JP5724189B2 - Variable magnification optical system, optical device - Google Patents
Variable magnification optical system, optical device Download PDFInfo
- Publication number
- JP5724189B2 JP5724189B2 JP2010050846A JP2010050846A JP5724189B2 JP 5724189 B2 JP5724189 B2 JP 5724189B2 JP 2010050846 A JP2010050846 A JP 2010050846A JP 2010050846 A JP2010050846 A JP 2010050846A JP 5724189 B2 JP5724189 B2 JP 5724189B2
- Authority
- JP
- Japan
- Prior art keywords
- lens group
- focal length
- end state
- lens
- optical system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 title claims description 210
- 230000014509 gene expression Effects 0.000 claims description 87
- 230000007423 decrease Effects 0.000 claims description 15
- 230000003247 decreasing effect Effects 0.000 claims 2
- 230000004075 alteration Effects 0.000 description 63
- 230000000694 effects Effects 0.000 description 33
- 230000005499 meniscus Effects 0.000 description 29
- 238000010586 diagram Methods 0.000 description 22
- 206010010071 Coma Diseases 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 10
- 239000011521 glass Substances 0.000 description 9
- 201000009310 astigmatism Diseases 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000002131 composite material Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 2
- 230000011514 reflex Effects 0.000 description 2
- 206010073261 Ovarian theca cell tumour Diseases 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 208000001644 thecoma Diseases 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Landscapes
- Lenses (AREA)
- Adjustment Of Camera Lenses (AREA)
Description
本発明は、変倍光学系とこれを有する光学装置、変倍光学系の製造方法に関する。 The present invention relates to a variable magnification optical system, an optical apparatus having the variable magnification optical system, and a method for manufacturing the variable magnification optical system.
従来、一眼レフカメラ用交換レンズなどに用いられる変倍光学系として、最も物体側のレンズ群が正屈折力を有する光学系が数多く提案されている(例えば、特許文献1を参照)。 Conventionally, as a variable magnification optical system used for an interchangeable lens for a single-lens reflex camera or the like, many optical systems in which the lens group closest to the object side has a positive refractive power have been proposed (for example, see Patent Document 1).
従来の変倍光学系をさらに高変倍化しようとすると、収差変動が増大し、十分に高い光学性能を得ることが困難であった。 If the conventional variable magnification optical system is further increased in magnification, aberration fluctuations increase, making it difficult to obtain sufficiently high optical performance.
本発明は、上記問題に鑑みてなされたものであり、収差変動を抑え、高い光学性能を有する変倍光学系とこれを有する光学装置、変倍光学系の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide a variable magnification optical system that suppresses aberration fluctuation and has high optical performance, an optical apparatus having the same, and a method for manufacturing the variable magnification optical system. To do.
上記課題を解決するために、本発明は、光軸に沿って物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3F1レンズ群と、正屈折力の第3B1レンズ群とにより実質的に4個のレンズ群からなり、前記第3F1レンズ群と前記第3B1レンズ群とは全体で正屈折力を有し、広角端状態から望遠端状態への変倍に際し、前記第1レンズ群は像面に対して単調に物体側に移動し、前記第1レンズ群と前記第2レンズ群との間隔は増大し、前記第2レンズ群と前記第3F1レンズ群との間隔は減少し、前記第3F1レンズ群と前記第3B1レンズ群との間隔は変化し、前記第2レンズ群より像側に開口絞りを有し、以下の条件式を満足することを特徴とする変倍光学系を提供する。
0.17 < f1/fT < 0.60
1.03 < φT/φW < 1.70
1.02 < φM15/φW < 1.70
0.032 < −f2/fT ≦ 0.0475
但し、
fT:望遠端状態における全系の焦点距離
f1:前記第1レンズ群の焦点距離
φW:広角端状態における前記開口絞りの最大開口径
φT:望遠端状態における前記開口絞りの最大開口径
φM15:広角端状態における全系の焦点距離をfWとするとき、全系の焦点距離がfWの15倍以上の中間焦点距離状態での前記開口絞りの最大開口径
f2:前記第2レンズ群の焦点距離
また、本発明は、光軸に沿って物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3F1レンズ群と、正屈折力の第3B1レンズ群とにより実質的に4個のレンズ群からなり、前記第3F1レンズ群と前記第3B1レンズ群とは全体で正屈折力を有し、広角端状態から望遠端状態への変倍に際し、前記第1レンズ群と前記第2レンズ群との間隔は増大し、前記第2レンズ群と前記第3F1レンズ群との間隔は減少するように前記第1レンズ群は物体側に移動し、前記第2レンズ群は一旦像側に移動した後物体側へ移動し、前記第3F1レンズ群と前記第3B1レンズ群との間隔は変化し、または、光軸に沿って物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3F2レンズ群と、負屈折力の第3Mレンズ群と、正屈折力の第3B2レンズ群とにより実質的に5個のレンズ群からなり、前記第3F2レンズ群と第3Mレンズ群と前記第3B2レンズ群とは全体で正屈折力を有し、広角端状態から望遠端状態への変倍に際し、前記第1レンズ群と前記第2レンズ群との間隔は増大し、前記第2レンズ群と前記第3F2レンズ群との間隔は減少するように前記第1レンズ群は物体側に移動し、前記第2レンズ群は一旦像側に移動した後物体側へ移動し、前記第3F2レンズ群と前記第3Mレンズ群との間隔は変化し、前記第3Mレンズ群と前記第3B2レンズ群との間隔は変化し、前記第2レンズ群より像側に開口絞りを有し、以下の条件式を満足することを特徴とする変倍光学系を提供する。
0.17 < f1/fT ≦ 0.355
1.03 < φT/φW < 1.70
1.02 < φM15/φW < 1.70
但し、
fT:望遠端状態における全系の焦点距離
f1:前記第1レンズ群の焦点距離
φW:広角端状態における前記開口絞りの最大開口径
φT:望遠端状態における前記開口絞りの最大開口径
φM15:広角端状態における全系の焦点距離をfWとするとき、全系の焦点距離がfWの15倍以上の中間焦点距離状態での前記開口絞りの最大開口径
また、本発明は、光軸に沿って物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3F1レンズ群と、正屈折力の第3B1レンズ群とにより実質的に4個のレンズ群からなり、前記第3F1レンズ群と前記第3B1レンズ群とは全体で正屈折力を有し、前記第2レンズ群より像側に開口絞りを有し、広角端状態から望遠端状態への変倍に際し、前記第1レンズ群は像面に対して単調に物体側に移動し、前記第1レンズ群と前記第2レンズ群との間隔は増大し、前記第2レンズ群と前記第3F1レンズ群との間隔は減少し、前記第3F1レンズ群と前記第3B1レンズ群との間隔は変化し、以下の条件式を満足することを特徴とする変倍光学系を提供する。
0.17 < f1/fT < 0.60
1.03 < φT/φW < 1.70
0.032 < −f2/fT ≦ 0.0394
但し、
fT:望遠端状態における全系の焦点距離
f1:前記第1レンズ群の焦点距離
φW:広角端状態における前記開口絞りの最大開口径
φT:望遠端状態における前記開口絞りの最大開口径
f2:前記第2レンズ群の焦点距離
また、本発明は、光軸に沿って物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3F2レンズ群と、負屈折力の第3Mレンズ群と、正屈折力の第3B2レンズ群とにより実質的に5個のレンズ群からなり、前記第3F2レンズ群と第3Mレンズ群と前記第3B2レンズ群とは全体で正屈折力を有し、前記第2レンズ群より像側に開口絞りを有し、広角端状態から望遠端状態への変倍に際し、前記第1レンズ群と前記第2レンズ群との間隔は増大し、前記第2レンズ群と前記第3F2レンズ群との間隔は減少するように前記第1レンズ群は物体側に移動し、前記第2レンズ群は一旦像側に移動した後物体側へ移動し、前記第3F2レンズ群と前記第3Mレンズ群との間隔は変化し、前記第3Mレンズ群と前記第3B2レンズ群との間隔は変化し、以下の条件式を満足することを特徴とする変倍光学系を提供する。
0.17 < f1/fT < 0.60
1.03 < φT/φW < 1.70
0.032 < −f2/fT < 0.057
但し、
fT:望遠端状態における全系の焦点距離
f1:前記第1レンズ群の焦点距離
φW:広角端状態における前記開口絞りの最大開口径
φT:望遠端状態における前記開口絞りの最大開口径
f2:前記第2レンズ群の焦点距離
In order to solve the above-described problems, the present invention provides a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third F1 lens group having a positive refractive power in order from the object side along the optical axis. And the third B1 lens group having a positive refractive power substantially comprises four lens groups, and the third F1 lens group and the third B1 lens group have a positive refractive power as a whole, and telephoto from the wide-angle end state. Upon zooming to the end state, the first lens group moves monotonously to the object side with respect to the image plane, the distance between the first lens group and the second lens group increases, and the second lens group And the third F1 lens group decrease, the distance between the third F1 lens group and the third B1 lens group changes, and has an aperture stop on the image side from the second lens group. A variable magnification optical system characterized by satisfying
0.17 <f1 / fT <0.60
1.03 <φT / φW <1.70
1.02 <φM15 / φW <1.70
0.032 <−f2 / fT ≦ 0.0475
However,
fT: focal length of the entire system in the telephoto end state f1: focal length of the first lens group φW: maximum aperture diameter of the aperture stop in the wide angle end state φT: maximum aperture diameter of the aperture stop in the telephoto end state φM15: wide angle When the focal length of the entire system in the end state is fW, the maximum aperture diameter f2 of the aperture stop in the intermediate focal length state where the focal length of the entire system is 15 times or more of fW: the focal length of the second lens group In the present invention, in order from the object side along the optical axis, a first lens unit having a positive refractive power, a second lens unit having a negative refractive power, a third F1 lens group having a positive refractive power, and a first lens unit having a positive refractive power. The third F1 lens group and the third B1 lens group have a positive refractive power as a whole, and the zoom lens changes from the wide-angle end state to the telephoto end state. The first lens group and the second lens The first lens group moves to the object side and the second lens group temporarily moves to the image side so that the distance to the group increases and the distance between the second lens group and the third F1 lens group decreases. Then, it moves to the object side, and the distance between the third F1 lens group and the third B1 lens group changes, or the first lens group having positive refractive power and negative refraction in order from the object side along the optical axis. The second lens group having the positive power, the third F2 lens group having the positive refractive power, the third M lens group having the negative refractive power, and the third B2 lens group having the positive refractive power substantially include five lens groups, The third F2 lens group, the third M lens group, and the third B2 lens group have positive refractive power as a whole, and the first lens group and the second lens group upon zooming from the wide-angle end state to the telephoto end state. And the distance between the second lens group and the third F2 lens group is The first lens group moves toward the object side, the second lens group moves once toward the image side and then moves toward the object side, and the distance between the third F2 lens group and the third M lens group is small. The distance between the third M lens group and the third B2 lens group changes, the aperture stop is located on the image side of the second lens group, and the following conditional expression is satisfied: An optical system is provided.
0.17 <f1 / fT ≦ 0.355
1.03 <φT / φW <1.70
1.02 <φM15 / φW <1.70
However,
fT: focal length of the entire system in the telephoto end state f1: focal length of the first lens group φW: maximum aperture diameter of the aperture stop in the wide angle end state φT: maximum aperture diameter of the aperture stop in the telephoto end state φM15: wide angle When the focal length of the entire system in the end state is fW, the maximum aperture diameter of the aperture stop in the intermediate focal length state in which the focal length of the entire system is 15 times or more of fW
Also, the present invention includes, in order from the object side along the optical axis, a first lens group having positive refractive power, a second lens unit having a negative refractive power, a third 3F1 lens group having positive refractive power, positive refractive power The third F1 lens group substantially comprises four lens groups, and the third F1 lens group and the third B1 lens group as a whole have positive refracting power and are more open to the image side than the second lens group. The first lens unit moves to the object side monotonously with respect to the image plane during zooming from the wide-angle end state to the telephoto end state, and the first lens unit and the second lens unit The distance increases, the distance between the second lens group and the third F1 lens group decreases, the distance between the third F1 lens group and the third B1 lens group changes, and the following conditional expression is satisfied: A variable magnification optical system is provided.
0.17 <f1 / fT <0.60
1.03 <φT / φW <1.70
0.032 <−f2 / fT ≦ 0.0394
However,
fT: focal length of the entire system in the telephoto end state f1: focal length φW of the first lens group: maximum aperture diameter of the aperture stop in the wide angle end state φT: maximum aperture diameter of the aperture stop in the telephoto end state f2: the above The focal length of the second lens group In the present invention, in order from the object side along the optical axis, the first lens group having a positive refractive power, the second lens group having a negative refractive power, and the third F2 lens having a positive refractive power. The third F2 lens group, the third M lens group, and the third B2 lens group. The third F2 lens group, the third M lens group, and the third B2 lens group. Has a positive refracting power as a whole, has an aperture stop closer to the image side than the second lens group, and the first lens group and the second lens group upon zooming from the wide-angle end state to the telephoto end state The distance between the second lens group and the third F2 is increased. The first lens group moves to the object side so that the distance from the lens group decreases, the second lens group temporarily moves to the image side, and then moves to the object side, and the third F2 lens group and the third M There is provided a variable magnification optical system characterized in that the distance between the lens group is changed, and the distance between the third M lens group and the third B2 lens group is changed to satisfy the following conditional expression.
0.17 <f1 / fT <0.60
1.03 <φT / φW <1.70
0.032 <−f2 / fT <0.057
However,
fT: focal length of the entire system in the telephoto end state f1: focal length φW of the first lens group: maximum aperture diameter of the aperture stop in the wide angle end state φT: maximum aperture diameter of the aperture stop in the telephoto end state f2: the above Focal length of the second lens group
また、本発明は、前記変倍光学系を有することを特徴とする光学装置を提供する。 The present invention also provides an optical apparatus comprising the variable magnification optical system.
本発明によれば、収差変動を抑え、高い光学性能を有する変倍光学系とこれを有する光学装置、変倍光学系の製造方法を提供することができる。 According to the present invention, it is possible to provide a variable magnification optical system that suppresses aberration fluctuation and has high optical performance, an optical apparatus having the variable magnification optical system, and a method for manufacturing the variable magnification optical system.
以下、本願の一実施形態に係る変倍光学系について説明する。 Hereinafter, a variable magnification optical system according to an embodiment of the present application will be described.
本実施形態に係る変倍光学系は、光軸に沿って物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群とからなり、第2レンズ群より像側に開口絞りを有し、広角端状態から望遠端状態への変倍に際し、第1レンズ群と第2レンズ群との間隔は増大し、第2レンズ群と第3レンズ群との間隔は減少する構成とすることで、変倍可能な光学系を実現し、広角端状態から望遠端状態まで適度に歪曲収差を補正している。 The variable magnification optical system according to this embodiment includes, in order from the object side along the optical axis, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power. And having an aperture stop closer to the image side than the second lens group, and during zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group increases, and the second lens group The distance between the first lens group and the third lens group is reduced, so that an optical system capable of zooming is realized, and distortion is appropriately corrected from the wide-angle end state to the telephoto end state.
また、本実施形態に係る変倍光学系は、以下の条件式(1)、(2)を満足する。
(1) 0.17 < f1/fT < 0.60
(2) 1.03 < φT/φW < 1.70
但し、fTは望遠端状態における全系の焦点距離、f1は第1レンズ群の焦点距離、φWは広角端状態における開口絞りの最大開口径、φTは望遠端状態における開口絞りの最大開口径である。
In addition, the variable magnification optical system according to the present embodiment satisfies the following conditional expressions (1) and (2).
(1) 0.17 <f1 / fT <0.60
(2) 1.03 <φT / φW <1.70
Where fT is the focal length of the entire system in the telephoto end state, f1 is the focal length of the first lens group, φW is the maximum aperture diameter of the aperture stop in the wide-angle end state, and φT is the maximum aperture diameter of the aperture stop in the telephoto end state is there.
条件式(1)は、変倍光学系で発生する球面収差と像面湾曲を良好に補正し、高い光学性能を得るための条件式である。 Conditional expression (1) is a conditional expression for satisfactorily correcting spherical aberration and curvature of field generated in the variable magnification optical system and obtaining high optical performance.
条件式(1)の下限値を下回った場合、即ち第1レンズ群の屈折力が過度に大きくなると、望遠端状態における負の球面収差と、広角端状態において負の像面湾曲が大きく発生し、高い光学性能を得ることができない。 When the lower limit value of conditional expression (1) is not satisfied, that is, when the refractive power of the first lens unit becomes excessively large, negative spherical aberration at the telephoto end state and negative field curvature at the wide-angle end state are greatly generated. High optical performance cannot be obtained.
