JP2013182017A - Variable power optical system, optical device, and method for manufacturing variable power optical system - Google Patents

Variable power optical system, optical device, and method for manufacturing variable power optical system Download PDF

Info

Publication number
JP2013182017A
JP2013182017A JP2012043806A JP2012043806A JP2013182017A JP 2013182017 A JP2013182017 A JP 2013182017A JP 2012043806 A JP2012043806 A JP 2012043806A JP 2012043806 A JP2012043806 A JP 2012043806A JP 2013182017 A JP2013182017 A JP 2013182017A
Authority
JP
Japan
Prior art keywords
lens group
lens
optical system
group
end state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012043806A
Other languages
Japanese (ja)
Other versions
JP5845972B2 (en
Inventor
Masafumi Yamashita
雅史 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2012043806A priority Critical patent/JP5845972B2/en
Priority to CN201380022680.0A priority patent/CN104272163B/en
Priority to PCT/JP2013/055173 priority patent/WO2013129487A1/en
Publication of JP2013182017A publication Critical patent/JP2013182017A/en
Priority to US14/472,472 priority patent/US9625686B2/en
Application granted granted Critical
Publication of JP5845972B2 publication Critical patent/JP5845972B2/en
Priority to US15/447,862 priority patent/US11125984B2/en
Priority to US17/409,784 priority patent/US11782250B2/en
Priority to US18/242,425 priority patent/US20230418035A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a compact variable power optical system having a vibration-proof function, a high variable power, a wide angle of view and excellent optical performance, an optical device, and a method for manufacturing the variable power optical system.SOLUTION: A variable power optical system comprises, in order from an object side: a first lens group G1 having positive refractive power; a second lens group G2 having negative refractive power; a third lens group G3 having positive refractive power; and a fourth lens group G4 having positive refractive power. When varying power from a wide angle end to a telephoto end, the distance between the first lens group G1 and the second lens group G2, the distance between the second lens group G2 and the third lens group G3, and the distance between the third lens group G3 and the fourth lens group G4 change. The third lens group G3 comprises, in order from the object side, a first partial group G31 having positive refractive power and a second partial group G32. The second partial group G32 moves in a direction including a direction component perpendicular to the optical axis. The variable power optical system satisfies a predetermined conditional expression.

Description

本発明は、変倍光学系、光学装置、変倍光学系の製造方法に関する。   The present invention relates to a variable magnification optical system, an optical apparatus, and a method for manufacturing the variable magnification optical system.

従来、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した変倍光学系が提案されている(例えば、特許文献1を参照。)。   Conventionally, a variable magnification optical system suitable for a photographic camera, an electronic still camera, a video camera, and the like has been proposed (see, for example, Patent Document 1).

特開2006−284763号公報JP 2006-284863 A

しかしながら、上述のような従来の変倍光学系は、大型であり、防振機能を有しつつ高変倍化を図ろうとすれば、光学性能が著しく劣化してしまうという問題があった。
そこで本発明は上記問題点に鑑みてなされたものであり、防振機能を有し、高変倍、広画角で、良好な光学性能を備えた小型の変倍光学系、光学装置、及び変倍光学系の製造方法を提供することを目的とする。
However, the conventional variable power optical system as described above is large, and there is a problem in that optical performance is significantly deteriorated if an attempt is made to increase the zoom power while having an anti-vibration function.
Therefore, the present invention has been made in view of the above problems, and has a vibration reduction function, a high zoom ratio, a wide angle of view, and a compact zoom optical system, an optical apparatus, and a good optical performance, and It is an object of the present invention to provide a method for manufacturing a variable magnification optical system.

上記課題を解決するために本発明は、
物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、
広角端状態から望遠端状態への変倍に際して、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、及び前記第3レンズ群と前記第4レンズ群との間隔がそれぞれ変化し、
前記第3レンズ群が、物体側から順に、正の屈折力を有する第1部分群と、第2部分群とを有し、
前記第2部分群が光軸と直交する方向の成分を含むように移動し、
以下の条件式を満足することを特徴とする変倍光学系を提供する。
8.00 < f1/(−f2) < 10.00
ただし、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
In order to solve the above problems, the present invention
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a positive refractive power And having a group
Upon zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, and the third lens group The distance from the fourth lens group changes,
The third lens group includes, in order from the object side, a first partial group having a positive refractive power and a second partial group.
The second subgroup moves to include a component in a direction perpendicular to the optical axis;
A variable magnification optical system characterized by satisfying the following conditional expression is provided.
8.00 <f1 / (-f2) <10.00
However,
f1: Focal length of the first lens group f2: Focal length of the second lens group

また本発明は、
前記変倍光学系を有することを特徴とする光学装置を提供する。
また本発明は、
物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有する変倍光学系の製造方法であって、
前記第3レンズ群が、物体側から順に、正の屈折力を有する第1部分群と、第2部分群とを有するようにし、
前記第1レンズ群と前記第2レンズ群が以下の条件式を満足するようにし、
広角端状態から望遠端状態への変倍に際して、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、及び前記第3レンズ群と前記第4レンズ群との間隔がそれぞれ変化するようにし、
前記第2部分群が光軸と直交する方向の成分を含むように移動するようにすることを特徴とする変倍光学系の製造方法を提供する。
8.00 < f1/(−f2) < 10.00
ただし、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
The present invention also provides
Provided is an optical device comprising the variable magnification optical system.
The present invention also provides
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a positive refractive power A variable magnification optical system having a group,
The third lens group includes, in order from the object side, a first partial group having a positive refractive power and a second partial group.
The first lens group and the second lens group satisfy the following conditional expression:
Upon zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, and the third lens group The distance from the fourth lens group changes,
There is provided a method of manufacturing a variable magnification optical system, wherein the second partial group is moved so as to include a component in a direction orthogonal to the optical axis.
8.00 <f1 / (-f2) <10.00
However,
f1: Focal length of the first lens group f2: Focal length of the second lens group

本発明によれば、防振機能を有し、高変倍、広画角で、良好な光学性能を備えた小型の変倍光学系、光学装置、及び変倍光学系の製造方法を提供することができる。   According to the present invention, there are provided a small variable power optical system, an optical device, and a method for manufacturing the variable power optical system that have an anti-vibration function, a high variable power, a wide field angle, and good optical performance. be able to.

(a)、(b)、及び(c)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。(A), (b), and (c) are sectional views in the wide-angle end state, intermediate focal length state, and telephoto end state, respectively, of the variable magnification optical system according to the first example of the present application. (a)、(b)、及び(c)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。(A), (b), and (c) are various figures at the time of focusing on an object at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the first example of the present application, respectively. It is an aberration diagram. (a)、及び(b)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、及び望遠端状態における無限遠物体合焦時に防振を行った際のメリディオナル横収差図である。(A) and (b) are respectively meridional lateral aberration diagrams obtained when image stabilization is performed at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the variable magnification optical system according to the first example of the present application. It is. (a)、(b)、及び(c)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。(A), (b), and (c) are sectional views of the variable magnification optical system according to the second example of the present application in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. (a)、(b)、及び(c)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。(A), (b), and (c) are various values at the time of focusing on an object at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the second example of the present application, respectively. It is an aberration diagram. (a)、及び(b)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、及び望遠端状態における無限遠物体合焦時に防振を行った際のメリディオナル横収差図である。(A) and (b) are respectively meridional transverse aberration diagrams obtained when image stabilization is performed at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the variable magnification optical system according to the second example of the present application. It is. (a)、(b)、及び(c)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。(A), (b), and (c) are sectional views of the variable magnification optical system according to the third example of the present application in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. (a)、(b)、及び(c)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。(A), (b), and (c) are various values at the time of focusing on an object at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the third example of the present application, respectively. It is an aberration diagram. (a)、及び(b)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、及び望遠端状態における無限遠物体合焦時に防振を行った際のメリディオナル横収差図である。(A) and (b) are respectively meridional transverse aberration diagrams obtained when image stabilization is performed at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the variable magnification optical system according to the third example of the present application. It is. (a)、(b)、及び(c)はそれぞれ、本願の第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。(A), (b), and (c) are sectional views in the wide-angle end state, intermediate focal length state, and telephoto end state, respectively, of the variable magnification optical system according to the fourth example of the present application. (a)、(b)、及び(c)はそれぞれ、本願の第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。(A), (b), and (c) are various values at the time of focusing on an object at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fourth example of the present application, respectively. It is an aberration diagram. (a)、及び(b)はそれぞれ、本願の第4実施例に係る変倍光学系の広角端状態、及び望遠端状態における無限遠物体合焦時に防振を行った際のメリディオナル横収差図である。(A) and (b) are respectively meridional transverse aberration diagrams obtained when image stabilization is performed at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the variable magnification optical system according to the fourth example of the present application. It is. (a)、(b)、及び(c)はそれぞれ、本願の第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。(A), (b), and (c) are sectional views of the variable magnification optical system according to the fifth example of the present application in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. (a)、(b)、及び(c)はそれぞれ、本願の第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。(A), (b), and (c) are various values at the time of focusing on an object at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fifth example of the present application, respectively. It is an aberration diagram. (a)、及び(b)はそれぞれ、本願の第5実施例に係る変倍光学系の広角端状態、及び望遠端状態における無限遠物体合焦時に防振を行った際のメリディオナル横収差図である。(A) and (b) are respectively meridional lateral aberration diagrams obtained when image stabilization is performed at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the variable magnification optical system according to the fifth example of the present application. It is. (a)、(b)、及び(c)はそれぞれ、本願の第6実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。(A), (b), and (c) are sectional views of the variable magnification optical system according to the sixth example of the present application in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. (a)、(b)、及び(c)はそれぞれ、本願の第6実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。(A), (b), and (c) are various values at the time of focusing on an object at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the sixth example of the present application, respectively. It is an aberration diagram. (a)、及び(b)はそれぞれ、本願の第6実施例に係る変倍光学系の広角端状態、及び望遠端状態における無限遠物体合焦時に防振を行った際のメリディオナル横収差図である。(A) and (b) are meridional lateral aberration diagrams when the image stabilization is performed at the time of focusing on an object at infinity in the wide-angle end state and the telephoto end state of the variable magnification optical system according to the sixth example of the present application, respectively. It is. 本願の変倍光学系を備えたカメラの構成を示す図である。It is a figure which shows the structure of the camera provided with the variable magnification optical system of this application. 本願の変倍光学系の製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method of the variable magnification optical system of this application.

以下、本願の変倍光学系、光学装置、及び変倍光学系の製造方法について説明する。
本願の変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、広角端状態から望遠端状態への変倍に際して、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、及び前記第3レンズ群と前記第4レンズ群との間隔がそれぞれ変化し、前記第3レンズ群が、物体側から順に、正の屈折力を有する第1部分群と、第2部分群とを有し、前記第2部分群が光軸と直交する方向の成分を含むように移動し、以下の条件式(1)を満足することを特徴とする。
(1) 8.00 < f1/(−f2) < 10.00
ただし、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
Hereinafter, a variable magnification optical system, an optical apparatus, and a method for manufacturing the variable magnification optical system of the present application will be described.
The variable magnification optical system of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, And a fourth lens group having a refractive power of ## EQU2 ## for zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group, and the second lens group and the second lens group. A distance between the third lens group and a distance between the third lens group and the fourth lens group, and the third lens group includes a first partial group having a positive refractive power in order from the object side; , And the second partial group moves so as to include a component in a direction orthogonal to the optical axis, and satisfies the following conditional expression (1).
(1) 8.00 <f1 / (-f2) <10.00
However,
f1: Focal length of the first lens group f2: Focal length of the second lens group

本願の変倍光学系は、上記のように第3レンズ群中の第2部分群を光軸と直交する方向の成分を含むように移動させることにより、手ぶれ発生時の像ぶれの補正、即ち防振を行うことができる。
上記条件式(1)は、第2レンズ群の焦点距離に対する第1レンズ群の焦点距離を規定したものである。本願の変倍光学系は、条件式(1)を満足することにより、広角端状態において像面湾曲を良好に補正し、望遠端状態において球面収差を良好に補正することができる。
The variable magnification optical system of the present application moves the second partial group in the third lens group so as to include a component in a direction perpendicular to the optical axis as described above, thereby correcting image blur when camera shake occurs, that is, Anti-vibration can be performed.
Conditional expression (1) defines the focal length of the first lens group relative to the focal length of the second lens group. By satisfying conditional expression (1), the variable magnification optical system of the present application can correct field curvature well in the wide-angle end state and can satisfactorily correct spherical aberration in the telephoto end state.

本願の変倍光学系の条件式(1)の対応値が上限値を上回ると、第1レンズ群の変倍効果が小さくなる。このため、変倍比を確保するために第2レンズ群の屈折力を大きくする必要があり、その結果、広角端状態における像面湾曲の発生、及び望遠端状態における球面収差の発生を招いてしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(1)の上限値を9.70とすることがより好ましい。
一方、本願の変倍光学系の条件式(1)の対応値が下限値を下回ると、第1レンズ群の屈折力が大きくなり、望遠端状態において球面収差を補正することが困難になってしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(1)の下限値を8.10とすることがより好ましい。
以上の構成により、防振機能を有し、高変倍、広画角で、良好な光学性能を備えた小型の変倍光学系を実現することができる。
When the corresponding value of the conditional expression (1) of the zoom optical system of the present application exceeds the upper limit value, the zoom effect of the first lens group becomes small. For this reason, it is necessary to increase the refractive power of the second lens group in order to ensure the zoom ratio, and as a result, the occurrence of field curvature in the wide-angle end state and the occurrence of spherical aberration in the telephoto end state are caused. Therefore, it is not preferable. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (1) to 9.70.
On the other hand, if the corresponding value of conditional expression (1) of the variable magnification optical system of the present application is less than the lower limit value, the refractive power of the first lens unit becomes large, and it becomes difficult to correct spherical aberration in the telephoto end state. Therefore, it is not preferable. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (1) to 8.10.
With the above configuration, it is possible to realize a small variable magnification optical system having a vibration isolation function, a high variable magnification, a wide angle of view, and good optical performance.

また本願の変倍光学系は、前記第2部分群が負の屈折力を有することが望ましい。この構成により、本願の変倍光学系の小型化を図り、偏芯時のコマ収差の変動を抑えることができる。
また本願の変倍光学系は、以下の条件式(2)を満足することが望ましい。
(2) 0.60 < f3/f4 < 0.90
ただし、
f3:前記第3レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
In the variable magnification optical system of the present application, it is desirable that the second partial group has a negative refractive power. With this configuration, it is possible to reduce the size of the variable magnification optical system of the present application and suppress fluctuations in coma aberration at the time of decentering.
Moreover, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (2).
(2) 0.60 <f3 / f4 <0.90
However,
f3: focal length of the third lens group f4: focal length of the fourth lens group

条件式(2)は、第4レンズ群の焦点距離に対する第3レンズ群の焦点距離を規定したものである。本願の変倍光学系は、条件式(2)を満足することにより、広角端状態において像面湾曲とコマ収差を良好に補正し、望遠端状態において球面収差を良好に補正することができる。
本願の変倍光学系の条件式(2)の対応値が上限値を上回ると、第4レンズ群の屈折力が大きくなり、広角端状態において像面湾曲とコマ収差を補正することが困難になってしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(2)の上限値を0.85とすることがより好ましい。
一方、本願の変倍光学系の条件式(2)の対応値が下限値を下回ると、第3レンズ群の屈折力が大きくなり、特に望遠端状態において球面収差を補正することが困難になってしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(2)の下限値を0.65とすることがより好ましい。
Conditional expression (2) defines the focal length of the third lens group with respect to the focal length of the fourth lens group. By satisfying conditional expression (2), the variable magnification optical system of the present application can correct field curvature and coma well in the wide-angle end state, and can properly correct spherical aberration in the telephoto end state.
When the corresponding value of the conditional expression (2) of the variable magnification optical system of the present application exceeds the upper limit value, the refractive power of the fourth lens unit increases, making it difficult to correct field curvature and coma in the wide-angle end state. This is not preferable. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (2) to 0.85.
On the other hand, if the corresponding value of conditional expression (2) of the variable magnification optical system of the present application is less than the lower limit value, the refractive power of the third lens unit becomes large, and it becomes difficult to correct spherical aberration particularly in the telephoto end state. This is not preferable. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (2) to 0.65.

