JP5321608B2 - Variable magnification optical system, optical device - Google Patents

Variable magnification optical system, optical device Download PDF

Info

Publication number
JP5321608B2
JP5321608B2 JP2011021795A JP2011021795A JP5321608B2 JP 5321608 B2 JP5321608 B2 JP 5321608B2 JP 2011021795 A JP2011021795 A JP 2011021795A JP 2011021795 A JP2011021795 A JP 2011021795A JP 5321608 B2 JP5321608 B2 JP 5321608B2
Authority
JP
Japan
Prior art keywords
lens group
lens
optical system
refractive power
variable magnification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011021795A
Other languages
Japanese (ja)
Other versions
JP2012073566A (en
Inventor
智希 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2011021795A priority Critical patent/JP5321608B2/en
Priority to EP11155682.5A priority patent/EP2360504B1/en
Priority to US13/033,681 priority patent/US8605362B2/en
Priority to CN201110047144.9A priority patent/CN102162905B/en
Publication of JP2012073566A publication Critical patent/JP2012073566A/en
Application granted granted Critical
Publication of JP5321608B2 publication Critical patent/JP5321608B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a variable magnification optical system that satisfactorily suppresses aberration fluctuation in varying magnification, an optical device, and a method for manufacturing the variable magnification optical system. <P>SOLUTION: A variable magnification optical system comprises, in order from an object side, a first lens group G1 having positive refractive power, a second lens group G2 having negative refractive power, a third lens group G3 having positive refractive power, a fourth lens group G4 having negative refractive power, and a fifth lens group G5 having positive refractive power. When magnification is varied from a wide angle end state to a telephoto end state, a position of the first lens group G1 is not changed, and at least part of any one of the lens groups G1-G5 is moved so as to include a component in a direction perpendicular to an optical axis. The variable magnification optical system satisfies a predetermined conditional expression. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、変倍光学系、光学装置、変倍光学系の製造方法に関する。   The present invention relates to a variable magnification optical system, an optical apparatus, and a method for manufacturing the variable magnification optical system.

従来、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した変倍光学系が提案されている(例えば、特許文献1を参照。)。   Conventionally, a variable magnification optical system suitable for a photographic camera, an electronic still camera, a video camera, and the like has been proposed (see, for example, Patent Document 1).

特開2001−124992公報JP 2001-124992 A

しかしながら従来の変倍光学系は、変倍時の収差変動が大きいという問題があった。
そこで本発明は上記問題点に鑑みてなされたものであり、変倍時の収差変動を良好に抑えた変倍光学系、光学装置、変倍光学系の製造方法を提供することを目的とする。
However, the conventional variable magnification optical system has a problem that aberration variation at the time of variable magnification is large.
Therefore, the present invention has been made in view of the above problems, and an object thereof is to provide a variable magnification optical system, an optical device, and a method for manufacturing the variable magnification optical system, in which aberration fluctuation at the time of variable magnification is satisfactorily suppressed. .

上記課題を解決するために本発明は、
物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群とにより、実質的に5個のレンズ群からなり、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群の位置は固定であり、
前記レンズ群のうち、いずれか1つのレンズ群の少なくとも一部が光軸と直交する方向の成分を含むように移動し、
以下の条件式を満足することを特徴とする変倍光学系を提供する。
0.57≦f2/f4≦0.73
0.20<(−f2)/f5<0.50
ただし、
f2:前記第2レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
f5:前記第5レンズ群の焦点距離
また本発明は、
物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群とにより、実質的に5個のレンズ群からなり、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群の位置は固定であり、
前記第1レンズ群は、負レンズと正レンズとの接合正レンズと、正の屈折力を有する単レンズとからなり、
前記レンズ群のうち、いずれか1つのレンズ群の少なくとも一部が光軸と直交する方向の成分を含むように移動し、
以下の条件式を満足することを特徴とする変倍光学系を提供する。
0.57≦f2/f4<1.00
0.20<(−f2)/f5<0.50
ただし、
f2:前記第2レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
f5:前記第5レンズ群の焦点距離
また本発明は、
物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群とにより、実質的に5個のレンズ群からなり、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群の位置は固定であり、
前記第1レンズ群は、負レンズと正レンズとの接合正レンズと、正の屈折力を有する単レンズとからなり、
前記レンズ群のうち、いずれか1つのレンズ群の少なくとも一部が光軸と直交する方向の成分を含むように移動し、
以下の条件式を満足することを特徴とする変倍光学系を提供する。
0.51≦f2/f4<1.00
0.20<(−f2)/f5<0.50
3.20<f1/f3<5.00
ただし、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
f5:前記第5レンズ群の焦点距離
In order to solve the above problems, the present invention
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a negative refractive power The lens group and the fifth lens group having a positive refractive power substantially consist of five lens groups,
At the time of zooming from the wide-angle end state to the telephoto end state, the position of the first lens group is fixed,
The lens group moves so that at least a part of any one lens group includes a component in a direction orthogonal to the optical axis,
A variable magnification optical system characterized by satisfying the following conditional expression is provided.
0.57 ≦ f2 / f4 ≦ 0.73
0.20 <(− f2) / f5 <0.50
However,
f2: focal length of the second lens group f4: focal length of the fourth lens group f5: focal length of the fifth lens group
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a negative refractive power The lens group and the fifth lens group having a positive refractive power substantially consist of five lens groups,
At the time of zooming from the wide-angle end state to the telephoto end state, the position of the first lens group is fixed,
The first lens group includes a cemented positive lens of a negative lens and a positive lens, and a single lens having a positive refractive power,
The lens group moves so that at least a part of any one lens group includes a component in a direction orthogonal to the optical axis,
A variable magnification optical system characterized by satisfying the following conditional expression is provided.
0.57 ≦ f2 / f4 <1.00
0.20 <(− f2) / f5 <0.50
However,
f2: focal length of the second lens group f4: focal length of the fourth lens group f5: focal length of the fifth lens group
The present invention also provides
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a negative refractive power The lens group and the fifth lens group having a positive refractive power substantially consist of five lens groups,
At the time of zooming from the wide-angle end state to the telephoto end state, the position of the first lens group is fixed,
The first lens group includes a cemented positive lens of a negative lens and a positive lens, and a single lens having a positive refractive power,
The lens group moves so that at least a part of any one lens group includes a component in a direction orthogonal to the optical axis,
A variable magnification optical system characterized by satisfying the following conditional expression is provided.
0.51 ≦ f2 / f4 <1.00
0.20 <(− f2) / f5 <0.50
3.20 <f1 / f3 <5.00
However,
f1: Focal length of the first lens group
f2: Focal length of the second lens group
f3: focal length of the third lens group
f4: focal length of the fourth lens group
f5: focal length of the fifth lens group

また本発明は、
前記変倍光学系を備えたことを特徴とする光学装置を提供する
The present invention also provides
Provided is an optical device comprising the variable magnification optical system .

本発明によれば、変倍時の収差変動を良好に抑えた変倍光学系、光学装置、変倍光学系の製造方法を提供することができる。   According to the present invention, it is possible to provide a variable magnification optical system, an optical device, and a method for manufacturing the variable magnification optical system that can satisfactorily suppress aberration fluctuations during variable magnification.

本願の第1実施例に係る変倍光学系のレンズ構成を示す図である。It is a figure which shows the lens structure of the variable magnification optical system which concerns on 1st Example of this application. (a)、及び(b)はそれぞれ、第1実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図、及び0.2°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。(A) and (b) respectively show various aberration diagrams at the time of focusing on infinity in the wide-angle end state of the variable magnification optical system according to the first example, and anti-vibration with respect to 0.2 ° rotational blur. It is a meridional lateral aberration diagram when it is performed. (a)、及び(b)はそれぞれ、第1実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図、及び0.2°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。(A) and (b) are various aberration diagrams at the time of focusing on infinity in the intermediate focal length state of the variable magnification optical system according to the first example, and anti-vibration with respect to 0.2 ° rotational shake. It is a meridional transverse aberration diagram when performing. (a)、及び(b)はそれぞれ、第1実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図、及び0.2°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。(A) and (b) respectively show various aberration diagrams at the time of focusing on infinity in the telephoto end state of the variable magnification optical system according to the first example, and anti-vibration against rotation blur of 0.2 °. It is a meridional lateral aberration diagram when it is performed. (a)、(b)、及び(c)はそれぞれ、第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。(A), (b), and (c) are various aberration diagrams at the time of short-distance focusing in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the first example. . 本願の第2実施例に係る変倍光学系のレンズ構成を示す図である。It is a figure which shows the lens structure of the variable magnification optical system which concerns on 2nd Example of this application. (a)、及び(b)はそれぞれ、第2実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図、及び0.2°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。(A) and (b) respectively show various aberration diagrams at the time of focusing on infinity in the wide-angle end state of the variable magnification optical system according to the second example, and anti-vibration with respect to 0.2 ° rotational shake. It is a meridional lateral aberration diagram when it is performed. (a)、及び(b)はそれぞれ、第2実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図、及び0.2°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。(A) and (b) are various aberration diagrams at the time of focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the second example, and anti-vibration against rotation blur of 0.2 °, respectively. It is a meridional transverse aberration diagram when performing. (a)、及び(b)はそれぞれ、第2実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図、及び0.2°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。(A) and (b) respectively show various aberration diagrams at the time of focusing at infinity in the telephoto end state of the variable magnification optical system according to the second example, and anti-vibration against 0.2 ° rotation blur. It is a meridional lateral aberration diagram when it is performed. (a)、(b)、及び(c)はそれぞれ、第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。(A), (b), and (c) are various aberration diagrams at the time of short-distance focusing in the wide-angle end state, intermediate focal length state, and telephoto end state of the variable magnification optical system according to the second example. . 本願の第3実施例に係る変倍光学系のレンズ構成を示す図である。It is a figure which shows the lens structure of the variable magnification optical system which concerns on 3rd Example of this application. (a)、及び(b)はそれぞれ、第3実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図、及び0.2°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。(A) and (b) respectively show various aberration diagrams at the time of focusing on infinity in the wide-angle end state of the variable magnification optical system according to the third example, and anti-vibration against rotation blur of 0.2 °. It is a meridional lateral aberration diagram when it is performed. (a)、及び(b)はそれぞれ、第3実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図、及び0.2°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。(A) and (b) are various aberration diagrams at the time of focusing on infinity in the intermediate focal length state of the variable magnification optical system according to the third example, and anti-vibration against rotation blur of 0.2 °, respectively. It is a meridional transverse aberration diagram when performing. (a)、及び(b)はそれぞれ、第3実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図、及び0.2°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。(A) and (b) respectively show various aberration diagrams at the time of focusing on infinity in the telephoto end state of the variable magnification optical system according to the third example, and anti-vibration against rotation blur of 0.2 °. It is a meridional lateral aberration diagram when it is performed. (a)、(b)、及び(c)はそれぞれ、第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。(A), (b), and (c) are various aberration diagrams at the time of focusing at a short distance in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the third example. . 本願の第4実施例に係る変倍光学系のレンズ構成を示す図である。It is a figure which shows the lens structure of the variable magnification optical system which concerns on 4th Example of this application. (a)、及び(b)はそれぞれ、第4実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図、及び0.2°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。(A) and (b) respectively show various aberration diagrams at the time of focusing on infinity in the wide-angle end state of the variable magnification optical system according to the fourth example, and anti-vibration with respect to 0.2 ° rotational shake. It is a meridional lateral aberration diagram when it is performed. (a)、及び(b)はそれぞれ、第4実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図、及び0.2°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。(A) and (b) are various aberration diagrams at the time of focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the fourth example, and anti-vibration against rotation blur of 0.2 °, respectively. It is a meridional transverse aberration diagram when performing. (a)、及び(b)はそれぞれ、第4実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図、及び0.2°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。(A) and (b) respectively show various aberration diagrams at the time of focusing on infinity in the telephoto end state of the variable magnification optical system according to the fourth example, and anti-vibration against rotation blur of 0.2 °. It is a meridional lateral aberration diagram when it is performed. (a)、(b)、及び(c)はそれぞれ、第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。(A), (b), and (c) are various aberration diagrams at the time of short-distance focusing in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fourth example. . 本願の第5実施例に係る変倍光学系のレンズ構成を示す図である。It is a figure which shows the lens structure of the variable magnification optical system which concerns on 5th Example of this application. (a)、及び(b)はそれぞれ、第5実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図、及び0.2°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。(A) and (b) respectively show various aberration diagrams at the time of focusing at infinity in the wide-angle end state of the variable magnification optical system according to the fifth example, and anti-vibration against 0.2 ° rotational shake. It is a meridional lateral aberration diagram when it is performed. (a)、及び(b)はそれぞれ、第5実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図、及び0.2°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。(A) and (b) are diagrams showing various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the fifth example, and anti-vibration against rotation blur of 0.2 °, respectively. It is a meridional transverse aberration diagram when performing. (a)、及び(b)はそれぞれ、第5実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図、及び0.2°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。(A) and (b) respectively show various aberration diagrams at the time of focusing at infinity in the telephoto end state of the variable magnification optical system according to the fifth example, and anti-vibration with respect to 0.2 ° rotational shake. It is a meridional lateral aberration diagram when it is performed. (a)、(b)、及び(c)はそれぞれ、第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。(A), (b), and (c) are various aberration diagrams at the time of focusing at a short distance in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fifth example. . 本願の第6実施例に係る変倍光学系のレンズ構成を示す図である。It is a figure which shows the lens structure of the variable magnification optical system which concerns on 6th Example of this application. (a)、及び(b)はそれぞれ、第6実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図、及び0.2°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。(A) and (b) are diagrams showing various aberrations at the time of focusing on infinity in the wide-angle end state of the variable magnification optical system according to the sixth example, and anti-vibration against 0.2 ° rotational shake. It is a meridional lateral aberration diagram when it is performed. (a)、及び(b)はそれぞれ、第6実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図、及び0.2°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。(A) and (b) are various aberration diagrams at the time of focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the sixth example, and anti-vibration against rotation blur of 0.2 °, respectively. It is a meridional transverse aberration diagram when performing. (a)、及び(b)はそれぞれ、第6実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図、及び0.2°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。(A) and (b) are diagrams showing various aberrations during focusing at infinity in the telephoto end state of the variable magnification optical system according to the sixth example, and anti-vibration with respect to 0.2 ° rotational shake. It is a meridional lateral aberration diagram when it is performed. (a)、(b)、及び(c)はそれぞれ、第6実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。(A), (b), and (c) are various aberration diagrams at the time of focusing at a short distance in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the sixth example. . 本願の変倍光学系を備えたカメラの構成を示す図である。It is a figure which shows the structure of the camera provided with the variable magnification optical system of this application. 本願の変倍光学系の製造方法を示す図である。It is a figure which shows the manufacturing method of the variable magnification optical system of this application.