条件式(1)の上限値を上回った場合、即ち第1レンズ群の屈折力が過度に小さくなると、変倍率を維持するためには第1レンズ群を像面に対して大きく移動させる必要があり、望遠端状態における周辺光量の確保が困難となり、また望遠端状態において第2レンズ群で発生する正の球面収差補正が困難となり、高い光学性能を得ることができない。 If the upper limit of conditional expression (1) is exceeded, that is, if the refractive power of the first lens group becomes excessively small, it is necessary to move the first lens group with respect to the image plane to maintain the variable magnification. In addition, it is difficult to secure the amount of peripheral light in the telephoto end state, and it becomes difficult to correct positive spherical aberration generated in the second lens group in the telephoto end state, and high optical performance cannot be obtained.
なお、実施形態の効果を確実にするために、条件式(1)の下限値を0.23とすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(1)の下限値を0.25とすることが更に好ましい。また、実施形態の効果を更に確実にするために、条件式(1)の下限値を0.28とすることが更に好ましい。 In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (1) to 0.23. In order to further secure the effect of the embodiment, it is more preferable to set the lower limit of conditional expression (1) to 0.25. In order to further secure the effect of the embodiment, it is more preferable to set the lower limit of conditional expression (1) to 0.28.
また、実施形態の効果を確実にするために、条件式(1)の上限値を0.53とすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(1)の上限値を0.48とすることが更に好ましい。また、実施形態の効果を更に確実にするために、条件式(1)の上限値を0.43とすることが更に好ましい。 In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (1) to 0.53. In order to further secure the effect of the embodiment, it is more preferable to set the upper limit value of conditional expression (1) to 0.48. In order to further secure the effect of the embodiment, it is more preferable to set the upper limit of conditional expression (1) to 0.43.
条件式(2)は、望遠端状態におけるFナンバーを適度に小さく、球面収差やコマ収差を良好に補正し、高い光学性能を得るための条件式である。条件式(2)を満足することで、広角端状態から望遠端状態まで変倍する際に変化するFナンバーの変化量を最適化し、変倍範囲全域に亘って球面収差やコマ収差の変動を抑えることが可能になる。 Conditional expression (2) is a conditional expression for obtaining a high optical performance by appropriately correcting the spherical aberration and the coma aberration in the telephoto end state with an appropriately small F number. By satisfying conditional expression (2), the amount of change in the F-number that changes when zooming from the wide-angle end state to the telephoto end state is optimized, and fluctuations in spherical aberration and coma aberration over the entire zoom range. It becomes possible to suppress.
条件式(2)の下限値を下回った場合、望遠端状態における開口絞りの最大開口径が小さくなりすぎる。すると、望遠端状態におけるFナンバーが大きくなりすぎ、広角端状態において球面収差やコマ収差が大きく発生し、高い光学性能を実現できない。 When the lower limit of conditional expression (2) is not reached, the maximum aperture diameter of the aperture stop in the telephoto end state becomes too small. Then, the F number in the telephoto end state becomes too large, and spherical aberration and coma aberration are greatly generated in the wide-angle end state, so that high optical performance cannot be realized.
条件式(2)の上限値を上回った場合、望遠端状態において球面収差やコマ収差が大きく発生し、高い光学性能を実現できない。 If the upper limit of conditional expression (2) is exceeded, large spherical aberration and coma occur in the telephoto end state, and high optical performance cannot be realized.
なお、実施形態の効果を確実にするために、条件式(2)の下限値を1.05とすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(2)の下限値を1.08とすることが更に好ましい。また、実施形態の効果を更に確実にするために、条件式(2)の下限値を1.12とすることが更に好ましい。 In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (2) to 1.05. In order to further secure the effect of the embodiment, it is more preferable to set the lower limit of conditional expression (2) to 1.08. In order to further secure the effect of the embodiment, it is more preferable to set the lower limit of conditional expression (2) to 1.12.
また、実施形態の効果を確実にするために、条件式(2)の上限値を1.58とすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(2)の上限値を1.45とすることが更に好ましい。 In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (2) to 1.58. In order to further secure the effect of the embodiment, it is more preferable to set the upper limit of conditional expression (2) to 1.45.
また、本実施形態に係る変倍光学系は、以下の条件式(3)を満足することが望ましい。
(3) 1.02 < φM10/φW < 1.70
但し、φM10は広角端状態における全系の焦点距離をfWとするとき、全系の焦点距離がfWの10倍以上の中間焦点距離状態での開口絞りの最大開口径である。
In addition, it is desirable that the variable magnification optical system according to the present embodiment satisfies the following conditional expression (3).
(3) 1.02 <φM10 / φW <1.70
However, φM10 is the maximum aperture diameter of the aperture stop in the intermediate focal length state where the focal length of the entire system is 10 times or more of fW, where fW is the focal length of the entire system in the wide-angle end state.
条件式(3)は、変倍光学系全系の焦点距離がfWの10倍以上の中間焦点距離状態の変倍領域において、変倍光学系に十分なF値を持たせ、高い光学性能を実現するための条件式である。 Conditional expression (3) indicates that the variable power optical system has a sufficient F value in the variable power region in the intermediate focal length state where the focal length of the entire variable power optical system is 10 times or more of fW, and has high optical performance. It is a conditional expression for realizing.
条件式(3)の下限値を下回った場合、変倍光学系全系の焦点距離がfWの10倍以上の中間焦点距離状態の変倍領域において、開口絞りの最大開口径が小さくなりすぎる。すると、この変倍領域におけるFナンバーが大きくなりすぎ、広角端状態において球面収差やコマ収差が大きく発生し、高い光学性能を実現できない。 When the lower limit value of conditional expression (3) is not reached, the maximum aperture diameter of the aperture stop becomes too small in the variable magnification region in the intermediate focal length state where the focal length of the entire variable magnification optical system is 10 times or more of fW. Then, the F number in this variable magnification region becomes too large, and spherical aberration and coma aberration are greatly generated in the wide-angle end state, so that high optical performance cannot be realized.
条件式(3)の上限値を上回った場合、変倍光学系全系の焦点距離がfWの10倍以上の中間焦点距離状態の変倍領域において、球面収差やコマ収差が大きく発生し、高い光学性能を実現できない。 When the upper limit of conditional expression (3) is exceeded, spherical aberration and coma are greatly generated and high in the variable magnification region in the intermediate focal length state where the focal length of the entire variable magnification optical system is 10 times or more of fW. Optical performance cannot be realized.
なお、実施形態の効果を確実にするために、条件式(3)の下限値を1.03とすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(3)の下限値を1.06とすることが更に好ましい。 In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (3) to 1.03. In order to further secure the effect of the embodiment, it is more preferable to set the lower limit of conditional expression (3) to 1.06.
また、実施形態の効果を確実にするために、条件式(3)の上限値を1.60とすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(3)の上限値を1.55とすることが更に好ましい。また、実施形態の効果を更に確実にするために、条件式(3)の上限値を1.40とすることが更に好ましい。 In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (3) to 1.60. In order to further secure the effect of the embodiment, it is more preferable to set the upper limit of conditional expression (3) to 1.55. In order to further secure the effect of the embodiment, it is more preferable to set the upper limit of conditional expression (3) to 1.40.
また、本実施形態に係る変倍光学系は、以下の条件式(4)を満足することが望ましい。
(4) 1.02 < φM15/φW < 1.70
但し、φM15は広角端状態における全系の焦点距離をfWとするとき、全系の焦点距離がfWの15倍以上の中間焦点距離状態での開口絞りの最大開口径である。
In addition, it is desirable that the variable magnification optical system according to the present embodiment satisfies the following conditional expression (4).
(4) 1.02 <φM15 / φW <1.70
However, φM15 is the maximum aperture diameter of the aperture stop in the intermediate focal length state where the focal length of the entire system is 15 times or more of fW, where fW is the focal length of the entire system in the wide-angle end state.
条件式(4)は、変倍光学系全系の焦点距離がfWの15倍以上の中間焦点距離状態の変倍領域において、変倍光学系に十分なF値を持たせ、高い光学性能を実現するための条件式である。 Conditional expression (4) gives a high optical performance by giving the variable magnification optical system a sufficient F value in the variable magnification region in the intermediate focal length state where the focal length of the entire variable magnification optical system is 15 times or more of fW. It is a conditional expression for realizing.
条件式(4)の下限値を下回った場合、変倍光学系全系の焦点距離がfWの15倍以上の中間焦点距離状態の変倍領域において、開口絞りの最大開口径が小さくなりすぎる。すると、この変倍領域におけるFナンバーが大きくなりすぎ、広角端状態において球面収差やコマ収差が大きく発生し、高い光学性能を実現できない。 When the lower limit of conditional expression (4) is not reached, the maximum aperture diameter of the aperture stop becomes too small in the variable magnification region in the intermediate focal length state where the focal length of the entire variable magnification optical system is 15 times or more of fW. Then, the F number in this variable magnification region becomes too large, and spherical aberration and coma aberration are greatly generated in the wide-angle end state, so that high optical performance cannot be realized.
条件式(4)の上限値を上回った場合、変倍光学系全系の焦点距離がfWの15倍以上の中間焦点距離状態の変倍領域において、球面収差やコマ収差が大きく発生し、高い光学性能を実現できない。 When the upper limit of conditional expression (4) is exceeded, large spherical aberration and coma occur in the variable magnification region in the intermediate focal length state where the focal length of the entire variable magnification optical system is 15 times or more of fW, which is high. Optical performance cannot be realized.
なお、実施形態の効果を確実にするために、条件式(4)の下限値を1.04とすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(4)の下限値を1.07とすることが更に好ましい。 In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (4) to 1.04. In order to further secure the effect of the embodiment, it is more preferable to set the lower limit of conditional expression (4) to 1.07.
また、実施形態の効果を確実にするために、条件式(4)の上限値を1.60とすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(4)の上限値を1.55とすることが更に好ましい。また、実施形態の効果を更に確実にするために、条件式(4)の上限値を1.40とすることが更に好ましい。 In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (4) to 1.60. In order to further secure the effect of the embodiment, it is more preferable to set the upper limit of conditional expression (4) to 1.55. In order to further secure the effect of the embodiment, it is more preferable to set the upper limit of conditional expression (4) to 1.40.
また、本実施形態に係る変倍光学系は、以下の条件式(5)を満足することが望ましい。
(5) 1.00 ≦ φM5/φW < 1.40
但し、φM5は広角端状態における全系の焦点距離をfWとするとき、全系の焦点距離がfWの5倍以上8倍以下の中間焦点距離状態での開口絞りの最大開口径である。
In addition, it is desirable that the variable magnification optical system according to the present embodiment satisfies the following conditional expression (5).
(5) 1.00 ≦ φM5 / φW <1.40
However, φM5 is the maximum aperture diameter of the aperture stop in the intermediate focal length state where the focal length of the entire system is 5 to 8 times fW when the focal length of the entire system in the wide-angle end state is fW.
条件式(5)は、全系の焦点距離がfWの5倍以上8倍以下の中間焦点距離の変倍領域において、高い光学性能を実現するための条件式である。 Conditional expression (5) is a conditional expression for realizing high optical performance in a variable magnification region of the intermediate focal length where the focal length of the entire system is not less than 5 times and not more than 8 times fW.
条件式(5)の下限値を下回った場合、全系の焦点距離がfWの5倍以上8倍以下の中間焦点距離の変倍領域において、開口絞りの最大開口径が小さくなりすぎる。すると、この変倍領域におけるFナンバーが大きくなりすぎ、広角端状態において球面収差やコマ収差が大きく発生し、高い光学性能を実現できない。 When the lower limit value of conditional expression (5) is not reached, the maximum aperture diameter of the aperture stop becomes too small in the variable range of the intermediate focal length where the focal length of the entire system is 5 to 8 times fW. Then, the F number in this variable magnification region becomes too large, and spherical aberration and coma aberration are greatly generated in the wide-angle end state, so that high optical performance cannot be realized.
条件式(5)の上限値を上回った場合、全系の焦点距離がfWの5倍以上8倍以下の中間焦点距離の変倍領域において、球面収差やコマ収差が大きく発生し、高い光学性能を実現できない。 When the upper limit value of conditional expression (5) is exceeded, large spherical aberration and coma aberration occur in the variable focal range of the intermediate focal length where the focal length of the entire system is 5 to 8 times fW, and high optical performance Cannot be realized.
なお、実施形態の効果を確実にするために、条件式(5)の下限値を1.01とすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(5)の下限値を1.03とすることが更に好ましい。 In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (5) to 1.01. In order to further secure the effect of the embodiment, it is more preferable to set the lower limit of conditional expression (5) to 1.03.
また、実施形態の効果を確実にするために、条件式(5)の上限値を1.32とすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(5)の上限値を1.25とすることが更に好ましい。 In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (5) to 1.32. In order to further secure the effect of the embodiment, it is more preferable to set the upper limit of conditional expression (5) to 1.25.
また、本実施形態に係る変倍光学系は、広角端状態から望遠端状態への変倍に際し、開口絞りは、広角端状態から全系の焦点距離fMの中間焦点距離状態まで広角端状態の最大開口径を維持し、以下の条件式(6)を満足することが望ましい。
(6) 1.50 < fM/fW < 15.00
但し、fWは広角端状態における全系の焦点距離である。
In the zoom optical system according to the present embodiment, the aperture stop is in the wide-angle end state from the wide-angle end state to the intermediate focal length state of the focal length fM of the entire system when zooming from the wide-angle end state to the telephoto end state. It is desirable to maintain the maximum opening diameter and satisfy the following conditional expression (6).
(6) 1.50 <fM / fW <15.00
However, fW is the focal length of the entire system in the wide-angle end state.
条件式(6)は、任意の中間焦点距離の変倍領域において、高い光学性能を実現するための条件式である。 Conditional expression (6) is a conditional expression for realizing high optical performance in a variable magnification region of any intermediate focal length.
条件式(6)の下限値を下回った場合、任意の中間焦点距離の変倍領域において、球面収差やコマ収差が大きく発生し、高い光学性能を実現できない。 If the lower limit value of conditional expression (6) is not reached, spherical aberration and coma are greatly generated in a variable magnification region of any intermediate focal length, and high optical performance cannot be realized.
条件式(6)の上限値を上回った場合、任意の中間焦点距離の変倍領域において、Fナンバーが大きくなりすぎ、また広角端状態において球面収差やコマ収差が大きく発生し、高い光学性能を実現できない。 If the upper limit value of conditional expression (6) is exceeded, the F number becomes too large in the variable focal region of any intermediate focal length, and spherical aberration and coma aberration occur at the wide-angle end state, resulting in high optical performance. Cannot be realized.
なお、実施形態の効果を確実にするために、条件式(6)の下限値を1.80とすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(6)の下限値を2.30とすることが更に好ましい。 In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (6) to 1.80. In order to further secure the effect of the embodiment, it is more preferable to set the lower limit of conditional expression (6) to 2.30.
また、実施形態の効果を確実にするために、条件式(6)の上限値を12.00とすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(6)の上限値を8.50とすることが更に好ましい。 In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (6) to 12.00. In order to further secure the effect of the embodiment, it is more preferable to set the upper limit of conditional expression (6) to 8.50.
また、本実施形態に係る変倍光学系は、前記焦点距離fMの中間焦点距離状態から望遠端状態への変倍に際し、開口絞りの最大開口径は単調に増大することが望ましい。なお、開口絞りの最大開口径とは、各焦点距離状態における最大の開口絞り径である。 In the zoom optical system according to the present embodiment, it is desirable that the maximum aperture diameter of the aperture stop monotonously increases when the focal length fM is changed from the intermediate focal length state to the telephoto end state. The maximum aperture diameter of the aperture stop is the maximum aperture stop diameter in each focal length state.
この構成とすることで、変倍光学系のメカニカルな構成を簡略化でき、また前記焦点距離fMの中間焦点距離状態から望遠端状態までの変倍領域において、球面収差の変動を抑えることが可能となり、高い光学性能を実現できる。 With this configuration, it is possible to simplify the mechanical configuration of the variable magnification optical system, and to suppress variations in spherical aberration in the variable magnification region from the intermediate focal length state to the telephoto end state with the focal length fM. Thus, high optical performance can be realized.
また、本実施形態に係る変倍光学系は、以下の条件式(7)を満足することが望ましい。
(7) 0.032 < −f2/fT < 0.064
但し、f2は第2レンズ群の焦点距離である。
In addition, it is desirable that the variable magnification optical system according to the present embodiment satisfies the following conditional expression (7).
(7) 0.032 <−f2 / fT <0.064
Here, f2 is the focal length of the second lens group.
条件式(7)は、広角端状態から望遠端状態への変倍に際し、第2レンズ群で発生する収差変動を抑え、高い光学性能を実現するための条件式である。 Conditional expression (7) is a conditional expression for realizing high optical performance by suppressing aberration fluctuations occurring in the second lens group upon zooming from the wide-angle end state to the telephoto end state.
