより、さらに良好な収差補正が可能になる。   By setting the lower limit of conditional expression (1) to 0.75, better aberration correction can be performed. By setting the lower limit value of conditional expression (1) to 0.85, even better aberration correction can be achieved.

条件式(1)の上限値を2.00に設定することにより、より良好な収差補正が可能になる。条件式(1)の上限値を1.50に設定することにより、さらに良好な収差補正が可能になる。   By setting the upper limit of conditional expression (1) to 2.00, better aberration correction becomes possible. By setting the upper limit value of the conditional expression (1) to 1.50, it becomes possible to correct aberrations even better.

本実施形態に係る変倍光学系ZLは、第1レンズ群G1と第2レンズ群G2との空気間隔と、第2レンズ群G2と第3レンズ群G3との空気間隔とを変化させることにより変倍を行うことが好ましい。   The variable magnification optical system ZL according to the present embodiment changes the air gap between the first lens group G1 and the second lens group G2 and the air gap between the second lens group G2 and the third lens group G3. It is preferable to perform zooming.

この構成により、変倍時に発生する球面収差と像面湾曲を良好に補正することができる。   With this configuration, it is possible to satisfactorily correct spherical aberration and field curvature that occur during zooming.

本実施形態に係る変倍光学系ZLは、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第2レンズ群G2との空気間隔を拡大し、第2レンズ群G2と第3レンズ群G3との間隔を縮小することが好ましい。   The zoom optical system ZL according to the present embodiment enlarges the air gap between the first lens group G1 and the second lens group G2 during zooming from the wide-angle end state to the telephoto end state, and the second lens group G2. It is preferable to reduce the distance from the third lens group G3.

この構成により、変倍時に発生する球面収差と像面湾曲を良好に補正することができる。   With this configuration, it is possible to satisfactorily correct spherical aberration and field curvature that occur during zooming.

本実施形態に係る変倍光学系ZLは、次の条件式(2)を満足することが好ましい。   The zoom optical system ZL according to the present embodiment preferably satisfies the following conditional expression (2).

4.70 < f1/f3 < 30.00 …(2)
但し、
f1:第1レンズ群G1の焦点距離。
4.70 <f1 / f3 <30.00 (2)
However,
f1: Focal length of the first lens group G1.

条件式(2)は、第1レンズ群G1の焦点距離f1と、第3レンズ群G3の焦点距離f3との比を規定するものである。本変倍光学系ZLは、条件式(2)を満足することにより、鏡筒の小型化と、所定の変倍比を実現することができる。   Conditional expression (2) defines the ratio between the focal length f1 of the first lens group G1 and the focal length f3 of the third lens group G3. The zooming optical system ZL can satisfy the conditional expression (2), thereby realizing downsizing of the lens barrel and a predetermined zooming ratio.

条件式(2)の上限値を上回ると、第3レンズ群G3の屈折力が強くなり、望遠端状態における球面収差、コマ収差の補正が困難になる。条件式(2)の下限値を下回ると、第1レンズ群G1の屈折力が強くなり、望遠端状態におけるコマ収差、非点収差、像面湾曲の補正が困難となる。   If the upper limit value of conditional expression (2) is exceeded, the refractive power of the third lens group G3 becomes strong, and it becomes difficult to correct spherical aberration and coma aberration in the telephoto end state. If the lower limit of conditional expression (2) is not reached, the refractive power of the first lens group G1 becomes strong, and it becomes difficult to correct coma, astigmatism, and field curvature in the telephoto end state.

条件式(2)の下限値を4.76に設定することにより、より良好な収差補正が可能になる。   By setting the lower limit of conditional expression (2) to 4.76, better aberration correction becomes possible.

条件式(2)の上限値を10.00に設定することにより、より良好な収差補正が可能になる。   By setting the upper limit of conditional expression (2) to 10.00, better aberration correction becomes possible.

本実施形態に係る変倍光学系ZLは、次の条件式(3)を満足することが好ましい。   The zoom optical system ZL according to the present embodiment preferably satisfies the following conditional expression (3).

0.60 < (−f2)/f3 < 1.05 …(3)
但し、
f2:第2レンズ群G2の焦点距離。
0.60 <(− f2) / f3 <1.05 (3)
However,
f2: focal length of the second lens group G2.

条件式(3)は、第3レンズ群G3の焦点距離f3と、第2レンズ群G2の焦点距離f2との比を規定するものである。本変倍光学系ZLは、条件式(3)を満足することにより、良好な光学性能と、所定の変倍比を実現することができる。   Conditional expression (3) defines the ratio between the focal length f3 of the third lens group G3 and the focal length f2 of the second lens group G2. The zooming optical system ZL can achieve good optical performance and a predetermined zooming ratio by satisfying conditional expression (3).

条件式(3)の上限値を上回ると、第3レンズ群G3の屈折力が強くなり、望遠端状態における球面収差、コマ収差の補正が困難になる。条件式(3)の下限値を下回ると、第2レンズ群G2の屈折力が強くなり、広角端状態におけるコマ収差、非点収差の補正が困難となる。   If the upper limit of conditional expression (3) is exceeded, the refractive power of the third lens group G3 becomes strong, and it becomes difficult to correct spherical aberration and coma aberration in the telephoto end state. If the lower limit of conditional expression (3) is not reached, the refractive power of the second lens group G2 becomes strong, and it becomes difficult to correct coma and astigmatism in the wide-angle end state.

条件式(3)の下限値を0.70に設定することにより、より良好な収差補正が可能になる。   By setting the lower limit of conditional expression (3) to 0.70, better aberration correction can be performed.

条件式(3)の上限値を1.00に設定することにより、より良好な収差補正が可能になる。   By setting the upper limit of conditional expression (3) to 1.00, better aberration correction becomes possible.

本実施形態に係る変倍光学系ZLは、次の条件式(4)を満足することが好ましい。   The variable magnification optical system ZL according to the present embodiment preferably satisfies the following conditional expression (4).

5.20 < f1/(−f2) < 30.00 …(4)
但し、
f1:第1レンズ群G1の焦点距離、
f2:第2レンズ群G2の焦点距離。
5.20 <f1 / (− f2) <30.00 (4)
However,
f1: Focal length of the first lens group G1
f2: focal length of the second lens group G2.

条件式(4)は、第1レンズ群G1の焦点距離f1と、第2レンズ群G2の焦点距離f2との比を規定するものである。本変倍光学系ZLは、条件式(4)を満足することにより、良好な光学性能と、所定の変倍比を実現することができる。   Conditional expression (4) defines the ratio between the focal length f1 of the first lens group G1 and the focal length f2 of the second lens group G2. The zooming optical system ZL can achieve good optical performance and a predetermined zooming ratio by satisfying conditional expression (4).

条件式(4)の上限値を上回ると、第2レンズ群G2の屈折力が強くなり、広角端状態におけるコマ収差、非点収差の補正が困難になる。条件式(4)の下限値を下回ると、第1レンズ群G1の屈折力が強くなり、望遠端状態におけるコマ収差、非点収差、像面湾曲の補正が困難となる。   If the upper limit of conditional expression (4) is exceeded, the refractive power of the second lens group G2 will become strong, and it will be difficult to correct coma and astigmatism in the wide-angle end state. If the lower limit of conditional expression (4) is not reached, the refractive power of the first lens group G1 becomes strong, and it becomes difficult to correct coma, astigmatism, and field curvature in the telephoto end state.

条件式(4)の下限値を5.30に設定することにより、より良好な収差補正が可能になる。   By setting the lower limit of conditional expression (4) to 5.30, better aberration correction becomes possible.

条件式(4)の上限値を10.00に設定することにより、より良好な収差補正が可能になる。   By setting the upper limit of conditional expression (4) to 10.00, better aberration correction becomes possible.

本実施形態に係る変倍光学系ZLにおいて、第3レンズ群G3の少なくとも一部(例えば、図1の両凸レンズL31)を、光軸方向に沿って移動させることにより合焦を行うことが好ましい。   In the zoom optical system ZL according to the present embodiment, it is preferable to perform focusing by moving at least a part of the third lens group G3 (for example, the biconvex lens L31 in FIG. 1) along the optical axis direction. .

この構成により、鏡筒の小型化と、合焦時の収差変動(例えば、球面収差、像面湾曲など)を良好に補正することができる。   With this configuration, it is possible to satisfactorily correct the downsizing of the lens barrel and aberration fluctuations during focusing (for example, spherical aberration, curvature of field, etc.).

本実施形態に係る変倍光学系ZLにおいて、第1レンズ群G1は、1つの接合レンズからなることが好ましい。   In the zoom optical system ZL according to this embodiment, it is preferable that the first lens group G1 includes one cemented lens.

この構成により、鏡筒を小型化しつつ、望遠端状態における倍率色収差を良好に補正することができる。   With this configuration, it is possible to satisfactorily correct lateral chromatic aberration in the telephoto end state while reducing the size of the lens barrel.

本実施形態に係る変倍光学系ZLにおいて、第2レンズ群G2は、2枚の負レンズと、1枚の正レンズとからなることが好ましい。   In the variable magnification optical system ZL according to the present embodiment, it is preferable that the second lens group G2 includes two negative lenses and one positive lens.

この構成により、広角端状態におけるコマ収差、像面湾曲を良好に補正することができる。   With this configuration, coma aberration and field curvature in the wide-angle end state can be corrected well.

本実施形態に係る変倍光学系ZLにおいて、第2レンズ群G2は、物体側から順に並んだ、負レンズと、負レンズと、正レンズとからなることが好ましい。   In the zoom optical system ZL according to the present embodiment, it is preferable that the second lens group G2 includes a negative lens, a negative lens, and a positive lens arranged in order from the object side.

この構成により、広角端状態におけるコマ収差、像面湾曲を良好に補正することができる。   With this configuration, coma aberration and field curvature in the wide-angle end state can be corrected well.

本実施形態に係る変倍光学系ZLにおいて、第3レンズ群G3は、6枚以上のレンズからなることが好ましい。   In the zoom optical system ZL according to this embodiment, it is preferable that the third lens group G3 includes six or more lenses.