また本願の変倍光学系は、以下の条件式(3)を満足することが望ましい。
(3) 2.80 < f1/f3 < 4.50
ただし、
f1:前記第1レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
Moreover, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (3).
(3) 2.80 <f1 / f3 <4.50
However,
f1: Focal length of the first lens group f3: Focal length of the third lens group

上記条件式(3)は、第3レンズ群の焦点距離に対する第1レンズ群の焦点距離を規定したものである。本願の変倍光学系は、条件式(3)を満足することにより、広角端状態において像面湾曲を良好に補正し、望遠端状態において球面収差を良好に補正することができる。
本願の変倍光学系の条件式(3)の対応値が上限値を上回ると、第1レンズ群の変倍効果が小さくなる。このため、変倍比を確保するために第2レンズ群の屈折力を大きくする必要があり、その結果、広角端状態における像面湾曲の発生、及び望遠端状態における球面収差の発生を招いてしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(3)の上限値を4.30とすることがより好ましい。
一方、本願の変倍光学系の条件式(3)の対応値が下限値を下回ると、第1レンズ群の屈折力が大きくなり、望遠端状態において球面収差を補正することが困難になってしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(3)の下限値を3.00とすることがより好ましい。
Conditional expression (3) defines the focal length of the first lens group with respect to the focal length of the third lens group. By satisfying conditional expression (3), the variable magnification optical system of the present application can correct field curvature well in the wide-angle end state and can satisfactorily correct spherical aberration in the telephoto end state.
When the corresponding value of the conditional expression (3) of the zoom optical system of the present application exceeds the upper limit value, the zoom effect of the first lens group becomes small. For this reason, it is necessary to increase the refractive power of the second lens group in order to ensure the zoom ratio, and as a result, the occurrence of field curvature in the wide-angle end state and the occurrence of spherical aberration in the telephoto end state are caused. Therefore, it is not preferable. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (3) to 4.30.
On the other hand, if the corresponding value of conditional expression (3) of the variable magnification optical system of the present application is lower than the lower limit value, the refractive power of the first lens unit increases, and it becomes difficult to correct spherical aberration in the telephoto end state. Therefore, it is not preferable. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (3) to 3.00.

また本願の変倍光学系は、以下の条件式(4)を満足することが望ましい。
(4) 2.20 < f1/f4 < 3.50
ただし、
f1:前記第1レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
Moreover, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (4).
(4) 2.20 <f1 / f4 <3.50
However,
f1: Focal length of the first lens group f4: Focal length of the fourth lens group

条件式(4)は、第4レンズ群の焦点距離に対する第1レンズ群の焦点距離を規定したものである。本願の変倍光学系は、条件式(4)を満足することにより、広角端状態において像面湾曲とコマ収差を良好に補正し、望遠端状態において球面収差を良好に補正することができる。
本願の変倍光学系の条件式(4)の対応値が上限値を上回ると、第4レンズ群の屈折力が大きくなり、広角端状態において像面湾曲とコマ収差を補正することが困難になってしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(4)の上限値を3.30とすることがより好ましい。
一方、本願の変倍光学系の条件式(4)の対応値が下限値を下回ると、第1レンズ群の屈折力が大きくなり、望遠端状態において球面収差を補正することが困難になってしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(4)の下限値を2.50とすることがより好ましい。
Conditional expression (4) defines the focal length of the first lens group with respect to the focal length of the fourth lens group. By satisfying conditional expression (4), the variable magnification optical system of the present application can satisfactorily correct field curvature and coma in the wide-angle end state, and can satisfactorily correct spherical aberration in the telephoto end state.
If the corresponding value of the conditional expression (4) of the variable magnification optical system of the present application exceeds the upper limit value, the refractive power of the fourth lens unit increases, making it difficult to correct field curvature and coma in the wide-angle end state. This is not preferable. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (4) to 3.30.
On the other hand, if the corresponding value of conditional expression (4) of the variable magnification optical system of the present application is lower than the lower limit value, the refractive power of the first lens unit increases, and it becomes difficult to correct spherical aberration in the telephoto end state. Therefore, it is not preferable. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (4) to 2.50.

また本願の変倍光学系は、合焦に際して、前記第2レンズ群の少なくとも一部が光軸方向へ移動することが望ましい。小型で軽量な第2レンズ群の少なくとも一部によって合焦を行うことにより、迅速な合焦を達成することができる。
また本願の変倍光学系は、以下の条件式(5)を満足することが望ましい。
(5) 0.20 < |f32|/f1 < 0.43
ただし、
f1 :前記第1レンズ群の焦点距離
f32:前記第2部分群の焦点距離
In the variable power optical system of the present application, it is desirable that at least a part of the second lens group moves in the optical axis direction during focusing. By performing focusing with at least a part of the small and lightweight second lens group, rapid focusing can be achieved.
Further, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (5).
(5) 0.20 <| f32 | / f1 <0.43
However,
f1: focal length of the first lens group f32: focal length of the second partial group

条件式(5)は、第1レンズ群の焦点距離に対する第2部分群の焦点距離を規定したものである。本願の変倍光学系は、条件式(5)を満足することにより、望遠端状態において球面収差を良好に補正し、第2部分群を光軸と直交する方向の成分を含むように移動させた際にコマ収差を良好に補正することができる。
本願の変倍光学系の条件式(5)の対応値が上限値を上回ると、第1レンズ群の屈折力が大きくなり、望遠端状態において球面収差を補正することが困難になってしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(5)の上限値を0.41とすることがより好ましい。
一方、本願の変倍光学系の条件式(5)の対応値が下限値を下回ると、第2部分群の屈折力が大きくなる。このため、第2部分群を光軸と直交する方向の成分を含むように移動させた際にコマ収差の劣化を招いてしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(5)の下限値を0.25とすることがより好ましい。
Conditional expression (5) defines the focal length of the second subgroup with respect to the focal length of the first lens group. The variable magnification optical system of the present application satisfactorily corrects spherical aberration in the telephoto end state by satisfying conditional expression (5), and moves the second subgroup so as to include a component in a direction orthogonal to the optical axis. Coma can be corrected well.
If the corresponding value of the conditional expression (5) of the variable magnification optical system of the present application exceeds the upper limit value, the refractive power of the first lens unit increases, and it becomes difficult to correct spherical aberration in the telephoto end state. It is not preferable. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (5) to 0.41.
On the other hand, when the corresponding value of conditional expression (5) of the zoom optical system of the present application is lower than the lower limit value, the refractive power of the second subgroup increases. For this reason, when the second partial group is moved so as to include a component in a direction perpendicular to the optical axis, coma aberration is deteriorated, which is not preferable. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (5) to 0.25.

また本願の変倍光学系は、前記第2部分群が、1枚の正レンズと1枚の負レンズとの接合レンズからなることが望ましい。この構成により、第2部分群を光軸と直交する方向の成分を含むように移動させた際に偏芯コマ収差を良好に補正することができる。
また本願の変倍光学系は、以下の条件式(6)を満足することが望ましい。
(6) 0.35 < (−f2)/f3 < 0.55
ただし、
f2:前記第2レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
In the variable magnification optical system of the present application, it is desirable that the second partial group is composed of a cemented lens of one positive lens and one negative lens. With this configuration, it is possible to satisfactorily correct the eccentric coma aberration when the second partial group is moved so as to include a component in a direction orthogonal to the optical axis.
Further, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (6).
(6) 0.35 <(− f2) / f3 <0.55
However,
f2: focal length of the second lens group f3: focal length of the third lens group

条件式(6)は、第3レンズ群の焦点距離に対する第2レンズ群の焦点距離を規定したものである。本願の変倍光学系は、条件式(6)を満足することにより、広角端状態において像面湾曲を良好に補正し、望遠端状態において球面収差を良好に補正することができる。
本願の変倍光学系の条件式(6)の対応値が上限値を上回ると、第2レンズ群の変倍効果が小さくなる。このため、変倍比を確保するために第1レンズ群の屈折力を大きくする必要があり、その結果、広角端状態における像面湾曲の発生、及び望遠端状態における球面収差の発生を招いてしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(6)の上限値を0.52とすることがより好ましい。
一方、本願の変倍光学系の条件式(6)の対応値が下限値を下回ると、第3レンズ群の変倍効果が小さくなる。このため、変倍比を確保するために第1レンズ群又は第2レンズ群の屈折力を大きくする必要があり、その結果、望遠端状態における球面収差、及び広角端状態における像面湾曲を補正することが困難になってしまうため好ましくない。なお、本願の効果をより確実にするために、条件式(6)の下限値を0.38とすることがより好ましい。
Conditional expression (6) defines the focal length of the second lens group with respect to the focal length of the third lens group. By satisfying conditional expression (6), the variable magnification optical system of the present application can correct field curvature well in the wide-angle end state and can properly correct spherical aberration in the telephoto end state.
When the corresponding value of the conditional expression (6) of the zoom optical system of the present application exceeds the upper limit value, the zoom effect of the second lens group becomes small. For this reason, it is necessary to increase the refractive power of the first lens group in order to ensure the zoom ratio, and as a result, the occurrence of field curvature in the wide-angle end state and the occurrence of spherical aberration in the telephoto end state are caused. Therefore, it is not preferable. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (6) to 0.52.
On the other hand, when the corresponding value of conditional expression (6) of the zoom optical system of the present application is below the lower limit value, the zoom effect of the third lens group is reduced. For this reason, it is necessary to increase the refractive power of the first lens group or the second lens group in order to ensure the zoom ratio, and as a result, the spherical aberration in the telephoto end state and the field curvature in the wide-angle end state are corrected. This is not preferable because it becomes difficult to do. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (6) to 0.38.

また本願の変倍光学系は、広角端状態から望遠端状態への変倍に際して、前記第1レンズ群が光軸方向へ移動することが望ましい。この構成により、変倍に関わる各レンズ群、即ち第1〜第4レンズ群のそれぞれの屈折力を小さくすることができ、広角端状態から望遠端状態にわたって良好な光学性能を確保することができる。
本願の光学装置は、上述した構成の変倍光学系を有することを特徴とする。これにより、防振機能を有し、高変倍、広画角で、良好な光学性能を備えた小型の光学装置を実現することができる。
In the variable power optical system of the present application, it is desirable that the first lens group moves in the optical axis direction upon zooming from the wide-angle end state to the telephoto end state. With this configuration, it is possible to reduce the refractive power of each lens group involved in zooming, that is, the first to fourth lens groups, and to ensure good optical performance from the wide-angle end state to the telephoto end state. .
The optical apparatus according to the present application includes the variable magnification optical system having the above-described configuration. As a result, it is possible to realize a small optical device having an anti-vibration function, a high zoom ratio, a wide angle of view, and good optical performance.

本願の変倍光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有する変倍光学系の製造方法であって、前記第3レンズ群が、物体側から順に、正の屈折力を有する第1部分群と、第2部分群とを有するようにし、前記第1レンズ群と前記第2レンズ群が以下の条件式(1)を満足するようにし、広角端状態から望遠端状態への変倍に際して、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、及び前記第3レンズ群と前記第4レンズ群との間隔がそれぞれ変化するようにし、前記第2部分群が光軸と直交する方向の成分を含むように移動するようにすることを特徴とする。これにより、防振機能を有し、高変倍、広画角で、良好な光学性能を備えた小型の変倍光学系を製造することができる。
(1) 8.00 < f1/(−f2) < 10.00
ただし、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
The variable magnification optical system manufacturing method of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power. And a fourth lens group having positive refracting power, and a variable magnification optical system, wherein the third lens group has, in order from the object side, a first partial group having positive refracting power; A second partial group, and the first lens group and the second lens group satisfy the following conditional expression (1), and at the time of zooming from the wide-angle end state to the telephoto end state, An interval between one lens group and the second lens group, an interval between the second lens group and the third lens group, and an interval between the third lens group and the fourth lens group, respectively. The second subgroup moves so as to include a component in a direction perpendicular to the optical axis. The features. As a result, it is possible to manufacture a small variable magnification optical system having a vibration isolation function, a high variable magnification, a wide angle of view, and good optical performance.
(1) 8.00 <f1 / (-f2) <10.00
However,
f1: Focal length of the first lens group f2: Focal length of the second lens group

以下、本願の数値実施例に係る変倍光学系を添付図面に基づいて説明する。
(第1実施例)
図1(a)、図1(b)、及び図1(c)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。
第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とからなる。なお、第2レンズ群G2において最も物体側に位置する負メニスカスレンズL21は、物体側のレンズ面を非球面形状とした非球面レンズである。
Hereinafter, a variable magnification optical system according to numerical examples of the present application will be described with reference to the accompanying drawings.
(First embodiment)
1A, 1B, and 1C are cross-sectional views of the zoom optical system according to the first example of the present application in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. It is.
The variable magnification optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power.
The first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. Become.
The second lens group G2 has a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave negative lens L22, a biconvex positive lens L23, and a concave surface directed toward the object side, in order from the object side. And a negative meniscus lens L24. The negative meniscus lens L21 located closest to the object side in the second lens group G2 is an aspheric lens having an aspheric lens surface on the object side.

第3レンズ群G3は、物体側から順に、正の屈折力を有する第1部分群G31と、負の屈折力を有する第2部分群G32とからなる。なお、第3レンズ群G3の物体側には、開口絞りSが備えられている。
第1部分群G31は、物体側から順に、両凸形状の正レンズL31と、両凸形状の正レンズL32と両凹形状の負レンズL33との接合レンズとからなる。
第2部分群G32は、物体側から順に、両凹形状の負レンズL34と物体側に凸面を向けた正メニスカスレンズL35との接合レンズのみからなる。
第4レンズ群G4は、物体側から順に、両凸形状の正レンズL41と、物体側に凹面を向けた正メニスカスレンズL42と物体側に凹面を向けた負メニスカスレンズL43との接合レンズとからなる。なお、第4レンズ群G4において最も物体側に位置する正レンズL41は、物体側のレンズ面を非球面形状とした非球面レンズである。
The third lens group G3 includes, in order from the object side, a first partial group G31 having a positive refractive power and a second partial group G32 having a negative refractive power. An aperture stop S is provided on the object side of the third lens group G3.
The first partial group G31 includes, in order from the object side, a biconvex positive lens L31, and a cemented lens of a biconvex positive lens L32 and a biconcave negative lens L33.
The second partial group G32 includes, in order from the object side, only a cemented lens of a biconcave negative lens L34 and a positive meniscus lens L35 having a convex surface directed toward the object side.
The fourth lens group G4 includes, in order from the object side, a biconvex positive lens L41, and a cemented lens of a positive meniscus lens L42 having a concave surface facing the object side and a negative meniscus lens L43 having a concave surface facing the object side. Become. The positive lens L41 located closest to the object side in the fourth lens group G4 is an aspheric lens having an aspheric lens surface on the object side.