条件式(7)の下限値を下回った場合、第2レンズ群の屈折力が過度に大きくなる。すると広角端状態から望遠端状態への変倍時、球面収差や非点収差の変動が大きく発生し、高い光学性能を実現できない。 When the lower limit value of conditional expression (7) is not reached, the refractive power of the second lens group becomes excessively large. As a result, during zooming from the wide-angle end state to the telephoto end state, variations in spherical aberration and astigmatism occur greatly, and high optical performance cannot be realized.
条件式(7)の上限値を上回った場合、第2レンズ群の屈折力が過度に小さくなり、第2レンズ群の移動量が増大する。すると広角端状態から望遠端状態への変倍時、第2レンズ群で発生する球面収差や非点収差変動を抑えることが困難となり、高い光学性能を実現できない。 When the upper limit of conditional expression (7) is exceeded, the refractive power of the second lens group becomes excessively small, and the amount of movement of the second lens group increases. Then, at the time of zooming from the wide-angle end state to the telephoto end state, it becomes difficult to suppress spherical aberration and astigmatism fluctuations that occur in the second lens group, and high optical performance cannot be realized.
なお、実施形態の効果を確実にするために、条件式(7)の下限値を0.038とすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(7)の下限値を0.042とすることが更に好ましい。 In order to secure the effect of the embodiment, it is preferable to set the lower limit of conditional expression (7) to 0.038. In order to further secure the effect of the embodiment, it is more preferable to set the lower limit of conditional expression (7) to 0.042.
また、実施形態の効果を確実にするために、条件式(7)の上限値を0.061とすることが好ましい。また、実施形態の効果を更に確実にするために、条件式(7)の上限値を0.057とすることが更に好ましい。 In order to secure the effect of the embodiment, it is preferable to set the upper limit of conditional expression (7) to 0.061. In order to further secure the effect of the embodiment, it is more preferable to set the upper limit of conditional expression (7) to 0.057.
また、本実施形態に係る変倍光学系は、広角端状態から望遠端状態への変倍に際し、全系のFナンバーは単調に増大することが望ましい。 In the zoom optical system according to the present embodiment, it is desirable that the F number of the entire system increases monotonously when zooming from the wide-angle end state to the telephoto end state.
この構成とすることで、広角端状態から望遠端状態への変倍に際して、絞り近傍のレンズ群、例えば第3レンズ群などを通る軸上光線高の過度な増大を抑え、これに伴って球面収差などの変動を抑えることが可能となり、高い光学性能を実現できる。 With this configuration, when zooming from the wide-angle end state to the telephoto end state, an excessive increase in the axial ray height passing through the lens group in the vicinity of the stop, for example, the third lens group, is suppressed, and the spherical surface is accordingly accompanied. It becomes possible to suppress fluctuations such as aberration, and high optical performance can be realized.
また、本実施形態に係る変倍光学系は、広角端状態から望遠端状態への変倍に際し、第1レンズ群は像面に対して物体側に移動することが望ましい。 In the zoom optical system according to the present embodiment, it is desirable that the first lens unit moves toward the object side with respect to the image plane when zooming from the wide-angle end state to the telephoto end state.
この構成とすることで、第1レンズ群の径を小型化でき、また広角端状態における第1レンズ群を通過する軸外光束の光軸からの高さを抑えて像面湾曲や非点収差などの変倍時における変動を抑えることができる。 With this configuration, the diameter of the first lens group can be reduced, and the height of the off-axis light beam passing through the first lens group in the wide-angle end state from the optical axis can be suppressed to suppress field curvature and astigmatism. The fluctuation at the time of zooming can be suppressed.
また、本実施形態に係る変倍光学系は、広角端状態から望遠端状態への変倍に際し、開口絞りは、第3レンズ群の少なくとも一部と一体に移動することが望ましい。 In the zoom optical system according to the present embodiment, it is desirable that the aperture stop moves integrally with at least a part of the third lens group when zooming from the wide-angle end state to the telephoto end state.
この構成とすることで、変倍光学系のメカニカルな構成を簡略化でき、また球面収差の変動を抑えることが可能となり、高い光学性能を実現できる。 With this configuration, the mechanical configuration of the variable magnification optical system can be simplified, and fluctuations in spherical aberration can be suppressed, thereby realizing high optical performance.
また、本実施形態に係る変倍光学系は、開口絞りは、第3レンズ群の物体側に配置されることが望ましい。 In the variable magnification optical system according to this embodiment, it is desirable that the aperture stop be disposed on the object side of the third lens group.
この構成とすることで、第1レンズ群の径を小型化でき、また広角端状態における第1レンズ群を通過する軸外光束の光軸からの高さを抑えて像面湾曲や非点収差などの変倍時における変動を抑えることができる。 With this configuration, the diameter of the first lens group can be reduced, and the height of the off-axis light beam passing through the first lens group in the wide-angle end state from the optical axis can be suppressed to suppress field curvature and astigmatism. The fluctuation at the time of zooming can be suppressed.
また、本実施形態に係る変倍光学系は、第3レンズ群は、2つの正屈折力の部分群を有し、広角端状態から望遠端状態への変倍に際し、2つの正屈折力の部分群の間隔が変化することが望ましい。 In the variable power optical system according to the present embodiment, the third lens group has two positive refractive power subgroups, and two positive refractive powers are used for zooming from the wide-angle end state to the telephoto end state. It is desirable that the subgroup spacing changes.
この構成とすることで、第3レンズ群の変倍力を上げることが可能になり、変倍光学系を小型化できる。また、広角端状態から望遠端状態への変倍に際し、第3レンズ群内で発生する球面収差や非点収差の変動を抑えることが可能になり高い光学性能を実現できる。 With this configuration, it becomes possible to increase the zooming power of the third lens group, and the zooming optical system can be miniaturized. In addition, when zooming from the wide-angle end state to the telephoto end state, it is possible to suppress variations in spherical aberration and astigmatism that occur in the third lens group, thereby realizing high optical performance.
また、本実施形態に係る変倍光学系は、第3レンズ群は、正屈折力の部分群と負屈折力の部分群と正屈折力の部分群とを有し、広角端状態から望遠端状態への変倍に際し、正屈折力の部分群と負屈折力の部分群と正屈折力の部分群との間隔が変化することが望ましい。 In the variable magnification optical system according to the present embodiment, the third lens group has a positive refractive power partial group, a negative refractive power partial group, and a positive refractive power partial group, from the wide-angle end state to the telephoto end. It is desirable to change the interval between the positive refractive power subgroup, the negative refractive power subgroup, and the positive refractive power subgroup upon zooming into the state.
この構成とすることで、第3レンズ群の変倍力を上げることが可能になり、変倍光学系を小型化できる。また、広角端状態から望遠端状態への変倍に際し、第3レンズ群内で発生する球面収差や非点収差の変動を抑えることが可能になり高い光学性能を実現できる。 With this configuration, it becomes possible to increase the zooming power of the third lens group, and the zooming optical system can be miniaturized. In addition, when zooming from the wide-angle end state to the telephoto end state, it is possible to suppress variations in spherical aberration and astigmatism that occur in the third lens group, thereby realizing high optical performance.
(実施例)
以下、本実施形態に係る各実施例について図面を参照しつつ説明する。
(Example)
Hereinafter, each example according to the present embodiment will be described with reference to the drawings.
(第1実施例)
図1は、第1実施例に係る変倍光学系の構成を示す断面図である。
(First embodiment)
FIG. 1 is a cross-sectional view showing a configuration of a variable magnification optical system according to the first example.
図1に示すように、第1実施例に係る変倍光学系は、光軸に沿って物体側から順に、正屈折力の第1レンズ群G1と、負屈折力の第2レンズ群G2と、正屈折力の第3レンズ群G3とから構成される。 As shown in FIG. 1, the variable magnification optical system according to the first example includes a first lens group G1 having a positive refractive power and a second lens group G2 having a negative refractive power in order from the object side along the optical axis. And a third lens group G3 having a positive refractive power.
広角端状態Wから望遠端状態Tへの変倍に際し、第1レンズ群G1と第2レンズ群G2との間隔は増大し、第2レンズ群G2と第3レンズ群G3との間隔は減少するように、像面Iに対して、第1レンズ群G1は単調に物体側へ移動し、第2レンズ群G2は物体側へ移動し、第3レンズ群G3は単調に物体側へ移動する。 When zooming from the wide-angle end state W to the telephoto end state T, the distance between the first lens group G1 and the second lens group G2 increases, and the distance between the second lens group G2 and the third lens group G3 decreases. Thus, with respect to the image plane I, the first lens group G1 moves monotonously to the object side, the second lens group G2 moves to the object side, and the third lens group G3 moves monotonously to the object side.
さらに、第3レンズ群G3は、正屈折力の第31レンズ群G31と、正屈折力の第32レンズ群G32とから構成され、広角端状態Wから望遠端状態Tへの変倍に際し、第31レンズ群G31と第32レンズ群G32との間隔は減少するように、第31レンズ群G31と第32レンズ群G32は像面Iに対して単調に物体側へ移動する。 Further, the third lens group G3 is composed of a 31st lens group G31 having a positive refractive power and a 32nd lens group G32 having a positive refractive power, and in the zooming from the wide angle end state W to the telephoto end state T, The 31st lens group G31 and the 32nd lens group G32 move monotonously with respect to the image plane I toward the object side so that the distance between the 31st lens group G31 and the 32nd lens group G32 decreases.
開口絞りSは、第2レンズ群G2の像側にある第3レンズ群G3の最も物体側に配置され、第31レンズ群G31と一体で構成される。また、広角端状態Wから望遠端状態Tへの変倍に際し、開口絞りSは、広角端状態Wから第2中間焦点距離状態M2まで広角端状態Wの最大開口径を維持し、第2中間焦点距離状態M2から望遠端状態Tまでは最大開口径が単調に増大する。 The aperture stop S is disposed closest to the object side of the third lens group G3 on the image side of the second lens group G2, and is configured integrally with the 31st lens group G31. Further, upon zooming from the wide-angle end state W to the telephoto end state T, the aperture stop S maintains the maximum aperture diameter of the wide-angle end state W from the wide-angle end state W to the second intermediate focal length state M2, and the second intermediate From the focal length state M2 to the telephoto end state T, the maximum aperture diameter increases monotonously.
第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成されている。 The first lens group G1 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. It is composed of
第2レンズ群G2は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹レンズL22と、両凸レンズL23と、像側に凸面を向けた負メニスカスレンズL24と像側に凸面を向けた正メニスカスレンズL25との接合レンズとから構成されている。第2レンズ群G2の最も物体側に位置する負メニスカスレンズL21は、物体側のレンズ面に樹脂層を設けて非球面を形成した複合型非球面レンズである。 The second lens group G2 includes, in order from the object side along the optical axis, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave lens L22, a biconvex lens L23, and a negative meniscus lens having a convex surface directed toward the image side. It consists of a cemented lens of L24 and a positive meniscus lens L25 having a convex surface facing the image side. The negative meniscus lens L21 located closest to the object side in the second lens group G2 is a composite aspherical lens in which an aspherical surface is formed by providing a resin layer on the object-side lens surface.
第31レンズ群G31は、光軸に沿って物体側から順に、両凸レンズL31と、両凸レンズL32と、両凸レンズL33と両凹レンズL34との接合レンズと、両凹レンズL35と両凸レンズL36との接合レンズと、物体側に凹面を向けた負メニスカスレンズL37とから構成されている。両凹レンズL35は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The thirty-first lens group G31 includes, in order from the object side along the optical axis, a biconvex lens L31, a biconvex lens L32, a cemented lens of the biconvex lens L33 and the biconcave lens L34, and a cemented structure of the biconcave lens L35 and the biconvex lens L36. The lens includes a negative meniscus lens L37 having a concave surface facing the object side. The biconcave lens L35 is a glass mold aspheric lens having an aspheric lens surface on the object side.
第32レンズ群G32は、光軸に沿って物体側から順に、両凸レンズL41と、物体側に凸面を向けた負メニスカスレンズL42と両凸レンズL43との接合レンズとから構成されている。第32レンズ群G32の最も物体側に位置する両凸レンズL41は、物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。両凸レンズL43から射出した光線は像面Iに結像する。 The thirty-second lens group G32 includes, in order from the object side along the optical axis, a biconvex lens L41, and a cemented lens of a negative meniscus lens L42 having a convex surface facing the object side and a biconvex lens L43. The biconvex lens L41 located closest to the object side in the thirty-second lens group G32 is a glass mold aspheric lens having an aspheric lens surface on the object side. Light rays emitted from the biconvex lens L43 form an image on the image plane I.
像面Iは、不図示の撮像素子上に形成され、該撮像素子はCCDやCMOS等から構成されている(以降の実施例についても同様である)。 The image plane I is formed on an image sensor (not shown), and the image sensor is composed of a CCD, a CMOS, or the like (the same applies to the following embodiments).
以下の表1に第1実施例に係る変倍光学系の諸元値を掲げる。 Table 1 below lists specifications of the variable magnification optical system according to the first example.
表中の(面データ)において、物面は物体面、面番号は物体側からのレンズ面の番号、rは曲率半径、dは面間隔、ndはd線(波長λ=587.6nm)における屈折率、νdはd線(波長λ=587.6nm)におけるアッベ数、(可変)は可変面間隔、(絞り)は開口絞りS、像面は像面Iをそれぞれ表している。なお、空気の屈折率nd=1.000000は記載を省略している。また、曲率半径r欄の「∞」は平面を示している。 In (surface data) in the table, the object surface is the object surface, the surface number is the lens surface number from the object side, r is the radius of curvature, d is the surface spacing, and nd is the d-line (wavelength λ = 587.6 nm). Refractive index, νd represents the Abbe number in the d-line (wavelength λ = 587.6 nm), (variable) represents the variable surface interval, (diaphragm) represents the aperture stop S, and the image surface represents the image surface I. Note that the refractive index of air nd = 1.000 000 is omitted. Further, “∞” in the radius of curvature r column indicates a plane.
(非球面データ)において、非球面は以下の式で表される。
X(y)=(y2/r)/[1+[1−κ(y2/r2)]1/2]
+A4×y4+A6×y6+A8×y8+A10×y10
ここで、光軸に垂直な方向の高さをy、高さyにおける光軸方向の変位量(各非球面の頂点の接平面から各非球面までの光軸に沿った距離)をX(y)、基準球面の曲率半径(近軸曲率半径)をr、円錐係数をκ、n次の非球面係数をAnとする。なお、「E-n」は「×10−n」を示し、例えば「1.234E-05」は「1.234×10−5」を示す。また、各非球面は、(面データ)において、面番号の右側に「*」を付して示している。
In (Aspheric data), the aspheric surface is expressed by the following equation.
X (y) = (y 2 / r) / [1+ [1-κ (y 2 / r 2 )] 1/2 ]
+ A4 × y 4 + A6 × y 6 + A8 × y 8 + A10 × y 10
Here, the height in the direction perpendicular to the optical axis is y, and the amount of displacement in the optical axis direction at the height y (the distance along the optical axis from the tangential plane of each aspheric surface to each aspheric surface) is X ( y) Let r be the radius of curvature (paraxial radius of curvature) of the reference sphere, κ be the conic coefficient, and An be the n-th aspherical coefficient. “En” represents “× 10 −n ”, for example “1.234E-05” represents “1.234 × 10 −5 ”. Each aspherical surface is indicated with “*” on the right side of the surface number in (surface data).
(各種データ)において、ズーム比は変倍光学系の変倍比、Wは広角端状態、M1は第1中間焦点距離状態、M2は第2中間焦点距離状態、M3は第3中間焦点距離状態、M4は第4中間焦点距離状態、Tは望遠端状態、fは全系の焦点距離、FNOはFナンバー、ωは半画角(単位:「°」)、Yは像高、TLは無限遠合焦状態における第1レンズ群G1の最も物体側の面から像面Iまでのレンズ系全長、Bfはバックフォーカス、φは最大の開口絞り径、diは面番号iでの可変面間隔値をそれぞれ表している。第4中間焦点距離状態M4は、広角端状態Wの焦点距離の15倍を越えた焦点距離を有している。 In (various data), the zoom ratio is the zoom ratio of the zoom optical system, W is the wide-angle end state, M1 is the first intermediate focal length state, M2 is the second intermediate focal length state, and M3 is the third intermediate focal length state. , M4 is the fourth intermediate focal length state, T is the telephoto end state, f is the focal length of the entire system, FNO is the F number, ω is the half field angle (unit: “°”), Y is the image height, and TL is infinite. The entire length of the lens system from the most object-side surface of the first lens group G1 to the image plane I in the far-focus state, Bf is the back focus, φ is the maximum aperture stop diameter, and di is the variable surface interval value at surface number i. Respectively. The fourth intermediate focal length state M4 has a focal length that exceeds 15 times the focal length of the wide-angle end state W.