この構成により、球面収差、コマ収差を良好に補正することができる。   With this configuration, spherical aberration and coma can be favorably corrected.

本実施形態に係る変倍光学系ZLは、次の条件式(5)を満足することが好ましい。   The variable magnification optical system ZL according to the present embodiment preferably satisfies the following conditional expression (5).

30.00° <ωw< 80.00° …(5)
但し、
ωw:広角端状態における半画角。
30.00 ° <ωw <80.00 ° (5)
However,
ωw: Half angle of view in the wide angle end state.

条件式(5)は、広角端状態における画角の値を規定する条件である。この条件式(5)を満足することにより、広い画角を有しつつ、コマ収差、歪曲収差、像面湾曲を良好に補正することができる。   Conditional expression (5) is a condition that defines the value of the angle of view in the wide-angle end state. By satisfying this conditional expression (5), coma aberration, distortion aberration, and field curvature can be favorably corrected while having a wide angle of view.

条件式(5)の下限値を33.00°に設定することにより、より良好な収差補正が可能になる。条件式(5)の下限値を36.00°に設定することにより、さらに良好な収差補正が可能になる。   By setting the lower limit of conditional expression (5) to 33.00 °, better aberration correction can be performed. By setting the lower limit value of conditional expression (5) to 36.00 °, it becomes possible to perform better aberration correction.

条件式(5)の上限値を77.00°に設定することにより、より良好な収差補正が可能になる。   By setting the upper limit of conditional expression (5) to 77.00 °, better aberration correction can be performed.

本実施形態に係る変倍光学系ZLは、次の条件式(6)を満足することが好ましい。   The zoom optical system ZL according to the present embodiment preferably satisfies the following conditional expression (6).

2.00 <ft/fw< 15.00 …(6)
但し、
ft:望遠端状態の全系の焦点距離。
2.00 <ft / fw <15.00 (6)
However,
ft: focal length of the entire system in the telephoto end state.

条件式(6)は、望遠端状態の全系の焦点距離と広角端状態の全系の焦点距離との比を規定する条件である。本変倍光学系ZLは、条件式(6)を満足することにより、高いズーム比を得ることができるとともに、球面収差、コマ収差を良好に補正することができる。   Conditional expression (6) is a condition that defines the ratio between the focal length of the entire system in the telephoto end state and the focal length of the entire system in the wide-angle end state. The present variable magnification optical system ZL can obtain a high zoom ratio by satisfying conditional expression (6), and can satisfactorily correct spherical aberration and coma.

条件式(6)の下限値を2.30に設定することにより、より良好な収差補正が可能になる。条件式(6)の下限値を2.50に設定することにより、さらに良好な収差補正が可能になる。条件式(6)の下限値を2.70に設定することにより、本実施形態の効果を最大限に発揮できる。   By setting the lower limit of conditional expression (6) to 2.30, better aberration correction becomes possible. By setting the lower limit value of conditional expression (6) to 2.50, better aberration correction can be achieved. By setting the lower limit of conditional expression (6) to 2.70, the effect of the present embodiment can be maximized.

条件式(6)の上限値を10.00に設定することにより、より良好な収差補正が可能になる。条件式(6)の上限値を7.00に設定することにより、さらに良好な収差補正が可能になる。   By setting the upper limit of conditional expression (6) to 10.00, better aberration correction becomes possible. By setting the upper limit value of conditional expression (6) to 7.00, even better aberration correction can be achieved.

以上のような本実施形態によれば、良好な光学性能を有する変倍光学系ZLを実現することができる。   According to the present embodiment as described above, a variable magnification optical system ZL having good optical performance can be realized.

次に、図13を参照しながら、上述の変倍光学系ZLを備えたカメラ(撮像装置)1について説明する。カメラ1は、図13に示すように、撮影レンズ2として上述の変倍光学系ZLを備えたレンズ交換式のカメラ(所謂ミラーレスカメラ)である。   Next, a camera (imaging device) 1 including the above-described variable magnification optical system ZL will be described with reference to FIG. As shown in FIG. 13, the camera 1 is an interchangeable lens camera (so-called mirrorless camera) provided with the above-described variable magnification optical system ZL as the photographing lens 2.

カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光され、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部3の撮像面上に被写体像を形成する。そして、撮像部3に設けられた光電変換素子によって被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられたEVF(Electronic view finder:電子ビューファインダ)4に表示される。これにより、撮影者はEVF4を介して被写体を観察することができる。   In the camera 1, light from an object (subject) (not shown) is collected by the photographing lens 2, and the subject is placed on the imaging surface of the imaging unit 3 via an OLPF (Optical low pass filter) not shown. Form an image. Then, the subject image is photoelectrically converted by the photoelectric conversion element provided in the imaging unit 3 to generate an image of the subject. This image is displayed on an EVF (Electronic view finder) 4 provided in the camera 1. Thus, the photographer can observe the subject via the EVF 4.

また、撮影者によって不図示のレリーズボタンが押されると、撮像部3で生成された被写体の画像が不図示のメモリに記憶される。このようにして、撮影者は、本カメラ1による被写体の撮影を行うことができる。   When the release button (not shown) is pressed by the photographer, the subject image generated by the imaging unit 3 is stored in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.

カメラ1に撮影レンズ2として搭載した本実施形態に係る変倍光学系ZLは、後述の各実施例からも分かるように、その特徴的なレンズ構成によって、良好な光学性能を有している。したがって、本カメラ1によれば、良好な光学性能を有する撮像装置を実現することができる。   The variable magnification optical system ZL according to this embodiment mounted on the camera 1 as the photographing lens 2 has good optical performance due to its characteristic lens configuration, as can be seen from each example described later. Therefore, according to the present camera 1, it is possible to realize an imaging device having good optical performance.

なお、クイックリターンミラーを有し、ファインダ光学系によって被写体を観察する一眼レフタイプのカメラに、上述の変倍光学系ZLを搭載した場合でも、上記カメラ1と同様の効果を奏することができる。また、ビデオカメラに、上述の変倍光学系ZLを搭載した場合でも、上記カメラ1と同様の効果を奏することができる。   Even when the above-described variable magnification optical system ZL is mounted on a single-lens reflex camera that has a quick return mirror and observes a subject with a finder optical system, the same effect as the camera 1 can be obtained. Further, even when the above-described variable magnification optical system ZL is mounted on a video camera, the same effects as the camera 1 can be obtained.

続いて、図14を参照しながら、上記構成の変倍光学系ZLの製造方法について概説する。まず、レンズ鏡筒内に、物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とを有するように、各レンズを配置する(ステップST10)。このとき、第3レンズ群G3の少なくとも一部を、像ブレを補正するための防振レンズ群として、光軸と垂直方向の成分を持つように移動可能に構成する(ステップST20)。次の条件式(1)を満足するように、レンズ鏡筒内に各レンズを配置する(ステップST30)。   Next, an outline of a method for manufacturing the variable magnification optical system ZL having the above configuration will be described with reference to FIG. First, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power, which are arranged in order from the object side in the lens barrel. Each lens is arranged so as to have the group G3 (step ST10). At this time, at least a part of the third lens group G3 is configured as a vibration-proof lens group for correcting image blur so as to be movable so as to have a component perpendicular to the optical axis (step ST20). Each lens is arranged in the lens barrel so as to satisfy the following conditional expression (1) (step ST30).

0.60 < f3/fw < 3.50 …(1)
但し、
f3:第3レンズ群G3の焦点距離、
fw:広角端状態における全系の焦点距離。
0.60 <f3 / fw <3.50 (1)
However,
f3: focal length of the third lens group G3,
fw: focal length of the entire system in the wide-angle end state.

本実施形態におけるレンズ配置の一例を挙げると、図1に示すように、第1レンズ群G1として、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合正レンズを配置する。第2レンズ群G2として、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹レンズL22と、物体側に凸面を向けた正メニスカスレンズL23とを配置する。第3レンズ群G3として、物体側から順に、両凸レンズL31と、両凸レンズL32と両凹レンズL33との接合正レンズと、物体側に凸面を向けた正メニスカスレンズL34と、両凸レンズL35と、像側に凸面を向けた負メニスカスレンズL36とを配置する。また、条件式(1)を満足するように、各レンズを配置する(条件式(1)の対応値は、1.14)。   As an example of the lens arrangement in the present embodiment, as shown in FIG. 1, as the first lens group G1, in order from the object side, a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12 are joined positively. Place the lens. As the second lens group G2, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave lens L22, and a positive meniscus lens L23 having a convex surface directed toward the object side are disposed in order from the object side. As the third lens group G3, in order from the object side, a biconvex lens L31, a cemented positive lens composed of a biconvex lens L32 and a biconcave lens L33, a positive meniscus lens L34 having a convex surface facing the object side, a biconvex lens L35, and an image. A negative meniscus lens L36 having a convex surface on the side is disposed. Further, each lens is arranged so as to satisfy the conditional expression (1) (the corresponding value of the conditional expression (1) is 1.14).

以上のような本実施形態に係る変倍光学系の製造方法によれば、良好な光学性能を有する変倍光学系ZLを得ることができる。   According to the method for manufacturing a variable magnification optical system according to the present embodiment as described above, a variable magnification optical system ZL having good optical performance can be obtained.

以下、本実施形態に係る各実施例について、図面に基づいて説明する。以下に、表1〜表3を示すが、これらは第1実施例〜第3実施例における各諸元の表である。   Hereinafter, each example according to the present embodiment will be described with reference to the drawings. Tables 1 to 3 are shown below, but these are tables of specifications in the first to third examples.

図1、図5及び図9は、各実施例に係る変倍光学系ZL(ZL1〜ZL3)の構成を示す断面図である。これら変倍光学系ZL1〜ZL3の断面図では、広角端状態(W)から望遠端状態(T)に変倍する際の各レンズ群G1〜G3の光軸に沿った移動軌跡を矢印で示す。   1, FIG. 5 and FIG. 9 are cross-sectional views showing a configuration of a variable magnification optical system ZL (ZL1 to ZL3) according to each example. In the cross-sectional views of the zoom optical systems ZL1 to ZL3, the movement trajectory along the optical axis of each lens group G1 to G3 when zooming from the wide-angle end state (W) to the telephoto end state (T) is indicated by an arrow. .