以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第2レンズ群G2との空気間隔が増大し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レンズ群G4との空気間隔が変化するように、第1レンズ群G1、第3レンズ群G3、及び第4レンズ群G4が光軸に沿って物体側へ移動し、第2レンズ群G2が光軸に沿って移動する。なお、この際、開口絞りSは第3レンズ群G3とともに移動する。
また本実施例に係る変倍光学系は、第2レンズ群G2を光軸に沿って物体側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。
また本実施例に係る変倍光学系は、手ぶれ等の発生時に第2部分群G32のみを防振レンズ群として光軸と直交する方向の成分を含むように移動させることにより防振を行う。
With the above-described configuration, in the variable magnification optical system according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 increases when the magnification is changed from the wide-angle end state to the telephoto end state. The first lens group G1 and the third lens group G3 so that the air gap between the second lens group G2 and the third lens group G3 decreases and the air gap between the third lens group G3 and the fourth lens group G4 changes. , And the fourth lens group G4 moves to the object side along the optical axis, and the second lens group G2 moves along the optical axis. At this time, the aperture stop S moves together with the third lens group G3.
In the variable power optical system according to the present embodiment, the second lens group G2 is moved to the object side along the optical axis, thereby focusing from an object at infinity to a near object.
In addition, the zoom optical system according to the present embodiment performs image stabilization by moving only the second partial group G32 as an image stabilization lens group so as to include a component in a direction orthogonal to the optical axis when camera shake or the like occurs.

以下の表1に、本実施例に係る変倍光学系の諸元の値を掲げる。
表1において、fは焦点距離、BFはバックフォーカスを示す。
[面データ]において、面番号は物体側から数えた光学面の順番、rはレンズ面の曲率半径、dは光軸上の面間隔、ndはd線(波長λ=587.6nm)に対する屈折率、νdはd線(波長λ=587.6nm)に対するアッベ数をそれぞれ示している。また、物面は物体面、可変は可変の面間隔、絞りSは開口絞りS、像面は像面Iをそれぞれ示している。なお、曲率半径r=∞は平面を示している。また、非球面には面番号に*を付して曲率半径rの欄には近軸曲率半径を示している。
Table 1 below lists values of specifications of the variable magnification optical system according to the present example.
In Table 1, f indicates the focal length, and BF indicates the back focus.
In [Surface data], the surface number is the order of the optical surfaces counted from the object side, r is the radius of curvature of the lens surface, d is the surface spacing on the optical axis, and nd is the refraction with respect to the d-line (wavelength λ = 587.6 nm). The ratio, νd, represents the Abbe number for the d-line (wavelength λ = 587.6 nm). In addition, the object plane indicates the object plane, the variable indicates the variable plane spacing, the stop S indicates the aperture stop S, and the image plane indicates the image plane I. The radius of curvature r = ∞ indicates a plane. Further, the aspherical surface is marked with * as the surface number, and the paraxial radius of curvature is shown in the column of the radius of curvature r.

[非球面データ]には、[面データ]に示した非球面について、その形状を次式で表した場合の非球面係数及び円錐定数を示す。
x=(h/r)/[1+{1−κ(h/r)1/2
+A4h+A6h+A8h+A10h10
ここで、hを光軸に垂直な方向の高さ、xを高さhにおける非球面の頂点の接平面から当該非球面までの光軸方向に沿った距離(サグ量)、κを円錐定数、A4,A6,A8,A10を非球面係数、rを基準球面の曲率半径(近軸曲率半径)とする。なお、「E−n」(n:整数)は「×10−n」を示し、例えば「1.234E-05」は「1.234×10−5」を示す。
[Aspherical data] shows an aspherical coefficient and a conic constant when the shape of the aspherical surface shown in [Surface data] is expressed by the following equation.
x = (h 2 / r) / [1+ {1−κ (h / r) 2 } 1/2 ]
+ A4h 4 + A6h 6 + A8h 8 + A10h 10
Here, h is the height in the direction perpendicular to the optical axis, x is the distance (sag amount) from the tangent plane of the apex of the aspheric surface to the aspheric surface at the height h, and κ is the conic constant. , A4, A6, A8, A10 are aspherical coefficients, and r is the radius of curvature of the reference sphere (paraxial radius of curvature). “E−n” (n: integer) indicates “× 10 −n ”, for example “1.234E-05” indicates “1.234 × 10 −5 ”.

[各種データ]において、FNOはFナンバー、2ωは画角(単位は「°」)、Yは像高、TLは変倍光学系の全長、di(i:整数)は第i面の可変の面間隔をそれぞれ示す。なお、Wは広角端状態、Mは中間焦点距離状態、Tは望遠端状態をそれぞれ示す。
ここで、表1に掲載されている焦点距離fや曲率半径r、及びその他長さの単位は一般に「mm」が使われる。しかしながら光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるため、これに限られるものではない。
なお、以上に述べた表1の符号は、後述する各実施例の表においても同様に用いるものとする。
In [various data], FNO is the F number, 2ω is the angle of view (unit is “°”), Y is the image height, TL is the total length of the variable magnification optical system, and di (i: integer) is the variable of the i-th surface. The surface spacing is shown. W represents the wide-angle end state, M represents the intermediate focal length state, and T represents the telephoto end state.
Here, “mm” is generally used as a unit of the focal length f, the radius of curvature r, and other lengths listed in Table 1. However, the optical system is not limited to this because an equivalent optical performance can be obtained even when proportionally enlarged or proportionally reduced.
In addition, the code | symbol of Table 1 described above shall be similarly used also in the table | surface of each Example mentioned later.

ここで、レンズ全系の焦点距離がf、防振係数(防振時の防振レンズ群の移動量に対する像面I上での像の移動量の比)がKであるレンズにおいて、角度θの回転ぶれを補正するためには、防振レンズ群を(f・tanθ)/Kだけ光軸と直交する方向へ移動させればよい。したがって、本実施例に係る変倍光学系は、広角端状態において防振係数が−0.88、焦点距離が10.0(mm)であるため、1.00°の回転ぶれを補正するための防振レンズ群の移動量は0.20(mm)となる。また、望遠端状態においては防振係数が−1.92、焦点距離が100.0(mm)であるため、0.32°の回転ぶれを補正するための防振レンズ群の移動量は0.29(mm)となる。   Here, in a lens in which the focal length of the entire lens system is f and the image stabilization coefficient (ratio of the image movement amount on the image plane I to the movement amount of the image stabilization lens group during image stabilization) is K, the angle θ In order to correct the rotational blur of the lens, the anti-vibration lens group may be moved in a direction orthogonal to the optical axis by (f · tan θ) / K. Therefore, the variable magnification optical system according to the present example has a vibration isolation coefficient of −0.88 and a focal length of 10.0 (mm) in the wide-angle end state, and thus corrects a rotational shake of 1.00 °. The amount of movement of the anti-vibration lens group is 0.20 (mm). In the telephoto end state, the image stabilization coefficient is -1.92 and the focal length is 100.0 (mm). Therefore, the amount of movement of the image stabilization lens group for correcting the rotation blur of 0.32 ° is 0. .29 (mm).

(表1)第1実施例
[面データ]
面番号 r d nd νd
物面 ∞
1 459.647 1.600 1.953660 30.27
2 57.423 6.819 1.497820 82.51
3 -154.085 0.100 1.000000
4 56.956 5.161 1.878896 41.01
5 569.648 可変 1.000000

*6 38.479 1.200 1.882991 40.76
7 8.366 3.937 1.000000
8 -16.649 1.200 1.864046 41.96
9 53.630 0.100 1.000000
10 21.938 3.669 1.846659 23.78
11 -14.738 0.417 1.000000
12 -12.219 1.200 1.882997 40.76
13 -43.622 可変 1.000000

14(絞りS) ∞ 1.000 1.000000

15 23.408 3.198 1.754999 52.31
16 -31.880 0.100 1.000000
17 15.118 3.851 1.497820 82.51
18 -19.673 1.200 1.856445 26.89
19 59.726 2.566 1.000000
20 -68.834 1.200 1.822803 45.06
21 7.553 3.351 1.878191 37.36
22 24.293 可変 1.000000

*23 16.648 3.632 1.497820 82.51
24 -23.750 0.100 1.000000
25 -553.763 4.361 1.577760 40.84
26 -8.231 1.200 1.882997 40.76
27 -42.498 BF 1.000000
像面 ∞

[非球面データ]
面番号 κ A4 A6 A8 A10
6 1 1.54E-05 -2.59E-08 3.23E-10 6.63E-12
23 -0.3689 -1.24E-05 6.50E-07 -5.31E-09 1.67E-10

[各種データ]
変倍比 10.00

W M T
f 10.00 50.02 100.00
FNO 3.50 4.80 5.60
2ω 82.49° 18.42° 9.30°
Y 8.350 8.350 8.350
TL 92.33 135.76 153.35
BF 13.25 39.10 42.51

W M T
d5 2.301 37.043 53.748
d13 19.357 5.095 2.400
d22 6.260 3.363 3.524

[レンズ群データ]
群 始面 f
1 1 85.1
2 6 -9.4
3 15 21.3
4 23 28.4

[条件式対応値]
(1) f1/(−f2) = 9.04
(2) f3/f4 = 0.75
(3) f1/f3 = 3.99
(4) f1/f4 = 3.00
(5) |f32|/f1 = 0.28
(6) (−f2)/f3 = 0.44
(Table 1) First Example
[Surface data]
Surface number r d nd νd
Object ∞
1 459.647 1.600 1.953660 30.27
2 57.423 6.819 1.497820 82.51
3 -154.085 0.100 1.000000
4 56.956 5.161 1.878896 41.01
5 569.648 Variable 1.000000

* 6 38.479 1.200 1.882991 40.76
7 8.366 3.937 1.000000
8 -16.649 1.200 1.864046 41.96
9 53.630 0.100 1.000000
10 21.938 3.669 1.846659 23.78
11 -14.738 0.417 1.000000
12 -12.219 1.200 1.882997 40.76
13 -43.622 Variable 1.000000

14 (Aperture S) ∞ 1.000 1.000000

15 23.408 3.198 1.754999 52.31
16 -31.880 0.100 1.000000
17 15.118 3.851 1.497820 82.51
18 -19.673 1.200 1.856445 26.89
19 59.726 2.566 1.000000
20 -68.834 1.200 1.822803 45.06
21 7.553 3.351 1.878191 37.36
22 24.293 Variable 1.000000

* 23 16.648 3.632 1.497820 82.51
24 -23.750 0.100 1.000000
25 -553.763 4.361 1.577760 40.84
26 -8.231 1.200 1.882997 40.76
27 -42.498 BF 1.000000
Image plane ∞

[Aspherical data]
Surface number κ A4 A6 A8 A10
6 1 1.54E-05 -2.59E-08 3.23E-10 6.63E-12
23 -0.3689 -1.24E-05 6.50E-07 -5.31E-09 1.67E-10

[Various data]
Scaling ratio 10.00

W M T
f 10.00 50.02 100.00
FNO 3.50 4.80 5.60
2ω 82.49 ° 18.42 ° 9.30 °
Y 8.350 8.350 8.350
TL 92.33 135.76 153.35
BF 13.25 39.10 42.51

W M T
d5 2.301 37.043 53.748
d13 19.357 5.095 2.400
d22 6.260 3.363 3.524

[Lens group data]
Group start surface f
1 1 85.1
2 6 -9.4
3 15 21.3
4 23 28.4

[Conditional expression values]
(1) f1 / (− f2) = 9.04
(2) f3 / f4 = 0.75
(3) f1 / f3 = 3.99
(4) f1 / f4 = 3.00
(5) | f32 | /f1=0.28
(6) (−f2) /f3=0.44

図2(a)、図2(b)、及び図2(c)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
図3(a)、及び図3(b)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態における無限遠物体合焦時に1.00°の回転ぶれに対して防振を行った際のメリディオナル横収差図、及び望遠端状態における無限遠物体合焦時に0.32°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。
2 (a), 2 (b), and 2 (c) respectively show infinity in the wide-angle end state, intermediate focal length state, and telephoto end state of the variable magnification optical system according to the first example of the present application. It is an aberration diagram at the time of focusing on an object.
3 (a) and 3 (b) respectively show image stabilization against rotational shake of 1.00 ° when focusing on an object at infinity in the wide-angle end state of the variable magnification optical system according to the first example of the present application. FIG. 6 is a meridional lateral aberration diagram when performing the zooming, and a meridional lateral aberration diagram when performing anti-vibration against 0.32 ° rotation blur when focusing on an object at infinity in the telephoto end state.

各収差図において、FNOはFナンバー、Yは像高をそれぞれ示す。dはd線(λ=587.6nm)、gはg線(λ=435.8nm)における収差をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、後述する各実施例の収差図においても、本実施例と同様の符号を用いる。
各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに防振時にも優れた結像性能を有していることがわかる。
In each aberration diagram, FNO represents an F number, and Y represents an image height. d represents the aberration at the d-line (λ = 587.6 nm), and g represents the aberration at the g-line (λ = 435.8 nm). In the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane. Note that the same reference numerals as in this embodiment are used in the aberration diagrams of each embodiment described later.
From each aberration diagram, the variable magnification optical system according to the present example has excellent imaging performance by satisfactorily correcting various aberrations from the wide-angle end state to the telephoto end state. It can be seen that it has image performance.

(第2実施例)
図4(a)、図4(b)、及び図4(c)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。
第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とからなる。なお、第2レンズ群G2において最も物体側に位置する負メニスカスレンズL21は、物体側のレンズ面を非球面形状とした非球面レンズである。
(Second embodiment)
FIGS. 4A, 4B, and 4C are cross-sectional views of the zoom optical system according to the second example of the present application in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. It is.
The variable magnification optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power.
The first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. Become.
The second lens group G2 has a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave negative lens L22, a biconvex positive lens L23, and a concave surface directed toward the object side, in order from the object side. And a negative meniscus lens L24. The negative meniscus lens L21 located closest to the object side in the second lens group G2 is an aspheric lens having an aspheric lens surface on the object side.