(ズームレンズ群データ)は、各レンズ群の始面番号とレンズ群の焦点距離をそれぞれ示す。 (Zoom lens group data) indicates the start surface number of each lens group and the focal length of the lens group.
(条件式対応値)は、各条件式の対応値をそれぞれ示す。 (Conditional expression corresponding value) indicates the corresponding value of each conditional expression.
なお、以下の全ての諸元値において、掲載されている焦点距離f、曲率半径r、面間隔dその他の長さ等は、特記の無い場合一般に「mm」が使われるが、光学系は比例拡大または比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、単位は「mm」に限定されること無く他の適当な単位を用いることもできる。さらに、これらの記号の説明は、以降の他の実施例においても同様とし説明を省略する。 In all the following specification values, “mm” is generally used as the focal length f, radius of curvature r, surface interval d and other lengths, etc. unless otherwise specified, but the optical system is proportional. Even if it is enlarged or proportionally reduced, the same optical performance can be obtained. Further, the unit is not limited to “mm”, and other appropriate units may be used. Further, the explanation of these symbols is the same in the other embodiments, and the explanation is omitted.
(表1)
(面データ)
面番号 r d nd νd
物面 ∞ ∞
1 127.9445 2.0000 1.850260 32.35
2 66.5460 7.8500 1.497820 82.52
3 -596.2307 0.1000
4 67.4403 5.4000 1.593190 67.87
5 436.1899 (可変)
6* 135.2961 0.1500 1.553890 38.09
7 107.2597 1.0000 1.804000 46.58
8 15.2626 6.7000
9 -34.5499 1.0000 1.834807 42.72
10 51.8990 0.1000
11 34.0967 4.5000 1.784723 25.68
12 -32.1245 0.9000
13 -21.1157 1.0000 1.882997 40.76
14 -2390.2062 2.1000 1.922860 20.50
15 -67.6125 (可変)
16(絞り) ∞ 1.0000
17 31.6133 3.6500 1.593190 67.87
18 -218.5545 0.1000
19 49.1304 3.2000 1.487490 70.41
20 -63.6210 0.1000
21 35.3573 4.2500 1.487490 70.41
22 -34.0783 1.0000 1.846660 23.78
23 659.9606 3.9000
24* -35.0367 1.0000 1.756998 47.82
25 17.5822 3.9000 1.698947 30.13
26 -95.2623 3.3500
27 -55.5200 1.0000 1.882997 40.76
28 -585.5172 (可変)
29* 439.7935 2.2000 1.589130 61.16
30 -53.2069 0.1000
31 65.1340 1.0000 1.834000 37.16
32 27.7296 4.1000 1.487490 70.41
33 -58.1329 (Bf)
像面 ∞
(非球面データ)
第6面
κ = 4.3350
A4 = 9.45630E-06
A6 = -1.51470E-08
A8 = -1.16860E-12
A10 = 1.65790E-13
第24面
κ = -0.3009
A4 = 6.23810E-06
A6 = 8.96820E-09
A8 = 0.00000E+00
A10 = 0.00000E+00
第29面
κ =-20.0000
A4 = -1.92960E-05
A6 = 5.96200E-09
A8 = -1.65600E-10
A10 = 4.18100E-13
(各種データ)
ズーム比 15.698
W M1 M2 M3 M4 T
f = 18.53928 27.99917 49.99950 105.00169 278.75308 291.02949
FNO = 3.60631 4.19068 5.39086 5.76130 5.78421 5.78825
ω = 39.00856 26.78890 15.55965 7.48510 2.85557 2.73699
Y = 14.20 14.20 14.20 14.20 14.20 14.20
TL = 148.79923 157.22054 181.95557 217.34659 241.72065 242.82932
Bf = 39.00067 52.54373 76.57450 91.11965 104.16125 105.34665
φ = 17.20 17.20 17.20 18.40 20.40 20.59
d5 2.10000 9.42195 20.39318 46.65937 66.86210 67.33267
d15 33.50310 24.00476 15.75155 10.98454 2.49980 2.00000
d28 7.54546 4.60010 2.58634 1.93303 1.54750 1.50000
(ズームレンズ群データ)
群 始面 焦点距離
1 1 104.30654
2 6 −13.81152
3 16 36.15068(W) 34.23169(M1)
33.03282(M2) 32.66171(M3)
32.44660(M4) 32.42030(T)
31 16 39.54020
32 29 48.03635
(条件式対応値)
(1) f1/fT=0.358
(2) φT/φW=1.197
(3) φM10/φW=1.186 (φM10は第4中間焦点距離状態M4の値)
(4) φM15/φW=1.186 (φM15は第4中間焦点距離状態M4の値)
(5) φM5/φW=1.070 (φM5は第3中間焦点距離状態M3の値)
(6) fM/fW=2.70 (fMは第2中間焦点距離状態M2の値)
(7) −f2/fT=0.0475
(Table 1)
(Surface data)
Surface number rd nd νd
Object ∞ ∞
1 127.9445 2.0000 1.850260 32.35
2 66.5460 7.8500 1.497820 82.52
3 -596.2307 0.1000
4 67.4403 5.4000 1.593190 67.87
5 436.1899 (variable)
6 * 135.2961 0.1500 1.553890 38.09
7 107.2597 1.0000 1.804000 46.58
8 15.2626 6.7000
9 -34.5499 1.0000 1.834807 42.72
10 51.8990 0.1000
11 34.0967 4.5000 1.784723 25.68
12 -32.1245 0.9000
13 -21.1157 1.0000 1.882997 40.76
14 -2390.2062 2.1000 1.922860 20.50
15 -67.6125 (variable)
16 (Aperture) ∞ 1.0000
17 31.6133 3.6500 1.593190 67.87
18 -218.5545 0.1000
19 49.1304 3.2000 1.487490 70.41
20 -63.6210 0.1000
21 35.3573 4.2500 1.487490 70.41
22 -34.0783 1.0000 1.846660 23.78
23 659.9606 3.9000
24 * -35.0367 1.0000 1.756998 47.82
25 17.5822 3.9000 1.698947 30.13
26 -95.2623 3.3500
27 -55.5200 1.0000 1.882997 40.76
28 -585.5172 (variable)
29 * 439.7935 2.2000 1.589130 61.16
30 -53.2069 0.1000
31 65.1340 1.0000 1.834000 37.16
32 27.7296 4.1000 1.487490 70.41
33 -58.1329 (Bf)
Image plane ∞
(Aspheric data)
6th surface κ = 4.3350
A4 = 9.45630E-06
A6 = -1.51470E-08
A8 = -1.16860E-12
A10 = 1.65790E-13
24th surface κ = -0.3009
A4 = 6.23810E-06
A6 = 8.96820E-09
A8 = 0.00000E + 00
A10 = 0.00000E + 00
29th surface κ = -20.0000
A4 = -1.92960E-05
A6 = 5.96200E-09
A8 = -1.65600E-10
A10 = 4.18100E-13
(Various data)
Zoom ratio 15.698
W M1 M2 M3 M4 T
f = 18.53928 27.99917 49.99950 105.00169 278.75308 291.02949
FNO = 3.60631 4.19068 5.39086 5.76130 5.78421 5.78825
ω = 39.00856 26.78890 15.55965 7.48510 2.85557 2.73699
Y = 14.20 14.20 14.20 14.20 14.20 14.20
TL = 148.79923 157.22054 181.95557 217.34659 241.72065 242.82932
Bf = 39.00067 52.54373 76.57450 91.11965 104.16125 105.34665
φ = 17.20 17.20 17.20 18.40 20.40 20.59
d5 2.10000 9.42195 20.39318 46.65937 66.86210 67.33267
d15 33.50310 24.00476 15.75155 10.98454 2.49980 2.00000
d28 7.54546 4.60010 2.58634 1.93303 1.54750 1.50000
(Zoom lens group data)
Group Start surface
2 6-13.81152
3 16 36.1068 (W) 34.3169 (M1)
33.03282 (M2) 32.66171 (M3)
32.4464 (M4) 32.4030 (T)
31 16 39.54020
32 29 48.03635
(Values for conditional expressions)
(1) f1 / fT = 0.358
(2) φT / φW = 1.197
(3) φM10 / φW = 1.186 (φM10 is the value of the fourth intermediate focal length state M4)
(4) φM15 / φW = 1.186 (φM15 is the value of the fourth intermediate focal length state M4)
(5) φM5 / φW = 1.070 (φM5 is the value of the third intermediate focal length state M3)
(6) fM / fW = 2.70 (fM is the value of the second intermediate focal length state M2)
(7) -f2 / fT = 0.0475
図2は、第1実施例に係る変倍光学系の無限遠合焦状態での諸収差図を示し、(a)は広角端状態、(b)は第1中間焦点距離状態、(c)は第2中間焦点距離状態をそれぞれ示す。 2A and 2B are graphs showing various aberrations of the variable magnification optical system according to the first example in the infinitely focused state, where FIG. 2A is a wide-angle end state, FIG. 2B is a first intermediate focal length state, and FIG. Indicates the second intermediate focal length state.
図3は、第1実施例に係る変倍光学系の無限遠合焦状態での諸収差図を示し、(a)は第3中間焦点距離状態、(b)は第4中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。 FIGS. 3A and 3B are graphs showing various aberrations in the infinitely focused state of the variable magnification optical system according to the first example. FIG. 3A is a third intermediate focal length state, and FIG. 3B is a fourth intermediate focal length state. (C) shows a telephoto end state, respectively.
各収差図において、FNOはFナンバー、Aは半画角(単位:「°」)を示す。また、dはd線(波長587.6nm)、gはg線(波長435.8nm)に対する諸収差、記載のないものはd線に対する諸収差をそれぞれ表す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面を示す。 In each aberration diagram, FNO represents an F number, and A represents a half angle of view (unit: “°”). Further, d represents d-line (wavelength 587.6 nm), g represents various aberrations with respect to g-line (wavelength 435.8 nm), and those not described represent various aberrations with respect to d-line. In the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane.
なお、以降の実施例においても同様の記号を使用し、以降の説明を省略する。 In the following examples, the same symbols are used, and the following description is omitted.
各収差図から、第1実施例に係る変倍光学系は、諸収差が良好に補正され、高い光学性能を有していることがわかる。 From each aberration diagram, it is understood that the variable magnification optical system according to the first example has various optical aberrations corrected and high optical performance.
(第2実施例)
図4は、第2実施例に係る変倍光学系の構成を示す断面図である。
(Second embodiment)
FIG. 4 is a cross-sectional view showing the configuration of the variable magnification optical system according to the second example.
図4に示すように、第2実施例に係る変倍光学系は、光軸に沿って物体側から順に、正屈折力の第1レンズ群G1と、負屈折力の第2レンズ群G2と、正屈折力の第3レンズ群G3とから構成される。 As shown in FIG. 4, the variable magnification optical system according to the second example includes, in order from the object side along the optical axis, a first lens group G1 having a positive refractive power and a second lens group G2 having a negative refractive power. And a third lens group G3 having a positive refractive power.
広角端状態Wから望遠端状態Tへの変倍に際し、第1レンズ群G1と第2レンズ群G2との間隔は増大し、第2レンズ群G2と第3レンズ群G3との間隔は減少するように、像面Iに対して、第1レンズ群G1は単調に物体側へ移動し、第2レンズ群G2は物体側へ移動し、第3レンズ群G3は単調に物体側へ移動する。 When zooming from the wide-angle end state W to the telephoto end state T, the distance between the first lens group G1 and the second lens group G2 increases, and the distance between the second lens group G2 and the third lens group G3 decreases. Thus, with respect to the image plane I, the first lens group G1 moves monotonously to the object side, the second lens group G2 moves to the object side, and the third lens group G3 moves monotonously to the object side.
さらに、第3レンズ群G3は、正屈折力の第31レンズ群G31と、正屈折力の第32レンズ群G32とから構成され、広角端状態Wから望遠端状態Tへの変倍に際し、第31レンズ群G31と第32レンズ群G32との間隔は減少するように、第31レンズ群G31と第32レンズ群G32は像面Iに対して単調に物体側へ移動する。 Further, the third lens group G3 is composed of a 31st lens group G31 having a positive refractive power and a 32nd lens group G32 having a positive refractive power, and in the zooming from the wide angle end state W to the telephoto end state T, The 31st lens group G31 and the 32nd lens group G32 move monotonously with respect to the image plane I toward the object side so that the distance between the 31st lens group G31 and the 32nd lens group G32 decreases.
開口絞りSは、第2レンズ群G2の像側にある第3レンズ群G3の最も物体側に配置され、第31レンズ群G31と一体で構成される。また、広角端状態Wから望遠端状態Tへの変倍に際し、開口絞りSは、広角端状態Wから第3中間焦点距離状態M3まで広角端状態Wの最大開口径を維持し、第3中間焦点距離状態M3から望遠端状態Tまでは最大開口径が単調に増大する。 The aperture stop S is disposed closest to the object side of the third lens group G3 on the image side of the second lens group G2, and is configured integrally with the 31st lens group G31. When zooming from the wide-angle end state W to the telephoto end state T, the aperture stop S maintains the maximum aperture diameter of the wide-angle end state W from the wide-angle end state W to the third intermediate focal length state M3. From the focal length state M3 to the telephoto end state T, the maximum aperture diameter increases monotonously.
第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成されている。 The first lens group G1 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. It is composed of
第2レンズ群G2は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹レンズL22と、両凸レンズL23と、両凹レンズL24とから構成されている。第2レンズ群G2の最も物体側に位置する負メニスカスレンズL21は、物体側のレンズ面に樹脂層を設けて非球面を形成した複合型非球面レンズである。 The second lens group G2 includes, in order from the object side along the optical axis, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave lens L22, a biconvex lens L23, and a biconcave lens L24. The negative meniscus lens L21 located closest to the object side in the second lens group G2 is a composite aspherical lens in which an aspherical surface is formed by providing a resin layer on the object-side lens surface.
第31レンズ群G31は、光軸に沿って物体側から順に、両凸レンズL31と、両凸レンズL32と物体側に凹面を向けた負メニスカスレンズL33との接合レンズと、両凹レンズL34と物体側に凸面を向けた正メニスカスレンズL35との接合レンズとから構成されている。両凹レンズL34は物体側のレンズ面に樹脂層を設けて非球面を形成した複合型非球面レンズである。 The thirty-first lens group G31 includes, in order from the object side along the optical axis, a cemented lens of a biconvex lens L31, a biconvex lens L32, and a negative meniscus lens L33 having a concave surface facing the object side, and a biconcave lens L34 and the object side. It is composed of a cemented lens with a positive meniscus lens L35 having a convex surface. The biconcave lens L34 is a composite aspherical lens in which an aspherical surface is formed by providing a resin layer on the object-side lens surface.
第32レンズ群G32は、光軸に沿って物体側から順に、両凸レンズL41と、両凸レンズL42と両凹レンズL43との接合レンズと、両凸レンズL44とから構成されている。第32レンズ群G32の最も物体側に位置する両凸レンズL41は、物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。両凸レンズL44から射出した光線は像面Iに結像する。 The thirty-second lens group G32 includes, in order from the object side along the optical axis, a biconvex lens L41, a cemented lens of a biconvex lens L42 and a biconcave lens L43, and a biconvex lens L44. The biconvex lens L41 located closest to the object side in the thirty-second lens group G32 is a glass mold aspheric lens having an aspheric lens surface on the object side. The light beam emitted from the biconvex lens L44 forms an image on the image plane I.
以下の表2に第2実施例に係る変倍光学系の諸元値を掲げる。 Table 2 below lists specifications of the variable magnification optical system according to the second example.