第1実施例に係る図1に対する各参照符号は、参照符号の桁数の増大による説明の煩雑化を避けるため、実施例ごとに独立して用いている。ゆえに、他の実施例に係る図面と共通の参照符号を付していても、それらは他の実施例とは必ずしも共通の構成ではない。   Each reference code for FIG. 1 according to the first embodiment is used independently for each embodiment in order to avoid complication of explanation due to an increase in the number of digits of the reference code. Therefore, even if the same reference numerals as those in the drawings according to the other embodiments are given, they are not necessarily in the same configuration as the other embodiments.

各実施例では収差特性の算出対象として、d線(波長587.5620nm)、g線(波長435.8350nm)を選んでいる。   In each embodiment, d-line (wavelength 587.5620 nm) and g-line (wavelength 435.8350 nm) are selected as the calculation targets of the aberration characteristics.

表中の[レンズデータ]において、面番号は光線の進行する方向に沿った物体側からの光学面の順序、rは各光学面の曲率半径、Dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔、νdは光学部材の材質のd線を基準とするアッベ数、ndは光学部材の材質のd線に対する屈折率を示す。(可変)は可変の面間隔、曲率半径の「∞」は平面又は開口、(絞りS)は開口絞りSを示す。空気の屈折率(d線)「1.00000」は省略する。光学面が非球面である場合には、面番号の左側に「*」を付し、曲率半径Rの欄には近軸曲率半径を示す。   In [Lens data] in the table, the surface number is the order of the optical surfaces from the object side along the traveling direction of the light beam, r is the radius of curvature of each optical surface, D is the next optical surface (or The distance between the surfaces on the optical axis to the image plane), νd is the Abbe number based on the d-line of the material of the optical member, and nd is the refractive index of the material of the optical member with respect to the d-line. (Variable) indicates a variable surface interval, “∞” of the radius of curvature indicates a plane or an aperture, and (aperture S) indicates an aperture aperture S. The refractive index of air (d-line) “1.00000” is omitted. When the optical surface is an aspherical surface, “*” is attached to the left side of the surface number, and the paraxial radius of curvature is indicated in the column of the radius of curvature R.

表中の[非球面データ]では、[レンズデータ]に示した非球面について、その形状を次式(a)で示す。ここで、yは光軸に垂直な方向の高さ、X(y)は高さyにおける光軸方向の変位量(サグ量)、rは基準球面の曲率半径(近軸曲率半径)、κは円錐定数、Anは第n次の非球面係数を示す。なお、「E-n」は「×10-n」を示し、例えば「1.234E-05」は「1.234×10-5」を示す。 In [Aspherical data] in the table, the shape of the aspherical surface shown in [Lens data] is shown by the following equation (a). Here, y is the height in the direction perpendicular to the optical axis, X (y) is the amount of displacement (sag amount) in the optical axis direction at height y, r is the radius of curvature of the reference sphere (paraxial radius of curvature), κ Denotes a conic constant, and An denotes an nth-order aspheric coefficient. Incidentally, "E-n" denotes "× 10 -n", for example "1.234E-05" denotes "1.234 × 10 -5".

X(y)=(y2/r)/[1+{1−κ(y2/r2)}1/2]+A4×y4+A6×y6+A8×y8+A10×y10 …(a) X (y) = (y 2 / r) / [1+ {1−κ (y 2 / r 2 )} 1/2 ] + A 4 × y 4 + A 6 × y 6 + A 8 × y 8 + A 10 × y 10 (a)

表中の[各種データ]において、fはレンズ全系の焦点距離、FnoはFナンバー、ωは半画角(単位:°)、Yは像高、TLはレンズ系の全長(光軸上でのレンズ最前面から像面Iまでの距離)、Bfはバックフォーカス(光軸上でのレンズ最終面から像面Iまでの距離)を示す。   In [Various data] in the table, f is the focal length of the entire lens system, Fno is the F number, ω is the half angle of view (unit: °), Y is the image height, TL is the total length of the lens system (on the optical axis) Bf represents the back focus (distance from the last lens surface to the image plane I on the optical axis).

表中の[可変間隔データ]において、無限遠物体及び近距離物体(撮影距離R=2.0m)への合焦時の広角端状態、中間焦点距離状態及び望遠端状態における全系の焦点距離f又は撮影倍率βと、各可変間隔の値を示す。なお、D0は物体面から第1面までの距離、Di(但し、iは整数)は第i面と第(i+1)面の可変間隔、Bfはバックフォーカスを示す。   In [Variable interval data] in the table, the focal length of the entire system in the wide-angle end state, the intermediate focal length state, and the telephoto end state at the time of focusing on an object at infinity and a short distance object (shooting distance R = 2.0 m) f or photographing magnification β and the value of each variable interval are shown. D0 is the distance from the object surface to the first surface, Di (where i is an integer) is the variable distance between the i-th surface and the (i + 1) -th surface, and Bf is the back focus.

表中の[レンズ群データ]において、群初面に各群の始面番号(最も物体側の面番号)、群焦点距離に各群の焦点距離を示す。   In [Lens Group Data] in the table, the first surface of each group shows the start surface number (most surface number on the object side) of each group, and the focal length of each group shows the group focal length.

表中の[条件式対応値]において、上記の条件式(1)〜(6)に対応する値を示す。   In [Values for Conditional Expressions] in the table, values corresponding to the conditional expressions (1) to (6) are shown.

以下、全ての諸元値において、掲載されている焦点距離f、曲率半径r、面間隔D、その他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、単位は「mm」に限定されることなく、他の適当な単位を用いることが可能である。   Hereinafter, in all the specification values, “mm” is generally used for the focal length f, the radius of curvature r, the surface interval D, and other lengths, etc. unless otherwise specified, but the optical system is proportionally enlarged. Alternatively, the same optical performance can be obtained even by proportional reduction, and the present invention is not limited to this. Further, the unit is not limited to “mm”, and other appropriate units can be used.

ここまでの表の説明は全ての実施例において共通であり、以下での説明を省略する。   The description of the table so far is common to all the embodiments, and the description below is omitted.

(第1実施例)
第1実施例について、図1〜図4及び表1を用いて説明する。第1実施例に係る変倍光学系ZL(ZL1)は、図1に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する持つ第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成される。
(First embodiment)
A first embodiment will be described with reference to FIGS. As shown in FIG. 1, the variable magnification optical system ZL (ZL1) according to the first example includes a first lens group G1 having a positive refractive power arranged in order from the object side along the optical axis, and a negative lens group G1. It is composed of a second lens group G2 having a refractive power and a third lens group G3 having a positive refractive power.

第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合正レンズからなる。   The first lens group G1 is composed of a cemented positive lens composed of a negative meniscus lens L11 and a biconvex lens L12 arranged in order from the object side and having a convex surface directed toward the object side.

第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹レンズL22と、物体側に凸面を向けた正メニスカスレンズL23とからなる。負メニスカスレンズL21の物体側面は、非球面である。   The second lens group G2 includes a negative meniscus lens L21 having a convex surface facing the object side, a biconcave lens L22, and a positive meniscus lens L23 having a convex surface facing the object side, which are arranged in order from the object side. The object side surface of the negative meniscus lens L21 is aspheric.

第3レンズ群G3は、物体側から順に並んだ、両凸レンズL31と、両凸レンズL32と両凹レンズL33との接合正レンズと、物体側に凸面を向けた正メニスカスレンズL34と、両凸レンズL35と、像側に凸面を向けた負メニスカスレンズL36とからなる。   The third lens group G3 includes, in order from the object side, a biconvex lens L31, a cemented positive lens of the biconvex lens L32 and the biconcave lens L33, a positive meniscus lens L34 having a convex surface facing the object side, and a biconvex lens L35. And a negative meniscus lens L36 having a convex surface facing the image side.

Fナンバーを決定する開口絞りSは、第3レンズ群G3中に設けられている。   An aperture stop S that determines the F number is provided in the third lens group G3.

像面Iは、不図示の撮像素子上に形成され、該撮像素子はCCDやCMOS等から構成される。   The image plane I is formed on an image sensor (not shown), and the image sensor is composed of a CCD, a CMOS, or the like.

第1実施例に係る変倍光学系ZL1は、第1レンズ群G1と第2レンズ群G2との空気間隔と、第2レンズ群G2と第3レンズ群G3との空気間隔とを変化させることにより、広角端状態から望遠端状態への変倍を行う。このとき、像面Iに対して、第1レンズ群G1〜第3レンズ群G3は物体側へ移動する。開口絞りSは、変倍に際して、第3レンズ群G3と一体となって、物体側へ移動する。   The variable magnification optical system ZL1 according to the first example changes the air gap between the first lens group G1 and the second lens group G2 and the air gap between the second lens group G2 and the third lens group G3. Thus, zooming from the wide-angle end state to the telephoto end state is performed. At this time, the first lens group G1 to the third lens group G3 move toward the object side with respect to the image plane I. The aperture stop S moves to the object side together with the third lens group G3 during zooming.

詳細には、第1実施例に係る変倍光学系ZL1は、第1レンズ群G1と第2レンズ群G2との空気間隔が増大し、第2レンズ群G2と第3レンズ群G3との空気間隔が縮小するように、各レンズ群G1〜G3を光軸に沿って移動させることにより、広角端状態から望遠端状態までの変倍を行う。   Specifically, in the zoom optical system ZL1 according to the first example, the air distance between the first lens group G1 and the second lens group G2 is increased, and the air between the second lens group G2 and the third lens group G3 is increased. Zooming from the wide-angle end state to the telephoto end state is performed by moving the lens groups G1 to G3 along the optical axis so that the interval is reduced.