第3レンズ群G3は、物体側から順に、正の屈折力を有する第1部分群G31と、負の屈折力を有する第2部分群G32とからなる。
第1部分群G31は、物体側から順に、両凸形状の正レンズL31と、両凸形状の正レンズL32と両凹形状の負レンズL33との接合レンズとからなる。なお、正レンズL31と正レンズL32の間には、開口絞りSが備えられている。
第2部分群G32は、物体側から順に、両凹形状の負レンズL34と物体側に凸面を向けた正メニスカスレンズL35との接合レンズのみからなる。
第4レンズ群G4は、物体側から順に、両凸形状の正レンズL41と、両凸形状の正レンズL42と物体側に凹面を向けた負メニスカスレンズL43との接合レンズとからなる。なお、第4レンズ群G4において最も物体側に位置する正レンズL41は、物体側のレンズ面を非球面形状とした非球面レンズである。
The third lens group G3 includes, in order from the object side, a first partial group G31 having a positive refractive power and a second partial group G32 having a negative refractive power.
The first partial group G31 includes, in order from the object side, a biconvex positive lens L31, and a cemented lens of a biconvex positive lens L32 and a biconcave negative lens L33. An aperture stop S is provided between the positive lens L31 and the positive lens L32.
The second partial group G32 includes, in order from the object side, only a cemented lens of a biconcave negative lens L34 and a positive meniscus lens L35 having a convex surface directed toward the object side.
The fourth lens group G4 includes, in order from the object side, a biconvex positive lens L41, a cemented lens of a biconvex positive lens L42, and a negative meniscus lens L43 having a concave surface facing the object side. The positive lens L41 located closest to the object side in the fourth lens group G4 is an aspheric lens having an aspheric lens surface on the object side.

以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第2レンズ群G2との空気間隔が増大し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レンズ群G4との空気間隔が変化するように、第1レンズ群G1、第3レンズ群G3、及び第4レンズ群G4が光軸に沿って物体側へ移動し、第2レンズ群G2が光軸に沿って移動する。なお、この際、開口絞りSは第3レンズ群G3とともに移動する。
また本実施例に係る変倍光学系は、第2レンズ群G2を光軸に沿って物体側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。
また本実施例に係る変倍光学系は、手ぶれ等の発生時に第2部分群G32のみを防振レンズ群として光軸と直交する方向の成分を含むように移動させることにより防振を行う。
With the above-described configuration, in the variable magnification optical system according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 increases when the magnification is changed from the wide-angle end state to the telephoto end state. The first lens group G1 and the third lens group G3 so that the air gap between the second lens group G2 and the third lens group G3 decreases and the air gap between the third lens group G3 and the fourth lens group G4 changes. , And the fourth lens group G4 moves to the object side along the optical axis, and the second lens group G2 moves along the optical axis. At this time, the aperture stop S moves together with the third lens group G3.
In the variable power optical system according to the present embodiment, the second lens group G2 is moved to the object side along the optical axis, thereby focusing from an object at infinity to a near object.
In addition, the zoom optical system according to the present embodiment performs image stabilization by moving only the second partial group G32 as an image stabilization lens group so as to include a component in a direction orthogonal to the optical axis when camera shake or the like occurs.

以下の表2に、本実施例に係る変倍光学系の諸元の値を掲げる。
ここで、本実施例に係る変倍光学系は、広角端状態において防振係数が−0.61、焦点距離が10.3(mm)であるため、0.99°の回転ぶれを補正するための防振レンズ群の移動量は0.28(mm)となる。また、望遠端状態においては防振係数が−1.42、焦点距離が97.0(mm)であるため、0.32°の回転ぶれを補正するための防振レンズ群の移動量は0.38(mm)となる。
Table 2 below provides values of specifications of the variable magnification optical system according to the present example.
Here, since the variable magnification optical system according to the present example has a vibration isolation coefficient of −0.61 and a focal length of 10.3 (mm) in the wide-angle end state, the rotation blur of 0.99 ° is corrected. Therefore, the movement amount of the anti-vibration lens group is 0.28 (mm). In the telephoto end state, the image stabilization coefficient is −1.42 and the focal length is 97.0 (mm). Therefore, the amount of movement of the image stabilization lens group for correcting the rotation blur of 0.32 ° is 0. .38 (mm).

(表2)第2実施例
[面データ]
面番号 r d nd νd
物面 ∞
1 214.935 1.600 1.953660 30.27
2 60.293 6.140 1.497820 82.51
3 -216.386 0.100 1.000000
4 59.192 4.825 1.810230 46.17
5 516.132 可変 1.000000

*6 32.741 1.200 1.882997 40.76
7 8.577 4.007 1.000000
8 -15.726 1.200 1.839050 43.75
9 46.418 0.100 1.000000
10 21.908 3.623 1.846660 23.78
11 -16.185 0.601 1.000000
12 -11.861 1.200 1.882997 40.76
13 -33.094 可変 1.000000

14 24.800 2.781 1.754999 52.31
15 -39.736 0.500 1.000000
16(絞りS) ∞ 1.600 1.000000
17 14.646 3.397 1.497820 82.51
18 -19.677 1.200 1.852045 25.40
19 69.922 2.144 1.000000
20 -879.676 1.200 1.802688 46.87
21 8.771 2.765 1.876437 36.60
22 23.971 可変 1.000000

*23 17.538 3.382 1.497820 82.51
24 -22.122 0.100 1.000000
25 712.073 4.071 1.625207 37.14
26 -8.262 1.200 1.882997 40.76
27 -97.309 BF 1.000000
像面 ∞

[非球面データ]
面番号 κ A4 A6 A8 A10
6 1 1.66E-05 1.53E-07 -4.44E-09 5.56E-11
23 1 -5.70E-05 6.19E-07

[各種データ]
変倍比 9.42

W M T
f 10.30 49.99 96.98
FNO 3.50 5.20 5.67
2ω 79.71° 17.90° 9.37°
Y 8.190 8.190 8.190
TL 89.39 132.08 150.34
BF 13.54 36.00 44.01

W M T
d5 2.317 38.392 51.572
d13 18.962 5.444 2.400
d22 5.643 3.306 3.427

[レンズ群データ]
群 始面 f
1 1 86.9
2 6 -9.6
3 14 21.2
4 23 31.0

[条件式対応値]
(1) f1/(−f2) = 9.09
(2) f3/f4 = 0.69
(3) f1/f3 = 4.10
(4) f1/f4 = 2.81
(5) |f32|/f1 = 0.40
(6) (−f2)/f3 = 0.45
(Table 2) Second Example
[Surface data]
Surface number r d nd νd
Object ∞
1 214.935 1.600 1.953660 30.27
2 60.293 6.140 1.497820 82.51
3 -216.386 0.100 1.000000
4 59.192 4.825 1.810230 46.17
5 516.132 Variable 1.000000

* 6 32.741 1.200 1.882997 40.76
7 8.577 4.007 1.000000
8 -15.726 1.200 1.839050 43.75
9 46.418 0.100 1.000000
10 21.908 3.623 1.846660 23.78
11 -16.185 0.601 1.000000
12 -11.861 1.200 1.882997 40.76
13 -33.094 Variable 1.000000

14 24.800 2.781 1.754999 52.31
15 -39.736 0.500 1.000000
16 (Aperture S) ∞ 1.600 1.000000
17 14.646 3.397 1.497820 82.51
18 -19.677 1.200 1.852045 25.40
19 69.922 2.144 1.000000
20 -879.676 1.200 1.802688 46.87
21 8.771 2.765 1.876437 36.60
22 23.971 Variable 1.000000

* 23 17.538 3.382 1.497820 82.51
24 -22.122 0.100 1.000000
25 712.073 4.071 1.625207 37.14
26 -8.262 1.200 1.882997 40.76
27 -97.309 BF 1.000000
Image plane ∞

[Aspherical data]
Surface number κ A4 A6 A8 A10
6 1 1.66E-05 1.53E-07 -4.44E-09 5.56E-11
23 1 -5.70E-05 6.19E-07

[Various data]
Scaling ratio 9.42

W M T
f 10.30 49.99 96.98
FNO 3.50 5.20 5.67
2ω 79.71 ° 17.90 ° 9.37 °
Y 8.190 8.190 8.190
TL 89.39 132.08 150.34
BF 13.54 36.00 44.01

W M T
d5 2.317 38.392 51.572
d13 18.962 5.444 2.400
d22 5.643 3.306 3.427

[Lens group data]
Group start surface f
1 1 86.9
2 6 -9.6
3 14 21.2
4 23 31.0

[Conditional expression values]
(1) f1 / (-f2) = 9.09
(2) f3 / f4 = 0.69
(3) f1 / f3 = 4.10
(4) f1 / f4 = 2.81
(5) | f32 | /f1=0.40
(6) (−f2) /f3=0.45

図5(a)、図5(b)、及び図5(c)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
図6(a)、及び図6(b)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態における無限遠物体合焦時に0.99°の回転ぶれに対して防振を行った際のメリディオナル横収差図、及び望遠端状態における無限遠物体合焦時に0.32°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。
各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに防振時にも優れた結像性能を有していることがわかる。
FIGS. 5 (a), 5 (b), and 5 (c) respectively show infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the second example of the present application. It is an aberration diagram at the time of focusing on an object.
6 (a) and 6 (b) respectively show image stabilization against rotational shake of 0.99 ° when focusing on an object at infinity in the wide-angle end state of the variable magnification optical system according to the second example of the present application. FIG. 6 is a meridional lateral aberration diagram when performing the zooming, and a meridional lateral aberration diagram when performing anti-vibration against 0.32 ° rotation blur when focusing on an object at infinity in the telephoto end state.
From each aberration diagram, the variable magnification optical system according to the present example has excellent imaging performance by satisfactorily correcting various aberrations from the wide-angle end state to the telephoto end state. It can be seen that it has image performance.

(第3実施例)
図7(a)、図7(b)、及び図7(c)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。
第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とからなる。なお、第2レンズ群G2において最も物体側に位置する負メニスカスレンズL21は、物体側のレンズ面を非球面形状とした非球面レンズである。
(Third embodiment)
FIGS. 7A, 7B, and 7C are cross-sectional views of the zoom optical system according to the third example of the present application in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. It is.
The variable magnification optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power.
The first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. Become.
The second lens group G2 has a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave negative lens L22, a biconvex positive lens L23, and a concave surface directed toward the object side, in order from the object side. And a negative meniscus lens L24. The negative meniscus lens L21 located closest to the object side in the second lens group G2 is an aspheric lens having an aspheric lens surface on the object side.

第3レンズ群G3は、物体側から順に、正の屈折力を有する第1部分群G31と、負の屈折力を有する第2部分群G32とからなる。
第1部分群G31は、物体側から順に、両凸形状の正レンズL31と、両凸形状の正レンズL32と両凹形状の負レンズL33との接合レンズとからなる。なお、正レンズL31と正レンズL32の間には、開口絞りSが備えられている。
第2部分群G32は、物体側から順に、両凹形状の負レンズL34と物体側に凸面を向けた正メニスカスレンズL35との接合レンズのみからなる。
第4レンズ群G4は、物体側から順に、両凸形状の正レンズL41と、両凸形状の正レンズL42と物体側に凹面を向けた負メニスカスレンズL43との接合レンズとからなる。なお、第4レンズ群G4において最も物体側に位置する正レンズL41は、物体側のレンズ面を非球面形状とした非球面レンズである。
The third lens group G3 includes, in order from the object side, a first partial group G31 having a positive refractive power and a second partial group G32 having a negative refractive power.
The first partial group G31 includes, in order from the object side, a biconvex positive lens L31, and a cemented lens of a biconvex positive lens L32 and a biconcave negative lens L33. An aperture stop S is provided between the positive lens L31 and the positive lens L32.
The second partial group G32 includes, in order from the object side, only a cemented lens of a biconcave negative lens L34 and a positive meniscus lens L35 having a convex surface directed toward the object side.
The fourth lens group G4 includes, in order from the object side, a biconvex positive lens L41, a cemented lens of a biconvex positive lens L42, and a negative meniscus lens L43 having a concave surface facing the object side. The positive lens L41 located closest to the object side in the fourth lens group G4 is an aspheric lens having an aspheric lens surface on the object side.

以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第2レンズ群G2との空気間隔が増大し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レンズ群G4との空気間隔が変化するように、第1レンズ群G1、第3レンズ群G3、及び第4レンズ群G4が光軸に沿って物体側へ移動し、第2レンズ群G2が光軸に沿って移動する。なお、この際、開口絞りSは第3レンズ群G3とともに移動する。
また本実施例に係る変倍光学系は、第2レンズ群G2を光軸に沿って物体側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。
また本実施例に係る変倍光学系は、手ぶれ等の発生時に第2部分群G32のみを防振レンズ群として光軸と直交する方向の成分を含むように移動させることにより防振を行う。
With the above-described configuration, in the variable magnification optical system according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 increases when the magnification is changed from the wide-angle end state to the telephoto end state. The first lens group G1 and the third lens group G3 so that the air gap between the second lens group G2 and the third lens group G3 decreases and the air gap between the third lens group G3 and the fourth lens group G4 changes. , And the fourth lens group G4 moves to the object side along the optical axis, and the second lens group G2 moves along the optical axis. At this time, the aperture stop S moves together with the third lens group G3.
In the variable power optical system according to the present embodiment, the second lens group G2 is moved to the object side along the optical axis, thereby focusing from an object at infinity to a near object.
In addition, the zoom optical system according to the present embodiment performs image stabilization by moving only the second partial group G32 as an image stabilization lens group so as to include a component in a direction orthogonal to the optical axis when camera shake or the like occurs.

以下の表3に、本実施例に係る変倍光学系の諸元の値を掲げる。
ここで、本実施例に係る変倍光学系は、広角端状態において防振係数が−0.79、焦点距離が10.3(mm)であるため、0.60°の回転ぶれを補正するための防振レンズ群の移動量は0.14(mm)となる。また、望遠端状態においては防振係数が−1.74、焦点距離が97.0(mm)であるため、0.19°の回転ぶれを補正するための防振レンズ群の移動量は0.19(mm)となる。
Table 3 below lists values of specifications of the variable magnification optical system according to the present example.
Here, since the variable magnification optical system according to the present example has an anti-vibration coefficient of −0.79 and a focal length of 10.3 (mm) in the wide-angle end state, it corrects rotational shake of 0.60 °. Therefore, the movement amount of the anti-vibration lens group is 0.14 (mm). In the telephoto end state, the image stabilization coefficient is -1.74 and the focal length is 97.0 (mm), so the amount of movement of the image stabilization lens group for correcting the rotation blur of 0.19 ° is 0. 19 (mm).