以下、本願の変倍光学系、光学装置、変倍光学系の製造方法について説明する。
本願の変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群とを有し、広角端状態から望遠端状態への変倍時に、前記第1レンズ群の位置は固定であり、前記レンズ群のうち、いずれか1つのレンズ群の少なくとも一部が光軸と直交する方向の成分を含むように移動し、以下の条件式(1),(2)を満足することを特徴とする。
(1) 0.44<f2/f4<1.00
(2) 0.20<(−f2)/f5<0.50
ただし、
f2:前記第2レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
f5:前記第5レンズ群の焦点距離
Hereinafter, the variable magnification optical system, the optical apparatus, and the method for manufacturing the variable magnification optical system of the present application will be described.
The variable magnification optical system of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a negative lens power. A fourth lens group having a refractive power of 5 and a fifth lens group having a positive refractive power, and the position of the first lens group is fixed during zooming from the wide-angle end state to the telephoto end state. The lens group is moved so that at least a part of any one of the lens groups includes a component in a direction orthogonal to the optical axis, and satisfies the following conditional expressions (1) and (2): And
(1) 0.44 <f2 / f4 <1.00
(2) 0.20 <(− f2) / f5 <0.50
However,
f2: focal length of the second lens group f4: focal length of the fourth lens group f5: focal length of the fifth lens group

本願の変倍光学系は、第1レンズ群の位置を固定にすることで、変倍のための駆動機構を簡素化することができ、これによって鏡筒の小型化を図ることができる。
条件式(1)は、第4レンズ群の焦点距離に対する第2レンズ群の適正な焦点距離を規定するものである。本願の変倍光学系は、条件式(1)を満足することにより、広角端状態におけるコマ収差や像面湾曲を良好に補正することができ、鏡筒の大型化を防止することができる。
本願の変倍光学系の条件式(1)の対応値が下限値を下回ると、第2レンズ群の屈折力が大きくなるため、広角端状態におけるコマ収差や像面湾曲を補正することが困難となる。なお、条件式(1)の下限値を0.50に設定することで、本願の効果をより確実なものとすることができる。
一方、本願の変倍光学系の条件式(1)の対応値が上限値を上回ると、第2レンズ群の屈折力が小さくなり、第1レンズ群の外径が大きくなってしまう。この結果、鏡筒の大型化を招くことになってしまう。なお、条件式(1)の上限値を0.85に設定することで、本願の効果をより確実なものとすることができる。
The variable magnification optical system of the present application can simplify the drive mechanism for variable magnification by fixing the position of the first lens group, thereby reducing the size of the lens barrel.
Conditional expression (1) defines an appropriate focal length of the second lens group with respect to the focal length of the fourth lens group. By satisfying conditional expression (1), the variable magnification optical system of the present application can satisfactorily correct coma and field curvature in the wide-angle end state, and can prevent an increase in the size of the lens barrel.
If the corresponding value of conditional expression (1) of the variable magnification optical system of the present application is less than the lower limit value, the refractive power of the second lens group increases, so it is difficult to correct coma and curvature of field in the wide-angle end state. It becomes. In addition, the effect of this application can be made more reliable by setting the lower limit of conditional expression (1) to 0.50.
On the other hand, when the corresponding value of the conditional expression (1) of the variable magnification optical system of the present application exceeds the upper limit value, the refractive power of the second lens group decreases and the outer diameter of the first lens group increases. As a result, the size of the lens barrel is increased. In addition, the effect of this application can be made more reliable by setting the upper limit of conditional expression (1) to 0.85.

条件式(2)は、第5レンズ群の焦点距離に対する第2レンズ群の適正な焦点距離を規定するものである。本願の変倍光学系は、条件式(2)を満足することにより、像面湾曲や歪曲収差、及び広角端状態におけるコマ収差を良好に補正することができ、鏡筒の大型化を防止することができる。
本願の変倍光学系の条件式(2)の対応値が下限値を下回ると、第2レンズ群の屈折力が大きくなるため、広角端状態におけるコマ収差や像面湾曲を補正することが困難となる。なお、条件式(2)の下限値を0.25に設定することで、本願の効果をより確実なものとすることができる。
一方、本願の変倍光学系の条件式(2)の対応値が上限値を上回ると、第2レンズ群の屈折力が小さくなり、第1レンズ群の外径が大きくなってしまう。また、第5レンズ群の屈折力が大きくなるため、像面湾曲や歪曲収差を補正することが困難となる。なお、条件式(2)の上限値を0.48に設定することで、本願の効果をより確実なものとすることができる。
以上の構成により、変倍時の収差変動を良好に抑えた変倍光学系を実現することができる。
Conditional expression (2) defines an appropriate focal length of the second lens group with respect to the focal length of the fifth lens group. By satisfying conditional expression (2), the variable magnification optical system of the present application can satisfactorily correct field curvature, distortion, and coma in the wide-angle end state, and prevent an increase in the size of the lens barrel. be able to.
If the corresponding value of conditional expression (2) of the variable magnification optical system of the present application is less than the lower limit value, the refractive power of the second lens group increases, so it is difficult to correct coma and curvature of field in the wide-angle end state. It becomes. In addition, the effect of this application can be made more reliable by setting the lower limit of conditional expression (2) to 0.25.
On the other hand, when the corresponding value of the conditional expression (2) of the variable magnification optical system of the present application exceeds the upper limit value, the refractive power of the second lens group decreases and the outer diameter of the first lens group increases. In addition, since the refractive power of the fifth lens group is increased, it is difficult to correct curvature of field and distortion. In addition, the effect of this application can be made more reliable by setting the upper limit of conditional expression (2) to 0.48.
With the above configuration, it is possible to realize a variable magnification optical system that satisfactorily suppresses fluctuations in aberrations during variable magnification.

また本願の変倍光学系は、以下の条件式(3)を満足することが望ましい。
(3) 3.00<f1/f3<5.00
ただし、
f1:前記第1レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
Moreover, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (3).
(3) 3.00 <f1 / f3 <5.00
However,
f1: Focal length of the first lens group f3: Focal length of the third lens group

条件式(3)は、第3レンズ群の焦点距離に対する第1レンズ群の適正な焦点距離を規定するものである。本願の変倍光学系は、条件式(3)を満足することにより、球面収差、及び望遠端状態における倍率色収差を良好に補正することができる。
本願の変倍光学系の条件式(3)の対応値が下限値を下回ると、第1レンズ群の屈折力が大きくなり、望遠端状態における球面収差や倍率色収差を補正することが困難となる。なお、条件式(3)の下限値を3.20に設定することで、本願の効果をより確実なものとすることができる。
一方、本願の変倍光学系の条件式(3)の対応値が上限値を上回ると、第3レンズ群の屈折力が大きくなり、球面収差を補正することが困難となる。なお、条件式(3)の上限値を4.50に設定することで、本願の効果をより確実なものとすることができる。
Conditional expression (3) defines an appropriate focal length of the first lens group with respect to the focal length of the third lens group. The variable magnification optical system of the present application can satisfactorily correct spherical aberration and lateral chromatic aberration in the telephoto end state by satisfying conditional expression (3).
If the corresponding value of conditional expression (3) of the variable magnification optical system of the present application is less than the lower limit value, the refractive power of the first lens group increases, and it becomes difficult to correct spherical aberration and lateral chromatic aberration in the telephoto end state. . In addition, the effect of this application can be made more reliable by setting the lower limit of conditional expression (3) to 3.20.
On the other hand, if the corresponding value of the conditional expression (3) of the variable magnification optical system of the present application exceeds the upper limit value, the refractive power of the third lens unit increases, and it becomes difficult to correct spherical aberration. In addition, the effect of this application can be made more reliable by setting the upper limit of conditional expression (3) to 4.50.

また本願の変倍光学系は、以下の条件式(4)を満足することが望ましい。
(4) 2.00<f1/(−f4)<5.00
ただし、
f1:前記第1レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
Moreover, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (4).
(4) 2.00 <f1 / (− f4) <5.00
However,
f1: Focal length of the first lens group f4: Focal length of the fourth lens group

条件式(4)は、第4レンズ群の焦点距離に対する第1レンズ群の適正な焦点距離を規定するものである。本願の変倍光学系は、条件式(4)を満足することにより、像面湾曲や非点収差、及び望遠端状態における球面収差や倍率色収差を良好に補正することができ、鏡筒の大型化を防止することができる。
本願の変倍光学系の条件式(4)の対応値が下限値を下回ると、第1レンズ群の屈折力が大きくなり、望遠端状態における球面収差や倍率色収差を補正することが困難となる。なお、条件式(4)の下限値を2.40に設定することで、本願の効果をより確実なものとすることができる。
一方、本願の変倍光学系の条件式(4)の対応値が上限値を上回ると、第4レンズ群の屈折力が大きくなり、像面湾曲や非点収差を補正することが困難となる。なお、条件式(4)の上限値を4.80に設定することで、本願の効果をより確実なものとすることができる。
Conditional expression (4) defines an appropriate focal length of the first lens group with respect to the focal length of the fourth lens group. The variable magnification optical system of the present application can satisfactorily correct field curvature and astigmatism, and spherical aberration and lateral chromatic aberration in the telephoto end state by satisfying conditional expression (4). Can be prevented.
If the corresponding value of conditional expression (4) of the variable magnification optical system of the present application is below the lower limit value, the refractive power of the first lens group becomes large, and it becomes difficult to correct spherical aberration and lateral chromatic aberration in the telephoto end state. . In addition, the effect of this application can be made more reliable by setting the lower limit of conditional expression (4) to 2.40.
On the other hand, if the corresponding value of conditional expression (4) of the variable magnification optical system of the present application exceeds the upper limit value, the refractive power of the fourth lens group increases, and it becomes difficult to correct field curvature and astigmatism. . In addition, the effect of this application can be made more reliable by setting the upper limit of conditional expression (4) to 4.80.

また本願の変倍光学系は、無限遠物体から近距離物体への合焦時に、前記第4レンズ群が移動することが望ましい。この構成により、迅速な合焦を行うことができ、また合焦時の画角変動と球面収差の変動を小さくすることができる。
また本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第3レンズ群の位置が固定であることが望ましい。この構成により、変倍時に移動するレンズ群の数を減らすことができるため、変倍のための駆動機構を簡素化することができる。特に、第3レンズ群の少なくとも一部を光軸と直交する方向の成分を含むように移動させる構成とする場合には、移動機構の位置を変倍時に固定とすることができるため、鏡筒の小型化を図ることができる。
In the variable magnification optical system of the present application, it is desirable that the fourth lens group moves when focusing from an object at infinity to a near object. With this configuration, it is possible to perform rapid focusing, and it is possible to reduce field angle fluctuation and spherical aberration fluctuation during focusing.
In the zoom optical system of the present application, it is desirable that the position of the third lens group is fixed when zooming from the wide-angle end state to the telephoto end state. With this configuration, since the number of lens groups that move during zooming can be reduced, the driving mechanism for zooming can be simplified. In particular, when the configuration is such that at least a part of the third lens group is moved so as to include a component in a direction orthogonal to the optical axis, the position of the moving mechanism can be fixed at the time of zooming. Can be miniaturized.

また本願の変倍光学系は、前記第3レンズ群の少なくとも一部が光軸と直交する方向の成分を含むように移動することが望ましい。この構成により、移動機構の小型化を図ることができる。
また本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記レンズ群どうしの間隔が変化することが望ましい。この構成により、変倍時の球面収差の変動、像面湾曲の変動を小さくすることができる。
また本願の変倍光学系は、前記第2レンズ群と前記第4レンズ群の間に開口絞りを有することが望ましい。この構成により、コマ収差と像面湾曲を良好に補正することができる。
In the variable power optical system of the present application, it is preferable that at least a part of the third lens group moves so as to include a component in a direction orthogonal to the optical axis. With this configuration, the moving mechanism can be reduced in size.
In the variable power optical system of the present application, it is desirable that the distance between the lens groups is changed during zooming from the wide-angle end state to the telephoto end state. With this configuration, fluctuations in spherical aberration and field curvature during zooming can be reduced.
In the variable power optical system of the present application, it is desirable to have an aperture stop between the second lens group and the fourth lens group. With this configuration, coma and curvature of field can be favorably corrected.

また本願の光学装置は、上述した構成の変倍光学系を備えていることを特徴とする。これにより、変倍時の収差変動を良好に抑えた光学装置を実現することができる。   The optical apparatus of the present application is characterized by including the variable magnification optical system having the above-described configuration. Thereby, it is possible to realize an optical device in which aberration fluctuation at the time of zooming is suppressed satisfactorily.

また本願の変倍光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群とを有する変倍光学系の製造方法であって、前記第2レンズ群と前記第4レンズ群と前記第5レンズ群が以下の条件式(1),(2)を満足するようにし、広角端状態から望遠端状態への変倍時に、前記第1レンズ群の位置が固定であるようにし、前記レンズ群のうち、いずれか1つのレンズ群の少なくとも一部が光軸と直交する方向の成分を含むように移動するようにすることを特徴とする。
(1) 0.44<f2/f4<1.00
(2) 0.20<(−f2)/f5<0.50
ただし、
f2:前記第2レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
f5:前記第5レンズ群の焦点距離
斯かる本願の変倍光学系の製造方法により、変倍時の収差変動を良好に抑えた変倍光学系を製造することができる。
In addition, the variable magnification optical system manufacturing method of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens having a positive refractive power. And a fourth lens group having negative refracting power and a fifth lens group having positive refracting power, a method of manufacturing a variable magnification optical system, wherein the second lens group and the fourth lens group The fifth lens group satisfies the following conditional expressions (1) and (2), and the position of the first lens group is fixed at the time of zooming from the wide-angle end state to the telephoto end state. In the lens group, at least a part of any one of the lens groups is moved so as to include a component in a direction orthogonal to the optical axis.
(1) 0.44 <f2 / f4 <1.00
(2) 0.20 <(− f2) / f5 <0.50
However,
f2: Focal length of the second lens group f4: Focal length of the fourth lens group f5: Focal length of the fifth lens group The aberration variation at the time of zooming is changed by the manufacturing method of the zooming optical system of the present application. It is possible to manufacture a variable magnification optical system that is well suppressed.

以下、本願の数値実施例に係る変倍光学系を添付図面に基づいて説明する。
(第1実施例)
図1は、本願の第1実施例に係る変倍光学系のレンズ構成を示す図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、開口絞りSと、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。
Hereinafter, a variable magnification optical system according to numerical examples of the present application will be described with reference to the accompanying drawings.
(First embodiment)
FIG. 1 is a diagram showing a lens configuration of a variable magnification optical system according to the first example of the present application.
The variable magnification optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. The lens group G3 includes an aperture stop S, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と物体側に凸面を向けた正メニスカスレンズL12との接合正レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、両凹形状の負レンズL24とからなる。
第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合正レンズと、物体側に凸面を向けた負メニスカスレンズL33と両凸形状の正レンズL34との接合負レンズと、両凸形状の正レンズL35とからなる。
第4レンズ群G4は、物体側から順に、両凹形状の負レンズL41と、両凹形状の負レンズL42と両凸形状の正レンズL43との接合負レンズとからなる。
第5レンズ群G5は、物体側から順に、両凸形状の正レンズL51と、物体側に凸面を向けた負メニスカスレンズL52と両凸形状の正レンズL53との接合正レンズと、両凸形状の正レンズL54と、物体側に凹面を向けた負メニスカスレンズL55とからなる。
The first lens group G1 includes, in order from the object side, a cemented positive lens including a negative meniscus lens L11 having a convex surface directed toward the object side and a positive meniscus lens L12 having a convex surface directed toward the object side, and a positive lens having a convex surface directed toward the object side. And a meniscus lens L13.
The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave negative lens L22, a biconvex positive lens L23, and a biconcave negative lens L24. It consists of.
The third lens group G3 includes, in order from the object side, a cemented positive lens of a negative meniscus lens L31 having a convex surface directed toward the object side and a biconvex positive lens L32, and a negative meniscus lens L33 having a convex surface directed toward the object side. It consists of a cemented negative lens with a biconvex positive lens L34 and a biconvex positive lens L35.
The fourth lens group G4 includes, in order from the object side, a biconcave negative lens L41, and a cemented negative lens composed of a biconcave negative lens L42 and a biconvex positive lens L43.
The fifth lens group G5 includes, in order from the object side, a biconvex positive lens L51, a cemented positive lens composed of a negative meniscus lens L52 having a convex surface directed toward the object side, and a biconvex positive lens L53, and a biconvex shape. Positive lens L54 and a negative meniscus lens L55 having a concave surface facing the object side.

本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2の空気間隔、第2レンズ群G2と第3レンズ群G3の空気間隔、第3レンズ群G3と第4レンズ群G4の空気間隔、及び第4レンズ群G4と第5レンズ群G5の空気間隔がそれぞれ変化するように、第2,第4,第5レンズ群G2,G4,G5が光軸方向へ移動する。なお、このとき第1,第3レンズ群G1,G3及び開口絞りSの位置は固定である。
また本実施例に係る変倍光学系では、第3レンズ群G3内の負メニスカスレンズL31と正レンズL32との接合正レンズが防振レンズ群として光軸と直交する方向の成分を含むように移動し、これによって像ぶれの補正を行うことができる。
また本実施例に係る変倍光学系では、第4レンズ群G4全体を像側へ移動させることにより、遠距離物体から近距離物体への合焦が行われる。
In the zoom optical system according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 and the second lens group G2 and the third lens group G3 during zooming from the wide-angle end state to the telephoto end state. , The fourth lens group G3 and the fourth lens group G4, and the fourth lens group G4 and the fifth lens group G5. The groups G2, G4, and G5 move in the optical axis direction. At this time, the positions of the first and third lens groups G1 and G3 and the aperture stop S are fixed.
In the variable magnification optical system according to the present example, the cemented positive lens of the negative meniscus lens L31 and the positive lens L32 in the third lens group G3 includes a component in a direction perpendicular to the optical axis as a vibration-proof lens group. Accordingly, image blur can be corrected.
In the zoom optical system according to the present embodiment, focusing from a long-distance object to a short-distance object is performed by moving the entire fourth lens group G4 to the image side.

以下の表1に、本実施例に係る変倍光学系の諸元の値を掲げる。
表1において、fは焦点距離、BFはバックフォーカスを示す。
[面データ]において、面番号は物体側から数えたレンズ面の順番、rはレンズ面の曲率半径、dはレンズ面の間隔、ndはd線(波長λ=587.6nm)に対する屈折率、νdはd線(波長λ=587.6nm)に対するアッベ数をそれぞれ示している。また、物面は物体面、可変は可変の面間隔、(絞りS)は開口絞りS、像面は像面Iをそれぞれ示している。なお、曲率半径r=∞は平面を示し、空気の屈折率nd=1.00000の記載は省略している。
Table 1 below lists values of specifications of the variable magnification optical system according to the present example.
In Table 1, f indicates the focal length, and BF indicates the back focus.
In [Surface data], the surface number is the order of the lens surfaces counted from the object side, r is the radius of curvature of the lens surfaces, d is the distance between the lens surfaces, nd is the refractive index with respect to the d-line (wavelength λ = 587.6 nm), νd represents the Abbe number for the d-line (wavelength λ = 587.6 nm). Further, the object plane indicates the object plane, the variable indicates the variable plane spacing, the (aperture S) indicates the aperture stop S, and the image plane indicates the image plane I. The radius of curvature r = ∞ indicates a plane, and the description of the refractive index nd of air = 1.000 is omitted.

[非球面データ]には、[面データ]に示した非球面について、その形状を次式で表した場合の非球面係数及び円錐定数を示す。
x=(h/r)/[1+{1−K(h/r)1/2
+A4h+A6h+A8h+A10h10+A12h12+A14h14
ここで、xは光軸から垂直方向の高さhにおける各非球面の頂点の接平面から光軸方向に沿った距離(サグ量)、Kを円錐定数、A4,A6,A8,A10,A12,A14を非球面係数、rを基準球面の曲率半径(近軸曲率半径)とする。また、「E−n」(n:整数)は「×10−n」を示し、例えば「1.234E-05」は「1.234×10−5」を示す。
[Aspherical data] shows an aspherical coefficient and a conic constant when the shape of the aspherical surface shown in [Surface data] is expressed by the following equation.
x = (h 2 / r) / [1+ {1−K (h / r) 2 } 1/2 ]
+ A4h 4 + A6h 6 + A8h 8 + A10h 10 + A12h 12 + A14h 14
Here, x is a distance (sag amount) along the optical axis direction from the tangent plane of each aspherical surface at a height h in the vertical direction from the optical axis, K is a conic constant, and A4, A6, A8, A10, A12. , A14 is the aspheric coefficient, and r is the radius of curvature of the reference sphere (paraxial radius of curvature). “E−n” (n: integer) represents “× 10 −n ”, for example “1.234E-05” represents “1.234 × 10 −5 ”.

[各種データ]において、FNOはFナンバー、2ωは画角、Yは像高、TLは光学系全長、di(i:整数)は第i面の可変の面間隔をそれぞれ示す。なお、Wは広角端状態、Mは中間焦点距離状態、Tは望遠端状態、無限遠は無限遠物体への合焦時、近距離は近距離物体への合焦時をそれぞれ示す。
ここで、表1に掲載されている焦点距離fや曲率半径r、及びその他長さの単位は一般に「mm」が使われる。しかしながら光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるため、これに限られるものではない。
なお、以上に述べた表1の符号は、後述する各実施例の表においても同様に用いるものとする。
In [various data], FNO is the F number, 2ω is the angle of view, Y is the image height, TL is the total length of the optical system, and di (i: integer) is the variable surface interval of the i-th surface. Note that W is the wide-angle end state, M is the intermediate focal length state, T is the telephoto end state, infinity is when focusing on an object at infinity, and short distance indicates when focusing on a near object.
Here, “mm” is generally used as a unit of the focal length f, the radius of curvature r, and other lengths listed in Table 1. However, the optical system is not limited to this because an equivalent optical performance can be obtained even when proportionally enlarged or proportionally reduced.
In addition, the code | symbol of Table 1 described above shall be similarly used also in the table | surface of each Example mentioned later.

ここで、レンズ全系の焦点距離がf、防振係数(ぶれ補正時の防振レンズ群の移動量に対する像面I上での像の移動量の比)がKであるレンズにおいて、角度θの回転ぶれを補正するためには、防振レンズ群を(f・tanθ)/Kだけ光軸と直交する方向へ移動させればよい。したがって、本実施例に係る変倍光学系は、広角端状態において防振係数が0.86、焦点距離が10.3(mm)であるため、0.2°の回転ぶれを補正するための防振レンズ群の移動量は0.04(mm)となる。また、中間焦点距離状態においては防振係数が1.23、焦点距離が45.0(mm)であるため、0.2°の回転ぶれを補正するための防振レンズ群の移動量は0.13(mm)となる。また、望遠端状態においては防振係数が1.42、焦点距離が97.0(mm)であるため、0.2°の回転ぶれを補正するための防振レンズ群の移動量は0.24(mm)となる。   Here, in the lens in which the focal length of the entire lens system is f and the image stabilization coefficient (ratio of the image movement amount on the image plane I to the movement amount of the image stabilization lens group at the time of blur correction) is K, the angle θ In order to correct the rotational blur of the lens, the anti-vibration lens group may be moved in a direction orthogonal to the optical axis by (f · tan θ) / K. Therefore, the variable magnification optical system according to the present example has an anti-vibration coefficient of 0.86 and a focal length of 10.3 (mm) in the wide-angle end state. The moving amount of the anti-vibration lens group is 0.04 (mm). Further, in the intermediate focal length state, the image stabilization coefficient is 1.23 and the focal length is 45.0 (mm). .13 (mm). Further, in the telephoto end state, since the image stabilization coefficient is 1.42 and the focal length is 97.0 (mm), the amount of movement of the image stabilization lens group for correcting the 0.2 ° rotation blur is 0. 24 (mm).

(表1)第1実施例
[面データ]
面番号 r d nd νd
物面 ∞
1 74.1356 1.800 1.850260 32.35
2 36.0351 7.000 1.497820 82.51
3 3038.1597 0.100
4 36.3362 5.000 1.729157 54.66
5 170.0064 可変
*6 159.7676 1.000 1.816000 46.62
7 11.1111 5.757
8 -57.3031 0.800 1.816000 46.62
9 32.0791 0.202
10 18.8298 4.000 1.846660 23.78
11 -127.9381 0.317
12 -90.0599 1.000 1.816000 46.62
13 41.7316 可変
14 22.5107 0.800 1.834000 37.16
15 12.0861 2.500 1.603001 65.46
16 -69.1710 1.000
17 864.1596 1.000 1.850260 32.35
18 16.8557 2.200 1.603001 65.46
19 -47.4738 0.100
20 24.2921 1.800 1.729157 54.66
21 -67.1681 1.000
22(絞りS) ∞ 可変
23 -43.6868 0.800 1.834807 42.72
24 22.6901 0.800
25 -25.0831 0.800 1.834807 42.72
26 11.7100 1.800 1.846660 23.78
27 -48.7106 可変
28 24.1884 2.500 1.497820 82.51
29 -58.4609 0.200
30 40.9485 1.000 1.834807 42.72
31 15.4156 3.500 1.497820 82.51
32 -46.0872 8.564
33 28.3973 2.500 1.497820 82.51
34 -123.1319 3.765
35 -20.5259 1.000 1.846660 23.78
36 -54.7499 BF
像面 ∞

[非球面データ]
第6面
K = -20.0000
A4 = 4.26826E-06
A6 = -9.97395E-09
A8 = 1.52813E-11
A10 = -3.70867E-14

[各種データ]
変倍比 9.42
W M T
f 10.3 45.0 97.0
FNO 4.6 5.1 5.9
2ω 78.3 19.6 9.2
Y 8.0 8.0 8.0
TL 128.784 128.784 128.784
BF 18.391 18.023 15.384

W M T W M T
無限遠 無限遠 無限遠 近距離 近距離 近距離
d5 0.800 20.355 28.029 0.800 20.355 28.029
d13 28.052 8.497 0.823 28.052 8.497 0.823
d22 0.800 8.210 13.112 0.855 8.379 13.439
d27 16.136 9.093 6.831 16.081 8.924 6.503

[レンズ群データ]
群 始面 f
1 1 57.577
2 6 -10.550
3 14 16.309
4 23 -14.362
5 28 24.289

[条件式対応値]
(1) f2/f4= 0.73
(2) (−f2)/f5 = 0.43
(3) f1/f3= 3.53
(4) f1/(−f4) = 4.01
(Table 1) First Example
[Surface data]
Surface number r d nd νd
Object ∞
1 74.1356 1.800 1.850260 32.35
2 36.0351 7.000 1.497820 82.51
3 3038.1597 0.100
4 36.3362 5.000 1.729157 54.66
5 170.0064 Variable * 6 159.7676 1.000 1.816000 46.62
7 11.1111 5.757
8 -57.3031 0.800 1.816000 46.62
9 32.0791 0.202
10 18.8298 4.000 1.846660 23.78
11 -127.9381 0.317
12 -90.0599 1.000 1.816000 46.62
13 41.7316 Variable
14 22.5107 0.800 1.834000 37.16
15 12.0861 2.500 1.603001 65.46
16 -69.1710 1.000
17 864.1596 1.000 1.850260 32.35
18 16.8557 2.200 1.603001 65.46
19 -47.4738 0.100
20 24.2921 1.800 1.729157 54.66
21 -67.1681 1.000
22 (Aperture S) ∞ Variable
23 -43.6868 0.800 1.834807 42.72
24 22.6901 0.800
25 -25.0831 0.800 1.834807 42.72
26 11.7100 1.800 1.846660 23.78
27 -48.7106 Variable
28 24.1884 2.500 1.497820 82.51
29 -58.4609 0.200
30 40.9485 1.000 1.834807 42.72
31 15.4156 3.500 1.497820 82.51
32 -46.0872 8.564
33 28.3973 2.500 1.497820 82.51
34 -123.1319 3.765
35 -20.5259 1.000 1.846660 23.78
36 -54.7499 BF
Image plane ∞

[Aspherical data]
6th surface K = -20.0000
A4 = 4.26826E-06
A6 = -9.97395E-09
A8 = 1.52813E-11
A10 = -3.70867E-14

[Various data]
Scaling ratio 9.42
W M T
f 10.3 45.0 97.0
FNO 4.6 5.1 5.9
2ω 78.3 19.6 9.2
Y 8.0 8.0 8.0
TL 128.784 128.784 128.784
BF 18.391 18.023 15.384

W M T W M T
Infinity infinity infinity infinity short distance short distance short distance
d5 0.800 20.355 28.029 0.800 20.355 28.029
d13 28.052 8.497 0.823 28.052 8.497 0.823
d22 0.800 8.210 13.112 0.855 8.379 13.439
d27 16.136 9.093 6.831 16.081 8.924 6.503

[Lens group data]
Group start surface f
1 1 57.577
2 6 -10.550
3 14 16.309
4 23 -14.362
5 28 24.289

[Conditional expression values]
(1) f2 / f4 = 0.73
(2) (−f2) /f5=0.43
(3) f1 / f3 = 3.53
(4) f1 / (− f4) = 4.01

図2(a)、及び図2(b)はそれぞれ、第1実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図、及び0.2°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。
図3(a)、及び図3(b)はそれぞれ、第1実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図、及び0.2°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。
図4(a)、及び図4(b)はそれぞれ、第1実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図、及び0.2°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。
図5(a)、図5(b)、及び図5(c)はそれぞれ、第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。
FIGS. 2A and 2B are diagrams showing various aberrations at the time of focusing at infinity in the wide-angle end state of the variable magnification optical system according to the first example, and a rotational blur of 0.2 °, respectively. FIG. 6 is a meridional lateral aberration diagram when vibration isolation is performed.
FIGS. 3A and 3B are graphs showing various aberrations at the time of focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the first example, and a rotational blur of 0.2 °, respectively. FIG. 6 is a meridional lateral aberration diagram when image stabilization is performed.
FIGS. 4A and 4B are diagrams showing various aberrations at the time of focusing on infinity in the telephoto end state of the variable magnification optical system according to the first example and a rotational shake of 0.2 °, respectively. FIG. 6 is a meridional lateral aberration diagram when vibration isolation is performed.
5 (a), 5 (b), and 5 (c) respectively show the close-up focus in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the first example. FIG.

図2〜図5の各収差図において、FNOはFナンバー、Aは半画角、H0は物体高をそれぞれ示す。なお、球面収差図では最大口径に対応するFナンバーの値を示し、非点収差図及び歪曲収差図では半画角又は物体高の最大値をそれぞれ示し、コマ収差図では各半画角又は各物体高の値を示す。dはd線(λ=587.6nm)、gはg線(λ=435.8nm)をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、以下に示す各実施例の収差図においても、本実施例と同様の符号を用いる。
各諸収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに防振時にも優れた結像性能を有していることがわかる。
2 to 5, FNO indicates an F number, A indicates a half angle of view, and H0 indicates an object height. The spherical aberration diagram shows the F-number value corresponding to the maximum aperture, the astigmatism diagram and the distortion diagram show the half field angle or the maximum object height, and the coma diagram shows each half field angle or each Indicates the value of the object height. d represents a d-line (λ = 587.6 nm), and g represents a g-line (λ = 435.8 nm). In the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane. Note that the same reference numerals as in this example are also used in the aberration diagrams of the examples shown below.
From the various aberration diagrams, the variable magnification optical system according to the present example has excellent imaging performance with excellent correction of various aberrations from the wide-angle end state to the telephoto end state, and also excellent during vibration isolation. It can be seen that it has imaging performance.

(第2実施例)
図6は、本願の第2実施例に係る変倍光学系のレンズ構成を示す図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りSと、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。
(Second embodiment)
FIG. 6 is a diagram showing a lens configuration of a variable magnification optical system according to the second example of the present application.
The variable magnification optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a positive refraction. The lens unit includes a third lens group G3 having power, a fourth lens group G4 having negative refractive power, and a fifth lens group G5 having positive refractive power.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合正レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、両凹形状の負レンズL24とからなる。
第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合正レンズと、両凸形状の正レンズL33と物体側に凹面を向けた負メニスカスレンズL34との接合正レンズとからなる。
第4レンズ群G4は、物体側から順に、両凹形状の負レンズL41と、両凹形状の負レンズL42と両凸形状の正レンズL43との接合負レンズとからなる。
第5レンズ群G5は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL51と、物体側に凸面を向けた負メニスカスレンズL52と両凸形状の正レンズL53との接合正レンズと、両凸形状の正レンズL54と、物体側に凹面を向けた負メニスカスレンズL55とからなる。
The first lens group G1 includes, in order from the object side, a cemented positive lens composed of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. Consists of.
The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave negative lens L22, a biconvex positive lens L23, and a biconcave negative lens L24. It consists of.
The third lens group G3 includes, in order from the object side, a cemented positive lens composed of a negative meniscus lens L31 having a convex surface facing the object side and a biconvex positive lens L32, and a biconvex positive lens L33 and a concave surface facing the object side. And a positive lens cemented with a negative meniscus lens L34.
The fourth lens group G4 includes, in order from the object side, a biconcave negative lens L41, and a cemented negative lens composed of a biconcave negative lens L42 and a biconvex positive lens L43.
The fifth lens group G5 includes, in order from the object side, a positive meniscus lens L51 having a concave surface directed toward the object side, a cemented positive lens composed of a negative meniscus lens L52 having a convex surface directed toward the object side, and a biconvex positive lens L53. And a positive biconvex lens L54, and a negative meniscus lens L55 having a concave surface facing the object side.

本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2の空気間隔、第2レンズ群G2と第3レンズ群G3の空気間隔、第3レンズ群G3と第4レンズ群G4の空気間隔、及び第4レンズ群G4と第5レンズ群G5の空気間隔がそれぞれ変化するように、第2,第4,第5レンズ群G2,G4,G5が光軸方向へ移動する。なお、このとき第1,第3レンズ群G1,G3及び開口絞りSの位置は固定である。
また本実施例に係る変倍光学系では、第3レンズ群G3全体が防振レンズ群として光軸と直交する方向の成分を含むように移動し、これによって像ぶれの補正を行うことができる。
また本実施例に係る変倍光学系では、第4レンズ群G4全体を像側へ移動させることにより、遠距離物体から近距離物体への合焦が行われる。
In the zoom optical system according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 and the second lens group G2 and the third lens group G3 during zooming from the wide-angle end state to the telephoto end state. , The fourth lens group G3 and the fourth lens group G4, and the fourth lens group G4 and the fifth lens group G5. The groups G2, G4, and G5 move in the optical axis direction. At this time, the positions of the first and third lens groups G1 and G3 and the aperture stop S are fixed.
Further, in the variable magnification optical system according to the present example, the entire third lens group G3 moves as an anti-vibration lens group so as to include a component in a direction orthogonal to the optical axis, and thereby image blur can be corrected. .
In the zoom optical system according to the present embodiment, focusing from a long-distance object to a short-distance object is performed by moving the entire fourth lens group G4 to the image side.

以下の表2に、本実施例に係る変倍光学系の諸元の値を掲げる。
ここで、本実施例に係る変倍光学系は、広角端状態において防振係数が2.07、焦点距離が10.3(mm)であるため、0.2°の回転ぶれを補正するための防振レンズ群の移動量は0.02(mm)となる。また、中間焦点距離状態においては防振係数が2.95、焦点距離が45.0(mm)であるため、0.2°の回転ぶれを補正するための防振レンズ群の移動量は0.05(mm)となる。また、望遠端状態においては防振係数が3.42、焦点距離が97.0(mm)であるため、0.2°の回転ぶれを補正するための防振レンズ群の移動量は0.10(mm)となる。
Table 2 below provides values of specifications of the variable magnification optical system according to the present example.
Here, since the zoom optical system according to the present example has an image stabilization coefficient of 2.07 and a focal length of 10.3 (mm) in the wide-angle end state, it corrects rotational shake of 0.2 °. The amount of movement of the anti-vibration lens group is 0.02 (mm). Further, in the intermediate focal length state, the image stabilization coefficient is 2.95, and the focal length is 45.0 (mm), so the amount of movement of the image stabilization lens group for correcting the 0.2 ° rotational blur is 0. .05 (mm). Further, in the telephoto end state, since the image stabilization coefficient is 3.42 and the focal length is 97.0 (mm), the amount of movement of the image stabilization lens group for correcting the 0.2 ° rotational blur is 0. 10 (mm).

(表2)第2実施例
[面データ]
面番号 r d nd νd
物面 ∞
1 93.1619 1.800 1.850260 32.35
2 39.5859 8.000 1.497820 82.51
3 -284.0151 0.100
4 36.5540 5.000 1.729157 54.66
5 159.4459 可変
*6 127.6881 1.000 1.816000 46.62
7 12.0348 5.060
8 -49.9978 0.800 1.816000 46.62
9 29.2932 0.200
10 18.9882 4.000 1.846660 23.78
11 -37.9737 0.471
12 -28.9543 1.000 1.834807 42.72
13 48.3879 可変
14(絞りS) ∞ 0.000
15 37.6996 0.800 1.834000 37.16
16 17.4219 2.500 1.593190 67.90
17 -25.8437 0.100
18 20.8989 2.500 1.518601 69.97
19 -16.6811 0.800 1.846660 23.78
20 -31.8438 可変
21 -36.4910 0.800 1.834807 42.72
22 29.3199 0.896
23 -27.0631 0.800 1.834807 42.72
24 18.2268 1.800 1.846660 23.78
25 -34.6409 可変
26 -50.1069 2.000 1.497820 82.51
27 -19.1363 0.200
28 96.2015 1.000 1.834807 42.72
29 23.1567 4.000 1.497820 82.51
30 -46.1208 0.211
31 23.5512 3.000 1.497820 82.51
32 -152.9275 9.791
33 -37.8588 1.000 1.846660 23.78
34 -283.7365 BF
像面 ∞

[非球面データ]
第6面
K = 8.8617
A4 = 1.80790E-07
A6 = -6.06139E-09
A8 = 4.62589E-11
A10 = -2.20120E-13

[各種データ]
変倍比 9.42
W M T
f 10.3 45.0 97.0
FNO 4.7 5.3 6.1
2ω 78.3 19.4 9.1
Y 8.0 8.0 8.0
TL 128.784 128.784 128.784
BF 19.429 17.659 14.429

W M T W M T
無限遠 無限遠 無限遠 近距離 近距離 近距離
d5 0.800 20.665 28.181 0.800 20.665 28.181
d13 29.606 9.740 2.225 29.606 9.740 2.225
d20 0.800 9.620 15.486 0.855 9.821 15.897
d25 18.520 11.469 8.834 18.465 11.268 8.423

[レンズ群データ]
群 始面 f
1 1 57.030
2 6 -10.449
3 15 16.471
4 21 -18.248
5 26 28.038

[条件式対応値]
(1) f2/f4 =0.57
(2) (−f2)/f5 = 0.37
(3) f1/f3 =3.46
(4) f1/(−f4) =3.13
(Table 2) Second Example
[Surface data]
Surface number r d nd νd
Object ∞
1 93.1619 1.800 1.850260 32.35
2 39.5859 8.000 1.497820 82.51
3 -284.0151 0.100
4 36.5540 5.000 1.729157 54.66
5 159.4459 Variable * 6 127.6881 1.000 1.816000 46.62
7 12.0348 5.060
8 -49.9978 0.800 1.816000 46.62
9 29.2932 0.200
10 18.9882 4.000 1.846660 23.78
11 -37.9737 0.471
12 -28.9543 1.000 1.834807 42.72
13 48.3879 Variable
14 (Aperture S) ∞ 0.000
15 37.6996 0.800 1.834000 37.16
16 17.4219 2.500 1.593190 67.90
17 -25.8437 0.100
18 20.8989 2.500 1.518601 69.97
19 -16.6811 0.800 1.846660 23.78
20 -31.8438 Variable
21 -36.4910 0.800 1.834807 42.72
22 29.3199 0.896
23 -27.0631 0.800 1.834807 42.72
24 18.2268 1.800 1.846660 23.78
25 -34.6409 Variable
26 -50.1069 2.000 1.497820 82.51
27 -19.1363 0.200
28 96.2015 1.000 1.834807 42.72
29 23.1567 4.000 1.497820 82.51
30 -46.1208 0.211
31 23.5512 3.000 1.497820 82.51
32 -152.9275 9.791
33 -37.8588 1.000 1.846660 23.78
34 -283.7365 BF
Image plane ∞

[Aspherical data]
6th surface K = 8.8617
A4 = 1.80790E-07
A6 = -6.06139E-09
A8 = 4.62589E-11
A10 = -2.20120E-13

[Various data]
Scaling ratio 9.42
W M T
f 10.3 45.0 97.0
FNO 4.7 5.3 6.1
2ω 78.3 19.4 9.1
Y 8.0 8.0 8.0
TL 128.784 128.784 128.784
BF 19.429 17.659 14.429

W M T W M T
Infinity infinity infinity infinity short distance short distance short distance
d5 0.800 20.665 28.181 0.800 20.665 28.181
d13 29.606 9.740 2.225 29.606 9.740 2.225
d20 0.800 9.620 15.486 0.855 9.821 15.897
d25 18.520 11.469 8.834 18.465 11.268 8.423

[Lens group data]
Group start surface f
1 1 57.030
2 6 -10.449
3 15 16.471
4 21 -18.248
5 26 28.038

[Conditional expression values]
(1) f2 / f4 = 0.57
(2) (−f2) /f5=0.37
(3) f1 / f3 = 3.46
(4) f1 / (− f4) = 3.13

図7(a)、及び図7(b)はそれぞれ、第2実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図、及び0.2°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。
図8(a)、及び図8(b)はそれぞれ、第2実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図、及び0.2°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。
図9(a)、及び図9(b)はそれぞれ、第2実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図、及び0.2°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。
図10(a)、図10(b)、及び図10(c)はそれぞれ、第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。
各諸収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに防振時にも優れた結像性能を有していることがわかる。
FIGS. 7A and 7B are diagrams showing various aberrations at the time of focusing on infinity in the wide-angle end state of the variable magnification optical system according to the second example, and a rotational blur of 0.2 °, respectively. FIG. 6 is a meridional lateral aberration diagram when vibration isolation is performed.
FIGS. 8A and 8B are diagrams showing various aberrations at the time of focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the second example, and a rotational blur of 0.2 °, respectively. FIG. 6 is a meridional lateral aberration diagram when image stabilization is performed.
FIGS. 9A and 9B are diagrams showing various aberrations at the time of focusing on infinity in the telephoto end state of the variable magnification optical system according to the second example, and a rotational blur of 0.2 °, respectively. FIG. 6 is a meridional lateral aberration diagram when vibration isolation is performed.
10 (a), 10 (b), and 10 (c), respectively, are in close focus at the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the second example. FIG.
From the various aberration diagrams, the variable magnification optical system according to the present example has excellent imaging performance with excellent correction of various aberrations from the wide-angle end state to the telephoto end state, and also excellent during vibration isolation. It can be seen that it has imaging performance.

(第3実施例)
図11は、本願の第3実施例に係る変倍光学系のレンズ構成を示す図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りSと、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。
(Third embodiment)
FIG. 11 is a diagram showing a lens configuration of a variable magnification optical system according to the third example of the present application.
The variable magnification optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a positive refraction. The lens unit includes a third lens group G3 having power, a fourth lens group G4 having negative refractive power, and a fifth lens group G5 having positive refractive power.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合正レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、両凹形状の負レンズL24とからなる。
第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合正レンズと、両凸形状の正レンズL33と物体側に凹面を向けた負メニスカスレンズL34との接合正レンズとからなる。
第4レンズ群G4は、物体側から順に、両凹形状の負レンズL41と、両凹形状の負レンズL42と両凸形状の正レンズL43との接合負レンズとからなる。
第5レンズ群G5は、物体側から順に、両凸形状の正レンズL51と、両凸形状の正レンズL52と物体側に凹面を向けた負メニスカスレンズL53との接合正レンズとからなる。
The first lens group G1 includes, in order from the object side, a cemented positive lens composed of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. Consists of.
The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave negative lens L22, a biconvex positive lens L23, and a biconcave negative lens L24. It consists of.
The third lens group G3 includes, in order from the object side, a cemented positive lens composed of a negative meniscus lens L31 having a convex surface facing the object side and a biconvex positive lens L32, and a biconvex positive lens L33 and a concave surface facing the object side. And a positive lens cemented with a negative meniscus lens L34.
The fourth lens group G4 includes, in order from the object side, a biconcave negative lens L41, and a cemented negative lens composed of a biconcave negative lens L42 and a biconvex positive lens L43.
The fifth lens group G5 includes, in order from the object side, a biconvex positive lens L51, a cemented positive lens formed by a biconvex positive lens L52 and a negative meniscus lens L53 having a concave surface facing the object.

本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2の空気間隔、第2レンズ群G2と第3レンズ群G3の空気間隔、第3レンズ群G3と第4レンズ群G4の空気間隔、及び第4レンズ群G4と第5レンズ群G5の空気間隔がそれぞれ変化するように、第2,第4,第5レンズ群G2,G4,G5が光軸方向へ移動する。なお、このとき第1,第3レンズ群G1,G3及び開口絞りSの位置は固定である。
また本実施例に係る変倍光学系では、第3レンズ群G3全体が防振レンズ群として光軸と直交する方向の成分を含むように移動し、これによって像ぶれの補正を行うことができる。
また本実施例に係る変倍光学系では、第4レンズ群G4全体を像側へ移動させることにより、遠距離物体から近距離物体への合焦が行われる。
In the zoom optical system according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 and the second lens group G2 and the third lens group G3 during zooming from the wide-angle end state to the telephoto end state. , The fourth lens group G3 and the fourth lens group G4, and the fourth lens group G4 and the fifth lens group G5. The groups G2, G4, and G5 move in the optical axis direction. At this time, the positions of the first and third lens groups G1 and G3 and the aperture stop S are fixed.
Further, in the variable magnification optical system according to the present example, the entire third lens group G3 moves as an anti-vibration lens group so as to include a component in a direction orthogonal to the optical axis, and thereby image blur can be corrected. .
In the zoom optical system according to the present embodiment, focusing from a long-distance object to a short-distance object is performed by moving the entire fourth lens group G4 to the image side.

以下の表3に、本実施例に係る変倍光学系の諸元の値を掲げる。
ここで、本実施例に係る変倍光学系は、広角端状態において防振係数が2.08、焦点距離が10.3(mm)であるため、0.2°の回転ぶれを補正するための防振レンズ群の移動量は0.02(mm)となる。また、中間焦点距離状態においては防振係数が2.95、焦点距離が45.0(mm)であるため、0.2°の回転ぶれを補正するための防振レンズ群の移動量は0.05(mm)となる。また、望遠端状態においては防振係数が3.42、焦点距離が97.0(mm)であるため、0.2°の回転ぶれを補正するための防振レンズ群の移動量は0.10(mm)となる。
Table 3 below lists values of specifications of the variable magnification optical system according to the present example.
Here, since the variable magnification optical system according to the present example has an anti-vibration coefficient of 2.08 and a focal length of 10.3 (mm) in the wide-angle end state, in order to correct a rotational shake of 0.2 °. The amount of movement of the anti-vibration lens group is 0.02 (mm). Further, in the intermediate focal length state, the image stabilization coefficient is 2.95, and the focal length is 45.0 (mm), so the amount of movement of the image stabilization lens group for correcting the 0.2 ° rotational blur is 0. .05 (mm). Further, in the telephoto end state, since the image stabilization coefficient is 3.42 and the focal length is 97.0 (mm), the amount of movement of the image stabilization lens group for correcting the 0.2 ° rotational blur is 0. 10 (mm).

(表3)第3実施例
[面データ]
面番号 r d nd νd
物面 ∞
1 86.5566 1.600 1.850260 32.35
2 39.0403 8.200 1.497820 82.51
3 -273.4518 0.100
4 33.7862 4.800 1.729157 54.66
5 111.7851 可変
*6 114.8189 1.000 1.816000 46.62
7 10.7372 5.676
8 -53.6644 0.800 1.816000 46.62
9 36.5687 0.200
10 17.8230 4.000 1.846660 23.78
11 -53.3504 0.342
12 -43.0589 1.000 1.834807 42.72
13 33.3093 可変
14(絞りS) ∞ 0.000
15 32.7360 0.800 1.850260 32.35
16 15.8207 2.500 1.593190 67.90
17 -24.5965 0.100
18 22.9169 2.500 1.518601 69.97
19 -20.0347 0.800 1.846660 23.78
20 -37.9415 可変
21 -31.8905 0.800 1.834807 42.72
22 31.4348 1.419
23 -16.4154 0.800 1.834807 42.72
24 39.1141 1.800 1.846660 23.78
25 -18.0688 可変
26 67.8920 4.000 1.497820 82.51
27 -20.3825 4.416
28 32.0419 4.000 1.497820 82.51
29 -17.2951 1.000 1.850260 32.35
30 -184.4460 BF
像面 ∞

[非球面データ]
第6面
K = 13.3663
A4 = -5.75816E-07
A6 = -3.00768E-10
A8 = -1.33166E-11
A10 = 2.80156E-14

[各種データ]
変倍比 9.42
W M T
f 10.3 45.0 97.0
FNO 4.7 5.3 6.1
2ω 78.1 19.5 9.1
Y 8.0 8.0 8.0
TL 128.784 128.784 128.784
BF 27.465 24.116 20.465

W M T W M T
無限遠 無限遠 無限遠 近距離 近距離 近距離
d5 0.810 20.266 27.547 0.810 20.266 27.547
d13 29.126 9.670 2.389 29.126 9.670 2.389
d20 0.801 10.534 16.510 0.855 10.738 16.927
d25 17.930 11.545 9.221 17.875 11.342 8.804

[レンズ群データ]
群 始面 f
1 1 55.688
2 6 -10.152
3 15 16.625
4 21 -20.042
5 26 30.416

[条件式対応値]
(1) f2/f4= 0.51
(2) (−f2)/f5 = 0.33
(3) f1/f3= 3.35
(4) f1/(−f4) = 2.78
(Table 3) Third Example
[Surface data]
Surface number r d nd νd
Object ∞
1 86.5566 1.600 1.850260 32.35
2 39.0403 8.200 1.497820 82.51
3 -273.4518 0.100
4 33.7862 4.800 1.729157 54.66
5 111.7851 Variable * 6 114.8189 1.000 1.816000 46.62
7 10.7372 5.676
8 -53.6644 0.800 1.816000 46.62
9 36.5687 0.200
10 17.8230 4.000 1.846660 23.78
11 -53.3504 0.342
12 -43.0589 1.000 1.834807 42.72
13 33.3093 Variable
14 (Aperture S) ∞ 0.000
15 32.7360 0.800 1.850260 32.35
16 15.8207 2.500 1.593190 67.90
17 -24.5965 0.100
18 22.9169 2.500 1.518601 69.97
19 -20.0347 0.800 1.846660 23.78
20 -37.9415 Variable
21 -31.8905 0.800 1.834807 42.72
22 31.4348 1.419
23 -16.4154 0.800 1.834807 42.72
24 39.1141 1.800 1.846660 23.78
25 -18.0688 Variable
26 67.8920 4.000 1.497820 82.51
27 -20.3825 4.416
28 32.0419 4.000 1.497820 82.51
29 -17.2951 1.000 1.850 260 32.35
30 -184.4460 BF
Image plane ∞

[Aspherical data]
6th surface K = 13.3663
A4 = -5.75816E-07
A6 = -3.00768E-10
A8 = -1.33166E-11
A10 = 2.80156E-14

[Various data]
Scaling ratio 9.42
W M T
f 10.3 45.0 97.0
FNO 4.7 5.3 6.1
2ω 78.1 19.5 9.1
Y 8.0 8.0 8.0
TL 128.784 128.784 128.784
BF 27.465 24.116 20.465

W M T W M T
Infinity infinity infinity infinity short distance short distance short distance
d5 0.810 20.266 27.547 0.810 20.266 27.547
d13 29.126 9.670 2.389 29.126 9.670 2.389
d20 0.801 10.534 16.510 0.855 10.738 16.927
d25 17.930 11.545 9.221 17.875 11.342 8.804

[Lens group data]
Group start surface f
1 1 55.688
2 6 -10.152
3 15 16.625
4 21 -20.042
5 26 30.416

[Conditional expression values]
(1) f2 / f4 = 0.51
(2) (−f2) /f5=0.33
(3) f1 / f3 = 3.35
(4) f1 / (− f4) = 2.78

図12(a)、及び図12(b)はそれぞれ、第3実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図、及び0.2°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。
図13(a)、及び図13(b)はそれぞれ、第3実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図、及び0.2°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。
図14(a)、及び図14(b)はそれぞれ、第3実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図、及び0.2°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。
図15(a)、図15(b)、及び図15(c)はそれぞれ、第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。
各諸収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに防振時にも優れた結像性能を有していることがわかる。
FIGS. 12A and 12B are diagrams showing various aberrations at the time of focusing at infinity in the wide-angle end state of the variable magnification optical system according to the third example, and a rotational blur of 0.2 °, respectively. FIG. 6 is a meridional lateral aberration diagram when vibration isolation is performed.
FIGS. 13A and 13B are graphs showing various aberrations at the time of focusing at infinity in the intermediate focal length state of the zoom optical system according to the third example, and a rotational blur of 0.2 °, respectively. FIG. 6 is a meridional lateral aberration diagram when image stabilization is performed.
FIGS. 14A and 14B are diagrams showing various aberrations at the time of focusing on infinity in the telephoto end state of the zoom optical system according to the third example, and a rotational blur of 0.2 °, respectively. FIG. 6 is a meridional lateral aberration diagram when vibration isolation is performed.
15 (a), 15 (b), and 15 (c) respectively show the close-up focus in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the third example. FIG.
From the various aberration diagrams, the variable magnification optical system according to the present example has excellent imaging performance with excellent correction of various aberrations from the wide-angle end state to the telephoto end state, and also excellent during vibration isolation. It can be seen that it has imaging performance.

(第4実施例)
図16は、本願の第4実施例に係る変倍光学系のレンズ構成を示す図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、開口絞りSと、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。
(Fourth embodiment)
FIG. 16 is a diagram showing a lens configuration of a variable magnification optical system according to the fourth example of the present application.
The variable magnification optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. The lens group G3 includes an aperture stop S, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合正レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と両凹形状の負レンズL24との接合正レンズとからなる。
第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合正レンズと、両凸形状の正レンズL33と物体側に凹面を向けた負メニスカスレンズL34との接合正レンズと、両凸形状の正レンズL35とからなる。
第4レンズ群G4は、物体側から順に、両凹形状の負レンズL41と、両凹形状の負レンズL42と両凸形状の正レンズL43との接合負レンズとからなる。
第5レンズ群G5は、物体側から順に、両凸形状の正レンズL51と、両凸形状の正レンズL52と物体側に凹面を向けた負メニスカスレンズL53との接合正レンズと、物体側に凸面を向けた負メニスカスレンズL54と両凸形状の正レンズL55との接合負レンズと、物体側に凹面を向けた負メニスカスレンズL56とからなる。
The first lens group G1 includes, in order from the object side, a cemented positive lens composed of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. Consists of.
The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave negative lens L22, a biconvex positive lens L23, and a biconcave negative lens L24. This is a positive lens.
The third lens group G3 includes, in order from the object side, a cemented positive lens composed of a negative meniscus lens L31 having a convex surface facing the object side and a biconvex positive lens L32, and a biconvex positive lens L33 and a concave surface facing the object side. And a negative positive meniscus lens L34, and a biconvex positive lens L35.
The fourth lens group G4 includes, in order from the object side, a biconcave negative lens L41, and a cemented negative lens composed of a biconcave negative lens L42 and a biconvex positive lens L43.
The fifth lens group G5 includes, in order from the object side, a biconvex positive lens L51, a cemented positive lens composed of a biconvex positive lens L52 and a negative meniscus lens L53 having a concave surface facing the object, and an object side. It consists of a cemented negative lens of a negative meniscus lens L54 having a convex surface and a biconvex positive lens L55, and a negative meniscus lens L56 having a concave surface on the object side.

本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2の空気間隔、第2レンズ群G2と第3レンズ群G3の空気間隔、第3レンズ群G3と第4レンズ群G4の空気間隔、及び第4レンズ群G4と第5レンズ群G5の空気間隔がそれぞれ変化するように、第2,第4,第5レンズ群G2,G4,G5が光軸方向へ移動する。なお、このとき第1,第3レンズ群G1,G3及び開口絞りSの位置は固定である。
また本実施例に係る変倍光学系では、第3レンズ群G3内の負メニスカスレンズL31と正レンズL32との接合正レンズが防振レンズ群として光軸と直交する方向の成分を含むように移動し、これによって像ぶれの補正を行うことができる。
また本実施例に係る変倍光学系では、第4レンズ群G4全体を像側へ移動させることにより、遠距離物体から近距離物体への合焦が行われる。
In the zoom optical system according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 and the second lens group G2 and the third lens group G3 during zooming from the wide-angle end state to the telephoto end state. , The fourth lens group G3 and the fourth lens group G4, and the fourth lens group G4 and the fifth lens group G5. The groups G2, G4, and G5 move in the optical axis direction. At this time, the positions of the first and third lens groups G1 and G3 and the aperture stop S are fixed.
In the variable magnification optical system according to the present example, the cemented positive lens of the negative meniscus lens L31 and the positive lens L32 in the third lens group G3 includes a component in a direction perpendicular to the optical axis as a vibration-proof lens group. Accordingly, image blur can be corrected.
In the zoom optical system according to the present embodiment, focusing from a long-distance object to a short-distance object is performed by moving the entire fourth lens group G4 to the image side.

以下の表4に、本実施例に係る変倍光学系の諸元の値を掲げる。
ここで、本実施例に係る変倍光学系は、広角端状態において防振係数が0.93、焦点距離が10.3(mm)であるため、0.2°の回転ぶれを補正するための防振レンズ群の移動量は0.04(mm)となる。また、中間焦点距離状態においては防振係数が1.33、焦点距離が45.0(mm)であるため、0.2°の回転ぶれを補正するための防振レンズ群の移動量は0.12(mm)となる。また、望遠端状態においては防振係数が1.62、焦点距離が97.0(mm)であるため、0.2°の回転ぶれを補正するための防振レンズ群の移動量は0.21(mm)となる。
Table 4 below lists values of specifications of the variable magnification optical system according to the present example.
Here, since the variable magnification optical system according to the present example has an anti-vibration coefficient of 0.93 and a focal length of 10.3 (mm) in the wide-angle end state, in order to correct a rotational shake of 0.2 °. The amount of movement of the anti-vibration lens group is 0.04 (mm). Further, in the intermediate focal length state, since the image stabilization coefficient is 1.33 and the focal length is 45.0 (mm), the amount of movement of the image stabilization lens group for correcting the 0.2 ° rotational blur is 0. .12 (mm). Further, in the telephoto end state, since the image stabilization coefficient is 1.62 and the focal length is 97.0 (mm), the movement amount of the image stabilization lens group for correcting the 0.2 ° rotation blur is 0. 21 (mm).

(表4)第4実施例
[面データ]
面番号 r d nd νd
物面 ∞
1 102.3091 2.000 1.795040 28.69
2 41.8010 10.400 1.497820 82.57
3 -1007.6756 0.100
4 37.6062 5.150 1.834810 42.73
5 98.9884 可変
*6 99.2450 0.150 1.553890 38.09
7 94.6723 1.400 1.834810 42.73
8 12.0783 6.000
9 -32.7960 1.000 1.834810 42.73
10 46.9143 0.400
11 25.5606 3.800 1.846660 23.80
12 -54.2180 1.000 1.816000 46.59
13 54.1534 可変
14 34.7874 0.800 1.850260 32.35
15 16.6502 2.600 1.618000 63.34
16 -37.1204 1.200
17 48.7843 2.600 1.497820 82.57
18 -18.5410 0.800 1.850260 32.35
19 -41.7038 0.300
20 47.8525 1.600 1.696800 55.52
21 -59.5425 0.500
22(絞りS) ∞ 可変
23 -33.1327 0.800 1.816000 46.59
24 23.8736 0.700
25 -23.1424 0.800 1.816000 46.59
26 16.9872 2.000 1.808090 22.74
27 -33.9829 可変
28 49.4602 3.500 1.589130 61.18
*29 -19.7954 0.100
30 23.4122 4.400 1.497820 82.57
31 -23.4006 1.000 1.950000 29.37
32 -80.0819 0.300
33 85.4967 1.000 1.883000 40.66
34 14.9004 4.000 1.517420 52.20
35 -50.2458 1.450
36 -30.3940 1.000 2.000690 25.46
37 -82.9601 BF
像面 ∞

[非球面データ]
第6面
K = 15.1751
A4 = 4.64891E-06
A6 = -1.26998E-08
A8 = -3.35661E-10
A10 = 2.59761E-12
A12 = -8.51930E-15
A14 = 1.02560E-17

第29面
K = 1.2313
A4 = 1.39795E-05
A6 = 3.25121E-08

[各種データ]
変倍比 9.42
W M T
f 10.3 45.0 97.0
FNO 4.6 5.5 5.9
2ω 78.6 19.4 9.0
Y 8.0 8.0 8.0
TL 136.663 136.663 136.663
BF 21.775 17.923 14.148

W M T W M T
無限遠 無限遠 無限遠 近距離 近距離 近距離
d5 1.822 23.119 30.744 1.822 23.119 30.744
d13 30.318 9.021 1.396 30.318 9.021 1.396
d22 2.508 12.391 20.536 2.557 12.557 20.874
d27 17.391 11.359 6.988 17.341 11.193 6.650

[レンズ群データ]
群 始面 f
1 1 65.224
2 6 -10.504
3 14 16.830
4 23 -14.660
5 28 24.633

[条件式対応値]
(1) f2/f4 =0.72
(2) (−f2)/f5 = 0.43
(3) f1/f3 =3.88
(4) f1/(−f4) =4.45
(Table 4) Fourth Example
[Surface data]
Surface number r d nd νd
Object ∞
1 102.3091 2.000 1.795040 28.69
2 41.8010 10.400 1.497820 82.57
3 -1007.6756 0.100
4 37.6062 5.150 1.834810 42.73
5 98.9884 Variable
* 6 99.2450 0.150 1.553890 38.09
7 94.6723 1.400 1.834810 42.73
8 12.0783 6.000
9 -32.7960 1.000 1.834810 42.73
10 46.9143 0.400
11 25.5606 3.800 1.846660 23.80
12 -54.2180 1.000 1.816000 46.59
13 54.1534 Variable
14 34.7874 0.800 1.850260 32.35
15 16.6502 2.600 1.618000 63.34
16 -37.1204 1.200
17 48.7843 2.600 1.497820 82.57
18 -18.5410 0.800 1.850 260 32.35
19 -41.7038 0.300
20 47.8525 1.600 1.696800 55.52
21 -59.5425 0.500
22 (Aperture S) ∞ Variable
23 -33.1327 0.800 1.816000 46.59
24 23.8736 0.700
25 -23.1424 0.800 1.816000 46.59
26 16.9872 2.000 1.808090 22.74
27 -33.9829 Variable
28 49.4602 3.500 1.589130 61.18
* 29 -19.7954 0.100
30 23.4122 4.400 1.497820 82.57
31 -23.4006 1.000 1.950000 29.37
32 -80.0819 0.300
33 85.4967 1.000 1.883000 40.66
34 14.9004 4.000 1.517420 52.20
35 -50.2458 1.450
36 -30.3940 1.000 2.000690 25.46
37 -82.9601 BF
Image plane ∞

[Aspherical data]
6th surface K = 15.1751
A4 = 4.64891E-06
A6 = -1.26998E-08
A8 = -3.35661E-10
A10 = 2.59761E-12
A12 = -8.51930E-15
A14 = 1.02560E-17

29th surface K = 1.2313
A4 = 1.39795E-05
A6 = 3.25121E-08

[Various data]
Scaling ratio 9.42
W M T
f 10.3 45.0 97.0
FNO 4.6 5.5 5.9
2ω 78.6 19.4 9.0
Y 8.0 8.0 8.0
TL 136.663 136.663 136.663
BF 21.775 17.923 14.148

W M T W M T
Infinity infinity infinity infinity short distance short distance short distance
d5 1.822 23.119 30.744 1.822 23.119 30.744
d13 30.318 9.021 1.396 30.318 9.021 1.396
d22 2.508 12.391 20.536 2.557 12.557 20.874
d27 17.391 11.359 6.988 17.341 11.193 6.650

[Lens group data]
Group start surface f
1 1 65.224
2 6 -10.504
3 14 16.830
4 23 -14.660
5 28 24.633

[Conditional expression values]
(1) f2 / f4 = 0.72
(2) (−f2) /f5=0.43
(3) f1 / f3 = 3.88
(4) f1 / (− f4) = 4.45

図17(a)、及び図17(b)はそれぞれ、第4実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図、及び0.2°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。
図18(a)、及び図18(b)はそれぞれ、第4実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図、及び0.2°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。
図19(a)、及び図19(b)はそれぞれ、第4実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図、及び0.2°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。
図20(a)、図20(b)、及び図20(c)はそれぞれ、第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。
各諸収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに防振時にも優れた結像性能を有していることがわかる。
FIGS. 17A and 17B are graphs showing various aberrations at the time of focusing at infinity in the wide-angle end state of the zoom optical system according to the fourth example, and a rotational blur of 0.2 °, respectively. FIG. 6 is a meridional lateral aberration diagram when vibration isolation is performed.
FIGS. 18A and 18B are diagrams showing various aberrations at the time of focusing at infinity in the intermediate focal length state of the zoom optical system according to the fourth example, and a rotational blur of 0.2 °, respectively. FIG. 6 is a meridional lateral aberration diagram when image stabilization is performed.
FIGS. 19A and 19B are graphs showing various aberrations at the time of focusing on infinity in the telephoto end state of the zoom optical system according to the fourth example, and a rotational blur of 0.2 °, respectively. FIG. 6 is a meridional lateral aberration diagram when vibration isolation is performed.
20 (a), 20 (b), and 20 (c), respectively, at the time of short distance focusing in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fourth example. FIG.
From the various aberration diagrams, the variable magnification optical system according to the present example has excellent imaging performance with excellent correction of various aberrations from the wide-angle end state to the telephoto end state, and also excellent during vibration isolation. It can be seen that it has imaging performance.

(第5実施例)
図21は、本願の第5実施例に係る変倍光学系のレンズ構成を示す図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、開口絞りSと、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。
(5th Example)
FIG. 21 is a diagram showing a lens configuration of a variable magnification optical system according to the fifth example of the present application.
The variable magnification optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. The lens group G3 includes an aperture stop S, a fourth lens group G4 having a negative refractive power, and a fifth lens group G5 having a positive refractive power.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合正レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と両凹形状の負レンズL24との接合正レンズとからなる。
第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合正レンズと、両凸形状の正レンズL33と物体側に凹面を向けた負メニスカスレンズL34との接合正レンズと、両凸形状の正レンズL35とからなる。
第4レンズ群G4は、物体側から順に、両凹形状の負レンズL41と、両凹形状の負レンズL42と両凸形状の正レンズL43との接合負レンズとからなる。
第5レンズ群G5は、物体側から順に、両凸形状の正レンズL51と、両凸形状の正レンズL52と物体側に凹面を向けた負メニスカスレンズL53との接合正レンズと、物体側に凸面を向けた負メニスカスレンズL54と両凸形状の正レンズL55との接合負レンズと、物体側に凹面を向けた負メニスカスレンズL56とからなる。
The first lens group G1 includes, in order from the object side, a cemented positive lens composed of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. Consists of.
The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave negative lens L22, a biconvex positive lens L23, and a biconcave negative lens L24. This is a positive lens.
The third lens group G3 includes, in order from the object side, a cemented positive lens composed of a negative meniscus lens L31 having a convex surface facing the object side and a biconvex positive lens L32, and a biconvex positive lens L33 and a concave surface facing the object side. And a negative positive meniscus lens L34, and a biconvex positive lens L35.
The fourth lens group G4 includes, in order from the object side, a biconcave negative lens L41, and a cemented negative lens composed of a biconcave negative lens L42 and a biconvex positive lens L43.
The fifth lens group G5 includes, in order from the object side, a biconvex positive lens L51, a cemented positive lens composed of a biconvex positive lens L52 and a negative meniscus lens L53 having a concave surface facing the object, and an object side. It consists of a cemented negative lens of a negative meniscus lens L54 having a convex surface and a biconvex positive lens L55, and a negative meniscus lens L56 having a concave surface on the object side.

本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2の空気間隔、第2レンズ群G2と第3レンズ群G3の空気間隔、第3レンズ群G3と第4レンズ群G4の空気間隔、及び第4レンズ群G4と第5レンズ群G5の空気間隔がそれぞれ変化するように、第2,第4,第5レンズ群G2,G4,G5が光軸方向へ移動する。なお、このとき第1,第3レンズ群G1,G3及び開口絞りSの位置は固定である。
また本実施例に係る変倍光学系では、第2レンズ群G2全体が防振レンズ群として光軸と直交する方向の成分を含むように移動し、これによって像ぶれの補正を行うことができる。
また本実施例に係る変倍光学系では、第4レンズ群G4全体を像側へ移動させることにより、遠距離物体から近距離物体への合焦が行われる。
In the zoom optical system according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 and the second lens group G2 and the third lens group G3 during zooming from the wide-angle end state to the telephoto end state. , The fourth lens group G3 and the fourth lens group G4, and the fourth lens group G4 and the fifth lens group G5. The groups G2, G4, and G5 move in the optical axis direction. At this time, the positions of the first and third lens groups G1 and G3 and the aperture stop S are fixed.
Further, in the variable magnification optical system according to the present example, the entire second lens group G2 moves so as to include a component in a direction perpendicular to the optical axis as an anti-vibration lens group, and thereby image blur can be corrected. .
In the zoom optical system according to the present embodiment, focusing from a long-distance object to a short-distance object is performed by moving the entire fourth lens group G4 to the image side.

以下の表5に、本実施例に係る変倍光学系の諸元の値を掲げる。
ここで、本実施例に係る変倍光学系は、広角端状態において防振係数が0.85、焦点距離が10.3(mm)であるため、0.2°の回転ぶれを補正するための防振レンズ群の移動量は0.04(mm)となる。また、中間焦点距離状態においては防振係数が2.24、焦点距離が45.0(mm)であるため、0.2°の回転ぶれを補正するための防振レンズ群の移動量は0.07(mm)となる。また、望遠端状態においては防振係数が3.76、焦点距離が97.0(mm)であるため、0.2°の回転ぶれを補正するための防振レンズ群の移動量は0.09(mm)となる。
Table 5 below provides values of specifications of the variable magnification optical system according to the present example.
Here, since the variable magnification optical system according to the present example has an anti-vibration coefficient of 0.85 and a focal length of 10.3 (mm) in the wide-angle end state, it corrects rotational shake of 0.2 °. The amount of movement of the anti-vibration lens group is 0.04 (mm). Further, in the intermediate focal length state, since the vibration proof coefficient is 2.24 and the focal length is 45.0 (mm), the amount of movement of the vibration proof lens group for correcting the 0.2 ° rotational blur is 0. .07 (mm). Further, in the telephoto end state, since the image stabilization coefficient is 3.76 and the focal length is 97.0 (mm), the amount of movement of the image stabilization lens group for correcting the 0.2 ° rotational blur is 0. 09 (mm).

(表5)第5実施例
[面データ]
面番号 r d nd νd
物面 ∞
1 102.3091 2.000 1.795040 28.69
2 41.8010 10.400 1.497820 82.57
3 -1007.6756 0.100
4 37.6062 5.150 1.834810 42.73
5 98.9884 可変
*6 99.2450 0.150 1.553890 38.09
7 94.6723 1.400 1.834810 42.73
8 12.0783 6.000
9 -32.7960 1.000 1.834810 42.73
10 46.9143 0.400
11 25.5606 3.800 1.846660 23.80
12 -54.2180 1.000 1.816000 46.59
13 54.1534 可変
14 34.7874 0.800 1.850260 32.35
15 16.6502 2.600 1.618000 63.34
16 -37.1204 1.200
17 48.7843 2.600 1.497820 82.57
18 -18.5410 0.800 1.850260 32.35
19 -41.7038 0.300
20 47.8525 1.600 1.696800 55.52
21 -59.5425 0.500
22(絞りS) ∞ 可変
23 -33.1327 0.800 1.816000 46.59
24 23.8736 0.700
25 -23.1424 0.800 1.816000 46.59
26 16.9872 2.000 1.808090 22.74
27 -33.9829 可変
28 49.4602 3.500 1.589130 61.18
*29 -19.7954 0.100
30 23.4122 4.400 1.497820 82.57
31 -23.4006 1.000 1.950000 29.37
32 -80.0819 0.300
33 85.4967 1.000 1.883000 40.66
34 14.9004 4.000 1.517420 52.20
35 -50.2458 1.450
36 -30.3940 1.000 2.000690 25.46
37 -82.9601 BF
像面 ∞

[非球面データ]
第6面
K = 15.1751
A4 = 4.64891E-06
A6 = -1.26998E-08
A8 = -3.35661E-10
A10 = 2.59761E-12
A12 = -8.51930E-15
A14 = 1.02560E-17

第29面
K = 1.2313
A4 = 1.39795E-05
A6 = 3.25121E-08

[各種データ]
変倍比 9.42
W M T
f 10.3 45.0 97.0
FNO 4.6 5.5 5.9
2ω 78.6 19.4 9.0
Y 8.0 8.0 8.0
TL 136.663 136.663 136.663
BF 21.775 17.923 14.148

W M T W M T
無限遠 無限遠 無限遠 近距離 近距離 近距離
d5 1.822 23.119 30.744 1.822 23.119 30.744
d13 30.318 9.021 1.396 30.318 9.021 1.396
d22 2.508 12.391 20.536 2.557 12.557 20.874
d27 17.391 11.359 6.988 17.341 11.193 6.650

[レンズ群データ]
群 始面 f
1 1 65.224
2 6 -10.504
3 14 16.830
4 23 -14.660
5 28 24.633

[条件式対応値]
(1) f2/f4 =0.72
(2) (−f2)/f5 = 0.43
(3) f1/f3 =3.88
(4) f1/(−f4) =4.45
(Table 5) Fifth Example
[Surface data]
Surface number r d nd νd
Object ∞
1 102.3091 2.000 1.795040 28.69
2 41.8010 10.400 1.497820 82.57
3 -1007.6756 0.100
4 37.6062 5.150 1.834810 42.73
5 98.9884 Variable
* 6 99.2450 0.150 1.553890 38.09
7 94.6723 1.400 1.834810 42.73
8 12.0783 6.000
9 -32.7960 1.000 1.834810 42.73
10 46.9143 0.400
11 25.5606 3.800 1.846660 23.80
12 -54.2180 1.000 1.816000 46.59
13 54.1534 Variable
14 34.7874 0.800 1.850260 32.35
15 16.6502 2.600 1.618000 63.34
16 -37.1204 1.200
17 48.7843 2.600 1.497820 82.57
18 -18.5410 0.800 1.850 260 32.35
19 -41.7038 0.300
20 47.8525 1.600 1.696800 55.52
21 -59.5425 0.500
22 (Aperture S) ∞ Variable
23 -33.1327 0.800 1.816000 46.59
24 23.8736 0.700
25 -23.1424 0.800 1.816000 46.59
26 16.9872 2.000 1.808090 22.74
27 -33.9829 Variable
28 49.4602 3.500 1.589130 61.18
* 29 -19.7954 0.100
30 23.4122 4.400 1.497820 82.57
31 -23.4006 1.000 1.950000 29.37
32 -80.0819 0.300
33 85.4967 1.000 1.883000 40.66
34 14.9004 4.000 1.517420 52.20
35 -50.2458 1.450
36 -30.3940 1.000 2.000690 25.46
37 -82.9601 BF
Image plane ∞

[Aspherical data]
6th surface K = 15.1751
A4 = 4.64891E-06
A6 = -1.26998E-08
A8 = -3.35661E-10
A10 = 2.59761E-12
A12 = -8.51930E-15
A14 = 1.02560E-17

29th surface K = 1.2313
A4 = 1.39795E-05
A6 = 3.25121E-08

[Various data]
Scaling ratio 9.42
W M T
f 10.3 45.0 97.0
FNO 4.6 5.5 5.9
2ω 78.6 19.4 9.0
Y 8.0 8.0 8.0
TL 136.663 136.663 136.663
BF 21.775 17.923 14.148

W M T W M T
Infinity infinity infinity infinity short distance short distance short distance
d5 1.822 23.119 30.744 1.822 23.119 30.744
d13 30.318 9.021 1.396 30.318 9.021 1.396
d22 2.508 12.391 20.536 2.557 12.557 20.874
d27 17.391 11.359 6.988 17.341 11.193 6.650

[Lens group data]
Group start surface f
1 1 65.224
2 6 -10.504
3 14 16.830
4 23 -14.660
5 28 24.633

[Conditional expression values]
(1) f2 / f4 = 0.72
(2) (−f2) /f5=0.43
(3) f1 / f3 = 3.88
(4) f1 / (− f4) = 4.45

図22(a)、及び図22(b)はそれぞれ、第5実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図、及び0.2°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。
図23(a)、及び図23(b)はそれぞれ、第5実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図、及び0.2°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。
図24(a)、及び図24(b)はそれぞれ、第5実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図、及び0.2°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。
図25(a)、図25(b)、及び図25(c)はそれぞれ、第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。
各諸収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに防振時にも優れた結像性能を有していることがわかる。
FIGS. 22A and 22B are diagrams showing various aberrations at the time of focusing on infinity in the wide-angle end state of the variable magnification optical system according to the fifth example, and a rotational blur of 0.2 °, respectively. FIG. 6 is a meridional lateral aberration diagram when vibration isolation is performed.
FIGS. 23A and 23B are graphs showing various aberrations at the time of focusing at infinity in the intermediate focal length state of the zoom optical system according to the fifth example, and a rotational blur of 0.2 °, respectively. FIG. 6 is a meridional lateral aberration diagram when image stabilization is performed.
FIGS. 24A and 24B are diagrams showing various aberrations at the time of focusing on infinity in the telephoto end state of the zoom optical system according to the fifth example, and a rotational blur of 0.2 °, respectively. FIG. 6 is a meridional lateral aberration diagram when vibration isolation is performed.
FIGS. 25 (a), 25 (b), and 25 (c) are each in close focus in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the fifth example. FIG.
From the various aberration diagrams, the variable magnification optical system according to the present example has excellent imaging performance with excellent correction of various aberrations from the wide-angle end state to the telephoto end state, and also excellent during vibration isolation. It can be seen that it has imaging performance.

(第6実施例)
図26は、本願の第6実施例に係る変倍光学系のレンズ構成を示す図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、開口絞りSと、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。
(Sixth embodiment)
FIG. 26 is a diagram showing a lens configuration of a variable magnification optical system according to the sixth example of the present application.
The variable magnification optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, an aperture stop S, and a positive refraction. The lens unit includes a third lens group G3 having power, a fourth lens group G4 having negative refractive power, and a fifth lens group G5 having positive refractive power.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、両凹形状の負レンズL24とからなる。
第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合レンズと、両凸形状の正レンズL33と物体側に凹面を向けた負メニスカスレンズL34との接合レンズとからなる。
第4レンズ群G4は、物体側から順に、両凹形状の負レンズL41と、両凹形状の負レンズL42と両凸形状の正レンズL43との接合レンズとからなる。
第5レンズ群G5は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL51と、物体側に凸面を向けた負メニスカスレンズL52と両凸形状の正レンズL53との接合レンズと、両凸形状の正レンズL54と、物体側に凹面を向けた負メニスカスレンズL55とからなる。
The first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. Become.
The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave negative lens L22, a biconvex positive lens L23, and a biconcave negative lens L24. It consists of.
The third lens group G3 includes, in order from the object side, a cemented lens of a negative meniscus lens L31 having a convex surface facing the object side and a biconvex positive lens L32, a biconvex positive lens L33, and a concave surface on the object side. And a cemented lens with the negative meniscus lens L34 directed.
The fourth lens group G4 includes, in order from the object side, a biconcave negative lens L41, and a cemented lens of a biconcave negative lens L42 and a biconvex positive lens L43.
The fifth lens group G5 includes, in order from the object side, a positive meniscus lens L51 having a concave surface facing the object side, a cemented lens of a negative meniscus lens L52 having a convex surface facing the object side, and a biconvex positive lens L53. The lens includes a biconvex positive lens L54 and a negative meniscus lens L55 having a concave surface facing the object side.

本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2の空気間隔、第2レンズ群G2と第3レンズ群G3の空気間隔、第3レンズ群G3と第4レンズ群G4の空気間隔、及び第4レンズ群G4と第5レンズ群G5の空気間隔がそれぞれ変化するように、第2,第4,第5レンズ群G2,G4,G5が光軸方向へ移動する。なお、このとき第1,第3レンズ群G1,G3及び開口絞りSの位置は固定である。
また本実施例に係る変倍光学系では、第5レンズ群G5内の負メニスカスレンズL52と正レンズL53との接合レンズと正レンズL54とが防振レンズ群として光軸と直交する方向の成分を含むように移動し、これによって像ぶれの補正を行うことができる。
また本実施例に係る変倍光学系では、第4レンズ群G4全体を像側へ移動させることにより、遠距離物体から近距離物体への合焦が行われる。
In the zoom optical system according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 and the second lens group G2 and the third lens group G3 during zooming from the wide-angle end state to the telephoto end state. , The fourth lens group G3 and the fourth lens group G4, and the fourth lens group G4 and the fifth lens group G5. The groups G2, G4, and G5 move in the optical axis direction. At this time, the positions of the first and third lens groups G1 and G3 and the aperture stop S are fixed.
In the zoom optical system according to the present example, the cemented lens of the negative meniscus lens L52 and the positive lens L53 in the fifth lens group G5 and the positive lens L54 are components in the direction orthogonal to the optical axis as a vibration-proof lens group. Thus, image blur can be corrected.
In the zoom optical system according to the present embodiment, focusing from a long-distance object to a short-distance object is performed by moving the entire fourth lens group G4 to the image side.

以下の表6に、本実施例に係る変倍光学系の諸元の値を掲げる。
ここで、本実施例に係る変倍光学系は、広角端状態において防振係数が1.05、焦点距離が10.3(mm)であるため、0.2°の回転ぶれを補正するための防振レンズ群の移動量は0.03(mm)となる。また、中間焦点距離状態においては防振係数が0.99、焦点距離が45.0(mm)であるため、0.2°の回転ぶれを補正するための防振レンズ群の移動量は0.16(mm)となる。また、望遠端状態においては防振係数が0.87、焦点距離が97.0(mm)であるため、0.2°の回転ぶれを補正するための防振レンズ群の移動量は0.39(mm)となる。
Table 6 below lists values of specifications of the variable magnification optical system according to the present example.
Here, since the variable magnification optical system according to the present example has an anti-vibration coefficient of 1.05 and a focal length of 10.3 (mm) in the wide-angle end state, in order to correct a rotational shake of 0.2 °. The amount of movement of the anti-vibration lens group is 0.03 (mm). Further, in the intermediate focal length state, the image stabilization coefficient is 0.99 and the focal length is 45.0 (mm), and therefore the amount of movement of the image stabilization lens group for correcting the 0.2 ° rotational blur is 0. .16 (mm). Further, in the telephoto end state, the image stabilization coefficient is 0.87 and the focal length is 97.0 (mm). Therefore, the amount of movement of the image stabilization lens group for correcting the 0.2 ° rotational blur is 0. 39 (mm).

(表6)第6実施例
[面データ]
面番号 r d nd νd
物面 ∞
1 93.1619 1.800 1.850260 32.35
2 39.5859 8.000 1.497820 82.51
3 -284.0151 0.100
4 36.5540 5.000 1.729157 54.66
5 159.4459 可変
*6 127.6881 1.000 1.816000 46.62
7 12.0348 5.060
8 -49.9978 0.800 1.816000 46.62
9 29.2932 0.200
10 18.9882 4.000 1.846660 23.78
11 -37.9737 0.471
12 -28.9543 1.000 1.834807 42.72
13 48.3879 可変
14(絞りS) ∞ 0.000
15 37.6996 0.800 1.834000 37.16
16 17.4219 2.500 1.593190 67.90
17 -25.8437 0.100
18 20.8989 2.500 1.518601 69.97
19 -16.6811 0.800 1.846660 23.78
20 -31.8438 可変
21 -36.4910 0.800 1.834807 42.72
22 29.3199 0.896
23 -27.0631 0.800 1.834807 42.72
24 18.2268 1.800 1.846660 23.78
25 -34.6409 可変
26 -50.1069 2.000 1.497820 82.51
27 -19.1363 0.200
28 96.2015 1.000 1.834807 42.72
29 23.1567 4.000 1.497820 82.51
30 -46.1208 0.211
31 23.5512 3.000 1.497820 82.51
32 -152.9275 9.791
33 -37.8588 1.000 1.846660 23.78
34 -283.7365 BF
像面 ∞

[非球面データ]
第6面
K = 8.8617
A4 = 1.80790E-07
A6 = -6.06139E-09
A8 = 4.62589E-11
A10 = -2.20120E-13

[各種データ]
変倍比 9.42
W M T
f 10.3 45.0 97.0
FNO 4.7 5.3 6.1
2ω 78.3 19.4 9.1
Y 8.0 8.0 8.0
TL 128.784 128.784 128.784
BF 19.429 17.659 14.429

W M T W M T
無限遠 無限遠 無限遠 近距離 近距離 近距離
d5 0.800 20.665 28.181 0.800 20.665 28.181
d13 29.606 9.740 2.225 29.606 9.740 2.225
d20 0.800 9.620 15.486 0.855 9.821 15.897
d25 18.520 11.469 8.834 18.465 11.268 8.423

[レンズ群データ]
群 始面 f
1 1 57.030
2 6 -10.449
3 15 16.471
4 21 -18.248
5 26 28.038

[条件式対応値]
(1) f2/f4 =0.57
(2) (−f2)/f5 = 0.37
(3) f1/f3 =3.46
(4) f1/(−f4) =3.13
(Table 6) Sixth Example
[Surface data]
Surface number r d nd νd
Object ∞
1 93.1619 1.800 1.850260 32.35
2 39.5859 8.000 1.497820 82.51
3 -284.0151 0.100
4 36.5540 5.000 1.729157 54.66
5 159.4459 Variable * 6 127.6881 1.000 1.816000 46.62
7 12.0348 5.060
8 -49.9978 0.800 1.816000 46.62
9 29.2932 0.200
10 18.9882 4.000 1.846660 23.78
11 -37.9737 0.471
12 -28.9543 1.000 1.834807 42.72
13 48.3879 Variable
14 (Aperture S) ∞ 0.000
15 37.6996 0.800 1.834000 37.16
16 17.4219 2.500 1.593190 67.90
17 -25.8437 0.100
18 20.8989 2.500 1.518601 69.97
19 -16.6811 0.800 1.846660 23.78
20 -31.8438 Variable
21 -36.4910 0.800 1.834807 42.72
22 29.3199 0.896
23 -27.0631 0.800 1.834807 42.72
24 18.2268 1.800 1.846660 23.78
25 -34.6409 Variable
26 -50.1069 2.000 1.497820 82.51
27 -19.1363 0.200
28 96.2015 1.000 1.834807 42.72
29 23.1567 4.000 1.497820 82.51
30 -46.1208 0.211
31 23.5512 3.000 1.497820 82.51
32 -152.9275 9.791
33 -37.8588 1.000 1.846660 23.78
34 -283.7365 BF
Image plane ∞

[Aspherical data]
6th surface K = 8.8617
A4 = 1.80790E-07
A6 = -6.06139E-09
A8 = 4.62589E-11
A10 = -2.20120E-13

[Various data]
Scaling ratio 9.42
W M T
f 10.3 45.0 97.0
FNO 4.7 5.3 6.1
2ω 78.3 19.4 9.1
Y 8.0 8.0 8.0
TL 128.784 128.784 128.784
BF 19.429 17.659 14.429

W M T W M T
Infinity infinity infinity infinity short distance short distance short distance
d5 0.800 20.665 28.181 0.800 20.665 28.181
d13 29.606 9.740 2.225 29.606 9.740 2.225
d20 0.800 9.620 15.486 0.855 9.821 15.897
d25 18.520 11.469 8.834 18.465 11.268 8.423

[Lens group data]
Group start surface f
1 1 57.030
2 6 -10.449
3 15 16.471
4 21 -18.248
5 26 28.038

[Conditional expression values]
(1) f2 / f4 = 0.57
(2) (−f2) /f5=0.37
(3) f1 / f3 = 3.46
(4) f1 / (− f4) = 3.13

図27(a)、及び図27(b)はそれぞれ、第6実施例に係る変倍光学系の広角端状態における無限遠合焦時の諸収差図、及び0.2°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。
図28(a)、及び図28(b)はそれぞれ、第6実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図、及び0.2°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。
図29(a)、及び図29(b)はそれぞれ、第6実施例に係る変倍光学系の望遠端状態における無限遠合焦時の諸収差図、及び0.2°の回転ぶれに対して防振を行った際のメリディオナル横収差図である。
図30(a)、図30(b)、及び図30(c)はそれぞれ、第6実施例に係る変倍光学系の広角端状態、中間焦点距離状態、望遠端状態における近距離合焦時の諸収差図である。
各諸収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差を良好に補正し優れた結像性能を有しており、さらに防振時にも優れた結像性能を有していることがわかる。
FIGS. 27 (a) and 27 (b) are graphs showing various aberrations at the time of focusing on infinity in the wide-angle end state of the zoom optical system according to Example 6 and a rotational shake of 0.2 °, respectively. FIG. 6 is a meridional lateral aberration diagram when vibration isolation is performed.
FIGS. 28A and 28B are graphs showing various aberrations at the time of focusing at infinity in the intermediate focal length state of the zoom optical system according to the sixth example, and a rotational blur of 0.2 °, respectively. FIG. 6 is a meridional lateral aberration diagram when image stabilization is performed.
FIGS. 29A and 29B are diagrams showing various aberrations at the time of focusing on infinity in the telephoto end state of the zoom optical system according to the sixth example, and a rotational blur of 0.2 °, respectively. FIG. 6 is a meridional lateral aberration diagram when vibration isolation is performed.
30 (a), 30 (b), and 30 (c), respectively, are in close focus at the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the sixth example. FIG.
From the various aberration diagrams, the variable magnification optical system according to the present example has excellent imaging performance with excellent correction of various aberrations from the wide-angle end state to the telephoto end state, and also excellent during vibration isolation. It can be seen that it has imaging performance.

上記各実施例によれば、変倍時の収差変動及び像ぶれ補正時の収差変動を良好に抑えた変倍光学系を実現することができる。
なお、上記各実施例に係る変倍光学系は、最も像側に配置されるレンズ成分の像側のレンズ面から像面までの光軸上の距離(バックフォーカス)を、最も小さい状態で10.0〜30.0mm程度とすることが好ましい。また、上記各実施例に係る変倍光学系は、像高を5.0〜12.5mmとすることが好ましく、5.0〜9.5mmとすることがより好ましい。
According to each of the above-described embodiments, it is possible to realize a variable power optical system that can satisfactorily suppress aberration fluctuations during zooming and aberration fluctuations during image blur correction.
In the variable power optical system according to each of the above embodiments, the distance (back focus) on the optical axis from the lens surface on the image side to the image surface of the lens component arranged closest to the image side is 10 in the smallest state. It is preferable that the thickness is about 0.0 to 30.0 mm. In the variable magnification optical system according to each of the above embodiments, the image height is preferably 5.0 to 12.5 mm, and more preferably 5.0 to 9.5 mm.

ここで、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。
なお、以下の内容は、本願の変倍光学系の光学性能を損なわない範囲で適宜採用することが可能である。
本願の変倍光学系の数値実施例として5群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、6群、7群等)の変倍光学系を構成することもできる。具体的には、本願の変倍光学系の最も物体側や最も像面側にレンズ又はレンズ群を追加した構成でも構わない。なお、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。
Here, each said Example has shown one specific example of this invention, and this invention is not limited to these.
In addition, the following content can be appropriately employed as long as the optical performance of the variable magnification optical system of the present application is not impaired.
A numerical example of the variable magnification optical system of the present application is shown as having a five-group configuration, but the present application is not limited to this, and constitutes a variable magnification optical system of other group configurations (for example, six groups, seven groups, etc.). You can also. Specifically, a configuration in which a lens or a lens group is added to the most object side or the most image plane side of the variable magnification optical system of the present application may be used. The lens group refers to a portion having at least one lens separated by an air interval that changes during zooming.

また、本願の変倍光学系は、遠距離物体から近距離物体への合焦を行うために、レンズ群の一部、1つのレンズ群全体、或いは複数のレンズ群を合焦レンズ群として光軸方向へ移動させる構成としてもよい。特に、第4レンズ群の少なくとも一部を合焦レンズ群とすることが好ましい。また、斯かる合焦レンズ群は、オートフォーカスに適用することも可能であり、オートフォーカス用のモータ、例えば超音波モータ等による駆動にも適している。
また、本願の変倍光学系において、いずれかのレンズ群全体又はその一部を、防振レンズ群として光軸に垂直な成分を含むように移動させ、又は光軸を含む面内方向へ回転移動(揺動)させることで、手ブレによって生じる像ブレを補正する構成とすることもできる。特に、本願の変倍光学系では第3レンズ群の少なくとも一部を防振レンズ群とすることが好ましい。
In addition, the variable magnification optical system of the present application uses a part of a lens group, an entire lens group, or a plurality of lens groups as a focusing lens group for focusing from a long distance object to a short distance object. It is good also as a structure moved to an axial direction. In particular, it is preferable that at least a part of the fourth lens group is a focusing lens group. Such a focusing lens group can also be applied to autofocus, and is also suitable for driving by an autofocus motor, such as an ultrasonic motor.
In the zoom optical system of the present application, either the entire lens group or a part thereof is moved as an anti-vibration lens group so as to include a component perpendicular to the optical axis, or rotated in an in-plane direction including the optical axis. It can also be configured to correct image blur caused by camera shake by moving (swinging). In particular, in the variable magnification optical system of the present application, it is preferable that at least a part of the third lens group is an anti-vibration lens group.

また、本願の変倍光学系を構成するレンズのレンズ面は、球面又は平面としてもよく、或いは非球面としてもよい。レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防ぐことができるため好ましい。また、像面がずれた場合でも描写性能の劣化が少ないため好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、又はガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。   The lens surface of the lens constituting the variable magnification optical system of the present application may be a spherical surface, a flat surface, or an aspheric surface. When the lens surface is a spherical surface or a flat surface, it is preferable because lens processing and assembly adjustment are easy, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance. When the lens surface is aspherical, any of aspherical surface by grinding, glass mold aspherical surface in which glass is molded into an aspherical shape, or composite aspherical surface in which resin provided on the glass surface is formed in an aspherical shape Good. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

また、本願の変倍光学系において開口絞りは第3レンズ群近傍に配置されることが好ましいが、開口絞りとして部材を設けずにレンズ枠でその役割を代用する構成としてもよい。
また、本願の変倍光学系を構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。
また、本願の変倍光学系は、変倍比が5〜20倍程度である。
また、本願の変倍光学系において第1レンズ群は、正レンズ成分を2つ有することが好ましい。第2レンズ群は、正レンズ成分を1つ有し、負レンズ成分を3つ有することが好ましい。第3レンズ群は、正レンズ成分を3つ有することが好ましい。第4レンズ群は、正レンズ成分を3つ有し、負レンズ成分を1つ有することが好ましい。
In the variable magnification optical system of the present application, the aperture stop is preferably disposed in the vicinity of the third lens group. However, a lens frame may be used as a substitute for the aperture stop without providing a member.
Further, an antireflection film having a high transmittance in a wide wavelength range may be applied to the lens surface of the lens constituting the variable magnification optical system of the present application. Thereby, flare and ghost can be reduced, and high optical performance with high contrast can be achieved.
The variable magnification optical system of the present application has a variable magnification ratio of about 5 to 20 times.
In the variable magnification optical system of the present application, the first lens group preferably has two positive lens components. The second lens group preferably has one positive lens component and three negative lens components. The third lens group preferably has three positive lens components. The fourth lens group preferably has three positive lens components and one negative lens component.

次に、本願の変倍光学系を備えたカメラを図31に基づいて説明する。
図31は、本願の変倍光学系を備えたカメラの構成を示す図である。
本カメラ1は、図31に示すように撮影レンズ2として上記第1実施例に係る変倍光学系を備えたデジタル一眼レフカメラである。
本カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、クイックリターンミラー3を介して焦点板4に結像される。そして焦点板4に結像されたこの光は、ペンタプリズム5中で複数回反射されて接眼レンズ6へ導かれる。これにより撮影者は、被写体像を接眼レンズ6を介して正立像として観察することができる。
Next, a camera provided with the variable magnification optical system of the present application will be described with reference to FIG.
FIG. 31 is a diagram illustrating a configuration of a camera including the variable magnification optical system of the present application.
This camera 1 is a digital single-lens reflex camera provided with the variable magnification optical system according to the first embodiment as the photographing lens 2 as shown in FIG.
In the camera 1, light from an object (subject) (not shown) is collected by the taking lens 2 and imaged on the focusing screen 4 through the quick return mirror 3. The light imaged on the focusing screen 4 is reflected in the pentaprism 5 a plurality of times and guided to the eyepiece lens 6. Thus, the photographer can observe the subject image as an erect image through the eyepiece 6.

また、撮影者によって不図示のレリーズボタンが押されると、クイックリターンミラー3が光路外へ退避し、不図示の被写体からの光は撮像素子7へ到達する。これにより被写体からの光は、当該撮像素子7によって撮像されて、被写体画像として不図示のメモリに記録される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。
以上の構成により、上記第1実施例に係る変倍光学系を撮影レンズ2として搭載した本カメラ1は、変倍時の収差変動を良好に抑え、良好な光学性能を実現することができる。なお、上記第2〜第6実施例に係る変倍光学系を撮影レンズ2として搭載したカメラを構成しても上記カメラ1と同様の効果を奏することができる。また、クイックリターンミラー3を有しない構成のカメラに上記各実施例に係る変倍光学系を搭載した場合でも、上記カメラ1と同様の効果を奏することができる。
When the release button (not shown) is pressed by the photographer, the quick return mirror 3 is retracted out of the optical path, and light from the subject (not shown) reaches the image sensor 7. Thereby, the light from the subject is picked up by the image pickup device 7 and recorded as a subject image in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.
With the above configuration, the present camera 1 equipped with the zoom optical system according to the first embodiment as the photographing lens 2 can satisfactorily suppress aberration fluctuations during zooming and realize good optical performance. Even if a camera equipped with the variable magnification optical system according to the second to sixth examples as the photographing lens 2 is configured, the same effect as the camera 1 can be obtained. In addition, even when the zoom optical system according to each of the above embodiments is mounted on a camera having a configuration that does not include the quick return mirror 3, the same effects as those of the camera 1 can be obtained.

以下、本願の変倍光学系の製造方法の概略を図32に基づいて説明する。
図32は、本願の変倍光学系の製造方法を示す図である。
本願の変倍光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群とを有する変倍光学系の製造方法であって、以下の各ステップS1〜S3を含むものである。
ステップS1:第2レンズ群と第4レンズ群と第5レンズ群が以下の条件式(1),(2)を満足するように各レンズ群を用意し、鏡筒内に物体側から順に配置する。
(1) 0.44<f2/f4<1.00
(2) 0.20<(−f2)/f5<0.50
ただし、
f2:前記第2レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
f5:前記第5レンズ群の焦点距離
Hereinafter, the outline of the manufacturing method of the variable magnification optical system of the present application will be described with reference to FIG.
FIG. 32 is a diagram showing a manufacturing method of the variable magnification optical system of the present application.
The variable magnification optical system manufacturing method of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power. And a variable magnification optical system that includes a fourth lens group having a negative refractive power and a fifth lens group having a positive refractive power, and includes the following steps S1 to S3.
Step S1: Each lens group is prepared so that the second lens group, the fourth lens group, and the fifth lens group satisfy the following conditional expressions (1) and (2), and are arranged in order from the object side in the lens barrel. To do.
(1) 0.44 <f2 / f4 <1.00
(2) 0.20 <(− f2) / f5 <0.50
However,
f2: focal length of the second lens group f4: focal length of the fourth lens group f5: focal length of the fifth lens group

ステップS2:公知の移動機構を設ける等することで、広角端状態から望遠端状態への変倍時に、第1レンズ群と第2レンズ群の空気間隔、第2レンズ群と第3レンズ群の空気間隔、第3レンズ群と第4レンズ群の空気間隔、及び第4レンズ群と第5レンズ群の空気間隔がそれぞれ変化するようにし、このとき第1レンズ群の位置が固定であるようにする。
ステップS3:公知の移動機構を設ける等することで、前記レンズ群のうち、いずれか1つのレンズ群の少なくとも一部が光軸と直交する方向の成分を含むように移動するようにする。
斯かる本願の変倍光学系の製造方法によれば、変倍時の収差変動を良好に抑えた変倍光学系を製造することができる。
Step S2: By providing a known moving mechanism or the like, at the time of zooming from the wide-angle end state to the telephoto end state, the air gap between the first lens group and the second lens group, the second lens group and the third lens group The air gap, the air gap between the third lens group and the fourth lens group, and the air gap between the fourth lens group and the fifth lens group are changed, and at this time, the position of the first lens group is fixed. To do.
Step S3: By providing a known moving mechanism, at least a part of any one of the lens groups moves so as to include a component in a direction orthogonal to the optical axis.
According to the method for manufacturing a variable magnification optical system of the present application, it is possible to manufacture a variable magnification optical system that satisfactorily suppresses aberration fluctuations during variable magnification.

G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
G5 第5レンズ群
I 像面
S 開口絞り
G1 1st lens group G2 2nd lens group G3 3rd lens group G4 4th lens group G5 5th lens group I Image surface S Aperture stop

Claims (11)

物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群とにより、実質的に5個のレンズ群からなり、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群の位置は固定であり、
前記レンズ群のうち、いずれか1つのレンズ群の少なくとも一部が光軸と直交する方向の成分を含むように移動し、
以下の条件式を満足することを特徴とする変倍光学系。
0.57≦f2/f4≦0.73
0.20<(−f2)/f5<0.50
ただし、
f2:前記第2レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
f5:前記第5レンズ群の焦点距離
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a negative refractive power The lens group and the fifth lens group having a positive refractive power substantially consist of five lens groups,
At the time of zooming from the wide-angle end state to the telephoto end state, the position of the first lens group is fixed,
The lens group moves so that at least a part of any one lens group includes a component in a direction orthogonal to the optical axis,
A zoom optical system characterized by satisfying the following conditional expression:
0.57 ≦ f2 / f4 ≦ 0.73
0.20 <(− f2) / f5 <0.50
However,
f2: focal length of the second lens group f4: focal length of the fourth lens group f5: focal length of the fifth lens group
物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群とにより、実質的に5個のレンズ群からなり、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群の位置は固定であり、
前記第1レンズ群は、負レンズと正レンズとの接合正レンズと、正の屈折力を有する単レンズとからなり、
前記レンズ群のうち、いずれか1つのレンズ群の少なくとも一部が光軸と直交する方向の成分を含むように移動し、
以下の条件式を満足することを特徴とする変倍光学系。
0.57≦f2/f4<1.00
0.20<(−f2)/f5<0.50
ただし、
f2:前記第2レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
f5:前記第5レンズ群の焦点距離
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a negative refractive power The lens group and the fifth lens group having a positive refractive power substantially consist of five lens groups,
At the time of zooming from the wide-angle end state to the telephoto end state, the position of the first lens group is fixed,
The first lens group includes a cemented positive lens of a negative lens and a positive lens, and a single lens having a positive refractive power,
The lens group moves so that at least a part of any one lens group includes a component in a direction orthogonal to the optical axis,
A zoom optical system characterized by satisfying the following conditional expression:
0.57 ≦ f2 / f4 <1.00
0.20 <(− f2) / f5 <0.50
However,
f2: focal length of the second lens group f4: focal length of the fourth lens group f5: focal length of the fifth lens group
物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、負の屈折力を有する第4レンズ群と、正の屈折力を有する第5レンズ群とにより、実質的に5個のレンズ群からなり、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群の位置は固定であり、
前記第1レンズ群は、負レンズと正レンズとの接合正レンズと、正の屈折力を有する単レンズとからなり、
前記レンズ群のうち、いずれか1つのレンズ群の少なくとも一部が光軸と直交する方向の成分を含むように移動し、
以下の条件式を満足することを特徴とする変倍光学系。
0.51≦f2/f4<1.00
0.20<(−f2)/f5<0.50
3.20<f1/f3<5.00
ただし、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
f5:前記第5レンズ群の焦点距離
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a negative refractive power The lens group and the fifth lens group having a positive refractive power substantially consist of five lens groups,
At the time of zooming from the wide-angle end state to the telephoto end state, the position of the first lens group is fixed,
The first lens group includes a cemented positive lens of a negative lens and a positive lens, and a single lens having a positive refractive power,
The lens group moves so that at least a part of any one lens group includes a component in a direction orthogonal to the optical axis,
A zoom optical system characterized by satisfying the following conditional expression:
0.51 ≦ f2 / f4 <1.00
0.20 <(− f2) / f5 <0.50
3.20 <f1 / f3 <5.00
However,
f1: Focal length of the first lens group f2: Focal length of the second lens group
f3: focal length of the third lens group f4: focal length of the fourth lens group f5: focal length of the fifth lens group
以下の条件式を満足することを特徴とする請求項1又は請求項2に記載の変倍光学系。
3.00<f1/f3<5.00
ただし、
f1:前記第1レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
The zoom lens system according to claim 1 or 2, wherein the following conditional expression is satisfied.
3.00 <f1 / f3 <5.00
However,
f1: Focal length of the first lens group f3: Focal length of the third lens group
以下の条件式を満足することを特徴とする請求項1から請求項のいずれか一項に記載の変倍光学系。
2.00<f1/(−f4)<5.00
ただし、
f1:前記第1レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
Variable magnification optical system as claimed in any one of claims 4, characterized by satisfying the following conditional expression.
2.00 <f1 / (− f4) <5.00
However,
f1: Focal length of the first lens group f4: Focal length of the fourth lens group
無限遠物体から近距離物体への合焦時に、前記第4レンズ群が移動することを特徴とする請求項1から請求項のいずれか一項に記載の変倍光学系。 Infinity when focusing on a close object from distant object, the variable magnification optical system according to any one of claims 1 to 5, wherein the fourth lens group and wherein the moving. 広角端状態から望遠端状態への変倍時に、前記第3レンズ群の位置が固定であることを特徴とする請求項1から請求項のいずれか一項に記載の変倍光学系。 The zoom optical system according to any one of claims 1 to 6 , wherein the position of the third lens group is fixed when zooming from the wide-angle end state to the telephoto end state. 前記第3レンズ群の少なくとも一部が光軸と直交する方向の成分を含むように移動することを特徴とする請求項1から請求項のいずれか一項に記載の変倍光学系。 Variable magnification optical system as claimed in any one of claims 7, wherein at least a portion of the third lens group moves in a direction including a component perpendicular to the optical axis. 広角端状態から望遠端状態への変倍時に、前記レンズ群どうしの間隔が変化することを特徴とする請求項1から請求項のいずれか一項に記載の変倍光学系。 Upon zooming from the wide-angle end state to the telephoto end state, the variable magnification optical system according to any one of claims 1 to 8, characterized in that the interval between the lens units vary. 前記第2レンズ群と前記第4レンズ群の間に開口絞りを有することを特徴とする請求項1から請求項のいずれか一項に記載の変倍光学系。 The variable magnification optical system according to any one of claims 1 to 9 , further comprising an aperture stop between the second lens group and the fourth lens group. 請求項1から請求項10のいずれか一項に記載の変倍光学系を備えたことを特徴とする光学装置。 An optical apparatus comprising the variable magnification optical system according to any one of claims 1 to 10 .
JP2011021795A 2010-02-24 2011-02-03 Variable magnification optical system, optical device Active JP5321608B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011021795A JP5321608B2 (en) 2010-08-31 2011-02-03 Variable magnification optical system, optical device
EP11155682.5A EP2360504B1 (en) 2010-02-24 2011-02-23 Zoom lens system, optical apparatus and method for manufacturing zoom lens system
US13/033,681 US8605362B2 (en) 2010-02-24 2011-02-24 Zoom lens system, optical apparatus and method for manufacturing zoom lens system
CN201110047144.9A CN102162905B (en) 2010-02-24 2011-02-24 Zoom lens system, optical device and the method for the manufacture of Zoom lens system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010193298 2010-08-31
JP2010193298 2010-08-31
JP2011021795A JP5321608B2 (en) 2010-08-31 2011-02-03 Variable magnification optical system, optical device

Publications (2)

Publication Number Publication Date
JP2012073566A JP2012073566A (en) 2012-04-12
JP5321608B2 true JP5321608B2 (en) 2013-10-23

Family

ID=46169760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011021795A Active JP5321608B2 (en) 2010-02-24 2011-02-03 Variable magnification optical system, optical device

Country Status (1)

Country Link
JP (1) JP5321608B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6160060B2 (en) * 2012-10-23 2017-07-12 株式会社ニコン Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6205702B2 (en) * 2012-10-23 2017-10-04 株式会社ニコン Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6424414B2 (en) * 2012-10-23 2018-11-21 株式会社ニコン Variable magnification optical system, optical device
WO2014065264A1 (en) 2012-10-23 2014-05-01 株式会社ニコン Variable magnification optical system, optical device, and method for producing variable magnification optical system
JP6308786B2 (en) 2013-03-13 2018-04-11 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP6291407B2 (en) * 2014-12-02 2018-03-14 富士フイルム株式会社 Zoom lens and imaging device
JP6389812B2 (en) * 2015-07-28 2018-09-12 富士フイルム株式会社 Magnification optical system and imaging device
JP6356639B2 (en) * 2015-07-28 2018-07-11 富士フイルム株式会社 Magnification optical system and imaging device
JP6751506B2 (en) * 2016-02-29 2020-09-09 株式会社ニコン Variable magnification optics and optical equipment
JP6789719B2 (en) 2016-08-09 2020-11-25 キヤノン株式会社 Zoom lens and imaging device with it
JP6897733B2 (en) * 2016-10-13 2021-07-07 株式会社ニコン Variable magnification optical system, optical device
JP2017004030A (en) * 2016-10-13 2017-01-05 株式会社ニコン Variable magnification optical system, optical device, and manufacturing method for variable magnification optical system
JP6943265B2 (en) * 2017-03-07 2021-09-29 株式会社ニコン Variable magnification optical system, optical device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS614013A (en) * 1984-06-19 1986-01-09 Konishiroku Photo Ind Co Ltd Telecentric zoom lens
JPH06160712A (en) * 1992-11-17 1994-06-07 Konica Corp Zoom lens
JP3466711B2 (en) * 1994-06-23 2003-11-17 キヤノン株式会社 Rear focus zoom lens
JP2000121821A (en) * 1998-10-20 2000-04-28 Canon Inc Rear focusing zoom lens having diffraction optical elements
JP2000180722A (en) * 1998-12-14 2000-06-30 Canon Inc Rear focusing type zoom lens
JP2005321545A (en) * 2004-05-07 2005-11-17 Sony Corp Imaging apparatus
JP2005352183A (en) * 2004-06-10 2005-12-22 Sony Corp Variable-focal-length lens system and imaging unit
JP2006178244A (en) * 2004-12-24 2006-07-06 Nidec Copal Corp Zoom lens
JP4902240B2 (en) * 2006-03-29 2012-03-21 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5159398B2 (en) * 2008-04-07 2013-03-06 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5213898B2 (en) * 2010-03-19 2013-06-19 パナソニック株式会社 Zoom lens system, interchangeable lens device and camera system
JP5462111B2 (en) * 2010-08-24 2014-04-02 パナソニック株式会社 Zoom lens system, interchangeable lens device and camera system

Also Published As

Publication number Publication date
JP2012073566A (en) 2012-04-12

Similar Documents

Publication Publication Date Title
JP5581730B2 (en) Variable magnification optical system, optical device
JP5321608B2 (en) Variable magnification optical system, optical device
JP5448028B2 (en) Zoom lens and optical apparatus having the same
JP5641680B2 (en) Zoom lens and optical apparatus having the same
JP5273184B2 (en) Zoom lens, optical device, and zoom lens manufacturing method
WO2010013435A1 (en) Zoom lens, optical device comprising same and method for manufacturing zoom lens
JP5344279B2 (en) Zoom lens, optical apparatus having the same, and zooming method
JP7259905B2 (en) Zoom lenses and optics
JP2008003511A (en) Zoom lens with vibration-proof function, imaging apparatus, vibration preventing method for zoom lens, and power varying method for zoom lens
JP2008203471A (en) Zoom lens, optical equipment and imaging method
JP7491416B2 (en) Variable magnification optical system and optical equipment
JP6127462B2 (en) Variable magnification optical system, optical device
JP5273172B2 (en) Zoom lens, optical device, and zoom lens manufacturing method
JP5845972B2 (en) Variable magnification optical system, optical device
JP5839062B2 (en) Zoom lens, optical device
JP2014098795A (en) Variable power optical system, optical device, and method for manufacturing the variable power optical system
WO2014077120A1 (en) Variable power optical assembly, optical device, and variable power optical assembly fabrication method
WO2014112176A1 (en) Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
JPWO2017057658A1 (en) Zoom lens, optical device, and method of manufacturing zoom lens
WO2015136988A1 (en) Zoom lens, optical device, and method for manufacturing zoom lens
WO2013129487A1 (en) Variable-power optical system, optical device, and method for producing variable-power optical system
JP2018200472A (en) Variable power optical system, optical device, and method for manufacturing variable power optical system
JP6451074B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6349801B2 (en) Zoom lens, optical device
JP2014142403A (en) Zoom lens and imaging device including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R150 Certificate of patent or registration of utility model

Ref document number: 5321608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250