第1実施例に係る変倍光学系ZL1は、第3レンズ群G3の両凸レンズL31を光軸方向に沿って移動させることにより合焦を行う構成であり、図1の矢印に示すように、無限遠物体に合焦した状態から近距離物体へ合焦する状態に変化させたときに、両凸レンズL31は物体側から像側へ移動する。   The variable magnification optical system ZL1 according to the first example is configured to perform focusing by moving the biconvex lens L31 of the third lens group G3 along the optical axis direction. As shown by the arrows in FIG. When the state of focusing on an object at infinity is changed to the state of focusing on an object at a short distance, the biconvex lens L31 moves from the object side to the image side.

像ブレ発生時には、防振レンズ群として、第3レンズ群G3の物体側に凸面を向けた正メニスカスレンズL34を光軸と垂直方向の成分を持つように移動させることにより、像面I上の像ブレ補正(防振)を行う。   When image blurring occurs, a positive meniscus lens L34 having a convex surface facing the object side of the third lens group G3 is moved as an anti-vibration lens group so as to have a component in a direction perpendicular to the optical axis. Perform image blur correction (anti-vibration).

下記の表1に、第1実施例における各諸元の値を示す。表1における面番号1〜21が、図1に示すm1〜m21の各光学面に対応している。   Table 1 below shows the values of each item in the first example. Surface numbers 1 to 21 in Table 1 correspond to the optical surfaces m1 to m21 shown in FIG.

(表1)
[レンズデータ]
面番号 r D νd nd
1 73.1346 1.6000 23.80 1.84666
2 47.7461 4.4680 55.52 1.69680
3 -2795.9453 D3(可変)
*4 86.1349 1.3000 46.60 1.80400
5 11.7958 6.0000
6 -86.9238 1.0000 46.60 1.80400
7 38.6168 0.1000
8 20.8772 3.0000 23.80 1.84666
9 111.9344 D9(可変)
10 32.7034 2.2000 55.35 1.67790
11 -64.0118 D11(可変)
12 ∞ 0.5000 (絞りS)
13 9.7190 3.1000 61.22 1.58913
14 -45.7099 1.1044 29.37 1.95000
15 14.5899 5.0000
16 30.0000 1.5000 31.27 1.90366
17 200.0000 3.0000
18 296.9316 2.1000 50.27 1.71999
19 -22.1475 1.6841
20 -9.9417 1.1000 46.60 1.80400
21 -24.7454 Bf(可変)

[非球面データ]
第4面
κ = 1.0000
A4 = -1.68932E-06
A6 = 3.45601E-09
A8 = 3.25066E-11
A10= -1.38349E-13

[各種データ]
f 18.50 〜 53.50
Fno 3.62 〜 5.91
ω 39.30 〜 14.42
Y 14.25 〜 14.25
TL 80.892 〜 108.569
Bf 18.519 〜 37.340

[可変間隔データ]
(無限遠) (撮影距離2m)
広角端 中間 望遠端 広角端 中間 望遠端
f,β 18.503 34.953 53.500 -0.009 -0.018 -0.027
D0 0.000 0.000 0.000 1918.427 1909.008 1890.749
D3 1.000 9.986 25.233 1.000 9.986 25.233
D9 17.878 6.525 2.500 18.261 6.878 3.013
D11 4.739 4.739 4.739 4.356 4.387 4.226
Bf 18.519 30.304 37.340 18.519 30.304 37.340

[レンズ群データ]
群番号 群初面 群焦点距離
G1 1 114.802
G2 4 -18.462
G3 10 21.087

[条件式対応値]
条件式(1):f3/fw = 1.14
条件式(2):f1/f3 = 5.44
条件式(3):f2/(−f3) = 0.88
条件式(4):f1/(−f2) = 6.22
条件式(5):ωw = 39.30
条件式(6):ft/fw = 2.89
(Table 1)
[Lens data]
Surface number r D νd nd
1 73.1346 1.6000 23.80 1.84666
2 47.7461 4.4680 55.52 1.69680
3 -2795.9453 D3 (variable)
* 4 86.1349 1.3000 46.60 1.80400
5 11.7958 6.0000
6 -86.9238 1.0000 46.60 1.80400
7 38.6168 0.1000
8 20.8772 3.0000 23.80 1.84666
9 111.9344 D9 (variable)
10 32.7034 2.2000 55.35 1.67790
11 -64.0118 D11 (variable)
12 ∞ 0.5000 (Aperture S)
13 9.7190 3.1000 61.22 1.58913
14 -45.7099 1.1044 29.37 1.95000
15 14.5899 5.0000
16 30.0000 1.5000 31.27 1.90366
17 200.0000 3.0000
18 296.9316 2.1000 50.27 1.71999
19 -22.1475 1.6841
20 -9.9417 1.1000 46.60 1.80400
21 -24.7454 Bf (variable)

[Aspherical data]
4th surface κ = 1.0000
A4 = -1.68932E-06
A6 = 3.45601E-09
A8 = 3.25066E-11
A10 = -1.38349E-13

[Various data]
f 18.50-53.50
Fno 3.62 to 5.91
ω 39.30 〜 14.42
Y 14.25-14.25
TL 80.892 to 108.569
Bf 18.519-37.340

[Variable interval data]
(Infinity) (shooting distance 2m)
Wide-angle end Medium telephoto end Wide-angle end Medium telephoto end
f, β 18.503 34.953 53.500 -0.009 -0.018 -0.027
D0 0.000 0.000 0.000 1918.427 1909.008 1890.749
D3 1.000 9.986 25.233 1.000 9.986 25.233
D9 17.878 6.525 2.500 18.261 6.878 3.013
D11 4.739 4.739 4.739 4.356 4.387 4.226
Bf 18.519 30.304 37.340 18.519 30.304 37.340

[Lens group data]
Group number Group first surface Group focal length G1 1 114.802
G2 4 -18.462
G3 10 21.087

[Conditional expression values]
Conditional expression (1): f3 / fw = 1.14
Conditional expression (2): f1 / f3 = 5.44
Conditional expression (3): f2 / (− f3) = 0.88
Conditional expression (4): f1 / (− f2) = 6.22
Conditional expression (5): ωw = 39.30
Conditional expression (6): ft / fw = 2.89

表1から、第1実施例に係る変倍光学系ZL1は、上記条件式(1)〜(6)を満たすことが分かる。   From Table 1, it is understood that the variable magnification optical system ZL1 according to the first example satisfies the conditional expressions (1) to (6).

図2は、第1実施例に係る変倍光学系ZL1の広角端状態(f=18.50)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は無限遠合焦時に像ブレ補正を行った時(防振レンズ群のシフト量=0.2mm)のコマ収差図、(c)は近距離合焦時(撮影倍率β=-0.009)の諸収差図を示す。図3は、第1実施例に係る変倍光学系ZL1の中間焦点距離状態(f=34.95)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は無限遠合焦時に像ブレ補正を行った時(防振レンズ群のシフト量=0.2mm)のコマ収差図、(c)は近距離合焦時(撮影倍率β=-0.018)の諸収差図を示す。図4は、第1実施例に係る変倍光学系ZL1の望遠端状態(f=53.50)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は無限遠合焦時に像ブレ補正を行った時(防振レンズ群のシフト量=0.2mm)のコマ収差図、(c)は近距離合焦時(撮影倍率β=-0.027)の諸収差図を示す。本実施例では、防振時の光学性能を、図2(b)、図3(b)及び図4(b)のように、像高y=0.0を中心に、上下プラスマイナスの像高10.0に対応したコマ収差図で示す。   2A and 2B are aberration diagrams in the wide-angle end state (f = 18.50) of the variable magnification optical system ZL1 according to the first example. FIG. 2A is a diagram illustrating various aberrations at the time of focusing on infinity, and FIG. A coma aberration diagram when the image blur correction is performed at the time of focusing (shift amount of the anti-vibration lens group = 0.2 mm), and (c) shows various aberration diagrams at the time of focusing at a short distance (imaging magnification β = −0.009). FIG. 3 is an aberration diagram in the intermediate focal length state (f = 34.95) of the variable magnification optical system ZL1 according to the first example, (a) various aberration diagrams at the time of focusing on infinity, and (b) at infinity. Coma aberration diagram when image blur correction is performed at the time of focus (shift amount of anti-vibration lens group = 0.2 mm), (c) shows various aberration diagrams at the time of focusing at close distance (shooting magnification β = -0.018). . 4A and 4B are aberration diagrams in the telephoto end state (f = 53.50) of the variable magnification optical system ZL1 according to the first example. FIG. 4A is a diagram illustrating various aberrations at the time of focusing on infinity, and FIG. A coma aberration diagram when image blur correction is performed at the time of focus (shift amount of the anti-vibration lens group = 0.2 mm), and (c) shows various aberration diagrams when focusing at a short distance (photographing magnification β = −0.027). In this embodiment, the optical performance at the time of image stabilization is shown in FIG. 2 (b), FIG. 3 (b) and FIG. 4 (b). A coma aberration diagram corresponding to is shown.

各収差図において、FNOはFナンバー、Yは像高、dはd線における収差、gはg線における収差を示す。d、gの記載のないものは、d線における収差を示す。球面収差図において、最大口径に対応するFナンバーの値を示し、非点収差図及び歪曲収差図では像高の最大値を示す。非点収差図において、実線はサジタル像面、破線はメリジオナル像面を示す。コマ収差図において、実線はメリジオナルコマ、破線はサジタルコマを示す。以上の収差図の説明は、他の実施例においても同様とし、その説明を省略する。   In each aberration diagram, FNO is the F number, Y is the image height, d is the aberration at the d-line, and g is the aberration at the g-line. Those without d and g indicate aberration at the d-line. In the spherical aberration diagram, the F-number value corresponding to the maximum aperture is shown, and in the astigmatism diagram and the distortion diagram, the maximum image height is shown. In the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane. In the coma aberration diagram, a solid line indicates a meridional coma, and a broken line indicates a sagittal coma. The explanation of the above aberration diagrams is the same in the other examples, and the explanation is omitted.