(表3)第3実施例
[面データ]
面番号 r d nd νd
物面 ∞
1 167.891 1.600 1.950000 29.37
2 69.549 5.925 1.497820 82.51
3 -183.905 0.100 1.000000
4 56.184 4.388 1.729157 54.66
5 198.836 可変 1.000000

*6 41.829 1.200 1.882997 40.76
7 8.946 3.756 1.000000
8 -17.431 1.200 1.864742 41.92
9 38.456 0.100 1.000000
10 20.545 3.705 1.846660 23.78
11 -15.937 0.629 1.000000
12 -11.749 1.200 1.882997 40.76
13 -35.044 可変 1.000000

14 24.738 2.730 1.754999 52.31
15 -36.975 0.500 1.000000
16(絞りS) ∞ 1.600 1.000000
17 14.497 3.278 1.497820 82.51
18 -19.591 1.200 1.851149 25.12
19 97.099 2.184 1.000000
20 -105.628 1.200 1.875733 41.21
21 8.299 2.780 1.939960 33.32
22 26.001 可変 1.000000

*23 20.461 3.205 1.497820 82.51
24 -22.765 0.100 1.000000
25 175.793 3.930 1.616359 38.32
26 -9.172 1.200 1.883682 40.65
27 -65.712 BF 1.000000
像面 ∞

[非球面データ]
面番号 κ A4 A6 A8 A10
6 1 1.28E-05 5.16E-08 -8.45E-10 2.36E-11
23 1 -5.71E-05 2.70E-07

[各種データ]
変倍比 9.42

W M T
f 10.30 50.00 97.00
FNO 3.50 5.20 5.60
2ω 79.71° 17.90° 9.37°
Y 8.190 8.190 8.190
TL 89.38 132.39 150.35
BF 14.01 36.64 44.30

W M T
d5 2.319 39.217 52.463
d13 19.087 5.422 2.400
d22 6.245 3.394 3.481

[レンズ群データ]
群 始面 f
1 1 88.3
2 6 -9.4
3 14 21.1
4 23 28.4

[条件式対応値]
(1) f1/(−f2) = 9.41
(2) f3/f4 = 0.74
(3) f1/f3 = 4.18
(4) f1/f4 = 3.11
(5) |f32|/f1 = 0.31
(6) (−f2)/f3 = 0.44
(Table 3) Third Example
[Surface data]
Surface number r d nd νd
Object ∞
1 167.891 1.600 1.950000 29.37
2 69.549 5.925 1.497820 82.51
3 -183.905 0.100 1.000000
4 56.184 4.388 1.729157 54.66
5 198.836 Variable 1.000000

* 6 41.829 1.200 1.882997 40.76
7 8.946 3.756 1.000000
8 -17.431 1.200 1.864742 41.92
9 38.456 0.100 1.000000
10 20.545 3.705 1.846660 23.78
11 -15.937 0.629 1.000000
12 -11.749 1.200 1.882997 40.76
13 -35.044 Variable 1.000000

14 24.738 2.730 1.754999 52.31
15 -36.975 0.500 1.000000
16 (Aperture S) ∞ 1.600 1.000000
17 14.497 3.278 1.497820 82.51
18 -19.591 1.200 1.851149 25.12
19 97.099 2.184 1.000000
20 -105.628 1.200 1.875733 41.21
21 8.299 2.780 1.939960 33.32
22 26.001 Variable 1.000000

* 23 20.461 3.205 1.497820 82.51
24 -22.765 0.100 1.000000
25 175.793 3.930 1.616359 38.32
26 -9.172 1.200 1.883682 40.65
27 -65.712 BF 1.000000
Image plane ∞

[Aspherical data]
Surface number κ A4 A6 A8 A10
6 1 1.28E-05 5.16E-08 -8.45E-10 2.36E-11
23 1 -5.71E-05 2.70E-07

[Various data]
Scaling ratio 9.42

W M T
f 10.30 50.00 97.00
FNO 3.50 5.20 5.60
2ω 79.71 ° 17.90 ° 9.37 °
Y 8.190 8.190 8.190
TL 89.38 132.39 150.35
BF 14.01 36.64 44.30

W M T
d5 2.319 39.217 52.463
d13 19.087 5.422 2.400
d22 6.245 3.394 3.481

[Lens group data]
Group start surface f
1 1 88.3
2 6 -9.4
3 14 21.1
4 23 28.4

[Conditional expression values]
(1) f1 / (− f2) = 9.41
(2) f3 / f4 = 0.74
(3) f1 / f3 = 4.18
(4) f1 / f4 = 3.11
(5) | f32 | /f1=0.31
(6) (−f2) /f3=0.44

図8(a)、図8(b)、及び図8(c)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
図9(a)、及び図9(b)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態における無限遠物体合焦時に0.60°の回転ぶれに対して防振を行った際のメリディオナル横収差図、及び望遠端状態における無限遠物体合焦時に0.19°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。
各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに防振時にも優れた結像性能を有していることがわかる。
8 (a), 8 (b), and 8 (c) respectively show infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the third example of the present application. It is an aberration diagram at the time of focusing on an object.
9 (a) and 9 (b) respectively show anti-vibration against rotation blur of 0.60 ° when focusing on an object at infinity in the wide-angle end state of the variable magnification optical system according to the third example of the present application. FIG. 6 is a meridional lateral aberration diagram when performing the zooming, and a meridional lateral aberration diagram when performing anti-vibration with respect to a rotational shake of 0.19 ° when focusing on an object at infinity in the telephoto end state.
From each aberration diagram, the variable magnification optical system according to the present example has excellent imaging performance by satisfactorily correcting various aberrations from the wide-angle end state to the telephoto end state. It can be seen that it has image performance.

(第4実施例)
図10(a)、図10(b)、及び図10(c)はそれぞれ、本願の第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。
第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とからなる。なお、第2レンズ群G2において最も物体側に位置する負メニスカスレンズL21は、物体側のレンズ面を非球面形状とした非球面レンズである。
(Fourth embodiment)
FIGS. 10A, 10B, and 10C are cross-sectional views of the zoom optical system according to the fourth example of the present application in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. It is.
The variable magnification optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power.
The first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. Become.
The second lens group G2 has a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave negative lens L22, a biconvex positive lens L23, and a concave surface directed toward the object side, in order from the object side. And a negative meniscus lens L24. The negative meniscus lens L21 located closest to the object side in the second lens group G2 is an aspheric lens having an aspheric lens surface on the object side.

第3レンズ群G3は、物体側から順に、正の屈折力を有する第1部分群G31と、負の屈折力を有する第2部分群G32とからなる。
第1部分群G31は、物体側から順に、両凸形状の正レンズL31と、両凸形状の正レンズL32と両凹形状の負レンズL33との接合レンズとからなる。なお、正レンズL31と正レンズL32の間には、開口絞りSが備えられている。
第2部分群G32は、物体側から順に、両凹形状の負レンズL34と物体側に凸面を向けた正メニスカスレンズL35との接合レンズのみからなる。
第4レンズ群G4は、物体側から順に、両凸形状の正レンズL41と、両凸形状の正レンズL42と物体側に凹面を向けた負メニスカスレンズL43との接合レンズとからなる。なお、第4レンズ群G4において最も物体側に位置する正レンズL41は、物体側のレンズ面を非球面形状とした非球面レンズである。
The third lens group G3 includes, in order from the object side, a first partial group G31 having a positive refractive power and a second partial group G32 having a negative refractive power.
The first partial group G31 includes, in order from the object side, a biconvex positive lens L31, and a cemented lens of a biconvex positive lens L32 and a biconcave negative lens L33. An aperture stop S is provided between the positive lens L31 and the positive lens L32.
The second partial group G32 includes, in order from the object side, only a cemented lens of a biconcave negative lens L34 and a positive meniscus lens L35 having a convex surface directed toward the object side.
The fourth lens group G4 includes, in order from the object side, a biconvex positive lens L41, a cemented lens of a biconvex positive lens L42, and a negative meniscus lens L43 having a concave surface facing the object side. The positive lens L41 located closest to the object side in the fourth lens group G4 is an aspheric lens having an aspheric lens surface on the object side.

以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第2レンズ群G2との空気間隔が増大し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レンズ群G4との空気間隔が変化するように、第1レンズ群G1、第3レンズ群G3、及び第4レンズ群G4が光軸に沿って物体側へ移動し、第2レンズ群G2が光軸に沿って移動する。なお、この際、開口絞りSは第3レンズ群G3とともに移動する。
また本実施例に係る変倍光学系は、第2レンズ群G2を光軸に沿って物体側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。
また本実施例に係る変倍光学系は、手ぶれ等の発生時に第2部分群G32のみを防振レンズ群として光軸と直交する方向の成分を含むように移動させることにより防振を行う。
With the above-described configuration, in the variable magnification optical system according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 increases when the magnification is changed from the wide-angle end state to the telephoto end state. The first lens group G1 and the third lens group G3 so that the air gap between the second lens group G2 and the third lens group G3 decreases and the air gap between the third lens group G3 and the fourth lens group G4 changes. , And the fourth lens group G4 moves to the object side along the optical axis, and the second lens group G2 moves along the optical axis. At this time, the aperture stop S moves together with the third lens group G3.
In the variable power optical system according to the present embodiment, the second lens group G2 is moved to the object side along the optical axis, thereby focusing from an object at infinity to a near object.
In addition, the zoom optical system according to the present embodiment performs image stabilization by moving only the second partial group G32 as an image stabilization lens group so as to include a component in a direction orthogonal to the optical axis when camera shake or the like occurs.

以下の表4に、本実施例に係る変倍光学系の諸元の値を掲げる。
ここで、本実施例に係る変倍光学系は、広角端状態において防振係数が−0.75、焦点距離が10.3(mm)であるため、0.60°の回転ぶれを補正するための防振レンズ群の移動量は0.14(mm)となる。また、望遠端状態においては防振係数が−1.62、焦点距離が97.0(mm)であるため、0.19°の回転ぶれを補正するための防振レンズ群の移動量は0.20(mm)となる。
Table 4 below lists values of specifications of the variable magnification optical system according to the present example.
Here, since the variable magnification optical system according to the present example has an anti-vibration coefficient of −0.75 and a focal length of 10.3 (mm) in the wide-angle end state, it corrects rotational shake of 0.60 °. Therefore, the movement amount of the anti-vibration lens group is 0.14 (mm). Further, in the telephoto end state, since the image stabilization coefficient is −1.62 and the focal length is 97.0 (mm), the movement amount of the image stabilization lens group for correcting the rotation blur of 0.19 ° is 0. .20 (mm).

(表4)第4実施例
[面データ]
面番号 r d nd νd
物面 ∞
1 134.035 1.600 1.995973 28.75
2 56.255 5.824 1.497820 82.51
3 -238.373 0.100 1.000000
4 50.086 4.577 1.772927 50.05
5 242.611 可変 1.000000

*6 57.243 1.200 1.878662 37.67
7 8.942 3.645 1.000000
8 -17.572 1.200 1.882997 40.76
9 43.025 0.100 1.000000
10 20.980 3.779 1.810399 22.65
11 -15.077 0.580 1.000000
12 -11.668 1.200 1.882997 40.76
13 -30.843 可変 1.000000

14 22.438 2.768 1.754910 52.33
15 -41.025 0.500 1.000000
16(絞りS) ∞ 1.600 1.000000
17 14.301 3.206 1.497820 82.51
18 -21.553 1.200 1.970527 23.71
19 96.060 2.155 1.000000
20 -149.641 1.200 1.882794 40.61
21 10.106 2.398 2.002300 28.33
22 24.619 可変 1.000000

*23 20.677 3.184 1.593190 67.90
24 -23.793 0.100 1.000000
25 610.600 3.859 1.605665 39.91
26 -8.915 1.200 1.890148 39.59
27 -90.902 BF 1.000000
像面 ∞

[非球面データ]
面番号 κ A4 A6 A8 A10
6 1 1.55E-05 -9.41E-08 2.04E-09 -1.22E-12
23 1 -4.75E-05 3.47E-07

[各種データ]
変倍比 9.42

W M T
f 10.30 50.00 97.01
FNO 3.50 5.20 5.60
2ω 79.71° 17.90° 9.37°
Y 8.190 8.190 8.190
TL 89.33 125.89 140.87
BF 14.18 36.03 42.68

W M T
d5 2.328 33.549 45.003
d13 19.446 5.642 2.400
d22 6.199 3.500 3.615

[レンズ群データ]
群 始面 f
1 1 76.4
2 6 -9.3
3 14 21.8
4 23 28.5

[条件式対応値]
(1) f1/(−f2) = 8.25
(2) f3/f4 = 0.76
(3) f1/f3 = 3.51
(4) f1/f4 = 2.68
(5) |f32|/f1 = 0.38
(6) (−f2)/f3 = 0.43
(Table 4) Fourth Example
[Surface data]
Surface number r d nd νd
Object ∞
1 134.035 1.600 1.995973 28.75
2 56.255 5.824 1.497820 82.51
3 -238.373 0.100 1.000000
4 50.086 4.577 1.772927 50.05
5 242.611 Variable 1.000000

* 6 57.243 1.200 1.878662 37.67
7 8.942 3.645 1.000000
8 -17.572 1.200 1.882997 40.76
9 43.025 0.100 1.000000
10 20.980 3.779 1.810399 22.65
11 -15.077 0.580 1.000000
12 -11.668 1.200 1.882997 40.76
13 -30.843 Variable 1.000000

14 22.438 2.768 1.754910 52.33
15 -41.025 0.500 1.000000
16 (Aperture S) ∞ 1.600 1.000000
17 14.301 3.206 1.497820 82.51
18 -21.553 1.200 1.970527 23.71
19 96.060 2.155 1.000000
20 -149.641 1.200 1.882794 40.61
21 10.106 2.398 2.002300 28.33
22 24.619 Variable 1.000000

* 23 20.677 3.184 1.593190 67.90
24 -23.793 0.100 1.000000
25 610.600 3.859 1.605665 39.91
26 -8.915 1.200 1.890148 39.59
27 -90.902 BF 1.000000
Image plane ∞

[Aspherical data]
Surface number κ A4 A6 A8 A10
6 1 1.55E-05 -9.41E-08 2.04E-09 -1.22E-12
23 1 -4.75E-05 3.47E-07

[Various data]
Scaling ratio 9.42

W M T
f 10.30 50.00 97.01
FNO 3.50 5.20 5.60
2ω 79.71 ° 17.90 ° 9.37 °
Y 8.190 8.190 8.190
TL 89.33 125.89 140.87
BF 14.18 36.03 42.68

W M T
d5 2.328 33.549 45.003
d13 19.446 5.642 2.400
d22 6.199 3.500 3.615

[Lens group data]
Group start surface f
1 1 76.4
2 6 -9.3
3 14 21.8
4 23 28.5

[Conditional expression values]
(1) f1 / (− f2) = 8.25
(2) f3 / f4 = 0.76
(3) f1 / f3 = 3.51
(4) f1 / f4 = 2.68
(5) | f32 | /f1=0.38
(6) (−f2) /f3=0.43

図11(a)、図11(b)、及び図11(c)はそれぞれ、本願の第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
図12(a)、及び図12(b)はそれぞれ、本願の第4実施例に係る変倍光学系の広角端状態における無限遠物体合焦時に0.60°の回転ぶれに対して防振を行った際のメリディオナル横収差図、及び望遠端状態における無限遠物体合焦時に0.19°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。
各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに防振時にも優れた結像性能を有していることがわかる。
11 (a), 11 (b), and 11 (c) respectively show infinity in the wide-angle end state, intermediate focal length state, and telephoto end state of the variable magnification optical system according to the fourth example of the present application. It is an aberration diagram at the time of focusing on an object.
FIGS. 12 (a) and 12 (b) respectively show image stabilization against rotation blur of 0.60 ° when focusing on an object at infinity in the wide-angle end state of the variable magnification optical system according to the fourth example of the present application. FIG. 6 is a meridional lateral aberration diagram when performing the zooming, and a meridional lateral aberration diagram when performing anti-vibration with respect to a rotational shake of 0.19 ° when focusing on an object at infinity in the telephoto end state.
From each aberration diagram, the variable magnification optical system according to the present example has excellent imaging performance by satisfactorily correcting various aberrations from the wide-angle end state to the telephoto end state. It can be seen that it has image performance.