(表2)
(面データ)
面番号 r d nd νd
物面 ∞ ∞
1 107.0206 1.8000 1.903658 31.31
2 61.2968 9.0132 1.456500 90.27
3 -505.7797 0.1000
4 56.5708 6.5660 1.603001 65.44
5 263.1448 (可変)
6* 107.6633 0.1500 1.553890 38.09
7 79.4357 1.2000 1.816000 46.62
8 12.5498 5.8961
9 -28.1361 1.0000 1.816000 46.62
10 76.8103 0.1000
11 29.0330 5.0805 1.846660 23.78
12 -28.2941 0.7021
13 -20.3234 1.0000 1.788001 47.37
14 328.3222 (可変)
15(絞り) ∞ 0.5000
16 38.5144 4.3804 1.527510 66.72
17 -31.0868 0.1000
18 24.8278 5.7092 1.497000 81.64
19 -22.4849 1.0000 1.850260 32.35
20 -1199.4167 3.0000
21* -52.5575 0.1000 1.553890 38.09
22 -56.7769 1.0000 1.772499 49.60
23 32.9354 1.9482 1.805181 25.42
24 83.4259 (可変)
25* 38.1701 5.1517 1.677900 54.89
26 -30.3075 0.1000
27 119.1216 5.7937 1.511790 49.72
28 -16.9262 1.0000 1.878780 41.73
29 40.2625 0.7994
30 88.7687 4.0188 1.497970 53.26
31 -31.8725 (Bf)
像面 ∞
(非球面データ)
第6面
κ = 1.0000
A4 = 8.23600E-06
A6 = 2.68070E-08
A8 = -2.85680E-10
A10 = 8.96110E-13
第21面
κ = 1.0000
A4 = 8.39680E-06
A6 = 4.90050E-09
A8 = 0.00000E+00
A10 = 0.00000E+00
第25面
κ = 1.0000
A4 = -1.05940E-05
A6 = 2.60370E-08
A8 = 0.00000E+00
A10 = 0.00000E+00
(各種データ)
ズーム比 15.666
W M1 M2 M3 M4 T
f = 18.57581 27.79158 50.03219 134.79308 281.38675 291.01598
FNO = 3.58467 4.09252 5.03317 6.30198 6.35021 6.35739
ω = 38.75301 26.53439 15.40656 5.90773 2.83943 2.74550
Y = 14.20 14.20 14.20 14.20 14.20 14.20
TL = 141.06118 153.60481 176.97503 214.13726 226.92995 227.18745
Bf = 38.02328 48.03831 64.55253 85.33826 92.38485 92.60805
φ = 15.40 15.40 15.40 15.40 16.20 16.20
d5 2.12080 12.45490 26.91570 50.67230 62.28300 62.67010
d14 23.69130 18.40230 13.31350 7.80730 2.14860 1.80000
d24 10.01650 7.50000 4.98400 3.11010 2.90420 2.90000
(ズームレンズ群データ)
群 始面 焦点距離
1 1 95.68946
2 6 −11.46195
3 15 31.13029(W) 29.77152(M1)
28.52664(M2) 27.66506(M3)
27.57355(M4) 27.57169(T)
31 15 42.77504
32 25 40.12768
(条件式対応値)
(1) f1/fT=0.329
(2) φT/φW=1.052
(3) φM10/φW=1.052 (φM10は第4中間焦点距離状態M4の値)
(4) φM15/φW=1.052 (φM15は第4中間焦点距離状態M4の値)
(5) φM5/φW=1.000 (φM5は第3中間焦点距離状態M3の値)
(6) fM/fW=7.256 (fMは第3中間焦点距離状態M3の値)
(7) −f2/fT=0.0394
(Table 2)
(Surface data)
Surface number rd nd νd
Object ∞ ∞
1 107.0206 1.8000 1.903658 31.31
2 61.2968 9.0132 1.456500 90.27
3 -505.7797 0.1000
4 56.5708 6.5660 1.603001 65.44
5 263.1448 (variable)
6 * 107.6633 0.1500 1.553890 38.09
7 79.4357 1.2000 1.816000 46.62
8 12.5498 5.8961
9 -28.1361 1.0000 1.816000 46.62
10 76.8103 0.1000
11 29.0330 5.0805 1.846660 23.78
12 -28.2941 0.7021
13 -20.3234 1.0000 1.788001 47.37
14 328.3222 (variable)
15 (Aperture) ∞ 0.5000
16 38.5144 4.3804 1.527510 66.72
17 -31.0868 0.1000
18 24.8278 5.7092 1.497000 81.64
19 -22.4849 1.0000 1.850260 32.35
20 -1199.4167 3.0000
21 * -52.5575 0.1000 1.553890 38.09
22 -56.7769 1.0000 1.772499 49.60
23 32.9354 1.9482 1.805181 25.42
24 83.4259 (variable)
25 * 38.1701 5.1517 1.677900 54.89
26 -30.3075 0.1000
27 119.1216 5.7937 1.511790 49.72
28 -16.9262 1.0000 1.878780 41.73
29 40.2625 0.7994
30 88.7687 4.0188 1.497970 53.26
31 -31.8725 (Bf)
Image plane ∞
(Aspheric data)
6th surface κ = 1.0000
A4 = 8.23600E-06
A6 = 2.68070E-08
A8 = -2.85680E-10
A10 = 8.96110E-13
21st surface κ = 1.0000
A4 = 8.39680E-06
A6 = 4.90050E-09
A8 = 0.00000E + 00
A10 = 0.00000E + 00
25th surface κ = 1.0000
A4 = -1.05940E-05
A6 = 2.60370E-08
A8 = 0.00000E + 00
A10 = 0.00000E + 00
(Various data)
Zoom ratio 15.666
W M1 M2 M3 M4 T
f = 18.57581 27.79158 50.03219 134.79308 281.38675 291.01598
FNO = 3.58467 4.09252 5.03317 6.30198 6.35021 6.35739
ω = 38.75301 26.53439 15.40656 5.90773 2.83943 2.74550
Y = 14.20 14.20 14.20 14.20 14.20 14.20
TL = 141.06118 153.60481 176.97503 214.13726 226.92995 227.18745
Bf = 38.02328 48.03831 64.55253 85.33826 92.38485 92.60805
φ = 15.40 15.40 15.40 15.40 16.20 16.20
d5 2.12080 12.45490 26.91570 50.67230 62.28300 62.67010
d14 23.69130 18.40230 13.31350 7.80730 2.14860 1.80000
d24 10.01650 7.50000 4.98400 3.11010 2.90420 2.90000
(Zoom lens group data)
Group Start surface
2 6 -11.14695
3 15 31.13029 (W) 29.77152 (M1)
28.52664 (M2) 27.66506 (M3)
277.5355 (M4) 277.5169 (T)
31 15 42.77504
32 25 40.12768
(Values for conditional expressions)
(1) f1 / fT = 0.329
(2) φT / φW = 1.052
(3) φM10 / φW = 1.052 (φM10 is the value of the fourth intermediate focal length state M4)
(4) φM15 / φW = 1.052 (φM15 is the value of the fourth intermediate focal length state M4)
(5) φM5 / φW = 1.000 (φM5 is the value of the third intermediate focal length state M3)
(6) fM / fW = 7.256 (fM is the value of the third intermediate focal length state M3)
(7) -f2 / fT = 0.0394
図5は、第2実施例に係る変倍光学系の無限遠合焦状態での諸収差図を示し、(a)は広角端状態、(b)は第1中間焦点距離状態、(c)は第2中間焦点距離状態をそれぞれ示す。 FIG. 5 shows various aberration diagrams of the zoom optical system according to the second example in the infinite focus state, where (a) is a wide-angle end state, (b) is a first intermediate focal length state, and (c). Indicates the second intermediate focal length state.
図6は、第2実施例に係る変倍光学系の無限遠合焦状態での諸収差図を示し、(a)は第3中間焦点距離状態、(b)は第4中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。 FIG. 6 shows various aberration diagrams of the zoom optical system according to the second example in an infinitely focused state, where (a) is a third intermediate focal length state, (b) is a fourth intermediate focal length state, (C) shows a telephoto end state, respectively.
各収差図から、第2実施例に係る変倍光学系は、諸収差が良好に補正され、高い光学性能を有していることがわかる。 From the respective aberration diagrams, it can be seen that the variable magnification optical system according to the second example has various optical aberrations corrected and high optical performance.
(第3実施例)
図7は、第3実施例に係る変倍光学系の構成を示す断面図である。
(Third embodiment)
FIG. 7 is a cross-sectional view showing the configuration of the variable magnification optical system according to the third example.
図7に示すように、第3実施例に係る変倍光学系は、光軸に沿って物体側から順に、正屈折力の第1レンズ群G1と、負屈折力の第2レンズ群G2と、正屈折力の第3レンズ群G3とから構成される。 As shown in FIG. 7, the variable magnification optical system according to the third example includes a first lens group G1 having a positive refractive power and a second lens group G2 having a negative refractive power in order from the object side along the optical axis. And a third lens group G3 having a positive refractive power.
広角端状態Wから望遠端状態Tへの変倍に際し、第1レンズ群G1と第2レンズ群G2との間隔は増大し、第2レンズ群G2と第3レンズ群G3との間隔は減少するように、像面Iに対して、第1レンズ群G1は単調に物体側へ移動し、第2レンズ群G2は第1中間焦点距離状態M1まで像側へ移動し、第1中間焦点距離状態M1から望遠端状態Tまでは物体側へ移動し、第3レンズ群G3は単調に物体側へ移動する。 When zooming from the wide-angle end state W to the telephoto end state T, the distance between the first lens group G1 and the second lens group G2 increases, and the distance between the second lens group G2 and the third lens group G3 decreases. Thus, with respect to the image plane I, the first lens group G1 moves monotonously to the object side, and the second lens group G2 moves to the image side up to the first intermediate focal length state M1, and the first intermediate focal length state From M1 to the telephoto end state T, the lens moves toward the object side, and the third lens group G3 monotonously moves toward the object side.
さらに、第3レンズ群G3は、正屈折力の第31レンズ群G31と、正屈折力の第32レンズ群G32とから構成され、広角端状態Wから望遠端状態Tへの変倍に際し、第31レンズ群G31と第32レンズ群G32との間隔は減少するように、第31レンズ群G31と第32レンズ群G32は像面Iに対して単調に物体側へ移動する。 Further, the third lens group G3 is composed of a 31st lens group G31 having a positive refractive power and a 32nd lens group G32 having a positive refractive power, and in the zooming from the wide angle end state W to the telephoto end state T, The 31st lens group G31 and the 32nd lens group G32 move monotonously with respect to the image plane I toward the object side so that the distance between the 31st lens group G31 and the 32nd lens group G32 decreases.
開口絞りSは、第2レンズ群G2の像側にある第3レンズ群G3の最も物体側に配置され、第31レンズ群G31と一体で構成される。また、広角端状態Wから望遠端状態Tへの変倍に際し、開口絞りSは、広角端状態Wから第1中間焦点距離状態M1まで広角端状態Wの最大開口径を維持し、第1中間焦点距離状態M1から望遠端状態Tまでは最大開口径が単調に増大する。 The aperture stop S is disposed closest to the object side of the third lens group G3 on the image side of the second lens group G2, and is configured integrally with the 31st lens group G31. When zooming from the wide-angle end state W to the telephoto end state T, the aperture stop S maintains the maximum aperture diameter of the wide-angle end state W from the wide-angle end state W to the first intermediate focal length state M1. From the focal length state M1 to the telephoto end state T, the maximum aperture diameter increases monotonously.
第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成されている。 The first lens group G1 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. It is composed of
第2レンズ群G2は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹レンズL22と、両凸レンズL23と、像側に凸面を向けた負メニスカスレンズL24と像側に凸面を向けた正メニスカスレンズL25との接合レンズとから構成されている。第2レンズ群G2の最も物体側に位置する負メニスカスレンズL21は、物体側のレンズ面に樹脂層を設けて非球面を形成した複合型非球面レンズである。 The second lens group G2 includes, in order from the object side along the optical axis, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave lens L22, a biconvex lens L23, and a negative meniscus lens having a convex surface directed toward the image side. It consists of a cemented lens of L24 and a positive meniscus lens L25 having a convex surface facing the image side. The negative meniscus lens L21 located closest to the object side in the second lens group G2 is a composite aspherical lens in which an aspherical surface is formed by providing a resin layer on the object-side lens surface.
第31レンズ群G31は、光軸に沿って物体側から順に、両凸レンズL31と、両凸レンズL32と、両凸レンズL33と両凹レンズL34との接合レンズと、両凹レンズL35と物体側に凸面を向けた正メニスカスレンズL36との接合レンズと、物体側に凹面を向けた負メニスカスレンズL37とから構成されている。両凹レンズL35は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。 The thirty-first lens group G31 has, in order from the object side along the optical axis, a convex surface facing the biconvex lens L31, the biconvex lens L32, the cemented lens of the biconvex lens L33 and the biconcave lens L34, and the biconcave lens L35. Further, it is composed of a cemented lens with the positive meniscus lens L36 and a negative meniscus lens L37 having a concave surface facing the object side. The biconcave lens L35 is a glass mold aspheric lens having an aspheric lens surface on the object side.
第32レンズ群G32は、光軸に沿って物体側から順に、両凸レンズL41と、両凹レンズL42と両凸レンズL43との接合レンズとから構成されている。第32レンズ群G32の最も物体側に位置する両凸レンズL41は、物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。両凸レンズL43から射出した光線は像面Iに結像する。 The thirty-second lens group G32 includes, in order from the object side along the optical axis, a biconvex lens L41 and a cemented lens of a biconcave lens L42 and a biconvex lens L43. The biconvex lens L41 located closest to the object side in the thirty-second lens group G32 is a glass mold aspheric lens having an aspheric lens surface on the object side. Light rays emitted from the biconvex lens L43 form an image on the image plane I.
以下の表3に第3実施例に係る変倍光学系の諸元値を掲げる。 Table 3 below lists specifications of the variable magnification optical system according to the third example.