図2〜図4に示す各収差図から、第1実施例に係る変倍光学系ZL1は、広角端状態から望遠端状態にわたり諸収差が良好に補正され、高い結像性能を有することが分かる。また、像ブレ補正時にも高い結像性能を有することが分かる。   2 to 4, it can be seen that the variable magnification optical system ZL1 according to the first example has excellent imaging performance with various aberrations corrected well from the wide-angle end state to the telephoto end state. . It can also be seen that the image forming performance is high even when image blur correction is performed.

(第2実施例)
第2実施例について、図5〜図8及び表2を用いて説明する。第2実施例に係る変倍光学系ZL(ZL2)は、図5に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する持つ第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成される。
(Second embodiment)
A second embodiment will be described with reference to FIGS. As shown in FIG. 5, the variable magnification optical system ZL (ZL2) according to the second example includes a first lens group G1 having a positive refractive power and arranged in order from the object side along the optical axis. It is composed of a second lens group G2 having a refractive power and a third lens group G3 having a positive refractive power.

第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合正レンズからなる。   The first lens group G1 is composed of a cemented positive lens that is arranged in order from the object side and includes a negative meniscus lens L11 having a convex surface facing the object side and a positive meniscus lens L12 having a convex surface facing the object side.

第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹レンズL22と、物体側に凸面を向けた正メニスカスレンズL23とからなる。負メニスカスレンズL21の物体側面は、非球面である。   The second lens group G2 includes a negative meniscus lens L21 having a convex surface facing the object side, a biconcave lens L22, and a positive meniscus lens L23 having a convex surface facing the object side, which are arranged in order from the object side. The object side surface of the negative meniscus lens L21 is aspheric.

第3レンズ群G3は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL31と、両凸レンズL32と負メニスカスレンズL33との接合正レンズと、物体側に凸面を向けた負メニスカスレンズL34と、両凸レンズL35と、像側に凸面を向けた負メニスカスレンズL36とからなる。負メニスカスレンズL36の像側面は、非球面である。   The third lens group G3 includes a positive meniscus lens L31 having a convex surface directed toward the object side, a cemented positive lens formed by a biconvex lens L32 and a negative meniscus lens L33, and a negative lens having a convex surface directed toward the object side. It comprises a meniscus lens L34, a biconvex lens L35, and a negative meniscus lens L36 having a convex surface facing the image side. The image side surface of the negative meniscus lens L36 is aspheric.

Fナンバーを決定する開口絞りSは、第3レンズ群G3中に設けられている。   An aperture stop S that determines the F number is provided in the third lens group G3.

像面Iは、不図示の撮像素子上に形成され、該撮像素子はCCDやCMOS等から構成される。   The image plane I is formed on an image sensor (not shown), and the image sensor is composed of a CCD, a CMOS, or the like.

第2実施例に係る変倍光学系ZL2は、第1レンズ群G1と第2レンズ群G2との空気間隔と、第2レンズ群G2と第3レンズ群G3との空気間隔とを変化させることにより、広角端状態から望遠端状態への変倍を行う。このとき、像面Iに対して、第1レンズ群G1〜第3レンズ群G3は物体側へ移動する。開口絞りSは、変倍に際して、第3レンズ群G3と一体となって、物体側へ移動する。   The variable magnification optical system ZL2 according to the second example changes the air gap between the first lens group G1 and the second lens group G2 and the air gap between the second lens group G2 and the third lens group G3. Thus, zooming from the wide-angle end state to the telephoto end state is performed. At this time, the first lens group G1 to the third lens group G3 move toward the object side with respect to the image plane I. The aperture stop S moves to the object side together with the third lens group G3 during zooming.

詳細には、第2実施例に係る変倍光学系ZL2は、第1レンズ群G1と第2レンズ群G2との空気間隔が増大し、第2レンズ群G2と第3レンズ群G3との空気間隔が縮小するように、各レンズ群G1〜G3を光軸に沿って移動させることにより、広角端状態から望遠端状態までの変倍を行う。   Specifically, in the zoom optical system ZL2 according to the second example, the air gap between the first lens group G1 and the second lens group G2 is increased, and the air between the second lens group G2 and the third lens group G3 is increased. Zooming from the wide-angle end state to the telephoto end state is performed by moving the lens groups G1 to G3 along the optical axis so that the interval is reduced.

第2実施例に係る変倍光学系ZL2は、第3レンズ群G3の物体側に凸面を向けた正メニスカスレンズL31を光軸方向に沿って移動させることにより合焦を行う構成であり、図5の矢印に示すように、無限遠物体に合焦した状態から近距離物体へ合焦する状態に変化させたときに、正メニスカスレンズL31は物体側から像側へ移動する。   The variable magnification optical system ZL2 according to the second example is configured to perform focusing by moving a positive meniscus lens L31 having a convex surface toward the object side of the third lens group G3 along the optical axis direction. As indicated by the arrow 5, the positive meniscus lens L <b> 31 moves from the object side to the image side when the state is changed from focusing on an object at infinity to focusing on a near object.

像ブレ発生時には、防振レンズ群として、第3レンズ群G3の物体側に凸面を向けた負正メニスカスレンズL34を光軸と垂直方向の成分を持つように移動させることにより、像面I上の像ブレ補正(防振)を行う。   When an image blur occurs, the negative positive meniscus lens L34 having a convex surface facing the object side of the third lens group G3 is moved as an anti-vibration lens group so as to have a component perpendicular to the optical axis. Image blur correction (anti-vibration).

下記の表2に、第2実施例における各諸元の値を示す。表2における面番号1〜21が、図5に示すm1〜m21の各光学面に対応している。   Table 2 below shows the values of each item in the second embodiment. Surface numbers 1 to 21 in Table 2 correspond to the optical surfaces m1 to m21 shown in FIG.

(表2)
[レンズデータ]
面番号 r D νd nd
1 53.5681 1.6000 23.80 1.84666
2 37.0346 5.7211 55.52 1.69680
3 353.3821 D3(可変)
*4 45.0000 1.2492 46.60 1.80400
5 12.0000 4.6255
6 -419.8499 1.0000 46.60 1.80400
7 16.0327 2.2223
8 17.7685 3.0523 23.80 1.84666
9 54.0639 D9(可変)
10 30.8461 2.0203 55.52 1.69680
11 1697.1702 D11(可変)
12 ∞ 0.5000 (絞りS)
13 15.5855 3.7128 63.88 1.51680
14 -13.3636 1.0121 27.57 1.75520
15 -31.5468 4.5348
16 52.8796 1.0000 29.37 1.95000
17 26.1372 4.8969
18 23.6866 2.7133 46.97 1.54072
19 -63.5925 1.9047
20 -10.9032 1.5000 46.60 1.80400
*21 -19.7349 Bf(可変)

[非球面データ]
第4面
κ = 1.0000
A4 = -5.26610E-06
A6 = -3.69410E-08
A8 = 1.17750E-10
A10= -9.98120E-14

第21面
κ = 1.0000
A4 = 2.90520E-05
A6 = -1.19970E-08
A8 = -6.98280E-10
A10= 0.00000E+00

[各種データ]
f 18.74 〜 52.08
Fno 3.77 〜 5.71
ω 39.16 〜 14.81
Y 14.25 〜 14.25
TL 79.523 〜 109.107
Bf 18.021 〜 35.053

[可変間隔データ]
(無限遠) (撮影距離2m)
広角端 中間 望遠端 広角端 中間 望遠端
f,β 18.741 34.496 52.082 -0.010 -0.018 -0.026
D0 0.000 0.000 0.000 1919.796 1906.950 1890.212
D3 1.546 11.351 25.190 1.546 11.351 25.190
D9 13.592 5.482 2.500 13.794 5.765 2.958
D11 3.099 3.099 3.099 2.897 2.816 2.641
Bf 18.021 29.172 35.053 18.021 29.172 35.053

[レンズ群データ]
群番号 群初面 群焦点距離
G1 1 100.52307
G2 4 -15.10823
G3 10 19.34026

[条件式対応値]
条件式(1):f3/fw = 1.03
条件式(2):f1/f3 = 5.20
条件式(3):f2/(−f3) = 0.78
条件式(4):f1/(−f2) = 6.65
条件式(5):ωw = 39.16
条件式(6):ft/fw = 2.78
(Table 2)
[Lens data]
Surface number r D νd nd
1 53.5681 1.6000 23.80 1.84666
2 37.0346 5.7211 55.52 1.69680
3 353.3821 D3 (variable)
* 4 45.0000 1.2492 46.60 1.80400
5 12.0000 4.6255
6 -419.8499 1.0000 46.60 1.80400
7 16.0327 2.2223
8 17.7685 3.0523 23.80 1.84666
9 54.0639 D9 (variable)
10 30.8461 2.0203 55.52 1.69680
11 1697.1702 D11 (variable)
12 ∞ 0.5000 (Aperture S)
13 15.5855 3.7128 63.88 1.51680
14 -13.3636 1.0121 27.57 1.75520
15 -31.5468 4.5348
16 52.8796 1.0000 29.37 1.95000
17 26.1372 4.8969
18 23.6866 2.7133 46.97 1.54072
19 -63.5925 1.9047
20 -10.9032 1.5000 46.60 1.80400
* 21 -19.7349 Bf (variable)

[Aspherical data]
4th surface κ = 1.0000
A4 = -5.26610E-06
A6 = -3.69410E-08
A8 = 1.17750E-10
A10 = -9.98120E-14

21st surface κ = 1.0000
A4 = 2.90520E-05
A6 = -1.19970E-08
A8 = -6.98280E-10
A10 = 0.00000E + 00

[Various data]
f 18.74 to 52.08
Fno 3.77 to 5.71
ω 39.16-14.81
Y 14.25-14.25
TL 79.523-109.107
Bf 18.021 〜 35.053

[Variable interval data]
(Infinity) (shooting distance 2m)
Wide-angle end Medium telephoto end Wide-angle end Medium telephoto end
f, β 18.741 34.496 52.082 -0.010 -0.018 -0.026
D0 0.000 0.000 0.000 1919.796 1906.950 1890.212
D3 1.546 11.351 25.190 1.546 11.351 25.190
D9 13.592 5.482 2.500 13.794 5.765 2.958
D11 3.099 3.099 3.099 2.897 2.816 2.641
Bf 18.021 29.172 35.053 18.021 29.172 35.053

[Lens group data]
Group number Group first surface Group focal length G1 1 100.52307
G2 4 -15.10823
G3 10 19.34026

[Conditional expression values]
Conditional expression (1): f3 / fw = 1.03
Conditional expression (2): f1 / f3 = 5.20
Conditional expression (3): f2 / (− f3) = 0.78
Conditional expression (4): f1 / (− f2) = 6.65
Conditional expression (5): ωw = 39.16
Conditional expression (6): ft / fw = 2.78

表2から、第2実施例に係る変倍光学系ZL2は、上記条件式(1)〜(6)を満たすことが分かる。   From Table 2, it can be seen that the variable magnification optical system ZL2 according to the second example satisfies the conditional expressions (1) to (6).