(第5実施例)
図13(a)、図13(b)、及び図13(c)はそれぞれ、本願の第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。
第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とからなる。なお、第2レンズ群G2において最も物体側に位置する負メニスカスレンズL21は、物体側のレンズ面を非球面形状とした非球面レンズである。
(5th Example)
FIGS. 13A, 13B, and 13C are cross-sectional views of the zoom optical system according to the fifth example of the present application in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. It is.
The variable magnification optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power.
The first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. Become.
The second lens group G2 has a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave negative lens L22, a biconvex positive lens L23, and a concave surface directed toward the object side, in order from the object side. And a negative meniscus lens L24. The negative meniscus lens L21 located closest to the object side in the second lens group G2 is an aspheric lens having an aspheric lens surface on the object side.

第3レンズ群G3は、物体側から順に、正の屈折力を有する第1部分群G31と、負の屈折力を有する第2部分群G32と、負の屈折力を有する第3部分群G33とからなる。
第1部分群G31は、物体側から順に、両凸形状の正レンズL31と、両凸形状の正レンズL32と物体側に凹面を向けた負メニスカスレンズL33との接合レンズとからなる。なお、正レンズL31と正レンズL32の間には、開口絞りSが備えられている。
第2部分群G32は、物体側から順に、両凹形状の負レンズL34と物体側に凸面を向けた正メニスカスレンズL35との接合レンズのみからなる。
第3部分群G33は、両凹形状の負レンズL36のみからなる。
第4レンズ群G4は、物体側から順に、両凸形状の正レンズL41と、物体側に凹面を向けた正メニスカスレンズL42と物体側に凹面を向けた負メニスカスレンズL43との接合レンズとからなる。なお、第4レンズ群G4において最も物体側に位置する正レンズL41は、物体側のレンズ面を非球面形状とした非球面レンズである。
The third lens group G3 includes, in order from the object side, a first partial group G31 having a positive refractive power, a second partial group G32 having a negative refractive power, and a third partial group G33 having a negative refractive power. Consists of.
The first partial group G31 includes, in order from the object side, a biconvex positive lens L31, a cemented lens of a biconvex positive lens L32, and a negative meniscus lens L33 having a concave surface facing the object side. An aperture stop S is provided between the positive lens L31 and the positive lens L32.
The second partial group G32 includes, in order from the object side, only a cemented lens of a biconcave negative lens L34 and a positive meniscus lens L35 having a convex surface directed toward the object side.
The third partial group G33 includes only a biconcave negative lens L36.
The fourth lens group G4 includes, in order from the object side, a biconvex positive lens L41, and a cemented lens of a positive meniscus lens L42 having a concave surface facing the object side and a negative meniscus lens L43 having a concave surface facing the object side. Become. The positive lens L41 located closest to the object side in the fourth lens group G4 is an aspheric lens having an aspheric lens surface on the object side.

以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第2レンズ群G2との空気間隔が増大し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レンズ群G4との空気間隔が変化するように、第1レンズ群G1、第3レンズ群G3、及び第4レンズ群G4が光軸に沿って物体側へ移動し、第2レンズ群G2が光軸に沿って移動する。なお、この際、開口絞りSは第3レンズ群G3とともに移動する。
また本実施例に係る変倍光学系は、第2レンズ群G2を光軸に沿って物体側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。
また本実施例に係る変倍光学系は、手ぶれ等の発生時に第2部分群G32のみを防振レンズ群として光軸と直交する方向の成分を含むように移動させることにより防振を行う。
With the above-described configuration, in the variable magnification optical system according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 increases when the magnification is changed from the wide-angle end state to the telephoto end state. The first lens group G1 and the third lens group G3 so that the air gap between the second lens group G2 and the third lens group G3 decreases and the air gap between the third lens group G3 and the fourth lens group G4 changes. , And the fourth lens group G4 moves to the object side along the optical axis, and the second lens group G2 moves along the optical axis. At this time, the aperture stop S moves together with the third lens group G3.
In the variable power optical system according to the present embodiment, the second lens group G2 is moved to the object side along the optical axis, thereby focusing from an object at infinity to a near object.
In addition, the zoom optical system according to the present embodiment performs image stabilization by moving only the second partial group G32 as an image stabilization lens group so as to include a component in a direction orthogonal to the optical axis when camera shake or the like occurs.

以下の表5に、本実施例に係る変倍光学系の諸元の値を掲げる。
ここで、本実施例に係る変倍光学系は、広角端状態において防振係数が−0.67、焦点距離が10.3(mm)であるため、0.60°の回転ぶれを補正するための防振レンズ群の移動量は0.16(mm)となる。また、望遠端状態においては防振係数が−1.45、焦点距離が97.0(mm)であるため、0.19°の回転ぶれを補正するための防振レンズ群の移動量は0.23(mm)となる。
Table 5 below provides values of specifications of the variable magnification optical system according to the present example.
Here, since the variable magnification optical system according to the present example has an anti-vibration coefficient of −0.67 and a focal length of 10.3 (mm) in the wide-angle end state, the rotational shake of 0.60 ° is corrected. Therefore, the movement amount of the anti-vibration lens group is 0.16 (mm). In the telephoto end state, the image stabilization coefficient is −1.45 and the focal length is 97.0 (mm). Therefore, the amount of movement of the image stabilization lens group for correcting the rotation blur of 0.19 ° is 0. .23 (mm).

(表5)第5実施例
[面データ]
面番号 r d nd νd
物面 ∞
1 121.433 1.600 2.000942 28.06
2 56.973 5.569 1.497820 82.51
3 -262.775 0.100 1.000000
4 50.394 4.472 1.757194 52.03
5 230.587 可変 1.000000

*6 60.994 1.200 1.874937 35.34
7 8.965 3.574 1.000000
8 -18.928 1.200 1.882997 40.76
9 40.750 0.100 1.000000
10 20.638 3.681 1.831265 21.76
11 -16.433 0.539 1.000000
12 -12.501 1.200 1.882997 40.76
13 -37.209 可変 1.000000

14 22.437 2.755 1.747287 52.75
15 -40.608 0.500 1.000000
16(絞りS) ∞ 1.600 1.000000
17 14.529 3.193 1.497820 82.51
18 -21.393 1.200 1.959603 22.45
19 -244.270 2.040 1.000000
20 -109.243 1.200 1.882997 40.76
21 11.581 2.339 1.964773 29.62
22 31.145 1.462 1.000000
23 -57.166 1.000 1.875553 35.71
24 96.176 可変 1.000000

*25 19.938 3.197 1.593190 67.90
26 -24.778 0.100 1.000000
27 -825.810 3.984 1.614364 38.61
28 -8.826 1.200 1.891733 39.34
29 -44.568 BF 1.000000
像面 ∞

[非球面データ]
面番号 κ A4 A6 A8 A10
6 1 1.18E-05 -7.24E-08 6.90E-10 5.95E-12
25 1 -6.37E-05 4.69E-07

[各種データ]
変倍比 9.42

W M T
f 10.30 50.00 97.00
FNO 3.50 5.20 5.59
2ω 79.72° 18.05° 9.42°
Y 8.190 8.190 8.190
TL 89.33 125.73 140.86
BF 13.31 35.58 42.88

W M T
d5 2.329 33.140 44.235
d13 19.776 5.702 2.400
d24 4.905 2.300 2.341

[レンズ群データ]
群 始面 f
1 1 75.9
2 6 -9.2
3 14 20.7
4 25 23.8

[条件式対応値]
(1) f1/(−f2) = 8.24
(2) f3/f4 = 0.87
(3) f1/f3 = 3.66
(4) f1/f4 = 3.19
(5) |f32|/f1 = 0.41
(6) (−f2)/f3 = 0.44
(Table 5) Fifth Example
[Surface data]
Surface number r d nd νd
Object ∞
1 121.433 1.600 2.000942 28.06
2 56.973 5.569 1.497820 82.51
3 -262.775 0.100 1.000000
4 50.394 4.472 1.757194 52.03
5 230.587 Variable 1.000000

* 6 60.994 1.200 1.874937 35.34
7 8.965 3.574 1.000000
8 -18.928 1.200 1.882997 40.76
9 40.750 0.100 1.000000
10 20.638 3.681 1.831265 21.76
11 -16.433 0.539 1.000000
12 -12.501 1.200 1.882997 40.76
13 -37.209 Variable 1.000000

14 22.437 2.755 1.747287 52.75
15 -40.608 0.500 1.000000
16 (Aperture S) ∞ 1.600 1.000000
17 14.529 3.193 1.497820 82.51
18 -21.393 1.200 1.959603 22.45
19 -244.270 2.040 1.000000
20 -109.243 1.200 1.882997 40.76
21 11.581 2.339 1.964773 29.62
22 31.145 1.462 1.000000
23 -57.166 1.000 1.875553 35.71
24 96.176 Variable 1.000000

* 25 19.938 3.197 1.593190 67.90
26 -24.778 0.100 1.000000
27 -825.810 3.984 1.614364 38.61
28 -8.826 1.200 1.891733 39.34
29 -44.568 BF 1.000000
Image plane ∞

[Aspherical data]
Surface number κ A4 A6 A8 A10
6 1 1.18E-05 -7.24E-08 6.90E-10 5.95E-12
25 1 -6.37E-05 4.69E-07

[Various data]
Scaling ratio 9.42

W M T
f 10.30 50.00 97.00
FNO 3.50 5.20 5.59
2ω 79.72 ° 18.05 ° 9.42 °
Y 8.190 8.190 8.190
TL 89.33 125.73 140.86
BF 13.31 35.58 42.88

W M T
d5 2.329 33.140 44.235
d13 19.776 5.702 2.400
d24 4.905 2.300 2.341

[Lens group data]
Group start surface f
1 1 75.9
2 6 -9.2
3 14 20.7
4 25 23.8

[Conditional expression values]
(1) f1 / (-f2) = 8.24
(2) f3 / f4 = 0.87
(3) f1 / f3 = 3.66
(4) f1 / f4 = 3.19
(5) | f32 | /f1=0.41
(6) (−f2) /f3=0.44

図14(a)、図14(b)、及び図14(c)はそれぞれ、本願の第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
図15(a)、及び図15(b)はそれぞれ、本願の第5実施例に係る変倍光学系の広角端状態における無限遠物体合焦時に0.60°の回転ぶれに対して防振を行った際のメリディオナル横収差図、及び望遠端状態における無限遠物体合焦時に0.19°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。
各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに防振時にも優れた結像性能を有していることがわかる。
FIGS. 14 (a), 14 (b), and 14 (c) respectively show infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fifth example of the present application. It is an aberration diagram at the time of focusing on an object.
15 (a) and 15 (b) are each used to prevent vibration against rotational shake of 0.60 ° during focusing on an object at infinity in the wide-angle end state of the variable magnification optical system according to the fifth example of the present application. FIG. 6 is a meridional lateral aberration diagram when performing the zooming, and a meridional lateral aberration diagram when performing anti-vibration with respect to a rotational shake of 0.19 ° when focusing on an object at infinity in the telephoto end state.
From each aberration diagram, the variable magnification optical system according to the present example has excellent imaging performance by satisfactorily correcting various aberrations from the wide-angle end state to the telephoto end state. It can be seen that it has image performance.

(第6実施例)
図16(a)、図16(b)、及び図16(c)はそれぞれ、本願の第6実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5とから構成されている。
第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、物体側に凹面を向けた負メニスカスレンズL24とからなる。なお、第2レンズ群G2において最も物体側に位置する負メニスカスレンズL21は、物体側のレンズ面を非球面形状とした非球面レンズである。
(Sixth embodiment)
16A, 16B, and 16C are cross-sectional views of the zoom optical system according to the sixth example of the present application in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. It is.
The variable magnification optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power and a fifth lens group G5 having a negative refractive power.
The first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. Become.
The second lens group G2 has a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave negative lens L22, a biconvex positive lens L23, and a concave surface directed toward the object side, in order from the object side. And a negative meniscus lens L24. The negative meniscus lens L21 located closest to the object side in the second lens group G2 is an aspheric lens having an aspheric lens surface on the object side.

第3レンズ群G3は、物体側から順に、正の屈折力を有する第1部分群G31と、負の屈折力を有する第2部分群G32とからなる。
第1部分群G31は、物体側から順に、両凸形状の正レンズL31と、両凸形状の正レンズL32と両凹形状の負レンズL33との接合レンズとからなる。なお、正レンズL31と正レンズL32の間には、開口絞りSが備えられている。
第2部分群G32は、物体側から順に、両凹形状の負レンズL34と物体側に凸面を向けた正メニスカスレンズL35との接合レンズのみからなる。
第4レンズ群G4は、両凸形状の正レンズL41のみからなる。なお、正レンズL41は、物体側のレンズ面を非球面形状とした非球面レンズである。
第5レンズ群G5は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL51と物体側に凹面を向けた負メニスカスレンズL52との接合レンズのみからなる。
The third lens group G3 includes, in order from the object side, a first partial group G31 having a positive refractive power and a second partial group G32 having a negative refractive power.
The first partial group G31 includes, in order from the object side, a biconvex positive lens L31, and a cemented lens of a biconvex positive lens L32 and a biconcave negative lens L33. An aperture stop S is provided between the positive lens L31 and the positive lens L32.
The second partial group G32 includes, in order from the object side, only a cemented lens of a biconcave negative lens L34 and a positive meniscus lens L35 having a convex surface directed toward the object side.
The fourth lens group G4 comprises solely a biconvex positive lens L41. The positive lens L41 is an aspheric lens having an aspheric lens surface on the object side.
The fifth lens group G5 comprises, in order from the object side, only a cemented lens of a positive meniscus lens L51 having a concave surface directed toward the object side and a negative meniscus lens L52 having a concave surface directed toward the object side.

以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第2レンズ群G2との空気間隔が増大し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レンズ群G4との空気間隔が減少し、第4レンズ群G4と第5レンズ群G5との空気間隔が増大するように、第1レンズ群G1、第3レンズ群G3、第4レンズ群G4、及び第5レンズ群G5が光軸に沿って物体側へ移動し、第2レンズ群G2が光軸に沿って移動する。なお、この際、開口絞りSは第3レンズ群G3とともに移動する。
また本実施例に係る変倍光学系は、第2レンズ群G2を光軸に沿って物体側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。
また本実施例に係る変倍光学系は、手ぶれ等の発生時に第2部分群G32のみを防振レンズ群として光軸と直交する方向の成分を含むように移動させることにより防振を行う。
With the above-described configuration, in the variable magnification optical system according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 increases when the magnification is changed from the wide-angle end state to the telephoto end state. The air gap between the second lens group G2 and the third lens group G3 decreases, the air gap between the third lens group G3 and the fourth lens group G4 decreases, and the fourth lens group G4 and the fifth lens group G5 The first lens group G1, the third lens group G3, the fourth lens group G4, and the fifth lens group G5 move toward the object side along the optical axis so that the air gap increases, and the second lens group G2 Move along the optical axis. At this time, the aperture stop S moves together with the third lens group G3.
In the variable power optical system according to the present embodiment, the second lens group G2 is moved to the object side along the optical axis, thereby focusing from an object at infinity to a near object.
In addition, the zoom optical system according to the present embodiment performs image stabilization by moving only the second partial group G32 as an image stabilization lens group so as to include a component in a direction orthogonal to the optical axis when camera shake or the like occurs.

以下の表6に、本実施例に係る変倍光学系の諸元の値を掲げる。
ここで、本実施例に係る変倍光学系は、広角端状態において防振係数が−0.67、焦点距離が10.3(mm)であるため、0.60°の回転ぶれを補正するための防振レンズ群の移動量は0.16(mm)となる。また、望遠端状態においては防振係数が−1.48、焦点距離が97.0(mm)であるため、0.19°の回転ぶれを補正するための防振レンズ群の移動量は0.22(mm)となる。
Table 6 below lists values of specifications of the variable magnification optical system according to the present example.
Here, since the variable magnification optical system according to the present example has an anti-vibration coefficient of −0.67 and a focal length of 10.3 (mm) in the wide-angle end state, the rotational shake of 0.60 ° is corrected. Therefore, the movement amount of the anti-vibration lens group is 0.16 (mm). In the telephoto end state, the image stabilization coefficient is −1.48 and the focal length is 97.0 (mm). Therefore, the amount of movement of the image stabilization lens group for correcting the rotation blur of 0.19 ° is 0. .22 (mm).

(表6)第6実施例
[面データ]
面番号 r d nd νd
物面 ∞
1 130.000 1.600 1.977550 30.05
2 53.215 5.870 1.497820 82.51
3 -301.577 0.100 1.000000
4 49.766 4.706 1.762484 51.33
5 285.082 可変 1.000000

*6 55.053 1.200 1.875647 35.77
7 8.920 3.605 1.000000
8 -18.863 1.200 1.882997 40.76
9 38.238 0.100 1.000000
10 20.860 3.659 1.830156 21.81
11 -16.640 0.611 1.000000
12 -12.286 1.200 1.882997 40.76
13 -32.821 可変 1.000000

14 22.276 2.832 1.723962 54.17
15 -39.179 0.500 1.000000
16(絞りS) ∞ 1.600 1.000000
17 14.822 3.235 1.497820 82.51
18 -21.400 1.200 1.966413 23.23
19 294.782 2.124 1.000000
20 -97.585 1.200 1.881100 39.35
21 10.629 2.457 1.993396 28.92
22 30.804 可変 1.000000

*23 24.645 2.816 1.593190 67.90
24 -36.143 可変 1.000000

25 -1303.485 3.950 1.602810 40.36
26 -8.782 1.200 1.897219 38.51
27 -45.532 BF 1.000000
像面 ∞

[非球面データ]
面番号 κ A4 A6 A8 A10
6 1 1.59E-05 -5.02E-08 1.14E-10 9.01E-12
23 1 -4.32E-05 2.52E-07

[各種データ]
変倍比 9.42

W M T
f 10.30 50.00 97.00
FNO 3.50 5.17 5.63
2ω 79.71° 18.02° 9.43°
Y 8.190 8.190 8.190
TL 89.33 125.31 140.86
BF 13.25 33.66 41.71

W M T
d5 2.328 34.196 44.867
d13 19.888 5.725 2.400
d22 6.801 3.500 3.502
d24 0.100 1.265 1.411

[レンズ群データ]
群 始面 f
1 1 77.2
2 6 -9.3
3 14 20.3
4 23 25.1
5 25 -72.1

[条件式対応値]
(1) f1/(−f2) = 8.34
(2) f3/f4 = 0.82
(3) f1/f3 = 3.76
(4) f1/f4 = 3.07
(5) |f32|/f1 =0.42
(6) (−f2)/f3 = 0.45
(Table 6) Sixth Example
[Surface data]
Surface number r d nd νd
Object ∞
1 130.000 1.600 1.977550 30.05
2 53.215 5.870 1.497820 82.51
3 -301.577 0.100 1.000000
4 49.766 4.706 1.762484 51.33
5 285.082 Variable 1.000000

* 6 55.053 1.200 1.875647 35.77
7 8.920 3.605 1.000000
8 -18.863 1.200 1.882997 40.76
9 38.238 0.100 1.000000
10 20.860 3.659 1.830156 21.81
11 -16.640 0.611 1.000000
12 -12.286 1.200 1.882997 40.76
13 -32.821 Variable 1.000000

14 22.276 2.832 1.723962 54.17
15 -39.179 0.500 1.000000
16 (Aperture S) ∞ 1.600 1.000000
17 14.822 3.235 1.497820 82.51
18 -21.400 1.200 1.966413 23.23
19 294.782 2.124 1.000000
20 -97.585 1.200 1.881100 39.35
21 10.629 2.457 1.993396 28.92
22 30.804 Variable 1.000000

* 23 24.645 2.816 1.593190 67.90
24 -36.143 Variable 1.000000

25 -1303.485 3.950 1.602810 40.36
26 -8.782 1.200 1.897219 38.51
27 -45.532 BF 1.000000
Image plane ∞

[Aspherical data]
Surface number κ A4 A6 A8 A10
6 1 1.59E-05 -5.02E-08 1.14E-10 9.01E-12
23 1 -4.32E-05 2.52E-07

[Various data]
Scaling ratio 9.42

W M T
f 10.30 50.00 97.00
FNO 3.50 5.17 5.63
2ω 79.71 ° 18.02 ° 9.43 °
Y 8.190 8.190 8.190
TL 89.33 125.31 140.86
BF 13.25 33.66 41.71

W M T
d5 2.328 34.196 44.867
d13 19.888 5.725 2.400
d22 6.801 3.500 3.502
d24 0.100 1.265 1.411

[Lens group data]
Group start surface f
1 1 77.2
2 6 -9.3
3 14 20.3
4 23 25.1
5 25 -72.1

[Conditional expression values]
(1) f1 / (− f2) = 8.34
(2) f3 / f4 = 0.82
(3) f1 / f3 = 3.76
(4) f1 / f4 = 3.07
(5) | f32 | /f1=0.42
(6) (−f2) /f3=0.45

図17(a)、図17(b)、及び図17(c)はそれぞれ、本願の第6実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
図18(a)、及び図18(b)はそれぞれ、本願の第6実施例に係る変倍光学系の広角端状態における無限遠物体合焦時に0.60°の回転ぶれに対して防振を行った際のメリディオナル横収差図、及び望遠端状態における無限遠物体合焦時に0.19°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。
各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに防振時にも優れた結像性能を有していることがわかる。
17 (a), 17 (b), and 17 (c) respectively show infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the sixth example of the present application. It is an aberration diagram at the time of focusing on an object.
18 (a) and 18 (b) respectively show anti-vibration against rotation blur of 0.60 ° when focusing on an object at infinity in the wide-angle end state of the variable magnification optical system according to the sixth example of the present application. FIG. 6 is a meridional lateral aberration diagram when performing the zooming, and a meridional lateral aberration diagram when performing anti-vibration with respect to a rotational shake of 0.19 ° when focusing on an object at infinity in the telephoto end state.
From each aberration diagram, the variable magnification optical system according to the present example has excellent imaging performance by satisfactorily correcting various aberrations from the wide-angle end state to the telephoto end state. It can be seen that it has image performance.

上記各実施例によれば、防振機能を有し、10倍程度の高変倍比と広角端状態において70°以上の広画角を有し、良好な光学性能を備えた軽量で小型の変倍光学系を実現することができる。なお、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。
以下の内容は、本願の変倍光学系の光学性能を損なわない範囲で適宜採用することが可能である。
本願の変倍光学系の数値実施例として4群や5群構成のものを示したが、本願はこれに限られず、例えば6群等のその他の群構成の変倍光学系を構成することもできる。具体的には、本願の変倍光学系の最も物体側や最も像側にレンズ又はレンズ群を追加した構成でも構わない。なお、レンズ群とは、変倍時に変化する空気間隔で他のレンズ群と分離された、少なくとも1つのレンズを有する部分をいう。
According to each of the above-described embodiments, the light weight and small size have a vibration isolating function, a high zoom ratio of about 10 times, a wide angle of view of 70 ° or more in the wide angle end state, and good optical performance. A variable magnification optical system can be realized. In addition, each said Example has shown one specific example of this invention, and this invention is not limited to these.
The following contents can be adopted as appropriate as long as the optical performance of the variable magnification optical system of the present application is not impaired.
As numerical examples of the variable magnification optical system of the present application, a four-group or five-group configuration is shown. However, the present application is not limited to this, and for example, a variable-magnification optical system having another group configuration such as six groups may be configured. it can. Specifically, a configuration in which a lens or a lens group is added to the most object side or the most image side of the variable magnification optical system of the present application may be used. The lens group refers to a portion having at least one lens separated from other lens groups by an air interval that changes during zooming.

また、本願の変倍光学系は、無限遠物体から近距離物体への合焦を行うために、レンズ群の一部、1つのレンズ群全体、或いは複数のレンズ群を合焦レンズ群として光軸方向へ移動させる構成としてもよい。特に、第2レンズ群の少なくとも一部を合焦レンズ群とすることが好ましい。また、斯かる合焦レンズ群は、オートフォーカスに適用することも可能であり、オートフォーカス用のモータ、例えば超音波モータ等による駆動にも適している。
また、本願の変倍光学系において、いずれかのレンズ群全体又はその一部を、防振レンズ群として光軸に対して垂直な方向の成分を含むように移動させ、又は光軸を含む面内方向へ回転移動(揺動)させることにより、手ぶれ等によって生じる像ぶれを補正する構成とすることもできる。特に、本願の変倍光学系では第3レンズ群の少なくとも一部を防振レンズ群とすることが好ましい。
In addition, the variable magnification optical system of the present application uses a part of a lens group, an entire lens group, or a plurality of lens groups as a focusing lens group for focusing from an object at infinity to a near object. It is good also as a structure moved to an axial direction. In particular, it is preferable that at least a part of the second lens group is a focusing lens group. Such a focusing lens group can also be applied to autofocus, and is also suitable for driving by an autofocus motor, such as an ultrasonic motor.
Further, in the variable magnification optical system of the present application, any lens group or a part thereof is moved as a vibration-proof lens group so as to include a component in a direction perpendicular to the optical axis, or a surface including the optical axis A configuration in which image blur caused by camera shake or the like is corrected by rotationally moving (swinging) inward is also possible. In particular, in the variable magnification optical system of the present application, it is preferable that at least a part of the third lens group is an anti-vibration lens group.

また、本願の変倍光学系を構成するレンズのレンズ面は、球面又は平面としてもよく、或いは非球面としてもよい。レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防ぐことができるため好ましい。また、像面がずれた場合でも描写性能の劣化が少ないため好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、又はガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。   The lens surface of the lens constituting the variable magnification optical system of the present application may be a spherical surface, a flat surface, or an aspheric surface. When the lens surface is a spherical surface or a flat surface, it is preferable because lens processing and assembly adjustment are easy, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance. When the lens surface is aspherical, any of aspherical surface by grinding, glass mold aspherical surface in which glass is molded into an aspherical shape, or composite aspherical surface in which resin provided on the glass surface is formed in an aspherical shape Good. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

また、本願の変倍光学系において開口絞りは第2レンズ群と第3レンズ群の間又は第3レンズ群中に配置されることが好ましく、開口絞りとして部材を設けずにレンズ枠でその役割を代用する構成としてもよい。
また、本願の変倍光学系を構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。
また、本願の変倍光学系は、変倍比が3〜20程度である。
In the variable magnification optical system of the present application, it is preferable that the aperture stop be disposed between the second lens group and the third lens group or in the third lens group. It is good also as composition which substitutes.
Further, an antireflection film having a high transmittance in a wide wavelength range may be applied to the lens surface of the lens constituting the variable magnification optical system of the present application. Thereby, flare and ghost can be reduced, and high optical performance with high contrast can be achieved.
The variable magnification optical system of the present application has a variable magnification ratio of about 3 to 20.

次に、本願の変倍光学系を備えたカメラを図19に基づいて説明する。
図19は、本願の変倍光学系を備えたカメラの構成を示す図である。
本カメラ1は、撮影レンズ2として上記第1実施例に係る変倍光学系を備えたデジタル一眼レフカメラである。
本カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、クイックリターンミラー3を介して焦点板4に結像される。そして焦点板4に結像されたこの光は、ペンタプリズム5中で複数回反射されて接眼レンズ6へ導かれる。これにより撮影者は、被写体像を接眼レンズ6を介して正立像として観察することができる。
Next, a camera provided with the variable magnification optical system of the present application will be described with reference to FIG.
FIG. 19 is a diagram illustrating a configuration of a camera including the variable magnification optical system of the present application.
The camera 1 is a digital single-lens reflex camera provided with the variable magnification optical system according to the first embodiment as the photographing lens 2.
In the camera 1, light from an object (subject) (not shown) is collected by the taking lens 2 and imaged on the focusing screen 4 through the quick return mirror 3. The light imaged on the focusing screen 4 is reflected in the pentaprism 5 a plurality of times and guided to the eyepiece lens 6. Thus, the photographer can observe the subject image as an erect image through the eyepiece 6.

また、撮影者によって不図示のレリーズボタンが押されると、クイックリターンミラー3が光路外へ退避し、不図示の被写体からの光は撮像素子7へ到達する。これにより被写体からの光は、当該撮像素子7によって撮像されて、被写体画像として不図示のメモリに記録される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。
ここで、本カメラ1に撮影レンズ2として搭載した上記第1実施例に係る変倍光学系は、上述のように小型で、防振機能を有し、高変倍、広画角で、良好な光学性能を備えている。これにより本カメラ1は、防振機能を有し、高変倍化、広画角化、及び小型化を図りながら、良好な光学性能を実現することができる。なお、上記第2〜第6実施例に係る変倍光学系を撮影レンズ2として搭載したカメラを構成しても、上記カメラ1と同様の効果を奏することができる。また、クイックリターンミラー3を有しない構成のカメラに上記各実施例に係る変倍光学系を搭載した場合でも、上記カメラ1と同様の効果を奏することができる。
When the release button (not shown) is pressed by the photographer, the quick return mirror 3 is retracted out of the optical path, and light from the subject (not shown) reaches the image sensor 7. Thereby, the light from the subject is picked up by the image pickup device 7 and recorded as a subject image in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.
Here, the variable magnification optical system according to the first example mounted on the camera 1 as the photographing lens 2 is small as described above, has a vibration isolation function, has a high variable magnification, a wide angle of view, and is good. With excellent optical performance. As a result, the camera 1 has an anti-vibration function and can achieve good optical performance while achieving high zoom ratio, wide angle of view, and miniaturization. Even if a camera equipped with the variable magnification optical system according to the second to sixth examples as the photographing lens 2 is configured, the same effect as the camera 1 can be obtained. In addition, even when the zoom optical system according to each of the above embodiments is mounted on a camera having a configuration that does not include the quick return mirror 3, the same effects as those of the camera 1 can be obtained.