(表3)
(面データ)
面番号 r d nd νd
物面 ∞ ∞
1 123.9595 2.0000 1.850260 32.35
2 65.8189 9.3000 1.497820 82.52
3 -679.8190 0.1000
4 66.6349 6.2000 1.593190 67.87
5 419.9308 (可変)
6* 162.3242 0.1500 1.553890 38.09
7 146.0754 1.0000 1.834807 42.72
8 16.1304 6.5500
9 -35.2760 1.0000 1.882997 40.76
10 60.4450 0.1000
11 37.3723 5.2000 1.846660 23.78
12 -32.7279 0.8214
13 -23.9463 1.0000 1.882997 40.76
14 -252.4150 2.0000 1.808090 22.79
15 -72.4479 (可変)
16(絞り) ∞ 1.0000
17 36.7222 3.3000 1.593190 67.87
18 -118.1963 0.1000
19 41.3768 3.1500 1.487490 70.41
20 -92.3429 0.1000
21 42.3403 3.8000 1.487490 70.41
22 -41.0036 1.0000 1.805181 25.43
23 259.3609 3.8191
24* -63.6485 1.0000 1.806100 40.94
25 22.0000 2.9000 1.805181 25.43
26 150.5781 4.2000
27 -45.8244 1.0000 1.882997 40.76
28 -215.9895 (可変)
29* 77.1794 3.1500 1.589130 61.16
30 -37.1187 0.1000
31 -261.2949 1.0000 1.882997 40.76
32 39.9808 4.4000 1.518229 58.93
33 -48.5209 (Bf)
像面 ∞
(非球面データ)
第6面
κ = -5.7774
A4 = 6.79980E-06
A6 = -2.52730E-08
A8 = 8.26150E-11
A10 = -1.02860E-13
第24面
κ = 2.8196
A4 = 4.59750E-06
A6 = 4.28350E-09
A8 = 0.00000E+00
A10 = 0.00000E+00
第29面
κ = -6.5363
A4 = -1.95310E-05
A6 = 1.79050E-08
A8 = -1.55070E-10
A10 = 4.13770E-13
(各種データ)
ズーム比 15.696
W M1 M2 M3 M4 T
f = 18.53979 27.99960 49.99905 104.99746 281.99442 290.99204
FNO = 4.10702 4.69307 5.38961 5.39973 5.39860 5.39939
ω = 38.99845 26.65869 15.38789 7.50128 2.82458 2.73812
Y = 14.20 14.20 14.20 14.20 14.20 14.20
TL = 160.00885 165.81325 187.27349 218.99165 237.63297 237.79997
Bf = 39.11693 51.53459 69.40178 89.39051 98.87896 99.16649
φ = 15.60 15.60 16.50 20.00 21.72 21.78
d5 2.15153 10.22614 25.00000 45.02627 65.29400 65.69297
d15 40.45482 29.25621 20.27964 13.14016 2.48000 2.00000
d28 8.84506 5.35580 3.15156 1.99420 1.53950 1.50000
(ズームレンズ群データ)
群 始面 焦点距離
1 1 103.25223
2 6 −15.13084
3 16 39.55369(W) 37.13627(M1)
35.75578(M2) 35.07124(M3)
34.80941(M4) 34.78685(T)
31 16 44.76649
32 29 47.36030
(条件式対応値)
(1) f1/fT=0.355
(2) φT/φW=1.396
(3) φM10/φW=1.392 (φM10は第4中間焦点距離状態M4の値)
(4) φM15/φW=1.392 (φM15は第4中間焦点距離状態M4の値)
(5) φM5/φW=1.282 (φM5は第3中間焦点距離状態M3の値)
(6) fM/fW=1.510 (fMは第1中間焦点距離状態M1の値)
(7) −f2/fT=0.0520
(Table 3)
(Surface data)
Surface number rd nd νd
Object ∞ ∞
1 123.9595 2.0000 1.850260 32.35
2 65.8189 9.3000 1.497820 82.52
3 -679.8190 0.1000
4 66.6349 6.2000 1.593190 67.87
5 419.9308 (variable)
6 * 162.3242 0.1500 1.553890 38.09
7 146.0754 1.0000 1.834807 42.72
8 16.1304 6.5500
9 -35.2760 1.0000 1.882997 40.76
10 60.4450 0.1000
11 37.3723 5.2000 1.846660 23.78
12 -32.7279 0.8214
13 -23.9463 1.0000 1.882997 40.76
14 -252.4150 2.0000 1.808090 22.79
15 -72.4479 (variable)
16 (Aperture) ∞ 1.0000
17 36.7222 3.3000 1.593190 67.87
18 -118.1963 0.1000
19 41.3768 3.1500 1.487490 70.41
20 -92.3429 0.1000
21 42.3403 3.8000 1.487490 70.41
22 -41.0036 1.0000 1.805181 25.43
23 259.3609 3.8191
24 * -63.6485 1.0000 1.806100 40.94
25 22.0000 2.9000 1.805181 25.43
26 150.5781 4.2000
27 -45.8244 1.0000 1.882997 40.76
28 -215.9895 (variable)
29 * 77.1794 3.1500 1.589130 61.16
30 -37.1187 0.1000
31 -261.2949 1.0000 1.882997 40.76
32 39.9808 4.4000 1.518229 58.93
33 -48.5209 (Bf)
Image plane ∞
(Aspheric data)
6th surface κ = -5.7774
A4 = 6.79980E-06
A6 = -2.52730E-08
A8 = 8.26150E-11
A10 = -1.02860E-13
24th surface κ = 2.8196
A4 = 4.59750E-06
A6 = 4.28350E-09
A8 = 0.00000E + 00
A10 = 0.00000E + 00
29th surface κ = -6.5363
A4 = -1.95310E-05
A6 = 1.79050E-08
A8 = -1.55070E-10
A10 = 4.13770E-13
(Various data)
Zoom ratio 15.696
W M1 M2 M3 M4 T
f = 18.53979 27.99960 49.99905 104.99746 281.99442 290.99204
FNO = 4.10702 4.69307 5.38961 5.39973 5.39860 5.39939
ω = 38.99845 26.65869 15.38789 7.50128 2.82458 2.73812
Y = 14.20 14.20 14.20 14.20 14.20 14.20
TL = 160.00885 165.81325 187.27349 218.99165 237.63297 237.79997
Bf = 39.11693 51.53459 69.40178 89.39051 98.87896 99.16649
φ = 15.60 15.60 16.50 20.00 21.72 21.78
d5 2.15153 10.22614 25.00000 45.02627 65.29400 65.69297
d15 40.45482 29.25621 20.27964 13.14016 2.48000 2.00000
d28 8.84506 5.35580 3.15156 1.99420 1.53950 1.50000
(Zoom lens group data)
Group Start surface
2 6-15.13084
3 16 39.5369 (W) 37.13627 (M1)
35.75578 (M2) 35.07124 (M3)
34.80941 (M4) 34.78685 (T)
31 16 44.74649
32 29 47.36030
(Values for conditional expressions)
(1) f1 / fT = 0.355
(2) φT / φW = 1.396
(3) φM10 / φW = 1.392 (φM10 is the value of the fourth intermediate focal length state M4)
(4) φM15 / φW = 1.392 (φM15 is the value of the fourth intermediate focal length state M4)
(5) φM5 / φW = 1.282 (φM5 is the value of the third intermediate focal length state M3)
(6) fM / fW = 1.510 (fM is the value of the first intermediate focal length state M1)
(7) -f2 / fT = 0.0520
図8は、第3実施例に係る変倍光学系の無限遠合焦状態での諸収差図を示し、(a)は広角端状態、(b)は第1中間焦点距離状態、(c)は第2中間焦点距離状態をそれぞれ示す。 FIG. 8 shows various aberration diagrams of the zoom optical system according to the third example in the infinitely focused state, where (a) is a wide-angle end state, (b) is a first intermediate focal length state, and (c). Indicates the second intermediate focal length state.
図9は、第3実施例に係る変倍光学系の無限遠合焦状態での諸収差図を示し、(a)は第3中間焦点距離状態、(b)は第4中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。 FIG. 9 shows various aberration diagrams of the zoom optical system according to the third example in the infinitely focused state, where (a) is a third intermediate focal length state, (b) is a fourth intermediate focal length state, (C) shows a telephoto end state, respectively.
各収差図から、第3実施例に係る変倍光学系は、諸収差が良好に補正され、高い光学性能を有していることがわかる。 From each aberration diagram, it can be seen that the variable magnification optical system according to the third example has various optical aberrations corrected and high optical performance.
(第4実施例)
図10は、第4実施例に係る変倍光学系の構成を示す断面図である。
(Fourth embodiment)
FIG. 10 is a cross-sectional view showing the configuration of the variable magnification optical system according to the fourth example.
図10に示すように、第4実施例に係る変倍光学系は、光軸に沿って物体側から順に、正屈折力の第1レンズ群G1と、負屈折力の第2レンズ群G2と、正屈折力の第3レンズ群G3とから構成される。 As shown in FIG. 10, the zoom optical system according to the fourth example includes a first lens group G1 having a positive refractive power and a second lens group G2 having a negative refractive power in order from the object side along the optical axis. And a third lens group G3 having a positive refractive power.
広角端状態Wから望遠端状態Tへの変倍に際し、第1レンズ群G1と第2レンズ群G2との間隔は増大し、第2レンズ群G2と第3レンズ群G3との間隔は減少するように、像面Iに対して、第1レンズ群G1は単調に物体側へ移動し、第2レンズ群G2は第1中間焦点距離状態M1まで像側へ移動し、第1中間焦点距離状態M1から望遠端状態Tまでは物体側へ移動し、第3レンズ群G3は単調に物体側へ移動する。 When zooming from the wide-angle end state W to the telephoto end state T, the distance between the first lens group G1 and the second lens group G2 increases, and the distance between the second lens group G2 and the third lens group G3 decreases. Thus, with respect to the image plane I, the first lens group G1 moves monotonously to the object side, and the second lens group G2 moves to the image side up to the first intermediate focal length state M1, and the first intermediate focal length state From M1 to the telephoto end state T, the lens moves toward the object side, and the third lens group G3 monotonously moves toward the object side.
さらに、第3レンズ群G3は、正屈折力の第31レンズ群G31と、負屈折力の第32レンズ群G32と、正屈折力の第33レンズ群G33とから構成され、広角端状態Wから望遠端状態Tへの変倍に際し、第31レンズ群G31と第32レンズ群G32との間隔は増大し、第32レンズ群G32と第33レンズ群G33との間隔は減少するように、第31レンズ群G31と第32レンズ群G32と第33レンズ群G33は像面Iに対して物体側へ移動する。 Further, the third lens group G3 includes a 31st lens group G31 having a positive refractive power, a 32nd lens group G32 having a negative refractive power, and a 33rd lens group G33 having a positive refractive power. At the time of zooming to the telephoto end state T, the distance between the 31st lens group G31 and the 32nd lens group G32 increases, and the distance between the 32nd lens group G32 and the 33rd lens group G33 decreases. The lens group G31, the thirty-second lens group G32, and the thirty-third lens group G33 move toward the object side with respect to the image plane I.
開口絞りSは、第2レンズ群G2の像側にある第3レンズ群G3の最も物体側に配置され、第31レンズ群G31と一体で構成される。また、広角端状態Wから望遠端状態Tへの変倍に際し、開口絞りSは、広角端状態Wから第2中間焦点距離状態M2まで広角端状態Wの最大開口径を維持し、第2中間焦点距離状態M2から望遠端状態Tまでは最大開口径が単調に増大する。 The aperture stop S is disposed closest to the object side of the third lens group G3 on the image side of the second lens group G2, and is configured integrally with the 31st lens group G31. Further, upon zooming from the wide-angle end state W to the telephoto end state T, the aperture stop S maintains the maximum aperture diameter of the wide-angle end state W from the wide-angle end state W to the second intermediate focal length state M2, and the second intermediate From the focal length state M2 to the telephoto end state T, the maximum aperture diameter increases monotonously.
第1レンズ群G1は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とから構成されている。 The first lens group G1 includes, in order from the object side along the optical axis, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. It is composed of
第2レンズ群G2は、光軸に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹レンズL22と、両凸レンズL23と、両凹レンズL24と両凸レンズL25との接合レンズとから構成されている。第2レンズ群G2の最も物体側に位置する負メニスカスレンズL21は、物体側のレンズ面に樹脂層を設けて非球面を形成した複合型非球面レンズである。 The second lens group G2 includes, in order from the object side along the optical axis, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave lens L22, a biconvex lens L23, a biconcave lens L24, and a biconvex lens L25. It consists of a lens. The negative meniscus lens L21 located closest to the object side in the second lens group G2 is a composite aspherical lens in which an aspherical surface is formed by providing a resin layer on the object-side lens surface.
第31レンズ群G31は、光軸に沿って物体側から順に、両凸レンズL31と、両凸レンズL32と、両凸レンズL33と物体側に凹面を向けた負メニスカスレンズL34との接合レンズとから構成されている。 The thirty-first lens group G31 includes, in order from the object side along the optical axis, a biconvex lens L31, a biconvex lens L32, a cemented lens of a biconvex lens L33, and a negative meniscus lens L34 having a concave surface facing the object side. ing.
第32レンズ群G32は、光軸に沿って物体側から順に、両凹レンズL41と物体側に凸面を向けた正メニスカスレンズL42との接合レンズと、物体側に凹面を向けた負メニスカスレンズL43とから構成されている。第32レンズ群G32の最も物体側に位置する両凹レンズL41は、物体側のレンズ面に樹脂層を設けて非球面を形成した複合型非球面レンズである。 The thirty-second lens group G32 includes, in order from the object side along the optical axis, a cemented lens of a biconcave lens L41 and a positive meniscus lens L42 having a convex surface facing the object side, and a negative meniscus lens L43 having a concave surface facing the object side. It is composed of The biconcave lens L41 located closest to the object side in the thirty-second lens group G32 is a compound aspherical lens in which an aspherical surface is formed by providing a resin layer on the object-side lens surface.
第33レンズ群G33は、光軸に沿って物体側から順に、両凸レンズL51と、両凸レンズL52と、両凹レンズL53と両凸レンズL54との接合レンズとから構成されている。第33レンズ群G33の最も物体側に位置する両凸レンズL51は、物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。両凸レンズL54から射出した光線は像面Iに結像する。 The thirty-third lens group G33 includes, in order from the object side along the optical axis, a biconvex lens L51, a biconvex lens L52, and a cemented lens of a biconcave lens L53 and a biconvex lens L54. The biconvex lens L51 located closest to the object side in the thirty-third lens group G33 is a glass mold aspheric lens having an aspheric lens surface on the object side. Light rays emitted from the biconvex lens L54 form an image on the image plane I.
以下の表4に第4実施例に係る変倍光学系の諸元値を掲げる。 Table 4 below lists various values of the variable magnification optical system according to the fourth example.
(表4)
(面データ)
面番号 r d nd νd
物面 ∞ ∞
1 175.6056 2.2000 1.834000 37.16
2 67.4302 8.8000 1.497820 82.52
3 -587.7848 0.1000
4 72.2710 6.4500 1.593190 67.87
5 1826.1388 (可変)
6* 84.7687 0.1000 1.553890 38.09
7 73.9375 1.2000 1.834807 42.72
8 17.1873 6.9500
9 -36.9822 1.0000 1.816000 46.62
10 77.9263 0.1500
11 36.6346 5.3000 1.784723 25.68
12 -36.6346 0.8000
13 -26.1991 1.0000 1.816000 46.62
14 63.7396 2.0500 1.808090 22.79
15 -643.2706 (可変)
16(絞り) ∞ 1.0000
17 65.8365 3.4000 1.593190 67.87
18 -50.1546 0.1000
19 65.6817 2.4500 1.487490 70.41
20 -154.9743 0.1000
21 46.7333 4.2000 1.487490 70.41
22 -35.7833 1.0000 1.808090 22.79
23 -191.9318 (可変)
24* -57.2966 0.2000 1.553890 38.09
25 -59.7250 0.9000 1.696797 55.52
26 28.5100 2.1500 1.728250 28.46
27 91.9976 4.1402
28 -32.8954 1.0000 1.729157 54.66
29 -144.3315 (可変)
30* 6427.1919 4.6500 1.589130 61.18
31 -27.3818 0.1000
32 31.4776 5.8500 1.487490 70.41
33 -43.7539 1.4500
34 -113.5897 1.0000 1.882997 40.76
35 20.3481 5.3000 1.548141 45.79
36 -709.1453 (Bf)
像面 ∞
(非球面データ)
第6面
κ = 1.0000
A4 = 2.88220E-06
A6 = -2.29350E-11
A8 = -2.35280E-11
A10 = 9.21570E-14
第24面
κ = 1.0000
A4 = 4.32780E-06
A6 = 1.88460E-09
A8 = 0.00000E+00
A10 = 0.00000E+00
第30面
κ = 1.0000
A4 = -1.36170E-05
A6 = -3.55860E-10
A8 = 1.83080E-11
A10 = -1.86790E-13
(各種データ)
ズーム比 15.701
W M1 M2 M3 M4 T
f = 18.56060 27.94799 48.95245 104.65150 280.18763 291.42454
FNO = 3.57565 4.13253 5.36204 5.62482 5.80434 5.81064
ω = 38.80191 26.18802 15.68652 7.44205 2.82863 2.72113
Y = 14.20 14.20 14.20 14.20 14.20 14.20
TL = 164.76435 171.02547 189.44683 225.28899 249.99418 250.61470
Bf = 38.84705 44.06807 62.50183 73.57929 86.00428 86.64770
φ = 15.80 15.80 15.80 17.50 19.50 19.60
d5 2.15700 11.13190 22.22690 53.01000 75.67850 76.25220
d15 33.36360 23.94380 15.96870 11.30360 2.48130 2.00000
d23 3.46820 7.42730 8.95240 9.64300 9.67390 9.62460
d29 11.83830 9.36420 4.70680 2.66290 1.06600 1.00000
(ズームレンズ群データ)
群 始面 焦点距離
1 1 117.72937
2 6 −15.60945
3 16 40.44471(W) 39.66103(M1)
35.67164(M2) 33.95695(M3)
32.73988(M4) 32.70088(T)
31 16 27.35473
32 24 −26.50041
33 30 35.20423
(条件式対応値)
(1) f1/fT=0.404
(2) φT/φW=1.241
(3) φM10/φW=1.234 (φM10は第4中間焦点距離状態M4の値)
(4) φM15/φW=1.234 (φM15は第4中間焦点距離状態M4の値)
(5) φM5/φW=1.108 (φM5は第3中間焦点距離状態M3の値)
(6) fM/fW=2.637 (fMは第2中間焦点距離状態M2の値)
(7) −f2/fT=0.0536
(Table 4)
(Surface data)
Surface number rd nd νd
Object ∞ ∞
1 175.6056 2.2000 1.834000 37.16
2 67.4302 8.8000 1.497820 82.52
3 -587.7848 0.1000
4 72.2710 6.4500 1.593190 67.87
5 1826.1388 (variable)
6 * 84.7687 0.1000 1.553890 38.09
7 73.9375 1.2000 1.834807 42.72
8 17.1873 6.9500
9 -36.9822 1.0000 1.816000 46.62
10 77.9263 0.1500
11 36.6346 5.3000 1.784723 25.68
12 -36.6346 0.8000
13 -26.1991 1.0000 1.816000 46.62
14 63.7396 2.0500 1.808090 22.79
15 -643.2706 (variable)
16 (Aperture) ∞ 1.0000
17 65.8365 3.4000 1.593190 67.87
18 -50.1546 0.1000
19 65.6817 2.4500 1.487490 70.41
20 -154.9743 0.1000
21 46.7333 4.2000 1.487490 70.41
22 -35.7833 1.0000 1.808090 22.79
23 -191.9318 (variable)
24 * -57.2966 0.2000 1.553890 38.09
25 -59.7250 0.9000 1.696797 55.52
26 28.5100 2.1500 1.728250 28.46
27 91.9976 4.1402
28 -32.8954 1.0000 1.729157 54.66
29 -144.3315 (variable)
30 * 6427.1919 4.6500 1.589130 61.18
31 -27.3818 0.1000
32 31.4776 5.8500 1.487490 70.41
33 -43.7539 1.4500
34 -113.5897 1.0000 1.882997 40.76
35 20.3481 5.3000 1.548141 45.79
36 -709.1453 (Bf)
Image plane ∞
(Aspheric data)
6th surface κ = 1.0000
A4 = 2.88220E-06
A6 = -2.29350E-11
A8 = -2.35280E-11
A10 = 9.21570E-14
24th surface κ = 1.0000
A4 = 4.32780E-06
A6 = 1.88460E-09
A8 = 0.00000E + 00
A10 = 0.00000E + 00
30th surface κ = 1.0000
A4 = -1.36170E-05
A6 = -3.55860E-10
A8 = 1.83080E-11
A10 = -1.86790E-13
(Various data)
Zoom ratio 15.701
W M1 M2 M3 M4 T
f = 18.56060 27.94799 48.95245 104.65150 280.18763 291.42454
FNO = 3.57565 4.13253 5.36204 5.62482 5.80434 5.81064
ω = 38.80191 26.18802 15.68652 7.44205 2.82863 2.72113
Y = 14.20 14.20 14.20 14.20 14.20 14.20
TL = 164.76435 171.02547 189.44683 225.28899 249.99418 250.61470
Bf = 38.84705 44.06807 62.50183 73.57929 86.00428 86.64770
φ = 15.80 15.80 15.80 17.50 19.50 19.60
d5 2.15700 11.13190 22.22690 53.01000 75.67850 76.25220
d15 33.36360 23.94380 15.96870 11.30360 2.48130 2.00000
d23 3.46820 7.42730 8.95240 9.64300 9.67390 9.62460
d29 11.83830 9.36420 4.70680 2.66290 1.06600 1.00000
(Zoom lens group data)
Group Start surface
2 6 -15.60945
3 16 40.44771 (W) 39.66103 (M1)
35.67164 (M2) 33.95695 (M3)
32.73988 (M4) 32.70088 (T)
31 16 27.35473
32 24 -26.50041
33 30 35.423
(Values for conditional expressions)
(1) f1 / fT = 0.404
(2) φT / φW = 1.241
(3) φM10 / φW = 1.234 (φM10 is the value of the fourth intermediate focal length state M4)
(4) φM15 / φW = 1.234 (φM15 is the value of the fourth intermediate focal length state M4)
(5) φM5 / φW = 1.108 (φM5 is the value of the third intermediate focal length state M3)
(6) fM / fW = 2.636 (fM is the value of the second intermediate focal length state M2)
(7) -f2 / fT = 0.0536
図11は、第4実施例に係る変倍光学系の無限遠合焦状態での諸収差図を示し、(a)は広角端状態、(b)は第1中間焦点距離状態、(c)は第2中間焦点距離状態をそれぞれ示す。 FIG. 11 shows various aberration diagrams of the zoom optical system according to the fourth example in the infinitely focused state, where (a) is the wide-angle end state, (b) is the first intermediate focal length state, and (c). Indicates the second intermediate focal length state.