図6は、第2実施例に係る変倍光学系ZL2の広角端状態(f=18.74)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は無限遠合焦時に像ブレ補正を行った時(防振レンズ群のシフト量=0.2mm)のコマ収差図、(c)は近距離合焦時(撮影倍率β=-0.010)の諸収差図を示す。図7は、第2実施例に係る変倍光学系ZL2の中間焦点距離状態(f=34.50)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は無限遠合焦時に像ブレ補正を行った時(防振レンズ群のシフト量=0.2mm)のコマ収差図、(c)は近距離合焦時(撮影倍率β=-0.018)の諸収差図を示す。図8は、第2実施例に係る変倍光学系ZL2の望遠端状態(f=52.08)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は無限遠合焦時に像ブレ補正を行った時(防振レンズ群のシフト量=0.2mm)のコマ収差図、(c)は近距離合焦時(撮影倍率β=-0.026)の諸収差図を示す。   6A and 6B are aberration diagrams in the wide-angle end state (f = 18.74) of the variable magnification optical system ZL2 according to the second example. FIG. 6A is a diagram illustrating various aberrations at the time of focusing on infinity, and FIG. A coma aberration diagram when the image blur correction is performed at the time of focusing (shift amount of the anti-vibration lens group = 0.2 mm), and (c) shows various aberration diagrams at the time of focusing at a short distance (imaging magnification β = −0.010). FIG. 7 is an aberration diagram in the intermediate focal length state (f = 34.50) of the variable magnification optical system ZL2 according to the second example, (a) various aberration diagrams at the time of focusing on infinity, and (b) at infinity. Coma aberration diagram when image blur correction is performed at the time of focus (shift amount of anti-vibration lens group = 0.2 mm), (c) shows various aberration diagrams at the time of focusing at close distance (shooting magnification β = -0.018). . 8A and 8B are aberration diagrams in the telephoto end state (f = 52.08) of the variable magnification optical system ZL2 according to the second example. FIG. 8A is a diagram illustrating various aberrations at the time of focusing on infinity, and FIG. A coma aberration diagram when image blur correction is performed during focusing (shift amount of the image stabilizing lens group = 0.2 mm), and (c) shows various aberration diagrams when focusing at a short distance (imaging magnification β = −0.026).

図6〜図8に示す各収差図から、第2実施例に係る変倍光学系ZL2は、広角端状態から望遠端状態にわたり諸収差が良好に補正され、高い結像性能を有することが分かる。また、像ブレ補正時にも高い結像性能を有することが分かる。   6 to 8 show that the variable magnification optical system ZL2 according to the second example has excellent imaging performance with various aberrations corrected well from the wide-angle end state to the telephoto end state. . It can also be seen that the image forming performance is high even when image blur correction is performed.

(第3実施例)
第3実施例について、図9〜図12及び表3を用いて説明する。第3実施例に係る変倍光学系ZL(ZL3)は、図9に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する持つ第2レンズ群G2と、正の屈折力を有する第3レンズ群G3とから構成される。
(Third embodiment)
A third embodiment will be described with reference to FIGS. 9 to 12 and Table 3. FIG. As shown in FIG. 9, the variable magnification optical system ZL (ZL3) according to the third example includes a first lens group G1 having positive refractive power arranged in order from the object side along the optical axis, and a negative lens group G1. It is composed of a second lens group G2 having a refractive power and a third lens group G3 having a positive refractive power.

第1レンズ群G1は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合正レンズからなる。   The first lens group G1 is composed of a cemented positive lens composed of a negative meniscus lens L11 and a biconvex lens L12 arranged in order from the object side and having a convex surface directed toward the object side.

第2レンズ群G2は、物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL21と、両凹レンズL22と、物体側に凸面を向けた正メニスカスレンズL23とからなる。負メニスカスレンズL21の物体側面は、非球面である。   The second lens group G2 includes a negative meniscus lens L21 having a convex surface facing the object side, a biconcave lens L22, and a positive meniscus lens L23 having a convex surface facing the object side, which are arranged in order from the object side. The object side surface of the negative meniscus lens L21 is aspheric.

第3レンズ群G3は、物体側から順に並んだ、像側に凸面を向けた正メニスカスレンズL31と、両凸レンズL32と像側に凸面を向けた負メニスカスレンズL33との接合正レンズと、両凸レンズL34と、両凹レンズL35とからなる。負メニスカスレンズL34の像側面は、非球面である。   The third lens group G3 includes a positive meniscus lens L31 having a convex surface facing the image side, a cemented positive lens composed of a biconvex lens L32 and a negative meniscus lens L33 having a convex surface facing the image side, It consists of a convex lens L34 and a biconcave lens L35. The image side surface of the negative meniscus lens L34 is aspheric.

Fナンバーを決定する開口絞りSは、第3レンズ群G3中に設けられている。   An aperture stop S that determines the F number is provided in the third lens group G3.

像面Iは、不図示の撮像素子上に形成され、該撮像素子はCCDやCMOS等から構成される。   The image plane I is formed on an image sensor (not shown), and the image sensor is composed of a CCD, a CMOS, or the like.

第3実施例に係る変倍光学系ZL3は、第1レンズ群G1と第2レンズ群G2との空気間隔と、第2レンズ群G2と第3レンズ群G3との空気間隔とを変化させることにより、広角端状態から望遠端状態への変倍を行う。このとき、像面Iに対して、第1レンズ群G1〜第3レンズ群G3は物体側へ移動する。開口絞りSは、変倍に際して、第3レンズ群G3と一体となって、物体側へ移動する。   The variable magnification optical system ZL3 according to the third example changes the air gap between the first lens group G1 and the second lens group G2 and the air gap between the second lens group G2 and the third lens group G3. Thus, zooming from the wide-angle end state to the telephoto end state is performed. At this time, the first lens group G1 to the third lens group G3 move toward the object side with respect to the image plane I. The aperture stop S moves to the object side together with the third lens group G3 during zooming.

詳細には、第3実施例に係る変倍光学系ZL3は、第1レンズ群G1と第2レンズ群G2との空気間隔が増大し、第2レンズ群G2と第3レンズ群G3との空気間隔が縮小するように、各レンズ群G1〜G3を光軸に沿って移動させることにより、広角端状態から望遠端状態までの変倍を行う。   Specifically, in the zoom optical system ZL3 according to the third example, the air gap between the first lens group G1 and the second lens group G2 is increased, and the air between the second lens group G2 and the third lens group G3 is increased. Zooming from the wide-angle end state to the telephoto end state is performed by moving the lens groups G1 to G3 along the optical axis so that the interval is reduced.

第3実施例に係る変倍光学系ZL3は、第3レンズ群G3の両凸レンズL34を光軸方向に沿って移動させることにより合焦を行う構成であり、図9の矢印に示すように、無限遠物体に合焦した状態から近距離物体へ合焦する状態に変化させたときに、両凸レンズL34は物体側から像側へ移動する。   The variable magnification optical system ZL3 according to the third example is configured to perform focusing by moving the biconvex lens L34 of the third lens group G3 along the optical axis direction. As shown by the arrows in FIG. The biconvex lens L34 moves from the object side to the image side when changing from a state focused on an object at infinity to a state focused on a short distance object.

像ブレ発生時には、防振レンズ群として、第3レンズ群G3の像側に凸面を向けた正メニスカスレンズL31を光軸と垂直方向の成分を持つように移動させることにより、像面I上の像ブレ補正(防振)を行う。   When image blurring occurs, a positive meniscus lens L31 having a convex surface facing the image side of the third lens group G3 is moved as an anti-vibration lens group so as to have a component perpendicular to the optical axis. Perform image blur correction (anti-vibration).

下記の表3に、第3実施例における各諸元の値を示す。表3における面番号1〜19が、図9に示すm1〜m19の各光学面に対応している。   Table 3 below shows values of various specifications in the third example. Surface numbers 1 to 19 in Table 3 correspond to the optical surfaces m1 to m19 shown in FIG.

(表3)
[レンズデータ]
面番号 r D νd nd
1 53.2376 1.6000 23.80 1.84666
2 38.1514 6.3571 63.34 1.61800
3 -369.5355 D3(可変)
*4 37.0679 1.2789 52.34 1.75500
5 11.0000 5.1524
6 -55.1564 1.0000 46.60 1.80400
7 24.6508 0.5019
8 17.1923 3.0456 23.80 1.84666
9 55.8429 D9(可変)
10 -147.8871 1.8235 59.42 1.58313
11 -38.8546 0.9660
12 ∞ 0.4673 (絞りS)
13 13.2618 3.3759 65.44 1.60300
14 -18.1264 1.0943 29.37 1.95000
15 -141.8073 D15(可変)
16 32.4435 1.9144 49.62 1.77250
*17 -28.4962 D17(可変)
18 -19.1230 1.1000 46.59 1.81600
19 55.1349 Bf(可変)

[非球面データ]
第4面
κ = 1.0000
A4 = -2.53250E-05
A6 = -1.03610E-07
A8 = 7.17390E-10
A10= -2.12490E-12

第17面
κ = 1.0000
A4 = 7.38500E-05
A6 = 4.27730E-07
A8 = 0.00000E+00
A10= 0.00000E+00

[各種データ]
f 18.72 〜 52.00
Fno 3.60 〜 5.57
ω 39.22 〜 14.29
Y 14.25 〜 14.25
TL 74.332 〜 95.718
Bf 18.038 〜 32.068

[可変間隔データ]
(無限遠) (撮影距離2m)
広角端 中間 望遠端 広角端 中間 望遠端
f,β 18.724 35.500 52.000 -0.010 -0.018 -0.027
D0 0.000 0.000 0.000 1924.987 1912.247 1903.600
D3 1.000 14.288 20.264 1.000 14.288 20.264
D9 13.907 5.856 2.000 13.907 5.856 2.000
D15 8.710 8.710 8.710 8.661 8.597 8.533
D17 3.000 3.000 3.000 3.049 3.112 3.177
Bf 18.038 25.541 32.068 18.038 25.541 32.068

[レンズ群データ]
群番号 群初面 群焦点距離
G1 1 86.38416
G2 4 -15.99559
G3 10 17.86718

[条件式対応値]
条件式(1):f3/fw = 0.95
条件式(2):f1/f3 = 4.83
条件式(3):f2/(−f3) = 0.90
条件式(4):f1/(−f2) = 5.40
条件式(5):ωw = 39.22
条件式(6):ft/fw = 2.78
(Table 3)
[Lens data]
Surface number r D νd nd
1 53.2376 1.6000 23.80 1.84666
2 38.1514 6.3571 63.34 1.61800
3 -369.5355 D3 (variable)
* 4 37.0679 1.2789 52.34 1.75500
5 11.0000 5.1524
6 -55.1564 1.0000 46.60 1.80400
7 24.6508 0.5019
8 17.1923 3.0456 23.80 1.84666
9 55.8429 D9 (variable)
10 -147.8871 1.8235 59.42 1.58313
11 -38.8546 0.9660
12 ∞ 0.4673 (Aperture S)
13 13.2618 3.3759 65.44 1.60300
14 -18.1264 1.0943 29.37 1.95000
15 -141.8073 D15 (variable)
16 32.4435 1.9144 49.62 1.77250
* 17 -28.4962 D17 (variable)
18 -19.1230 1.1000 46.59 1.81600
19 55.1349 Bf (variable)

[Aspherical data]
4th surface κ = 1.0000
A4 = -2.53250E-05
A6 = -1.03610E-07
A8 = 7.17390E-10
A10 = -2.12490E-12

17th surface κ = 1.0000
A4 = 7.38500E-05
A6 = 4.27730E-07
A8 = 0.00000E + 00
A10 = 0.00000E + 00

[Various data]
f 18.72 to 52.00
Fno 3.60 to 5.57
ω 39.22 〜 14.29
Y 14.25-14.25
TL 74.332-95.718
Bf 18.038 to 32.068

[Variable interval data]
(Infinity) (shooting distance 2m)
Wide-angle end Medium telephoto end Wide-angle end Medium telephoto end
f, β 18.724 35.500 52.000 -0.010 -0.018 -0.027
D0 0.000 0.000 0.000 1924.987 1912.247 1903.600
D3 1.000 14.288 20.264 1.000 14.288 20.264
D9 13.907 5.856 2.000 13.907 5.856 2.000
D15 8.710 8.710 8.710 8.661 8.597 8.533
D17 3.000 3.000 3.000 3.049 3.112 3.177
Bf 18.038 25.541 32.068 18.038 25.541 32.068

[Lens group data]
Group number Group first surface Group focal length G1 1 86.38416
G2 4 -15.99559
G3 10 17.86718

[Conditional expression values]
Conditional expression (1): f3 / fw = 0.95
Conditional expression (2): f1 / f3 = 4.83
Conditional expression (3): f2 / (− f3) = 0.90
Conditional expression (4): f1 / (− f2) = 5.40
Conditional expression (5): ωw = 39.22
Conditional expression (6): ft / fw = 2.78

表3から、第3実施例に係る変倍光学系ZL3は、上記条件式(1)〜(6)を満たすことが分かる。   From Table 3, it can be seen that the variable magnification optical system ZL3 according to the third example satisfies the conditional expressions (1) to (6).

図10は、第3実施例に係る変倍光学系ZL3の広角端状態(f=18.72)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は無限遠合焦時に像ブレ補正を行った時(防振レンズ群のシフト量=0.2mm)のコマ収差図、(c)は近距離合焦時(撮影倍率β=-0.010)の諸収差図を示す。図11は、第3実施例に係る変倍光学系ZL3の中間焦点距離状態(f=35.50)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は無限遠合焦時に像ブレ補正を行った時(防振レンズ群のシフト量=0.2mm)のコマ収差図、(c)は近距離合焦時(撮影倍率β=-0.018)の諸収差図を示す。図12は、第3実施例に係る変倍光学系ZL3の望遠端状態(f=52.00)における収差図であり、(a)無限遠合焦時の諸収差図、(b)は無限遠合焦時に像ブレ補正を行った時(防振レンズ群のシフト量=0.2mm)のコマ収差図、(c)は近距離合焦時(撮影倍率β=-0.027)の諸収差図を示す。   FIG. 10 is an aberration diagram in the wide-angle end state (f = 18.72) of the variable magnification optical system ZL3 according to Example 3, (a) Various aberration diagrams at the time of focusing on infinity, and (b) of FIG. A coma aberration diagram when the image blur correction is performed at the time of focusing (shift amount of the anti-vibration lens group = 0.2 mm), and (c) shows various aberration diagrams at the time of focusing at a short distance (imaging magnification β = −0.010). 11A and 11B are aberration diagrams in the intermediate focal length state (f = 35.50) of the variable magnification optical system ZL3 according to the third example. FIG. 11A is a diagram illustrating various aberrations at the time of focusing on infinity, and FIG. Coma aberration diagram when image blur correction is performed at the time of focus (shift amount of anti-vibration lens group = 0.2 mm), (c) shows various aberration diagrams at the time of focusing at close distance (shooting magnification β = -0.018). . 12A and 12B are aberration diagrams in the telephoto end state (f = 52.00) of the variable magnification optical system ZL3 according to the third example. FIG. 12A is a diagram illustrating various aberrations at the time of focusing on infinity, and FIG. A coma aberration diagram when image blur correction is performed at the time of focus (shift amount of the anti-vibration lens group = 0.2 mm), and (c) shows various aberration diagrams when focusing at a short distance (photographing magnification β = −0.027).

図10〜図12に示す各収差図から、第3実施例に係る変倍光学系ZL3は、広角端状態から望遠端状態にわたり諸収差が良好に補正され、高い結像性能を有することが分かる。また、像ブレ補正時にも高い結像性能を有することが分かる。   10 to 12, it is understood that the variable magnification optical system ZL3 according to the third example has excellent imaging performance with various aberrations corrected well from the wide-angle end state to the telephoto end state. . It can also be seen that the image forming performance is high even when image blur correction is performed.

以上の各実施例によれば、良好な光学性能を有する変倍光学系が実現できる。   According to each of the embodiments described above, a variable magnification optical system having good optical performance can be realized.

なお、上記の各実施例は、本実施形態に係る変倍光学系の一具体例を示しているものであり、本実施形態に係る変倍光学系はこれらに限定されるものではない。本実施形態において、下記の内容は光学性能を損なわない範囲で適宜採用可能である。   Each of the above examples shows a specific example of the variable magnification optical system according to the present embodiment, and the variable magnification optical system according to the present embodiment is not limited to these. In the present embodiment, the following contents can be appropriately adopted as long as the optical performance is not impaired.

本実施形態の数値実施例では、3群構成を示したが、4群等の他の群構成にも適用可能である。例えば、最も物体側にレンズまたはレンズ群を追加した構成や、最も像側にレンズまたはレンズ群を追加した構成でも構わない。また、レンズ群とは、変倍時又は合焦時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。   In the numerical examples of the present embodiment, a three-group configuration is shown, but the present invention can also be applied to other group configurations such as a four-group configuration. For example, a configuration in which a lens or a lens group is added closest to the object side, or a configuration in which a lens or a lens group is added closest to the image side may be used. The lens group refers to a portion having at least one lens separated by an air interval that changes at the time of zooming or focusing.

本実施形態において、単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としてもよい。この合焦レンズ群は、オートフォーカスにも適用でき、オートフォーカス用の(超音波モーター等を用いた)モーター駆動にも適している。特に、第3レンズ群G3の少なくとも一部を合焦レンズ群とするのが好ましい。   In the present embodiment, a single lens group, a plurality of lens groups, or a partial lens group may be moved in the optical axis direction to be a focusing lens group that performs focusing from an object at infinity to a short distance object. This focusing lens group can be applied to autofocus, and is also suitable for driving a motor for autofocus (using an ultrasonic motor or the like). In particular, it is preferable that at least a part of the third lens group G3 is a focusing lens group.

本実施形態において、レンズ群または部分レンズ群を光軸に垂直な方向の成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手ブレによって生じる像ブレを補正する防振レンズ群としてもよい。特に、第3レンズ群G3の少なくとも一部を防振レンズ群とするのが好ましい。   In this embodiment, the lens group or the partial lens group is moved so as to have a component in a direction perpendicular to the optical axis, or rotated (swinged) in the in-plane direction including the optical axis, and is caused by camera shake. A vibration-proof lens group that corrects image blur may be used. In particular, it is preferable that at least a part of the third lens group G3 is an anti-vibration lens group.

本実施形態において、レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工及び組立調整が容易になり、加工及び組立調整の誤差による光学性能の劣化を防げるので好ましい。また、レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしてもよい。   In the present embodiment, the lens surface may be formed as a spherical surface, a flat surface, or an aspheric surface. When the lens surface is a spherical surface or a flat surface, lens processing and assembly adjustment are facilitated, and optical performance deterioration due to errors in processing and assembly adjustment can be prevented. If the lens surface is aspherical, the aspherical surface is an aspherical surface by grinding, a glass mold aspherical surface that is formed of glass with an aspherical shape, or a composite type nonspherical surface that is formed of a resin on the surface of glass. Any aspherical surface may be used. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

本実施形態において、開口絞りSは、第3レンズ群G3の中又は近傍に配置されるのが好ましいが、開口絞りとしての部材を設けずにレンズ枠でその役割を代用してもよい。   In the present embodiment, the aperture stop S is preferably disposed in or near the third lens group G3. However, the role may be substituted by a lens frame without providing a member as an aperture stop.

本実施形態において、各レンズ面には、フレアやゴーストを軽減して高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施してもよい。   In this embodiment, each lens surface may be provided with an antireflection film having a high transmittance in a wide wavelength region in order to reduce flare and ghost and achieve high optical performance with high contrast.

本実施形態の変倍光学系ZLは、変倍比が2〜7程度である。   The variable magnification optical system ZL of this embodiment has a variable magnification ratio of about 2 to 7.

ZL(ZL1〜ZL3) 変倍光学系
G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
S 開口絞り
I 像面
1 カメラ(撮像装置)
2 撮影レンズ(変倍光学系)
ZL (ZL1 to ZL3) Variable magnification optical system G1 First lens group G2 Second lens group G3 Third lens group S Aperture stop I Image plane 1 Camera (imaging device)
2 Photography lens (variable magnification optical system)

Claims (6)

物体側から順に並んだ、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群との実質的に3つのレンズ群からなり
前記第3レンズ群の少なくとも一部を、像ブレを補正するための防振レンズ群として、光軸と垂直方向の成分を持つように移動可能に構成し、
以下の条件式を満足することを特徴とする変倍光学系。
0.60 < f3/fw < 3.50
4.76 < f1/f3 < 30.00
但し、
f1:前記第1レンズ群の焦点距離、
f3:前記第3レンズ群の焦点距離、
fw:広角端状態における全系の焦点距離。
Substantially three lens groups of a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power, arranged in order from the object side. Consists of
At least a part of the third lens group is configured to be movable as a vibration-proof lens group for correcting image blur so as to have a component in a direction perpendicular to the optical axis,
A zoom optical system characterized by satisfying the following conditional expression:
0.60 <f3 / fw <3.50
4.76 <f1 / f3 <30.00
However,
f1: the focal length of the first lens group,
f3: focal length of the third lens group,
fw: focal length of the entire system in the wide-angle end state.
前記第1レンズ群と前記第2レンズ群との空気間隔と、前記第2レンズ群と前記第3レンズ群との空気間隔とを変化させることにより変倍を行うことを特徴とする請求項1に記載の変倍光学系。   2. The zooming is performed by changing an air gap between the first lens group and the second lens group and an air gap between the second lens group and the third lens group. The zoom optical system according to 1. 広角端状態から望遠端状態への変倍に際して、前記第1レンズ群と前記第2レンズ群との空気間隔を拡大し、前記第2レンズ群と前記第3レンズ群との間隔を縮小することを特徴とする請求項1又は2に記載の変倍光学系。   When zooming from the wide-angle end state to the telephoto end state, the air gap between the first lens group and the second lens group is enlarged, and the gap between the second lens group and the third lens group is reduced. The variable magnification optical system according to claim 1 or 2, characterized in that: 以下の条件式を満足することを特徴とする請求項1〜のいずれか一項に記載の変倍光学系。
0.60 < (−f2)/f3 < 1.05
但し、
f2:前記第2レンズ群の焦点距離。
The zoom lens system according to any one of claims 1 to 3 , wherein the following conditional expression is satisfied.
0.60 <(− f2) / f3 <1.05
However,
f2: focal length of the second lens group.
以下の条件式を満足することを特徴とする請求項1〜のいずれか一項に記載の変倍光学系。
5.20 < f1/(−f2) < 30.00
但し、
f1:前記第1レンズ群の焦点距離、
f2:前記第2レンズ群の焦点距離。
The zoom lens system according to any one of claims 1 to 4 , wherein the following conditional expression is satisfied.
5.20 <f1 / (− f2) <30.00
However,
f1: the focal length of the first lens group,
f2: focal length of the second lens group.
請求項1〜のいずれか一項に記載の変倍光学系を備えたことを特徴とする撮像装置。 An imaging apparatus comprising the variable magnification optical system according to any one of claims 1 to 5 .
JP2014067080A 2014-03-27 2014-03-27 Variable magnification optical system and imaging apparatus Active JP6354257B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2014067080A JP6354257B2 (en) 2014-03-27 2014-03-27 Variable magnification optical system and imaging apparatus
CN201910777692.3A CN110596873B (en) 2014-03-27 2015-03-26 Variable power optical system and imaging device
CN201580016772.7A CN106133578B (en) 2014-03-27 2015-03-26 Variable-power optical system and photographic device
PCT/JP2015/001718 WO2015146176A1 (en) 2014-03-27 2015-03-26 Variable power optical system, imaging device, and variable power optical system production method
EP15770184.8A EP3125011B1 (en) 2014-03-27 2015-03-26 Variable power optical system, imaging device, and variable power optical system production method
US15/256,738 US10466454B2 (en) 2014-03-27 2016-09-06 Zoom optical system, imaging device and method for manufacturing the zoom optical system
US16/599,107 US11428911B2 (en) 2014-03-27 2019-10-10 Zoom optical system, imaging device and method for manufacturing the zoom optical system
US17/879,741 US20220373774A1 (en) 2014-03-27 2022-08-02 Zoom optical system, imaging device and method for manufacturing the zoom optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014067080A JP6354257B2 (en) 2014-03-27 2014-03-27 Variable magnification optical system and imaging apparatus

Publications (2)

Publication Number Publication Date
JP2015191064A JP2015191064A (en) 2015-11-02
JP6354257B2 true JP6354257B2 (en) 2018-07-11

Family

ID=54425614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014067080A Active JP6354257B2 (en) 2014-03-27 2014-03-27 Variable magnification optical system and imaging apparatus

Country Status (1)

Country Link
JP (1) JP6354257B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110596873B (en) 2014-03-27 2022-09-20 株式会社尼康 Variable power optical system and imaging device
JP6354256B2 (en) * 2014-03-27 2018-07-11 株式会社ニコン Variable magnification optical system and imaging apparatus
JP6826941B2 (en) * 2017-04-27 2021-02-10 株式会社タムロン Zoom lens and imaging device
CN107015351A (en) * 2017-06-01 2017-08-04 中山联合光电科技股份有限公司 High pixel, low cost, the varifocal optical system of big visual field

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08278445A (en) * 1995-04-04 1996-10-22 Nikon Corp Zoom lens having vibration-isolating function
JP5448351B2 (en) * 2008-03-03 2014-03-19 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5510876B2 (en) * 2008-08-12 2014-06-04 株式会社ニコン Zoom lens and optical apparatus provided with the zoom lens
JP5713227B2 (en) * 2010-04-27 2015-05-07 株式会社ニコン Zoom lens, optical device, and method of manufacturing zoom lens
KR101844509B1 (en) * 2010-10-27 2018-04-02 삼성전자주식회사 Zoon lens and photographing apparatus
JP5333625B2 (en) * 2011-05-25 2013-11-06 株式会社ニコン Zoom lens, optical device, and zoom lens manufacturing method
JP2013011641A (en) * 2011-06-28 2013-01-17 Sony Corp Zoom lens and imaging apparatus
JP5958018B2 (en) * 2012-03-30 2016-07-27 株式会社ニコン Zoom lens, imaging device
JP6045443B2 (en) * 2013-06-13 2016-12-14 富士フイルム株式会社 Zoom lens and imaging device
JP6354256B2 (en) * 2014-03-27 2018-07-11 株式会社ニコン Variable magnification optical system and imaging apparatus

Also Published As

Publication number Publication date
JP2015191064A (en) 2015-11-02

Similar Documents

Publication Publication Date Title
CN108490592B (en) Zoom optical system
US11635603B2 (en) Variable power optical system, optical apparatus and manufacturing method for variable power optical system
WO2015146177A1 (en) Zoom lens, imaging device, and zoom lens production method
JP2016065912A (en) Zoom lens, optical device and manufacturing method for zoom lens
JP6354257B2 (en) Variable magnification optical system and imaging apparatus
JP6938841B2 (en) Zoom lens and optical equipment
WO2015146176A1 (en) Variable power optical system, imaging device, and variable power optical system production method
JP6880544B2 (en) Zoom lenses and optics
JP5906759B2 (en) Zoom lens, optical device, and method of manufacturing zoom lens
JP6354256B2 (en) Variable magnification optical system and imaging apparatus
JP2016156941A (en) Lens system, optical device, and method for manufacturing lens system
JP6205858B2 (en) Variable magnification optical system, imaging device, and variable magnification optical system manufacturing method
JP6337565B2 (en) Variable magnification optical system and imaging apparatus
JP6511722B2 (en) Variable power optical system and imaging apparatus
JP6620400B2 (en) Zoom lens and optical device
JP6191246B2 (en) Zoom lens, optical device
JP5305177B2 (en) Zoom lens, imaging apparatus, and zoom lens manufacturing method
JP6435620B2 (en) Magnification optical system and imaging device
JP2016156902A (en) Zoom lens, optical device, and method for manufacturing zoom lens
JP6528355B2 (en) Variable magnification optical unit and imaging apparatus
JP2016156903A (en) Zoom lens, optical device, and method for manufacturing zoom lens
JP6524607B2 (en) Zoom lens and imaging device
JP6507480B2 (en) Variable power optical system and imaging apparatus
JP2015191062A (en) Zoom lens, imaging apparatus, and method for manufacturing the zoom lens
JP5267956B2 (en) Zoom lens, imaging apparatus, and zoom lens manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180528

R150 Certificate of patent or registration of utility model

Ref document number: 6354257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250