最後に、本願の変倍光学系の製造方法の概略を図20に基づいて説明する。
図20に示す本願の変倍光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有する変倍光学系の製造方法であって、以下のステップS1〜S4を含むものである。
ステップS1:第3レンズ群が、物体側から順に、正の屈折力を有する第1部分群と、第2部分群とを有するようにする。
ステップS2:第1レンズ群と第2レンズ群が以下の条件式(1)を満足するようにし、第1〜第4レンズ群を鏡筒内に物体側から順に配置する。
(1) 8.00 < f1/(−f2) < 10.00
ただし、
f1:第1レンズ群の焦点距離
f2:第2レンズ群の焦点距離
Finally, the outline of the manufacturing method of the variable magnification optical system of this application is demonstrated based on FIG.
The variable magnification optical system manufacturing method shown in FIG. 20 has, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power. A method for manufacturing a variable magnification optical system having a third lens group and a fourth lens group having a positive refractive power, and includes the following steps S1 to S4.
Step S1: The third lens group includes, in order from the object side, a first partial group having a positive refractive power and a second partial group.
Step S2: The first lens group and the second lens group satisfy the following conditional expression (1), and the first to fourth lens groups are sequentially arranged in the lens barrel from the object side.
(1) 8.00 <f1 / (-f2) <10.00
However,
f1: Focal length of the first lens group f2: Focal length of the second lens group

ステップS3:鏡筒内に公知の移動機構を設ける等することで、広角端状態から望遠端状態への変倍に際して、第1レンズ群と第2レンズ群との空気間隔、第2レンズ群と第3レンズ群との空気間隔、及び第3レンズ群と第4レンズ群との空気間隔がそれぞれ変化するようにする。
ステップS4:鏡筒内に公知の移動機構を設ける等することで、第2部分群が光軸と直交する方向の成分を含むように移動するようにする。
斯かる本願の変倍光学系の製造方法によれば、防振機能を有し、高変倍、広画角で、良好な光学性能を備えた小型の変倍光学系を製造することができる。
Step S3: By providing a known moving mechanism in the lens barrel, for example, when changing magnification from the wide-angle end state to the telephoto end state, the air gap between the first lens group and the second lens group, the second lens group, The air gap between the third lens group and the air gap between the third lens group and the fourth lens group are changed.
Step S4: By providing a known moving mechanism in the lens barrel, the second partial group is moved so as to include a component in a direction orthogonal to the optical axis.
According to the manufacturing method of the variable magnification optical system of the present application, it is possible to manufacture a small variable magnification optical system having an anti-vibration function, a high variable magnification, a wide angle of view, and good optical performance. .

G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
G5 第5レンズ群
G31 第1部分群
G32 第2部分群
G33 第3部分群
S 開口絞り
I 像面
G1 1st lens group G2 2nd lens group G3 3rd lens group G4 4th lens group G5 5th lens group G31 1st partial group G32 2nd partial group G33 3rd partial group S Aperture stop I Image surface

Claims (12)

物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、
広角端状態から望遠端状態への変倍に際して、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、及び前記第3レンズ群と前記第4レンズ群との間隔がそれぞれ変化し、
前記第3レンズ群が、物体側から順に、正の屈折力を有する第1部分群と、第2部分群とを有し、
前記第2部分群が光軸と直交する方向の成分を含むように移動し、
以下の条件式を満足することを特徴とする変倍光学系。
8.00 < f1/(−f2) < 10.00
ただし、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a positive refractive power And having a group
Upon zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, and the third lens group The distance from the fourth lens group changes,
The third lens group includes, in order from the object side, a first partial group having a positive refractive power and a second partial group.
The second subgroup moves to include a component in a direction perpendicular to the optical axis;
A zoom optical system characterized by satisfying the following conditional expression:
8.00 <f1 / (-f2) <10.00
However,
f1: Focal length of the first lens group f2: Focal length of the second lens group
前記第2部分群が負の屈折力を有することを特徴とする請求項1に記載の変倍光学系。   The variable magnification optical system according to claim 1, wherein the second partial group has a negative refractive power. 以下の条件式を満足することを特徴とする請求項1又は請求項2に記載の変倍光学系。
0.60 < f3/f4 < 0.90
ただし、
f3:前記第3レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
The zoom lens system according to claim 1 or 2, wherein the following conditional expression is satisfied.
0.60 <f3 / f4 <0.90
However,
f3: focal length of the third lens group f4: focal length of the fourth lens group
以下の条件式を満足することを特徴とする請求項1から請求項3のいずれか一項に記載の変倍光学系。
2.80 < f1/f3 < 4.50
ただし、
f1:前記第1レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
The zoom lens system according to any one of claims 1 to 3, wherein the following conditional expression is satisfied.
2.80 <f1 / f3 <4.50
However,
f1: Focal length of the first lens group f3: Focal length of the third lens group
以下の条件式を満足することを特徴とする請求項1から請求項4のいずれか一項に記載の変倍光学系。
2.20 < f1/f4 < 3.50
ただし、
f1:前記第1レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
The zoom lens system according to claim 1, wherein the following conditional expression is satisfied.
2.20 <f1 / f4 <3.50
However,
f1: Focal length of the first lens group f4: Focal length of the fourth lens group
合焦に際して、前記第2レンズ群の少なくとも一部が光軸方向へ移動することを特徴とする請求項1から請求項5のいずれか一項に記載の変倍光学系。   6. The variable magnification optical system according to claim 1, wherein at the time of focusing, at least a part of the second lens group moves in an optical axis direction. 以下の条件式を満足することを特徴とする請求項1から請求項6のいずれか一項に記載の変倍光学系。
0.20 < |f32|/f1 < 0.43
ただし、
f1 :前記第1レンズ群の焦点距離
f32:前記第2部分群の焦点距離
The zoom lens system according to any one of claims 1 to 6, wherein the following conditional expression is satisfied.
0.20 <| f32 | / f1 <0.43
However,
f1: focal length of the first lens group f32: focal length of the second partial group
前記第2部分群が、1枚の正レンズと1枚の負レンズとの接合レンズからなることを特徴とする請求項1から請求項7のいずれか一項に記載の変倍光学系。   The variable power optical system according to any one of claims 1 to 7, wherein the second partial group includes a cemented lens including one positive lens and one negative lens. 以下の条件式を満足することを特徴とする請求項1から請求項8のいずれか一項に記載の変倍光学系。
0.35 < (−f2)/f3 < 0.55
ただし、
f2:前記第2レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
The variable magnification optical system according to claim 1, wherein the following conditional expression is satisfied.
0.35 <(-f2) / f3 <0.55
However,
f2: focal length of the second lens group f3: focal length of the third lens group
広角端状態から望遠端状態への変倍に際して、前記第1レンズ群が光軸方向へ移動することを特徴とする請求項1から請求項9のいずれか一項に記載の変倍光学系。   10. The zoom optical system according to claim 1, wherein the first lens unit moves in the optical axis direction during zooming from the wide-angle end state to the telephoto end state. 請求項1から請求項10のいずれか一項に記載の変倍光学系を有することを特徴とする光学装置。   An optical apparatus comprising the variable magnification optical system according to any one of claims 1 to 10. 物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有する変倍光学系の製造方法であって、
前記第3レンズ群が、物体側から順に、正の屈折力を有する第1部分群と、第2部分群とを有するようにし、
前記第1レンズ群と前記第2レンズ群が以下の条件式を満足するようにし、
広角端状態から望遠端状態への変倍に際して、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、及び前記第3レンズ群と前記第4レンズ群との間隔がそれぞれ変化するようにし、
前記第2部分群が光軸と直交する方向の成分を含むように移動するようにすることを特徴とする変倍光学系の製造方法。
8.00 < f1/(−f2) < 10.00
ただし、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a positive refractive power A variable magnification optical system having a group,
The third lens group includes, in order from the object side, a first partial group having a positive refractive power and a second partial group.
The first lens group and the second lens group satisfy the following conditional expression:
Upon zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, and the third lens group The distance from the fourth lens group changes,
A method of manufacturing a variable magnification optical system, wherein the second partial group moves so as to include a component in a direction orthogonal to the optical axis.
8.00 <f1 / (-f2) <10.00
However,
f1: Focal length of the first lens group f2: Focal length of the second lens group
JP2012043806A 2012-02-29 2012-02-29 Variable magnification optical system, optical device Active JP5845972B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2012043806A JP5845972B2 (en) 2012-02-29 2012-02-29 Variable magnification optical system, optical device
PCT/JP2013/055173 WO2013129487A1 (en) 2012-02-29 2013-02-27 Variable-power optical system, optical device, and method for producing variable-power optical system
CN201380022680.0A CN104272163B (en) 2012-02-29 2013-02-27 Varifocal optical system and optical device
US14/472,472 US9625686B2 (en) 2012-02-29 2014-08-29 Zooming optical system, optical apparatus and method for manufacturing zooming optical system
US15/447,862 US11125984B2 (en) 2012-02-29 2017-03-02 Zooming optical system, optical apparatus and method for manufacturing zooming optical system
US17/409,784 US11782250B2 (en) 2012-02-29 2021-08-23 Zooming optical system, optical apparatus and method for manufacturing zooming optical system
US18/242,425 US20230418035A1 (en) 2012-02-29 2023-09-05 Zooming optical system, optical apparatus and method for manufacturing zooming optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012043806A JP5845972B2 (en) 2012-02-29 2012-02-29 Variable magnification optical system, optical device

Publications (2)

Publication Number Publication Date
JP2013182017A true JP2013182017A (en) 2013-09-12
JP5845972B2 JP5845972B2 (en) 2016-01-20

Family

ID=49272723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012043806A Active JP5845972B2 (en) 2012-02-29 2012-02-29 Variable magnification optical system, optical device

Country Status (1)

Country Link
JP (1) JP5845972B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015191058A (en) * 2014-03-27 2015-11-02 株式会社ニコン Variable power optical system, imaging apparatus, and method for manufacturing the variable power optical system
JP2015191057A (en) * 2014-03-27 2015-11-02 株式会社ニコン Variable power optical system, imaging apparatus, and method for manufacturing the variable power optical system
JPWO2016017727A1 (en) * 2014-07-30 2017-05-18 株式会社ニコン Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP2017111359A (en) * 2015-12-18 2017-06-22 株式会社タムロン Optical system and imaging apparatus
US10466454B2 (en) 2014-03-27 2019-11-05 Nikon Corporation Zoom optical system, imaging device and method for manufacturing the zoom optical system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017533A (en) * 2005-07-05 2007-01-25 Nikon Corp Zoom lens
JP2008015251A (en) * 2006-07-06 2008-01-24 Canon Inc Zoom lens and imaging apparatus having the same
JP2008033208A (en) * 2006-06-28 2008-02-14 Sony Corp Zoom lens and imaging device
JP2009009104A (en) * 2007-05-29 2009-01-15 Nikon Corp Zoom lens and optical apparatus
JP2009042261A (en) * 2007-08-06 2009-02-26 Panasonic Corp Zoom lens system
JP2009128606A (en) * 2007-11-22 2009-06-11 Nikon Corp Zoom lens, optical equipment with mounted zoom lens and imaging method
JP2009128607A (en) * 2007-11-22 2009-06-11 Nikon Corp Zoom lens, optical equipment with mounted zoom lens and imaging method
JP2009150970A (en) * 2007-12-19 2009-07-09 Canon Inc Zoom lens and imaging device provided with it
JP2011186159A (en) * 2010-03-08 2011-09-22 Nikon Corp Variable power optical system, optical device, and method for manufacturing variable power optical system
JP2011186165A (en) * 2010-03-08 2011-09-22 Nikon Corp Variable power optical system, optical device, and method for manufacturing variable power optical system
JP2012113107A (en) * 2010-11-24 2012-06-14 Canon Inc Zoom lens and optical apparatus using the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017533A (en) * 2005-07-05 2007-01-25 Nikon Corp Zoom lens
JP2008033208A (en) * 2006-06-28 2008-02-14 Sony Corp Zoom lens and imaging device
JP2008015251A (en) * 2006-07-06 2008-01-24 Canon Inc Zoom lens and imaging apparatus having the same
JP2009009104A (en) * 2007-05-29 2009-01-15 Nikon Corp Zoom lens and optical apparatus
JP2009042261A (en) * 2007-08-06 2009-02-26 Panasonic Corp Zoom lens system
JP2009128606A (en) * 2007-11-22 2009-06-11 Nikon Corp Zoom lens, optical equipment with mounted zoom lens and imaging method
JP2009128607A (en) * 2007-11-22 2009-06-11 Nikon Corp Zoom lens, optical equipment with mounted zoom lens and imaging method
JP2009150970A (en) * 2007-12-19 2009-07-09 Canon Inc Zoom lens and imaging device provided with it
JP2011186159A (en) * 2010-03-08 2011-09-22 Nikon Corp Variable power optical system, optical device, and method for manufacturing variable power optical system
JP2011186165A (en) * 2010-03-08 2011-09-22 Nikon Corp Variable power optical system, optical device, and method for manufacturing variable power optical system
JP2012113107A (en) * 2010-11-24 2012-06-14 Canon Inc Zoom lens and optical apparatus using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015191058A (en) * 2014-03-27 2015-11-02 株式会社ニコン Variable power optical system, imaging apparatus, and method for manufacturing the variable power optical system
JP2015191057A (en) * 2014-03-27 2015-11-02 株式会社ニコン Variable power optical system, imaging apparatus, and method for manufacturing the variable power optical system
US10466454B2 (en) 2014-03-27 2019-11-05 Nikon Corporation Zoom optical system, imaging device and method for manufacturing the zoom optical system
US11428911B2 (en) 2014-03-27 2022-08-30 Nikon Corporation Zoom optical system, imaging device and method for manufacturing the zoom optical system
JPWO2016017727A1 (en) * 2014-07-30 2017-05-18 株式会社ニコン Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
US10254520B2 (en) 2014-07-30 2019-04-09 Nikon Corporation Variable power optical system, optical device, and manufacturing method for variable power optical system
JP2019139251A (en) * 2014-07-30 2019-08-22 株式会社ニコン Variable power optical system, optical device, and, method of manufacturing variable power optical system
JP2017111359A (en) * 2015-12-18 2017-06-22 株式会社タムロン Optical system and imaging apparatus

Also Published As

Publication number Publication date
JP5845972B2 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
JP5544959B2 (en) Variable-magnification optical system, optical apparatus, and variable-magnification optical system manufacturing method
JP5581730B2 (en) Variable magnification optical system, optical device
JP5641680B2 (en) Zoom lens and optical apparatus having the same
JP5458477B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system magnification method
JP5448028B2 (en) Zoom lens and optical apparatus having the same
JP5135723B2 (en) Zoom lens having image stabilization function, image pickup apparatus, image stabilization method for zoom lens, and zooming method for zoom lens
JP5321608B2 (en) Variable magnification optical system, optical device
JP5176410B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system magnification method
JP5742100B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP5344279B2 (en) Zoom lens, optical apparatus having the same, and zooming method
WO2010004806A1 (en) Zoom lens, optical device having same, and zoom lens manufacturing method
JP5344291B2 (en) Zoom lens, optical device, and method of manufacturing zoom lens
JP5724189B2 (en) Variable magnification optical system, optical device
JP6725000B2 (en) Variable magnification optical system, optical device, and method of manufacturing variable magnification optical system
JP5845972B2 (en) Variable magnification optical system, optical device
JP5157295B2 (en) Optical system, imaging device, and optical system imaging method
JP2011118366A (en) Zoom lens, optical apparatus and method for manufacturing zoom lens
JP5839062B2 (en) Zoom lens, optical device
JP5201460B2 (en) Zoom lens, optical apparatus having the same, and zooming method
WO2013129487A1 (en) Variable-power optical system, optical device, and method for producing variable-power optical system
JP6070055B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
WO2015136988A1 (en) Zoom lens, optical device, and method for manufacturing zoom lens
JP5565676B2 (en) Optical element, imaging optical system having the same, and optical instrument
JP7243884B2 (en) Variable magnification optical system, optical equipment and imaging equipment using the same
JP5831294B2 (en) Variable magnification optical system, optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151109

R150 Certificate of patent or registration of utility model

Ref document number: 5845972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250