図12は、第4実施例に係る変倍光学系の無限遠合焦状態での諸収差図を示し、(a)は第3中間焦点距離状態、(b)は第4中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。 FIG. 12 shows various aberration diagrams of the zoom optical system according to the fourth example in the infinitely focused state, where (a) is a third intermediate focal length state, (b) is a fourth intermediate focal length state, (C) shows a telephoto end state, respectively.
各収差図から、第4実施例に係る変倍光学系は、諸収差が良好に補正され、高い光学性能を有していることがわかる。 From the respective aberration diagrams, it can be seen that the variable magnification optical system according to the fourth example has various aberrations corrected well and high optical performance.
以上のように、本実施形態によれば、収差変動を抑え、高い光学性能を有する変倍光学系を提供することができる。 As described above, according to the present embodiment, it is possible to provide a variable magnification optical system that suppresses aberration fluctuation and has high optical performance.
次に、本実施形態に係る変倍光学系を搭載したカメラについて説明する。なお、第1実施例に係る変倍光学系を搭載した場合について説明するが、他の実施例でも同様である。 Next, a camera equipped with the variable magnification optical system according to the present embodiment will be described. Although the case where the variable magnification optical system according to the first example is mounted will be described, the same applies to other examples.
図13は、第1実施例に係る変倍光学系を備えたカメラの構成を示す図である。 FIG. 13 is a diagram illustrating a configuration of a camera including the variable magnification optical system according to the first example.
図13において、カメラ1は、撮影レンズ2として第1実施例に係る変倍光学系を備えたデジタル一眼レフカメラである。カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、クイックリターンミラー3を介して焦点板4に結像される。そして焦点板4に結像されたこの光は、ペンタプリズム5中で複数回反射されて接眼レンズ6へ導かれる。これにより撮影者は、被写体像を接眼レンズ6を介して正立像として観察することができる。
In FIG. 13, a
また、撮影者によって不図示のレリーズボタンが押されると、クイックリターンミラー3が光路外へ退避し、不図示の被写体からの光は撮像素子7へ到達する。これにより被写体からの光は、撮像素子7によって撮像されて、被写体画像として不図示のメモリに記録される。このようにして、撮影者はカメラ1による被写体の撮影を行うことができる。
When the release button (not shown) is pressed by the photographer, the
カメラ1に撮影レンズ2として第1実施例に係る変倍光学系を搭載することにより、高い性能を有するカメラを実現することができる。
By mounting the zoom optical system according to the first example as the photographing
以下、本願の変倍光学系の製造方法の概略を説明する。 The outline of the manufacturing method of the variable magnification optical system of the present application will be described below.
図14は、本願の変倍光学系の製造方法を示す図である。 FIG. 14 is a diagram showing a manufacturing method of the variable magnification optical system of the present application.
本願の変倍光学系の製造方法は、光軸に沿って物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群とからなる変倍光学系の製造方法であって、図14に示すステップS1,S2,S3を含むものである。 The variable magnification optical system manufacturing method of the present application includes, in order from the object side along the optical axis, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power. A variable magnification optical system manufacturing method comprising steps S1, S2 and S3 shown in FIG.
ステップS1:開口絞りを第2レンズ群より像側に配置する。 Step S1: An aperture stop is disposed on the image side from the second lens group.
ステップS2:第1レンズ群と第2レンズ群と第3レンズ群とを、広角端状態から望遠端状態への変倍に際し、第1レンズ群と第2レンズ群との間隔が増大可能、第2レンズ群と第3レンズ群との間隔が減少可能に配置する。 Step S2: When changing the magnification of the first lens group, the second lens group, and the third lens group from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group can be increased. The distance between the second lens group and the third lens group is arranged so as to be reduced.
ステップS3:以下の条件式(1)、(2)を満足するようにする。
(1) 0.17 < f1/fT < 0.60
(2) 1.03 < φT/φW < 1.70
但し、fTは望遠端状態における全系の焦点距離、f1は第1レンズ群の焦点距離、φWは広角端状態における開口絞りの最大開口径、φTは望遠端状態における開口絞りの最大開口径である。
Step S3: The following conditional expressions (1) and (2) are satisfied.
(1) 0.17 <f1 / fT <0.60
(2) 1.03 <φT / φW <1.70
Where fT is the focal length of the entire system in the telephoto end state, f1 is the focal length of the first lens group, φW is the maximum aperture diameter of the aperture stop in the wide-angle end state, and φT is the maximum aperture diameter of the aperture stop in the telephoto end state is there.
本願の変倍光学系の製造方法によれば、収差変動を抑え、高い光学性能を有する変倍光学系を製造することができる。 According to the manufacturing method of the variable magnification optical system of the present application, it is possible to manufacture a variable magnification optical system that suppresses aberration fluctuation and has high optical performance.
なお、以下に記載の内容は、光学性能を損なわない範囲で適宜採用可能である。 The contents described below can be appropriately adopted as long as the optical performance is not impaired.
実施例では、4群と5群構成を示したが、6群等の他の群構成にも適用可能である。また、最も物体側にレンズまたはレンズ群を追加した構成や、最も像側にレンズまたはレンズ群を追加した構成でも構わない。また、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。 In the embodiment, the 4-group and 5-group configurations are shown, but the present invention can be applied to other group configurations such as the 6- group configuration. Further, a configuration in which a lens or a lens group is added to the most object side, or a configuration in which a lens or a lens group is added to the most image side may be used. The lens group refers to a portion having at least one lens separated by an air interval that changes during zooming.
単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としても良い。前記合焦レンズ群は、オートフォーカスにも適用でき、オートフォーカス用の(超音波モータ等を用いた)モータ駆動にも適している。特に、第2レンズ群の少なくとも一部を合焦レンズ群とするのが好ましい。 A single lens group, a plurality of lens groups, or a partial lens group may be moved in the optical axis direction to be a focusing lens group that performs focusing from an object at infinity to a near object. The focusing lens group can be applied to autofocus, and is also suitable for driving a motor for autofocus (using an ultrasonic motor or the like). In particular, it is preferable that at least a part of the second lens group is a focusing lens group.
また、レンズ群または部分レンズ群を光軸に垂直な方向の成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手ブレによって生じる像ブレを補正する防振レンズ群としても良い。特に、第3レンズ群の少なくとも一部を防振レンズ群とするのが好ましい。 In addition, the lens group or the partial lens group is moved so as to have a component in a direction perpendicular to the optical axis, or is rotated (swayed) in the in-plane direction including the optical axis to reduce image blur caused by camera shake. A vibration-proof lens group to be corrected may be used. In particular, it is preferable that at least a part of the third lens group is an anti-vibration lens group.
また、レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。 Further, the lens surface may be formed as a spherical surface, a flat surface, or an aspheric surface.
レンズ面が球面または平面の場合、レンズ加工及び組立調整が容易になり、加工及び組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。 When the lens surface is a spherical surface or a flat surface, lens processing and assembly adjustment are facilitated, and optical performance deterioration due to errors in processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance.
レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、レンズ面は回折面としても良く、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしても良い。 When the lens surface is an aspheric surface, the aspheric surface is an aspheric surface by grinding, a glass mold aspheric surface made of glass with an aspheric shape, or a composite aspheric surface made of resin with an aspheric shape on the glass surface. Any aspherical surface may be used. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
また、各レンズ面には、フレアやゴーストを軽減し高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施しても良い。 Further, each lens surface may be provided with an antireflection film having a high transmittance in a wide wavelength region in order to reduce flare and ghost and achieve high optical performance with high contrast.
また、本実施形態の変倍光学系は、変倍比が7〜25程度である。 The variable magnification optical system of the present embodiment has a variable magnification ratio of about 7 to 25.
また、本実施形態の変倍光学系は、第1レンズ群が正のレンズ成分を2つ有するのが好ましい。また、第1レンズ群は、物体側から順に、正正の順番にレンズ成分を、空気間隔を介在させて配置するのが好ましい。 In the variable magnification optical system of the present embodiment, it is preferable that the first lens group has two positive lens components. In the first lens group, it is preferable that lens components are arranged in order of positive and negative in order from the object side with an air gap interposed therebetween.
また、本実施形態の変倍光学系は、第2レンズ群が正のレンズ成分を1つと負のレンズ成分を3つ有するのが好ましい。また、第2レンズ群は、物体側から順に、負負正負の順番にレンズ成分を、空気間隔を介在させて配置するのが好ましい。 In the variable power optical system of the present embodiment, it is preferable that the second lens group has one positive lens component and three negative lens components. In the second lens group, it is preferable that the lens components are arranged in order of negative, positive and negative in order from the object side with an air gap interposed therebetween.
また、本実施形態の変倍光学系は、第3レンズ群が正のレンズ成分を3つと負のレンズ成分を1つ有するのが好ましい。 In the variable magnification optical system of the present embodiment, it is preferable that the third lens group has three positive lens components and one negative lens component.
なお、本発明を分かり易く説明するために実施形態の構成要件を付して説明したが、本発明はこれに限定されるものではない。 In addition, in order to explain the present invention in an easy-to-understand manner, the configuration requirements of the embodiment have been described, but the present invention is not limited to this.
G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G31 第31レンズ群
G32 第32レンズ群
G33 第33レンズ群
S 開口絞り
I 像面
1 カメラ
G1 1st lens group G2 2nd lens group G3 3rd lens group G31 31st lens group G32 32nd lens group G33 33rd lens group S Aperture stop
Claims (14)
前記第3F1レンズ群と前記第3B1レンズ群とは全体で正屈折力を有し、
広角端状態から望遠端状態への変倍に際し、前記第1レンズ群は像面に対して単調に物体側に移動し、前記第1レンズ群と前記第2レンズ群との間隔は増大し、前記第2レンズ群と前記第3F1レンズ群との間隔は減少し、前記第3F1レンズ群と前記第3B1レンズ群との間隔は変化し、
前記第2レンズ群より像側に開口絞りを有し、
以下の条件式を満足することを特徴とする変倍光学系。
0.17 < f1/fT < 0.60
1.03 < φT/φW < 1.70
1.02 < φM15/φW < 1.70
0.032 < −f2/fT ≦ 0.0475
但し、
fT:望遠端状態における全系の焦点距離
f1:前記第1レンズ群の焦点距離
φW:広角端状態における前記開口絞りの最大開口径
φT:望遠端状態における前記開口絞りの最大開口径
φM15:広角端状態における全系の焦点距離をfWとするとき、全系の焦点距離がfWの15倍以上の中間焦点距離状態での前記開口絞りの最大開口径
f2:前記第2レンズ群の焦点距離 In order from the object side along the optical axis, a first lens unit having a positive refractive power, a second lens group having a negative refractive power, a third F1 lens group having a positive refractive power, and a third B1 lens group having a positive refractive power It consists essentially of four lens groups,
The third F1 lens group and the third B1 lens group have positive refracting power as a whole,
When zooming from the wide-angle end state to the telephoto end state, the first lens group moves monotonously to the object side with respect to the image plane, and the distance between the first lens group and the second lens group increases. The distance between the second lens group and the third F1 lens group decreases, and the distance between the third F1 lens group and the third B1 lens group changes,
An aperture stop on the image side of the second lens group;
A zoom optical system characterized by satisfying the following conditional expression:
0.17 <f1 / fT <0.60
1.03 <φT / φW <1.70
1.02 <φM15 / φW <1.70
0.032 <−f2 / fT ≦ 0.0475
However,
fT: focal length of the entire system in the telephoto end state f1: focal length of the first lens group φW: maximum aperture diameter of the aperture stop in the wide angle end state φT: maximum aperture diameter of the aperture stop in the telephoto end state φM15: wide angle When the focal length of the entire system in the end state is fW, the maximum aperture diameter f2 of the aperture stop in the intermediate focal length state where the focal length of the entire system is 15 times or more of fW: the focal length of the second lens group
前記第3F1レンズ群と前記第3B1レンズ群とは全体で正屈折力を有し、
広角端状態から望遠端状態への変倍に際し、前記第1レンズ群と前記第2レンズ群との間隔は増大し、前記第2レンズ群と前記第3F1レンズ群との間隔は減少するように前記第1レンズ群は物体側に移動し、前記第2レンズ群は一旦像側に移動した後物体側へ移動し、前記第3F1レンズ群と前記第3B1レンズ群との間隔は変化し、
または、
光軸に沿って物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3F2レンズ群と、負屈折力の第3Mレンズ群と、正屈折力の第3B2レンズ群とにより実質的に5個のレンズ群からなり、
前記第3F2レンズ群と第3Mレンズ群と前記第3B2レンズ群とは全体で正屈折力を有し、
広角端状態から望遠端状態への変倍に際し、前記第1レンズ群と前記第2レンズ群との間隔は増大し、前記第2レンズ群と前記第3F2レンズ群との間隔は減少するように前記第1レンズ群は物体側に移動し、前記第2レンズ群は一旦像側に移動した後物体側へ移動し、前記第3F2レンズ群と前記第3Mレンズ群との間隔は変化し、前記第3Mレンズ群と前記第3B2レンズ群との間隔は変化し、
前記第2レンズ群より像側に開口絞りを有し、
以下の条件式を満足することを特徴とする変倍光学系。
0.17 < f1/fT ≦ 0.355
1.03 < φT/φW < 1.70
1.02 < φM15/φW < 1.70
但し、
fT:望遠端状態における全系の焦点距離
f1:前記第1レンズ群の焦点距離
φW:広角端状態における前記開口絞りの最大開口径
φT:望遠端状態における前記開口絞りの最大開口径
φM15:広角端状態における全系の焦点距離をfWとするとき、全系の焦点距離がfWの15倍以上の中間焦点距離状態での前記開口絞りの最大開口径 In order from the object side along the optical axis, a first lens unit having a positive refractive power, a second lens group having a negative refractive power, a third F1 lens group having a positive refractive power, and a third B1 lens group having a positive refractive power It consists essentially of four lens groups,
The third F1 lens group and the third B1 lens group have positive refracting power as a whole,
At the time of zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group increases, and the distance between the second lens group and the third F1 lens group decreases. The first lens group moves toward the object side, the second lens group moves once toward the image side and then moves toward the object side, and the distance between the third F1 lens group and the third B1 lens group changes,
Or
A first lens group having a positive refractive power, a second lens group having a negative refractive power, a third F2 lens group having a positive refractive power, and a third M lens group having a negative refractive power in order from the object side along the optical axis; It consists of substantially five lens groups by the third B2 lens group having positive refractive power,
The third F2 lens group, the third M lens group, and the third B2 lens group have positive refracting power as a whole,
During zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group is increased, and the distance between the second lens group and the third F2 lens group is decreased. The first lens group moves toward the object side, the second lens group moves once toward the image side and then moves toward the object side, and the distance between the third F2 lens group and the third M lens group changes, The distance between the third M lens group and the third B2 lens group changes,
An aperture stop on the image side of the second lens group;
A zoom optical system characterized by satisfying the following conditional expression:
0.17 <f1 / fT ≦ 0.355
1.03 <φT / φW <1.70
1.02 <φM15 / φW <1.70
However,
fT: focal length of the entire system in the telephoto end state f1: focal length of the first lens group φW: maximum aperture diameter of the aperture stop in the wide angle end state φT: maximum aperture diameter of the aperture stop in the telephoto end state φM15: wide angle When the focal length of the entire system in the end state is fW, the maximum aperture diameter of the aperture stop in the intermediate focal length state in which the focal length of the entire system is 15 times or more of fW
前記第3F1レンズ群と前記第3B1レンズ群とは全体で正屈折力を有し、
前記第2レンズ群より像側に開口絞りを有し、
広角端状態から望遠端状態への変倍に際し、前記第1レンズ群は像面に対して単調に物体側に移動し、前記第1レンズ群と前記第2レンズ群との間隔は増大し、前記第2レンズ群と前記第3F1レンズ群との間隔は減少し、前記第3F1レンズ群と前記第3B1レンズ群との間隔は変化し、
以下の条件式を満足することを特徴とする変倍光学系。
0.17 < f1/fT < 0.60
1.03 < φT/φW < 1.70
0.032 < −f2/fT ≦ 0.0394
但し、
fT:望遠端状態における全系の焦点距離
f1:前記第1レンズ群の焦点距離
φW:広角端状態における前記開口絞りの最大開口径
φT:望遠端状態における前記開口絞りの最大開口径
f2:前記第2レンズ群の焦点距離 In order from the object side along the optical axis, a first lens unit having a positive refractive power, a second lens group having a negative refractive power, a third F1 lens group having a positive refractive power, and a third B1 lens group having a positive refractive power It consists essentially of four lens groups,
The third F1 lens group and the third B1 lens group have positive refracting power as a whole,
An aperture stop on the image side of the second lens group;
When zooming from the wide-angle end state to the telephoto end state, the first lens group moves monotonously to the object side with respect to the image plane, and the distance between the first lens group and the second lens group increases. The distance between the second lens group and the third F1 lens group decreases, and the distance between the third F1 lens group and the third B1 lens group changes,
A zoom optical system characterized by satisfying the following conditional expression:
0.17 <f1 / fT <0.60
1.03 <φT / φW <1.70
0.032 <−f2 / fT ≦ 0.0394
However,
fT: focal length of the entire system in the telephoto end state f1: focal length φW of the first lens group: maximum aperture diameter of the aperture stop in the wide angle end state φT: maximum aperture diameter of the aperture stop in the telephoto end state f2: the above Focal length of the second lens group
前記第3F2レンズ群と第3Mレンズ群と前記第3B2レンズ群とは全体で正屈折力を有し、
前記第2レンズ群より像側に開口絞りを有し、
広角端状態から望遠端状態への変倍に際し、前記第1レンズ群と前記第2レンズ群との間隔は増大し、前記第2レンズ群と前記第3F2レンズ群との間隔は減少するように前記第1レンズ群は物体側に移動し、前記第2レンズ群は一旦像側に移動した後物体側へ移動し、前記第3F2レンズ群と前記第3Mレンズ群との間隔は変化し、前記第3Mレンズ群と前記第3B2レンズ群との間隔は変化し、
以下の条件式を満足することを特徴とする変倍光学系。
0.17 < f1/fT < 0.60
1.03 < φT/φW < 1.70
0.032 < −f2/fT < 0.057
但し、
fT:望遠端状態における全系の焦点距離
f1:前記第1レンズ群の焦点距離
φW:広角端状態における前記開口絞りの最大開口径
φT:望遠端状態における前記開口絞りの最大開口径
f2:前記第2レンズ群の焦点距離 A first lens group having a positive refractive power, a second lens group having a negative refractive power, a third F2 lens group having a positive refractive power, and a third M lens group having a negative refractive power in order from the object side along the optical axis; It consists of substantially five lens groups by the third B2 lens group having positive refractive power,
The third F2 lens group, the third M lens group, and the third B2 lens group have positive refracting power as a whole,
An aperture stop on the image side of the second lens group;
During zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group is increased, and the distance between the second lens group and the third F2 lens group is decreased. The first lens group moves toward the object side, the second lens group moves once toward the image side and then moves toward the object side, and the distance between the third F2 lens group and the third M lens group changes, The distance between the third M lens group and the third B2 lens group changes,
A zoom optical system characterized by satisfying the following conditional expression:
0.17 <f1 / fT <0.60
1.03 <φT / φW <1.70
0.032 <−f2 / fT <0.057
However,
fT: focal length of the entire system in the telephoto end state f1: focal length φW of the first lens group: maximum aperture diameter of the aperture stop in the wide angle end state φT: maximum aperture diameter of the aperture stop in the telephoto end state f2: the above Focal length of the second lens group
1.02 < φM15/φW < 1.70
但し、
φM15:広角端状態における全系の焦点距離をfWとするとき、全系の焦点距離がfWの15倍以上の中間焦点距離状態での前記開口絞りの最大開口径 5. The zoom optical system according to claim 3, wherein the following conditional expression is satisfied.
1.02 <φM15 / φW <1.70
However,
φM15: Maximum aperture diameter of the aperture stop in an intermediate focal length state where the focal length of the whole system is 15 times or more of fW when the focal length of the whole system in the wide-angle end state is fW
以下の条件式を満足することを特徴とする請求項1から4のいずれか1項に記載の変倍光学系。
1.50 < fM/fW < 15.00
但し、
fW:広角端状態における全系の焦点距離 During zooming from the wide-angle end state to the telephoto end state, the aperture stop maintains the maximum aperture diameter in the wide-angle end state from the wide-angle end state to the intermediate focal length state of the focal length fM of the entire system.
Variable-power optical system according to claim 1, any one of 4, characterized by satisfying the following conditional expression.
1.50 <fM / fW <15.00
However,
fW: focal length of the entire system in the wide-angle end state
0.032 < −f2/fT < 0.064
但し、
f2:前記第2レンズ群の焦点距離 The variable magnification optical system according to claim 2, wherein the following conditional expression is satisfied.
0.032 <−f2 / fT <0.064
However,
f2: Focal length of the second lens group
1.02 < φM10/φW < 1.70
但し、
φM10:広角端状態における全系の焦点距離をfWとするとき、全系の焦点距離がfWの10倍以上の中間焦点距離状態での前記開口絞りの最大開口径 Variable-power optical system according to any one of claims 1 8, characterized by satisfying the following conditional expression.
1.02 <φM10 / φW <1.70
However,
φM10: When the focal length of the entire system in the wide-angle end state is fW, the maximum aperture diameter of the aperture stop in the intermediate focal length state where the focal length of the entire system is 10 times or more of fW
1.00 ≦ φM5/φW < 1.40
但し、
φM5:広角端状態における全系の焦点距離をfWとするとき、全系の焦点距離がfWの5倍以上8倍以下の中間焦点距離状態での前記開口絞りの最大開口径 Variable-power optical system according to any one of claims 1 9, characterized by satisfying the following conditional expression.
1.00 ≦ φM5 / φW <1.40
However,
φM5: When the focal length of the entire system in the wide-angle end state is fW, the maximum aperture diameter of the aperture stop in the intermediate focal length state where the focal length of the entire system is 5 to 8 times fW
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010050846A JP5724189B2 (en) | 2010-03-08 | 2010-03-08 | Variable magnification optical system, optical device |
CN201510918838.3A CN105487210B (en) | 2010-03-08 | 2011-03-08 | Zoom lens system and optical device |
US13/042,493 US8913327B2 (en) | 2010-03-08 | 2011-03-08 | Zoom lens system, optical apparatus and method for manufacturing zoom lens system |
CN201110058604.8A CN102193175B (en) | 2010-03-08 | 2011-03-08 | Zoom lens system and optical device |
US14/270,270 US9513471B2 (en) | 2010-03-08 | 2014-05-05 | Zoom lens system, optical apparatus and method for manufacturing zoom lens system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010050846A JP5724189B2 (en) | 2010-03-08 | 2010-03-08 | Variable magnification optical system, optical device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011186165A JP2011186165A (en) | 2011-09-22 |
JP5724189B2 true JP5724189B2 (en) | 2015-05-27 |
Family
ID=44792520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010050846A Active JP5724189B2 (en) | 2010-03-08 | 2010-03-08 | Variable magnification optical system, optical device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5724189B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5861472B2 (en) * | 2012-01-25 | 2016-02-16 | 株式会社ニコン | Zoom lens and optical device |
JP5845972B2 (en) * | 2012-02-29 | 2016-01-20 | 株式会社ニコン | Variable magnification optical system, optical device |
WO2013129487A1 (en) | 2012-02-29 | 2013-09-06 | 株式会社ニコン | Variable-power optical system, optical device, and method for producing variable-power optical system |
JP6045442B2 (en) * | 2013-06-13 | 2016-12-14 | 富士フイルム株式会社 | Zoom lens and imaging device |
JP5877516B2 (en) * | 2014-12-22 | 2016-03-08 | 株式会社タムロン | High magnification zoom lens |
JP6179585B2 (en) * | 2015-12-22 | 2017-08-16 | 株式会社ニコン | Zoom lens and optical device |
JP6399166B2 (en) * | 2017-07-20 | 2018-10-03 | 株式会社ニコン | Zoom lens, optical device, and method of manufacturing zoom lens |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3028581B2 (en) * | 1990-10-08 | 2000-04-04 | ミノルタ株式会社 | High magnification zoom lens |
JPH10161028A (en) * | 1996-11-28 | 1998-06-19 | Minolta Co Ltd | Zoom lens |
JPH11352400A (en) * | 1998-06-08 | 1999-12-24 | Minolta Co Ltd | Zoom lens system |
JP4343307B2 (en) * | 1999-02-10 | 2009-10-14 | キヤノン株式会社 | Rear focus zoom lens |
JP3811311B2 (en) * | 1999-03-23 | 2006-08-16 | オリンパス株式会社 | Camera with zoom lens system |
JP2000330016A (en) * | 1999-05-19 | 2000-11-30 | Konica Corp | Zoom lens |
JP2000347102A (en) * | 1999-06-04 | 2000-12-15 | Konica Corp | Zoom lens |
JP4630444B2 (en) * | 2000-10-25 | 2011-02-09 | キヤノン株式会社 | Zoom lens and optical apparatus having the same |
JP4181790B2 (en) * | 2002-04-04 | 2008-11-19 | キヤノン株式会社 | Zoom lens and optical apparatus having the same |
JP4479204B2 (en) * | 2003-09-30 | 2010-06-09 | 株式会社ニコン | Highly variable magnification optical system capable of image shift |
JP4585776B2 (en) * | 2004-02-26 | 2010-11-24 | キヤノン株式会社 | Zoom lens and imaging apparatus having the same |
JP3960334B2 (en) * | 2004-12-20 | 2007-08-15 | コニカミノルタフォトイメージング株式会社 | Imaging optical system and imaging apparatus |
JP2006189598A (en) * | 2005-01-06 | 2006-07-20 | Konica Minolta Photo Imaging Inc | Photographic optical system and imaging apparatus |
JP4919330B2 (en) * | 2005-10-31 | 2012-04-18 | 富士フイルム株式会社 | Zoom lens |
JP2007193194A (en) * | 2006-01-20 | 2007-08-02 | Canon Inc | Imaging apparatus |
JP4959236B2 (en) * | 2006-06-21 | 2012-06-20 | 株式会社タムロン | High magnification zoom lens |
JP5028104B2 (en) * | 2007-02-19 | 2012-09-19 | キヤノン株式会社 | Zoom lens and imaging apparatus having the same |
JP5064837B2 (en) * | 2007-03-01 | 2012-10-31 | キヤノン株式会社 | Zoom lens with anti-vibration function |
JP5046747B2 (en) * | 2007-05-24 | 2012-10-10 | キヤノン株式会社 | Zoom lens and imaging apparatus having the same |
JP5053750B2 (en) * | 2007-08-06 | 2012-10-17 | キヤノン株式会社 | Zoom lens and imaging apparatus having the same |
JP5163007B2 (en) * | 2007-08-15 | 2013-03-13 | ソニー株式会社 | Zoom lens and imaging device |
JP2009098449A (en) * | 2007-10-17 | 2009-05-07 | Olympus Imaging Corp | Zoom lens and imaging apparatus having the same |
JP5084446B2 (en) * | 2007-10-29 | 2012-11-28 | キヤノン株式会社 | Zoom lens and imaging apparatus having the same |
JP5352990B2 (en) * | 2007-11-22 | 2013-11-27 | 株式会社リコー | Zoom lens, camera device, and portable information terminal device |
JP5101262B2 (en) * | 2007-12-07 | 2012-12-19 | 株式会社リコー | Zoom lens, imaging device, and portable information terminal device |
JP4906759B2 (en) * | 2008-03-05 | 2012-03-28 | 倉敷化工株式会社 | Liquid filled vibration isolator |
JP5497268B2 (en) * | 2008-03-05 | 2014-05-21 | ヤンマー株式会社 | Traveling operation device for riding rice transplanter |
JP2009210060A (en) * | 2008-03-05 | 2009-09-17 | Nissan Motor Co Ltd | Engine supercharger control device |
JP5005583B2 (en) * | 2008-03-05 | 2012-08-22 | 東洋ゴム工業株式会社 | Vibration isolator |
JP5159398B2 (en) * | 2008-04-07 | 2013-03-06 | キヤノン株式会社 | Zoom lens and imaging apparatus having the same |
JP5641680B2 (en) * | 2008-07-28 | 2014-12-17 | 株式会社ニコン | Zoom lens and optical apparatus having the same |
JP2010199902A (en) * | 2009-02-24 | 2010-09-09 | Kyocera Corp | Radio base station, and transmission power control method |
JP5325021B2 (en) * | 2009-05-20 | 2013-10-23 | Hoya株式会社 | Zoom lens system |
-
2010
- 2010-03-08 JP JP2010050846A patent/JP5724189B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2011186165A (en) | 2011-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5742100B2 (en) | Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method | |
JP5273184B2 (en) | Zoom lens, optical device, and zoom lens manufacturing method | |
JP5641680B2 (en) | Zoom lens and optical apparatus having the same | |
JP5904273B2 (en) | Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method | |
JP2008003511A (en) | Zoom lens with vibration-proof function, imaging apparatus, vibration preventing method for zoom lens, and power varying method for zoom lens | |
JP5724189B2 (en) | Variable magnification optical system, optical device | |
JP5622103B2 (en) | Zoom lens, optical apparatus equipped with the zoom lens, and method of manufacturing the zoom lens | |
JP6127462B2 (en) | Variable magnification optical system, optical device | |
JP5333906B2 (en) | Zoom lens and optical equipment | |
JP5845972B2 (en) | Variable magnification optical system, optical device | |
JP5609386B2 (en) | Variable magnification optical system, optical device | |
JP6583420B2 (en) | Zoom lens and optical equipment | |
WO2016194774A1 (en) | Variable-power optical system, optical device, and method for manufacturing variable-power optical system | |
JP5532402B2 (en) | Zoom lens and optical equipment | |
JP5333530B2 (en) | Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method | |
JP6620998B2 (en) | Variable magnification optical system and optical apparatus | |
JP5736651B2 (en) | Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method | |
JP5338865B2 (en) | Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method | |
JP6451074B2 (en) | Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method | |
JP6583574B2 (en) | Zoom lens and imaging device | |
JP5305177B2 (en) | Zoom lens, imaging apparatus, and zoom lens manufacturing method | |
JP6601471B2 (en) | Variable magnification optical system and optical apparatus | |
JP5488061B2 (en) | Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method | |
JP6311433B2 (en) | Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method | |
JP6398292B2 (en) | Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120703 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130726 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130806 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140527 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140725 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141216 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150303 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150316 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5724189 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |