JP2014098795A - Variable power optical system, optical device, and method for manufacturing the variable power optical system - Google Patents

Variable power optical system, optical device, and method for manufacturing the variable power optical system Download PDF

Info

Publication number
JP2014098795A
JP2014098795A JP2012250253A JP2012250253A JP2014098795A JP 2014098795 A JP2014098795 A JP 2014098795A JP 2012250253 A JP2012250253 A JP 2012250253A JP 2012250253 A JP2012250253 A JP 2012250253A JP 2014098795 A JP2014098795 A JP 2014098795A
Authority
JP
Japan
Prior art keywords
lens group
lens
optical system
distance
end state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012250253A
Other languages
Japanese (ja)
Other versions
JP2014098795A5 (en
JP6229259B2 (en
Inventor
Akihiko Kohama
昭彦 小濱
Tomoyuki Kojima
知之 幸島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2012250253A priority Critical patent/JP6229259B2/en
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to EP13854627.0A priority patent/EP2921897A4/en
Priority to PCT/JP2013/079241 priority patent/WO2014077120A1/en
Priority to CN201711159252.9A priority patent/CN107884917B/en
Priority to CN201380057471.XA priority patent/CN104769476B/en
Publication of JP2014098795A publication Critical patent/JP2014098795A/en
Priority to US14/700,631 priority patent/US9983391B2/en
Publication of JP2014098795A5 publication Critical patent/JP2014098795A5/en
Application granted granted Critical
Publication of JP6229259B2 publication Critical patent/JP6229259B2/en
Priority to US15/972,004 priority patent/US20180252902A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a variable power optical system having a high variable power ratio, being compact, and achieving high optical performance, an optical device and a method for manufacturing the variable power optical system.SOLUTION: The variable power optical system includes, in order from the object side: a first lens group G1 having a positive refractive power; a second lens group G2 having a negative refractive power; a third lens group G3 having a positive refractive power; a fourth lens group G4; a fifth lens group G5; and a sixth lens group G6. When varying power from the wide angle end to the telephoto end, the distance between the first lens group G1 and the second lens group G2, the distance between the second lens group G2 and the third lens group G3, the distance between the third lens group G3 and the fourth lens group G4, the distance between the fourth lens group G4 and the fifth lens group G5, and the distance between the fifth lens group G5 and the sixth lens group G6 are changed. The distance between the third lens group G3 and the fifth lens group G5 is constant.

Description

本発明は、変倍光学系、光学装置、変倍光学系の製造方法に関する。   The present invention relates to a variable magnification optical system, an optical apparatus, and a method for manufacturing the variable magnification optical system.

従来、カメラ用の交換レンズ、デジタルカメラ、ビデオカメラ等に好適な変倍光学系として、最も物体側のレンズ群が正の屈折力を有するものが数多く提案されている(例えば、特許文献1を参照。)。   Conventionally, as a variable power optical system suitable for an interchangeable lens for a camera, a digital camera, a video camera, and the like, many lenses having a positive refractive power in the most object side lens group have been proposed (for example, Patent Document 1). reference.).

特開2007−292994号公報JP 2007-292994 A

しかしながら、上述のような従来の変倍光学系は、高変倍比を維持しながら小型化を図ろうとすれば、十分に高い光学性能を得ることが困難であるという問題があった。   However, the conventional variable power optical system as described above has a problem that it is difficult to obtain sufficiently high optical performance if it is attempted to reduce the size while maintaining a high zoom ratio.

そこで本発明は上記問題点に鑑みてなされたものであり、高変倍比を有し、小型で、高い光学性能を有する変倍光学系、光学装置、変倍光学系の製造方法を提供することを目的とする。   Accordingly, the present invention has been made in view of the above problems, and provides a variable power optical system, an optical apparatus, and a variable power optical system manufacturing method having a high zoom ratio, a small size, and high optical performance. For the purpose.

上記課題を解決するために本発明は、
物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、第4レンズ群と、第5レンズ群と、第6レンズ群とを有し、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と前記第4レンズ群との間隔、前記第4レンズ群と前記第5レンズ群との間隔、及び前記第5レンズ群と前記第6レンズ群との間隔が変化し、前記第3レンズ群と前記第5レンズ群との距離が一定であることを特徴とする変倍光学系を提供する。
In order to solve the above problems, the present invention
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, a fourth lens group, and a fifth lens A group and a sixth lens group,
At the time of zooming from the wide angle end state to the telephoto end state, the distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, the third lens group and the The distance between the fourth lens group, the distance between the fourth lens group and the fifth lens group, and the distance between the fifth lens group and the sixth lens group change, and the third lens group and the fifth lens group change. Provided is a variable magnification optical system characterized by having a constant distance from five lens groups.

また本発明は、
前記変倍光学系を有することを特徴とする光学装置を提供する。
The present invention also provides
Provided is an optical device comprising the variable magnification optical system.

また本発明は、
物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、第4レンズ群と、第5レンズ群と、第6レンズ群とを有する変倍光学系の製造方法であって、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と前記第4レンズ群との間隔、前記第4レンズ群と前記第5レンズ群との間隔、及び前記第5レンズ群と前記第6レンズ群との間隔が変化し、前記第3レンズ群と前記第5レンズ群との距離が一定となるようにすることを特徴とする変倍光学系の製造方法を提供する。
The present invention also provides
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, a fourth lens group, and a fifth lens A variable magnification optical system having a group and a sixth lens group,
At the time of zooming from the wide angle end state to the telephoto end state, the distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, the third lens group and the The distance between the fourth lens group, the distance between the fourth lens group and the fifth lens group, and the distance between the fifth lens group and the sixth lens group change, and the third lens group and the fifth lens group change. Provided is a variable magnification optical system manufacturing method characterized in that a distance from a five-lens group is constant.

本発明によれば、高変倍比を有し、小型で、高い光学性能を有する変倍光学系、光学装置、変倍光学系の製造方法を提供することができる。   According to the present invention, it is possible to provide a variable power optical system, an optical device, and a method for manufacturing a variable power optical system that have a high zoom ratio, are small, and have high optical performance.

(a)、(b)、(c)、(d)、及び(e)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、第2中間焦点距離状態、第3中間焦点距離状態、及び望遠端状態における断面図である。(A), (b), (c), (d), and (e) are the wide-angle end state, the first intermediate focal length state, and the second intermediate state of the variable magnification optical system according to the first example of the present application, respectively. It is sectional drawing in a focal distance state, a 3rd intermediate | middle focal distance state, and a telephoto end state. (a)、(b)、及び(c)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における無限遠物体合焦時の諸収差図である。(A), (b), and (c) are objects at infinity in the wide-angle end state, the first intermediate focal length state, and the second intermediate focal length state of the variable magnification optical system according to the first example of the present application, respectively. It is an aberration diagram at the time of focusing. (a)、及び(b)はそれぞれ、本願の第1実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。FIGS. 7A and 7B are graphs showing various aberrations when the object at infinity is in focus in the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the first example of the present application, respectively. (a)、(b)、(c)、(d)、及び(e)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、第2中間焦点距離状態、第3中間焦点距離状態、及び望遠端状態における断面図である。(A), (b), (c), (d), and (e) are the wide-angle end state, the first intermediate focal length state, and the second intermediate state of the variable magnification optical system according to the second example of the present application, respectively. It is sectional drawing in a focal distance state, a 3rd intermediate | middle focal distance state, and a telephoto end state. (a)、(b)、及び(c)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における無限遠物体合焦時の諸収差図である。(A), (b), and (c) are objects at infinity in the wide-angle end state, the first intermediate focal length state, and the second intermediate focal length state of the variable magnification optical system according to the second example of the present application, respectively. It is an aberration diagram at the time of focusing. (a)、及び(b)はそれぞれ、本願の第2実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。FIGS. 9A and 9B are graphs showing various aberrations when the object at infinity is in focus in the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the second example of the present application, respectively. (a)、(b)、(c)、(d)、及び(e)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、第2中間焦点距離状態、第3中間焦点距離状態、及び望遠端状態における断面図である。(A), (b), (c), (d), and (e) are the wide-angle end state, the first intermediate focal length state, and the second intermediate state of the variable magnification optical system according to the third example of the present application, respectively. It is sectional drawing in a focal distance state, a 3rd intermediate | middle focal distance state, and a telephoto end state. (a)、(b)、及び(c)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における無限遠物体合焦時の諸収差図である。(A), (b), and (c) are objects at infinity in the wide-angle end state, the first intermediate focal length state, and the second intermediate focal length state of the variable magnification optical system according to the third example of the present application, respectively. It is an aberration diagram at the time of focusing. (a)、及び(b)はそれぞれ、本願の第3実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。FIGS. 7A and 7B are graphs showing various aberrations when the object at infinity is in focus in the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the third example of the present application, respectively. FIGS. 本願の変倍光学系を備えたカメラの構成を示す図である。It is a figure which shows the structure of the camera provided with the variable magnification optical system of this application. 本願の変倍光学系の製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method of the variable magnification optical system of this application.

以下、本願の変倍光学系、光学装置、及び変倍光学系の製造方法について説明する。
本願の変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、第4レンズ群と、第5レンズ群と、第6レンズ群とを有し、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と前記第4レンズ群との間隔、前記第4レンズ群と前記第5レンズ群との間隔、及び前記第5レンズ群と前記第6レンズ群との間隔が変化することを特徴としている。この構成により、本願の変倍光学系は、広角端状態から望遠端状態への変倍を実現し、変倍に伴う歪曲収差、非点収差、及び球面収差のそれぞれの変動を抑えることができる。
Hereinafter, a variable magnification optical system, an optical apparatus, and a method for manufacturing the variable magnification optical system of the present application will be described.
The variable magnification optical system of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, A fourth lens group, a fifth lens group, and a sixth lens group, and at the time of zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group; The distance between the second lens group and the third lens group, the distance between the third lens group and the fourth lens group, the distance between the fourth lens group and the fifth lens group, and the fifth lens group The distance from the sixth lens group varies. With this configuration, the variable magnification optical system of the present application realizes variable magnification from the wide-angle end state to the telephoto end state, and can suppress each variation of distortion aberration, astigmatism, and spherical aberration associated with variable magnification. .

また、本願の変倍光学系は、前記第3レンズ群と前記第5レンズ群との距離が一定であることを特徴としている。この構成により、変倍時に第3レンズ群と第5レンズ群で発生する球面収差、非点収差、及び歪曲収差のそれぞれの変動を抑えることができる。
以上の構成により、高変倍比を有し、小型で、高い光学性能を有する変倍光学系を実現することができる。
The variable magnification optical system of the present application is characterized in that a distance between the third lens group and the fifth lens group is constant. With this configuration, it is possible to suppress variations in spherical aberration, astigmatism, and distortion that occur in the third lens group and the fifth lens group during zooming.
With the above configuration, a variable magnification optical system having a high zoom ratio, a small size, and high optical performance can be realized.

また、本願の変倍光学系は、以下の条件式(1)を満足することが望ましい。
(1) 0.350 < f3/(−f5) < 2.000
但し、
f3:前記第3レンズ群の焦点距離
f5:前記第5レンズ群の焦点距離
Further, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (1).
(1) 0.350 <f3 / (-f5) <2,000
However,
f3: focal length of the third lens group f5: focal length of the fifth lens group

条件式(1)は、第3レンズ群と第5レンズ群の適切な焦点距離の比の範囲を規定するものである。本願の変倍光学系は、条件式(1)を満足することにより、変倍時に球面収差、コマ収差、及び非点収差のそれぞれの変動を抑えることができる。
本願の変倍光学系の条件式(1)の対応値が下限値を下回ると、変倍時に第3レンズ群で発生する球面収差の変動が過大になり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(1)の下限値を0.550とすることがより好ましい。
一方、本願の変倍光学系の条件式(1)の対応値が上限値を上回ると、変倍時に第5レンズ群で発生するコマ収差の変動や非点収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(1)の上限値を1.450とすることがより好ましい。
Conditional expression (1) defines an appropriate range of the focal length ratio between the third lens group and the fifth lens group. By satisfying conditional expression (1), the variable magnification optical system of the present application can suppress variations in spherical aberration, coma, and astigmatism during zooming.
If the corresponding value of conditional expression (1) of the variable magnification optical system of the present application is below the lower limit value, the variation in spherical aberration that occurs in the third lens group at the time of variable magnification becomes excessive, and high optical performance can be realized. It will disappear. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (1) to 0.550.
On the other hand, if the corresponding value of conditional expression (1) of the variable magnification optical system of the present application exceeds the upper limit value, it becomes difficult to suppress fluctuations in coma and astigmatism that occur in the fifth lens group during zooming. Therefore, high optical performance cannot be realized. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (1) to 1.450.

また、本願の変倍光学系は、以下の条件式(2)を満足することが望ましい。
(2) 0.420 < f3/f4 < 2.300
但し、
f3:前記第3レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
Moreover, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (2).
(2) 0.420 <f3 / f4 <2.300
However,
f3: focal length of the third lens group f4: focal length of the fourth lens group

条件式(2)は、第3レンズ群と第4レンズ群の適切な焦点距離の比の範囲を規定するものである。本願の変倍光学系は、条件式(2)を満足することにより、変倍時に球面収差、コマ収差、及び非点収差のそれぞれの変動を抑えることができる。
本願の変倍光学系の条件式(2)の対応値が下限値を下回ると、変倍時に第3レンズ群で発生する球面収差の変動が過大になり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(2)の下限値を0.710とすることがより好ましい。
一方、本願の変倍光学系の条件式(2)の対応値が上限値を上回ると、変倍時に第4レンズ群で発生するコマ収差の変動や非点収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(2)の上限値を1.150とすることがより好ましい。さらに、本願の効果をより確実にするために、条件式(2)の上限値を0.985とすることがより好ましい。
Conditional expression (2) defines an appropriate range of the focal length ratio between the third lens group and the fourth lens group. By satisfying conditional expression (2), the variable magnification optical system of the present application can suppress variations in spherical aberration, coma, and astigmatism during zooming.
If the corresponding value of conditional expression (2) of the variable magnification optical system of the present application is below the lower limit value, the variation of spherical aberration that occurs in the third lens group at the time of variable magnification becomes excessive, and high optical performance can be realized. It will disappear. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (2) to 0.710.
On the other hand, if the corresponding value of conditional expression (2) of the variable magnification optical system of the present application exceeds the upper limit, it is difficult to suppress fluctuations in coma and astigmatism that occur in the fourth lens group during zooming. Therefore, high optical performance cannot be realized. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (2) to 1.150. Furthermore, in order to ensure the effect of the present application, it is more preferable to set the upper limit value of conditional expression (2) to 0.985.

また、本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第1レンズ群が物体側へ移動することが望ましい。この構成により、変倍時に第1レンズ群を通過する軸外光束の光軸からの高さの変化を抑えることができる。これにより、第1レンズ群の径を小さくできるだけでなく、変倍時に非点収差の変動を抑えることもできる。   In the zoom optical system according to the present application, it is preferable that the first lens unit moves toward the object side when zooming from the wide-angle end state to the telephoto end state. With this configuration, it is possible to suppress a change in height from the optical axis of the off-axis light beam that passes through the first lens group during zooming. Thereby, not only can the diameter of the first lens group be reduced, but also fluctuations in astigmatism can be suppressed during zooming.

また、本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第3レンズ群が物体側へ移動することが望ましい。この構成により、第3レンズ群が物体側へ移動しない場合に比べ、第4レンズ群と第5レンズ群の屈折力を小さくすることができる。このため、変倍時に第4レンズ群と第5レンズ群で発生する非点収差の変動を抑えることができる。   In the zoom optical system of the present application, it is preferable that the third lens group moves toward the object side when zooming from the wide-angle end state to the telephoto end state. With this configuration, the refractive power of the fourth lens group and the fifth lens group can be reduced as compared with the case where the third lens group does not move toward the object side. For this reason, fluctuations in astigmatism occurring in the fourth lens group and the fifth lens group during zooming can be suppressed.

また、本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第6レンズ群の位置が固定であることが望ましい。この構成により、変倍時に第5レンズ群から第6レンズ群へ入射する周辺光線の光軸からの高さを変化させることができる。これにより、変倍時に非点収差の変動をより良好に抑えることができる。   In the zoom optical system of the present application, it is desirable that the position of the sixth lens group is fixed when zooming from the wide-angle end state to the telephoto end state. With this configuration, it is possible to change the height from the optical axis of the peripheral rays incident from the fifth lens group to the sixth lens group at the time of zooming. As a result, the astigmatism fluctuation can be more satisfactorily suppressed during zooming.

また、本願の変倍光学系は、前記第6レンズ群が正の屈折力を有することが望ましい。この構成により、第6レンズ群の使用倍率が等倍よりも小さくなり、その結果、第1レンズ群から第5レンズ群までの合成焦点距離を相対的に大きくすることができる。これにより、製造時に第1レンズ群から第5レンズ群において発生するレンズどうしの偏芯に起因する偏芯コマ収差等の影響を相対的に小さく抑えることができ、高い光学性能を実現することができる。   In the zoom optical system of the present application, it is desirable that the sixth lens group has a positive refractive power. With this configuration, the use magnification of the sixth lens group becomes smaller than the same magnification, and as a result, the combined focal length from the first lens group to the fifth lens group can be relatively increased. As a result, the influence of decentering coma aberration caused by the decentering of the lenses occurring in the first lens group to the fifth lens group at the time of manufacture can be suppressed relatively small, and high optical performance can be realized. it can.

また、本願の変倍光学系は、前記第5レンズ群が負の屈折力を有することが望ましい。この構成により、広角端状態から望遠端状態への変倍時に、第5レンズ群の倍率を増倍することができ、高変倍比を効率的に実現しつつ変倍時にコマ収差の変動や非点収差の変動を抑えることができる。   In the variable magnification optical system of the present application, it is desirable that the fifth lens group has a negative refractive power. With this configuration, the magnification of the fifth lens group can be increased during zooming from the wide-angle end state to the telephoto end state, and a coma aberration variation during zooming can be achieved while efficiently realizing a high zooming ratio. Astigmatism fluctuations can be suppressed.

また、本願の変倍光学系は、前記第4レンズ群が正の屈折力を有することが望ましい。この構成により、変倍時に球面収差の変動や非点収差の変動を抑えることができる。   In the variable magnification optical system of the present application, it is desirable that the fourth lens group has a positive refractive power. With this configuration, it is possible to suppress changes in spherical aberration and astigmatism during zooming.

また、本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔が増加することが望ましい。この構成により、第2レンズ群の倍率を増倍することができ、高変倍比を効率的に実現しつつ変倍時に球面収差の変動や非点収差の変動を抑えることができる。   In the zoom optical system of the present application, it is desirable that the distance between the first lens group and the second lens group is increased when zooming from the wide-angle end state to the telephoto end state. With this configuration, it is possible to increase the magnification of the second lens group, and it is possible to suppress fluctuations in spherical aberration and astigmatism during zooming while efficiently realizing a high zoom ratio.

また、本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第2レンズ群と前記第3レンズ群との間隔が減少することが望ましい。この構成により、第3レンズ群から第5レンズ群までの合成倍率を増倍することができ、高変倍比を効率的に実現しつつ変倍時に球面収差の変動や非点収差の変動を抑えることができる。   In the zoom optical system of the present application, it is preferable that the distance between the second lens group and the third lens group is reduced when zooming from the wide-angle end state to the telephoto end state. With this configuration, the composite magnification from the third lens group to the fifth lens group can be increased, and the variation of spherical aberration and astigmatism during zooming can be achieved while efficiently realizing a high zoom ratio. Can be suppressed.

また、本願の変倍光学系は、前記第3レンズ群の少なくとも一部が光軸と直交する方向の成分を含むように移動することが望ましい。この構成により、手ぶれ等によって生じる像ぶれの補正、即ち防振を行うことができる。そして、防振時にコマ収差の変動を小さくすることができるので好ましい。   In the variable power optical system of the present application, it is preferable that at least a part of the third lens group moves so as to include a component in a direction orthogonal to the optical axis. With this configuration, it is possible to correct image blur caused by camera shake or the like, that is, to perform image stabilization. Further, it is preferable because fluctuations in coma aberration can be reduced during image stabilization.

また、本願の変倍光学系は、無限遠物体から近距離物体への合焦時に、前記第4レンズ群の少なくとも一部が光軸方向へ移動することが望ましい。この構成により、合焦時に球面収差の変動を小さくすることができるので好ましい。   In the variable power optical system of the present application, it is desirable that at least a part of the fourth lens group moves in the optical axis direction when focusing from an object at infinity to an object at a short distance. This configuration is preferable because the variation in spherical aberration can be reduced during focusing.

本願の光学装置は、上述した構成の変倍光学系を有することを特徴としている。これにより、高変倍比を有し、小型で、高い光学性能を有する光学装置を実現することができる。   The optical device of the present application is characterized by having the variable magnification optical system having the above-described configuration. Thereby, an optical device having a high zoom ratio, a small size, and high optical performance can be realized.

本願の変倍光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、第4レンズ群と、第5レンズ群と、第6レンズ群とを有する変倍光学系の製造方法であって、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と前記第4レンズ群との間隔、前記第4レンズ群と前記第5レンズ群との間隔、及び前記第5レンズ群と前記第6レンズ群との間隔が変化し、前記第3レンズ群と前記第5レンズ群との距離が一定となるようにすることを特徴としている。これにより、高変倍比を有し、小型で、高い光学性能を有する変倍光学系を製造することができる。   The variable magnification optical system manufacturing method of the present application includes, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power. And a fourth lens group, a fifth lens group, and a sixth lens group, and the first lens group at the time of zooming from the wide-angle end state to the telephoto end state. And the second lens group, the second lens group and the third lens group, the third lens group and the fourth lens group, the fourth lens group and the fifth lens. The distance between the third lens group and the distance between the fifth lens group and the sixth lens group changes so that the distance between the third lens group and the fifth lens group is constant. . Thereby, a variable power optical system having a high zoom ratio, a small size, and high optical performance can be manufactured.

以下、本願の数値実施例に係る変倍光学系を添付図面に基づいて説明する。   Hereinafter, a variable magnification optical system according to numerical examples of the present application will be described with reference to the accompanying drawings.

(第1実施例)
図1(a)、図1(b)、図1(c)、図1(d)、及び図1(e)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、第2中間焦点距離状態、第3中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6とから構成されている。
(First embodiment)
1 (a), FIG. 1 (b), FIG. 1 (c), FIG. 1 (d), and FIG. 1 (e) are respectively the wide-angle end state of the variable magnification optical system according to the first example of the present application, It is sectional drawing in a 1st intermediate | middle focal distance state, a 2nd intermediate | middle focal distance state, a 3rd intermediate | middle focal distance state, and a telephoto end state.
The variable magnification optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a negative refractive power, and a sixth lens group G6 having a positive refractive power.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、物体側に凹面を向けた負メニスカスレンズL22と、両凸形状の正レンズL23と物体側に凹面を向けた負メニスカスレンズL24との接合レンズとからなる。なお、負メニスカスレンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。また、負メニスカスレンズL24は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
The first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. Become.
In order from the object side, the second lens group G2 includes a negative meniscus lens L21 having a convex surface directed toward the object side, a negative meniscus lens L22 having a concave surface directed toward the object side, a biconvex positive lens L23, and a concave surface facing the object side. And a cemented lens with a negative meniscus lens L24. The negative meniscus lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side. The negative meniscus lens L24 is a glass mold aspheric lens having an aspheric lens surface on the image side.

第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合レンズと、両凸形状の正レンズL33と、物体側に凹面を向けた正メニスカスレンズL34と両凹形状の負レンズL35との接合レンズと、両凸形状の正レンズL36と物体側に凹面を向けた負メニスカスレンズL37との接合レンズとからなる。なお、第3レンズ群G3の物体側には、開口絞りSが備えられている。
第4レンズ群G4は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL41と両凸形状の正レンズL42との接合レンズからなる。なお、負メニスカスレンズL41は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
The third lens group G3 includes, in order from the object side, a cemented lens of a negative meniscus lens L31 having a convex surface directed toward the object side and a biconvex positive lens L32, a biconvex positive lens L33, and a concave surface facing the object side. Is composed of a cemented lens of a positive meniscus lens L34 and a biconcave negative lens L35, and a cemented lens of a biconvex positive lens L36 and a negative meniscus lens L37 having a concave surface facing the object side. An aperture stop S is provided on the object side of the third lens group G3.
The fourth lens group G4 includes, in order from the object side, a cemented lens of a negative meniscus lens L41 having a convex surface directed toward the object side and a biconvex positive lens L42. The negative meniscus lens L41 is a glass mold aspheric lens having an aspheric lens surface on the object side.

第5レンズ群G5は、物体側から順に、両凹形状の負レンズL51と、物体側に凸面を向けた正メニスカスレンズL52とからなる。
第6レンズ群G6は、物体側に凹面を向けた正メニスカスレンズL61からなる。なお、正メニスカスレンズL61は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
The fifth lens group G5 includes, in order from the object side, a biconcave negative lens L51 and a positive meniscus lens L52 having a convex surface directed toward the object side.
The sixth lens group G6 includes a positive meniscus lens L61 having a concave surface directed toward the object side. The positive meniscus lens L61 is a glass mold aspheric lens having an aspheric lens surface on the image side.

以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1〜第5レンズ群G1〜G5及び開口絞りSが物体側へ移動し、第6レンズ群G6は光軸方向の位置が固定である。なお、このとき第3レンズ群G3、第5レンズ群G5、及び開口絞りSは一体的に移動する。
これにより、変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が増加し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少する。また変倍時に、第3レンズ群G3と第4レンズ群G4との空気間隔が、広角端状態から第3中間焦点距離状態まで減少し、第3中間焦点距離状態から望遠端状態まで増加する。また変倍時に、第4レンズ群G4と第5レンズ群G5との空気間隔が、広角端状態から第3中間焦点距離状態まで増加し、第3中間焦点距離状態から望遠端状態まで減少する。また変倍時に、第5レンズ群G5と第6レンズ群G6との空気間隔が増加する。なお、変倍時に、第3レンズ群G3と第5レンズ群G5との距離は一定である。
With the above-described configuration, in the zoom optical system according to the present embodiment, the first to fifth lens groups G1 to G5 and the aperture stop S move to the object side during zooming from the wide-angle end state to the telephoto end state. The sixth lens group G6 has a fixed position in the optical axis direction. At this time, the third lens group G3, the fifth lens group G5, and the aperture stop S move together.
Thereby, at the time of zooming, the air gap between the first lens group G1 and the second lens group G2 increases, and the air gap between the second lens group G2 and the third lens group G3 decreases. At the time of zooming, the air gap between the third lens group G3 and the fourth lens group G4 decreases from the wide-angle end state to the third intermediate focal length state and increases from the third intermediate focal length state to the telephoto end state. At the time of zooming, the air gap between the fourth lens group G4 and the fifth lens group G5 increases from the wide-angle end state to the third intermediate focal length state and decreases from the third intermediate focal length state to the telephoto end state. At the time of zooming, the air space between the fifth lens group G5 and the sixth lens group G6 increases. At the time of zooming, the distance between the third lens group G3 and the fifth lens group G5 is constant.

また本実施例に係る変倍光学系では、手ぶれ等の発生時に、第3レンズ群G3中の正メニスカスレンズL34と負レンズL35との接合レンズを防振レンズ群として光軸と直交する方向の成分を含むように移動させることによって防振を行う。なお、これに限られず、本実施例に係る変倍光学系では、正メニスカスレンズL34と負レンズL35との接合レンズ及び正レンズL36と負メニスカスレンズL37との接合レンズを防振レンズ群としてもよい。
また、本実施例に係る変倍光学系では、第4レンズ群G4中の負メニスカスレンズL41と正レンズL42との接合レンズを光軸に沿って物体側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。
In the variable magnification optical system according to the present example, when camera shake or the like occurs, the cemented lens of the positive meniscus lens L34 and the negative lens L35 in the third lens group G3 is used as an anti-vibration lens group in a direction orthogonal to the optical axis. Anti-vibration is performed by moving to include the components. The variable magnification optical system according to the present embodiment is not limited to this, and the cemented lens of the positive meniscus lens L34 and the negative lens L35 and the cemented lens of the positive lens L36 and the negative meniscus lens L37 are also used as the anti-vibration lens group. Good.
Further, in the variable magnification optical system according to the present example, the cemented lens of the negative meniscus lens L41 and the positive lens L42 in the fourth lens group G4 is moved toward the object side along the optical axis, so that the object can be removed from the object at infinity. Focus on a close object.

以下の表1に、本実施例に係る変倍光学系の諸元の値を掲げる。
表1において、fは焦点距離、BFはバックフォーカス(最も像側のレンズ面と像面Iとの光軸上の距離)を示す。
[面データ]において、面番号は物体側から数えた光学面の順番、rは曲率半径、dは面間隔(第n面(nは整数)と第n+1面との間隔)、ndはd線(波長587.6nm)に対する屈折率、νdはd線(波長587.6nm)に対するアッベ数をそれぞれ示している。また、物面は物体面、可変は可変の面間隔、絞りSは開口絞りS、像面は像面Iをそれぞれ示している。なお、曲率半径r=∞は平面を示している。非球面は面番号に*を付して曲率半径rの欄に近軸曲率半径の値を示している。空気の屈折率nd=1.000000の記載は省略している。
Table 1 below lists values of specifications of the variable magnification optical system according to the present example.
In Table 1, f indicates the focal length, and BF indicates the back focus (the distance on the optical axis between the lens surface closest to the image side and the image plane I).
In [Surface data], the surface number is the order of the optical surfaces counted from the object side, r is the radius of curvature, d is the surface interval (the interval between the nth surface (n is an integer) and the n + 1th surface), and nd is The refractive index for d-line (wavelength 587.6 nm) and νd indicate the Abbe number for d-line (wavelength 587.6 nm), respectively. In addition, the object plane indicates the object plane, the variable indicates the variable plane spacing, the stop S indicates the aperture stop S, and the image plane indicates the image plane I. The radius of curvature r = ∞ indicates a plane. For the aspherical surface, * is added to the surface number, and the value of the paraxial radius of curvature is indicated in the column of the radius of curvature r. The description of the refractive index of air nd = 1.00000 is omitted.

[非球面データ]には、[面データ]に示した非球面について、その形状を次式で表した場合の非球面係数及び円錐定数を示す。
x=(h/r)/[1+{1−κ(h/r)1/2
+A4h+A6h+A8h+A10h10+A12h12
ここで、hを光軸に垂直な方向の高さ、xを高さhにおける非球面の頂点の接平面から当該非球面までの光軸方向に沿った距離(サグ量)、κを円錐定数、A4,A6,A8,A10,A12を非球面係数、rを基準球面の曲率半径(近軸曲率半径)とする。なお、「E−n」(nは整数)は「×10−n」を示し、例えば「1.234E-05」は「1.234×10−5」を示す。2次の非球面係数A2は0であり、記載を省略している。
[Aspherical data] shows an aspherical coefficient and a conic constant when the shape of the aspherical surface shown in [Surface data] is expressed by the following equation.
x = (h 2 / r) / [1+ {1−κ (h / r) 2 } 1/2 ]
+ A4h 4 + A6h 6 + A8h 8 + A10h 10 + A12h 12
Here, h is the height in the direction perpendicular to the optical axis, x is the distance (sag amount) from the tangent plane of the apex of the aspheric surface to the aspheric surface at the height h, and κ is the conic constant. , A4, A6, A8, A10, A12 are aspherical coefficients, and r is the radius of curvature of the reference sphere (paraxial radius of curvature). “E−n” (n is an integer) indicates “× 10 −n ”, for example “1.234E-05” indicates “1.234 × 10 −5 ”. The secondary aspherical coefficient A2 is 0 and is not shown.

[各種データ]において、FNOはFナンバー、ωは半画角(単位は「°」)、Yは像高、TLは変倍光学系の全長(無限遠物体合焦時の第1面から像面Iまでの光軸上の距離)、dnは第n面と第n+1面との可変の間隔、φは開口絞りSの絞り径をそれぞれ示す。なお、Wは広角端状態、M1は第1中間焦点距離状態、M2は第2中間焦点距離状態、M3は第3中間焦点距離状態、Tは望遠端状態をそれぞれ示す。
[レンズ群データ]には、各レンズ群の始面と焦点距離を示す。
[条件式対応値]には、本実施例に係る変倍光学系の各条件式の対応値を示す。
In [Various data], FNO is the F number, ω is the half angle of view (unit is “°”), Y is the image height, TL is the total length of the variable magnification optical system (image from the first surface when focusing on an object at infinity) (Distance on the optical axis to the surface I), dn represents the variable distance between the nth surface and the (n + 1) th surface, and φ represents the diameter of the aperture stop S. W represents the wide-angle end state, M1 represents the first intermediate focal length state, M2 represents the second intermediate focal length state, M3 represents the third intermediate focal length state, and T represents the telephoto end state.
[Lens Group Data] indicates the start surface and focal length of each lens group.
[Conditional Expression Corresponding Value] shows the corresponding value of each conditional expression of the variable magnification optical system according to the present example.

ここで、表1に掲載されている焦点距離f、曲率半径r及びその他の長さの単位は一般に「mm」が使われる。しかしながら光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるため、これに限られるものではない。
なお、以上に述べた表1の符号は、後述する各実施例の表においても同様に用いるものとする。
Here, the focal length f, the radius of curvature r, and other length units listed in Table 1 are generally “mm”. However, the optical system is not limited to this because an equivalent optical performance can be obtained even when proportionally enlarged or proportionally reduced.
In addition, the code | symbol of Table 1 described above shall be similarly used also in the table | surface of each Example mentioned later.

(表1)第1実施例
[面データ]
面番号 r d nd νd
物面 ∞

1 138.7561 1.6350 1.903660 31.27
2 42.7802 8.2143 1.497820 82.57
3 -302.0350 0.1000
4 44.5217 4.7770 1.816000 46.59
5 271.5483 可変

*6 500.0000 1.0000 1.851350 40.10
7 8.1506 4.9434
8 -14.9679 1.0000 1.883000 40.66
9 -40.3672 0.1000
10 51.0611 3.3538 1.808090 22.74
11 -13.1253 1.0000 1.851350 40.10
*12 -56.0605 可変

13(絞りS) ∞ 1.0000

14 16.8549 1.0000 2.001000 29.13
15 12.8453 2.3167 1.516800 63.88
16 -344.8312 0.2826
17 16.7180 3.8814 1.516800 63.88
18 -102.0119 1.8000
19 -31.7646 1.7730 1.950000 29.37
20 -12.0000 1.0000 1.772500 49.62
21 47.5308 1.8000
22 56.8994 2.7389 1.516800 63.88
23 -10.1297 1.0000 2.000690 25.46
24 -20.0855 可変

*25 19.9643 1.0000 1.834410 37.28
26 12.9126 3.3590 1.487490 70.32
27 -20.6924 可変

28 -36.7881 1.0000 1.883000 40.66
29 22.9040 2.1715
30 18.3642 1.8393 1.688930 31.16
31 74.4874 可変

32 -62.3494 1.0000 1.583130 59.46
*33 -39.0765 BF

像面 ∞

[非球面データ]
第6面
κ -9.00000
A4 8.23003E-05
A6 -8.48619E-07
A8 4.81601E-09
A10 -1.21118E-11
A12 -3.71030E-14

第12面
κ 7.14630
A4 -1.75054E-07
A6 -2.79453E-07
A8 -6.78452E-10
A10 3.65328E-12
A12 0.00000

第25面
κ 1.00000
A4 -4.54869E-05
A6 -1.13234E-08
A8 -2.74200E-09
A10 2.72745E-11
A12 0.00000

第33面
κ 1.00000
A4 3.84906E-05
A6 -1.38988E-07
A8 5.70664E-10
A10 0.00000
A12 0.00000

[各種データ]
変倍比 14.13

W T
f 9.27 〜 130.94
FNO 4.12 〜 5.78
ω 42.64 〜 3.37°
Y 8.00 〜 8.00
TL 103.33 〜 156.05

W M1 M2 M3 T
f 9.26970 17.98478 35.07599 79.49640 130.94357
ω 42.64411 23.02223 12.26869 5.54597 3.36834
FNO 4.12 5.04 5.76 5.77 5.78
φ 8.54 8.54 8.56 9.57 10.14
d5 2.10000 13.51510 27.27150 40.97034 47.34606
d12 24.49494 14.93344 8.94342 3.50414 1.50000
d24 4.83432 4.83333 3.99353 3.10000 4.83058
d27 1.16379 1.16478 2.00458 2.89811 1.16753
d31 1.60333 11.92048 20.22794 27.23252 32.06948
BF 14.04941 14.04940 14.04942 14.04974 14.05058

[レンズ群データ]
群 始面 f
1 1 69.61022
2 6 -9.31640
3 14 24.10850
4 25 26.49998
5 28 -32.51973
6 32 176.73133

[条件式対応値]
(1) f3/(−f5) = 0.741
(2) f3/f4 = 0.910
(Table 1) First Example
[Surface data]
Surface number r d nd νd
Object ∞

1 138.7561 1.6350 1.903660 31.27
2 42.7802 8.2143 1.497820 82.57
3 -302.0350 0.1000
4 44.5217 4.7770 1.816000 46.59
5 271.5483 Variable

* 6 500.0000 1.0000 1.851350 40.10
7 8.1506 4.9434
8 -14.9679 1.0000 1.883000 40.66
9 -40.3672 0.1000
10 51.0611 3.3538 1.808090 22.74
11 -13.1253 1.0000 1.851350 40.10
* 12 -56.0605 Variable

13 (Aperture S) ∞ 1.0000

14 16.8549 1.0000 2.001000 29.13
15 12.8453 2.3167 1.516800 63.88
16 -344.8312 0.2826
17 16.7180 3.8814 1.516800 63.88
18 -102.0119 1.8000
19 -31.7646 1.7730 1.950000 29.37
20 -12.0000 1.0000 1.772500 49.62
21 47.5308 1.8000
22 56.8994 2.7389 1.516800 63.88
23 -10.1297 1.0000 2.000690 25.46
24 -20.0855 Variable

* 25 19.9643 1.0000 1.834410 37.28
26 12.9126 3.3590 1.487490 70.32
27 -20.6924 Variable

28 -36.7881 1.0000 1.883000 40.66
29 22.9040 2.1715
30 18.3642 1.8393 1.688930 31.16
31 74.4874 Variable

32 -62.3494 1.0000 1.583130 59.46
* 33 -39.0765 BF

Image plane ∞

[Aspherical data]
6th surface κ -9.00000
A4 8.23003E-05
A6 -8.48619E-07
A8 4.81601E-09
A10 -1.21118E-11
A12 -3.71030E-14

12th surface κ 7.14630
A4 -1.75054E-07
A6 -2.79453E-07
A8 -6.78452E-10
A10 3.65328E-12
A12 0.00000

25th surface κ 1.00000
A4 -4.54869E-05
A6 -1.13234E-08
A8 -2.74200E-09
A10 2.72745E-11
A12 0.00000

33rd surface κ 1.00000
A4 3.84906E-05
A6 -1.38988E-07
A8 5.70664E-10
A10 0.00000
A12 0.00000

[Various data]
Scaling ratio 14.13

W T
f 9.27 to 130.94
FNO 4.12 to 5.78
ω 42.64 to 3.37 °
Y 8.00-8.00
TL 103.33-156.05

W M1 M2 M3 T
f 9.26970 17.98478 35.07599 79.49640 130.94357
ω 42.64411 23.02223 12.26869 5.54597 3.36834
FNO 4.12 5.04 5.76 5.77 5.78
φ 8.54 8.54 8.56 9.57 10.14
d5 2.10000 13.51510 27.27150 40.97034 47.34606
d12 24.49494 14.93344 8.94342 3.50414 1.50000
d24 4.83432 4.83333 3.99353 3.10000 4.83058
d27 1.16379 1.16478 2.00458 2.89811 1.16753
d31 1.60333 11.92048 20.22794 27.23252 32.06948
BF 14.04941 14.04940 14.04942 14.04974 14.05058

[Lens group data]
Group start surface f
1 1 69.61022
2 6 -9.31640
3 14 24.10850
4 25 26.49998
5 28 -32.51973
6 32 176.73133

[Conditional expression values]
(1) f3 / (-f5) = 0.741
(2) f3 / f4 = 0.910

図2(a)、図2(b)、及び図2(c)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における無限遠物体合焦時の諸収差図である。
図3(a)、及び図3(b)はそれぞれ、本願の第1実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
FIGS. 2A, 2B, and 2C are respectively a wide-angle end state, a first intermediate focal length state, and a second intermediate focus of the zoom optical system according to the first example of the present application. It is an aberration diagram at the time of focusing on an object at infinity in the distance state.
FIGS. 3A and 3B are graphs showing various aberrations when the object at infinity is in focus in the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the first example of the present application, respectively. It is.

各収差図において、FNOはFナンバー、Aは光線入射角即ち半画角(単位は「°」)をそれぞれ示す。dはd線(波長587.6nm)、gはg線(波長435.8nm)における収差をそれぞれ示し、d、gの記載のないものはd線における収差を示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、後述する各実施例の収差図においても、本実施例と同様の符号を用いる。   In each aberration diagram, FNO denotes an F number, and A denotes a light incident angle, that is, a half angle of view (unit: “°”). d indicates the aberration at the d-line (wavelength 587.6 nm), g indicates the aberration at the g-line (wavelength 435.8 nm), and those without d and g indicate the aberration at the d-line. In the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane. Note that the same reference numerals as in this embodiment are used in the aberration diagrams of each embodiment described later.

各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、高い光学性能を有していることがわかる。   From the respective aberration diagrams, it can be seen that the variable magnification optical system according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.

(第2実施例)
図4(a)、図4(b)、図4(c)、図4(d)、及び図4(e)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、第2中間焦点距離状態、第3中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6とから構成されている。
(Second embodiment)
4 (a), FIG. 4 (b), FIG. 4 (c), FIG. 4 (d), and FIG. 4 (e) are respectively the wide-angle end state of the variable magnification optical system according to the second example of the present application, It is sectional drawing in a 1st intermediate | middle focal distance state, a 2nd intermediate | middle focal distance state, a 3rd intermediate | middle focal distance state, and a telephoto end state.
The variable magnification optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a negative refractive power, and a sixth lens group G6 having a positive refractive power.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、物体側に凹面を向けた負メニスカスレンズL22と、両凸形状の正レンズL23と物体側に凹面を向けた負メニスカスレンズL24との接合レンズとからなる。なお、負メニスカスレンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。また、負メニスカスレンズL24は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
The first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. Become.
In order from the object side, the second lens group G2 includes a negative meniscus lens L21 having a convex surface directed toward the object side, a negative meniscus lens L22 having a concave surface directed toward the object side, a biconvex positive lens L23, and a concave surface facing the object side. And a cemented lens with a negative meniscus lens L24. The negative meniscus lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side. The negative meniscus lens L24 is a glass mold aspheric lens having an aspheric lens surface on the image side.

第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と物体側に凸面を向けた正メニスカスレンズL32との接合レンズと、両凸形状の正レンズL33と、物体側に凹面を向けた正メニスカスレンズL34と両凹形状の負レンズL35との接合レンズと、両凸形状の正レンズL36と物体側に凹面を向けた負メニスカスレンズL37との接合レンズとからなる。なお、第3レンズ群G3の物体側には、開口絞りSが備えられている。
第4レンズ群G4は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL41と両凸形状の正レンズL42との接合レンズからなる。なお、負メニスカスレンズL41は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
The third lens group G3 includes, in order from the object side, a cemented lens of a negative meniscus lens L31 having a convex surface facing the object side and a positive meniscus lens L32 having a convex surface facing the object side, a biconvex positive lens L33, A cemented lens of a positive meniscus lens L34 having a concave surface facing the object side and a biconcave negative lens L35, and a cemented lens of a biconvex positive lens L36 and a negative meniscus lens L37 having a concave surface facing the object side Become. An aperture stop S is provided on the object side of the third lens group G3.
The fourth lens group G4 includes, in order from the object side, a cemented lens of a negative meniscus lens L41 having a convex surface directed toward the object side and a biconvex positive lens L42. The negative meniscus lens L41 is a glass mold aspheric lens having an aspheric lens surface on the object side.

第5レンズ群G5は、物体側から順に、両凹形状の負レンズL51と、物体側に凸面を向けた正メニスカスレンズL52と、物体側に凸面を向けた正メニスカスレンズL53とからなる。
第6レンズ群G6は、両凸形状の正レンズL61からなる。なお、正レンズL61は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
The fifth lens group G5 includes, in order from the object side, a biconcave negative lens L51, a positive meniscus lens L52 with a convex surface facing the object side, and a positive meniscus lens L53 with a convex surface facing the object side.
The sixth lens group G6 includes a biconvex positive lens L61. The positive lens L61 is a glass mold aspheric lens having an aspheric lens surface on the image side.

以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1〜第5レンズ群G1〜G5及び開口絞りSが物体側へ移動し、第6レンズ群G6は光軸方向の位置が固定である。なお、このとき第3レンズ群G3、第5レンズ群G5、及び開口絞りSは一体的に移動する。
これにより、変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が増加し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少する。また変倍時に、第3レンズ群G3と第4レンズ群G4との空気間隔が、広角端状態から第1中間焦点距離状態まで略変わらず、第1中間焦点距離状態から第3中間焦点距離状態まで減少し、第3中間焦点距離状態から望遠端状態まで増加する。また変倍時に、第4レンズ群G4と第5レンズ群G5との空気間隔が、広角端状態から第1中間焦点距離状態まで略変わらず、第1中間焦点距離状態から第3中間焦点距離状態まで増加し、第3中間焦点距離状態から望遠端状態まで減少する。また変倍時に、第5レンズ群G5と第6レンズ群G6との空気間隔が増加する。なお、変倍時に、第3レンズ群G3と第5レンズ群G5との距離は一定である。
With the above-described configuration, in the zoom optical system according to the present embodiment, the first to fifth lens groups G1 to G5 and the aperture stop S move to the object side during zooming from the wide-angle end state to the telephoto end state. The sixth lens group G6 has a fixed position in the optical axis direction. At this time, the third lens group G3, the fifth lens group G5, and the aperture stop S move together.
Thereby, at the time of zooming, the air gap between the first lens group G1 and the second lens group G2 increases, and the air gap between the second lens group G2 and the third lens group G3 decreases. At the time of zooming, the air gap between the third lens group G3 and the fourth lens group G4 is not substantially changed from the wide-angle end state to the first intermediate focal length state, and from the first intermediate focal length state to the third intermediate focal length state. And increase from the third intermediate focal length state to the telephoto end state. At the time of zooming, the air gap between the fourth lens group G4 and the fifth lens group G5 does not change substantially from the wide-angle end state to the first intermediate focal length state, and from the first intermediate focal length state to the third intermediate focal length state. And decrease from the third intermediate focal length state to the telephoto end state. At the time of zooming, the air space between the fifth lens group G5 and the sixth lens group G6 increases. At the time of zooming, the distance between the third lens group G3 and the fifth lens group G5 is constant.

また本実施例に係る変倍光学系では、手ぶれ等の発生時に、第3レンズ群G3中の正メニスカスレンズL34と負レンズL35との接合レンズを防振レンズ群として光軸と直交する方向の成分を含むように移動させることによって防振を行う。なお、これに限られず、本実施例に係る変倍光学系では、正メニスカスレンズL34と負レンズL35との接合レンズ及び正レンズL36と負メニスカスレンズL37との接合レンズを防振レンズ群としてもよい。
また、本実施例に係る変倍光学系では、第4レンズ群G4中の負メニスカスレンズL41と正レンズL42との接合レンズを光軸に沿って物体側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。
以下の表2に、本実施例に係る変倍光学系の諸元の値を掲げる。
In the variable magnification optical system according to the present example, when camera shake or the like occurs, the cemented lens of the positive meniscus lens L34 and the negative lens L35 in the third lens group G3 is used as an anti-vibration lens group in a direction orthogonal to the optical axis. Anti-vibration is performed by moving to include the components. The variable magnification optical system according to the present embodiment is not limited to this, and the cemented lens of the positive meniscus lens L34 and the negative lens L35 and the cemented lens of the positive lens L36 and the negative meniscus lens L37 are also used as the anti-vibration lens group. Good.
Further, in the variable magnification optical system according to the present example, the cemented lens of the negative meniscus lens L41 and the positive lens L42 in the fourth lens group G4 is moved toward the object side along the optical axis, so that the object can be removed from the object at infinity. Focus on a close object.
Table 2 below provides values of specifications of the variable magnification optical system according to the present example.

(表2)第2実施例
[面データ]
面番号 r d nd νd
物面 ∞

1 132.6359 1.6350 1.903660 31.27
2 42.6997 8.1417 1.497820 82.57
3 -325.2613 0.1000
4 44.4637 4.7551 1.816000 46.59
5 265.6270 可変

*6 500.0000 1.0000 1.851348 40.10
7 8.2943 5.0608
8 -14.5917 1.0000 1.883000 40.66
9 -53.0958 0.4500
10 120.6169 3.8630 1.808090 22.74
11 -13.4596 1.0000 1.851348 40.10
*12 -30.3078 可変

13(絞りS) ∞ 1.0000

14 19.4243 1.0000 2.000690 25.46
15 15.0112 2.4393 1.583130 59.42
16 2147.1305 0.4959
17 19.1055 4.6119 1.487490 70.32
18 -104.4778 1.8000
19 -34.2822 1.8490 1.950000 29.37
20 -12.0000 1.0000 1.804000 46.60
21 50.0687 1.8000
22 29.0599 2.9395 1.517420 52.20
23 -11.4030 1.0000 2.000690 25.46
24 -23.5616 可変

*25 18.2398 1.0000 1.834410 37.28
26 10.5163 3.4843 1.487490 70.32
27 -26.7878 可変

28 -35.5672 1.0000 1.883000 40.66
29 22.0346 2.5669
30 34.4390 1.0276 1.592700 35.27
31 57.9072 0.2140
32 20.8607 1.9156 1.592700 35.27
33 101.2362 可変

34 4642.0718 1.2942 1.583130 59.46
*35 -45.6613 BF

像面 ∞

[非球面データ]
第6面
κ 11.00000
A4 6.84259E-05
A6 -6.52908E-07
A8 2.89592E-09
A10 -3.59067E-12
A12 -4.70830E-14

第12面
κ 5.34460
A4 8.80293E-06
A6 -8.24015E-08
A8 -1.99203E-09
A10 1.93534E-11
A12 0.00000

第25面
κ 1.00000
A4 -2.50506E-05
A6 4.23962E-08
A8 -1.01207E-09
A10 1.78131E-11
A12 0.00000

第35面
κ 1.00000
A4 3.13362E-05
A6 -1.05523E-07
A8 3.01765E-10
A10 0.00000
A12 0.00000

[各種データ]
変倍比 14.13

W T
f 9.27 〜 130.95
FNO 4.11 〜 5.77
ω 42.65 〜 3.36°
Y 8.00 〜 8.00
TL 108.72 〜 165.55

W M1 M2 M3 T
f 9.26996 18.00205 35.14141 79.50027 130.95058
ω 42.64659 23.02117 12.24275 5.53491 3.36308
FNO 4.11 5.14 5.77 5.77 5.77
φ 8.78 8.78 9.00 10.44 10.99
d5 2.10000 13.14641 27.04732 40.02188 46.57745
d12 25.78504 15.86682 9.46650 3.71398 1.50000
d24 4.77009 4.77089 3.65901 3.00000 4.76972
d27 1.34602 1.34523 2.45711 3.11612 1.34640
d33 1.22984 13.40455 22.49406 33.05903 37.86288
BF 14.04908 14.04867 14.04916 14.04907 14.04906

[レンズ群データ]
群 始面 f
1 1 69.16097
2 6 -9.84950
3 14 24.91408
4 25 32.52464
5 28 -33.25545
6 34 77.54903

[条件式対応値]
(1) f3/(−f5) = 0.749
(2) f3/f4 = 0.766
(Table 2) Second Example
[Surface data]
Surface number r d nd νd
Object ∞

1 132.6359 1.6350 1.903660 31.27
2 42.6997 8.1417 1.497820 82.57
3 -325.2613 0.1000
4 44.4637 4.7551 1.816000 46.59
5 265.6270 Variable

* 6 500.0000 1.0000 1.851348 40.10
7 8.2943 5.0608
8 -14.5917 1.0000 1.883000 40.66
9 -53.0958 0.4500
10 120.6169 3.8630 1.808090 22.74
11 -13.4596 1.0000 1.851348 40.10
* 12 -30.3078 variable

13 (Aperture S) ∞ 1.0000

14 19.4243 1.0000 2.000690 25.46
15 15.0112 2.4393 1.583130 59.42
16 2147.1305 0.4959
17 19.1055 4.6119 1.487490 70.32
18 -104.4778 1.8000
19 -34.2822 1.8490 1.950000 29.37
20 -12.0000 1.0000 1.804000 46.60
21 50.0687 1.8000
22 29.0599 2.9395 1.517420 52.20
23 -11.4030 1.0000 2.000690 25.46
24 -23.5616 Variable

* 25 18.2398 1.0000 1.834410 37.28
26 10.5163 3.4843 1.487490 70.32
27 -26.7878 Variable

28 -35.5672 1.0000 1.883000 40.66
29 22.0346 2.5669
30 34.4390 1.0276 1.592700 35.27
31 57.9072 0.2140
32 20.8607 1.9156 1.592700 35.27
33 101.2362 Variable

34 4642.0718 1.2942 1.583130 59.46
* 35 -45.6613 BF

Image plane ∞

[Aspherical data]
6th surface κ 11.00000
A4 6.84259E-05
A6 -6.52908E-07
A8 2.89592E-09
A10 -3.59067E-12
A12 -4.70830E-14

12th surface κ 5.34460
A4 8.80293E-06
A6 -8.24015E-08
A8 -1.99203E-09
A10 1.93534E-11
A12 0.00000

25th surface κ 1.00000
A4 -2.50506E-05
A6 4.23962E-08
A8 -1.01207E-09
A10 1.78131E-11
A12 0.00000

35th surface κ 1.00000
A4 3.13362E-05
A6 -1.05523E-07
A8 3.01765E-10
A10 0.00000
A12 0.00000

[Various data]
Scaling ratio 14.13

W T
f 9.27 to 130.95
FNO 4.11 to 5.77
ω 42.65 to 3.36 °
Y 8.00-8.00
TL 108.72-165.55

W M1 M2 M3 T
f 9.26996 18.00205 35.14141 79.50027 130.95058
ω 42.64659 23.02117 12.24275 5.53491 3.36308
FNO 4.11 5.14 5.77 5.77 5.77
φ 8.78 8.78 9.00 10.44 10.99
d5 2.10000 13.14641 27.04732 40.02188 46.57745
d12 25.78504 15.86682 9.46650 3.71398 1.50000
d24 4.77009 4.77089 3.65901 3.00000 4.76972
d27 1.34602 1.34523 2.45711 3.11612 1.34640
d33 1.22984 13.40455 22.49406 33.05903 37.86288
BF 14.04908 14.04867 14.04916 14.04907 14.04906

[Lens group data]
Group start surface f
1 1 69.16097
2 6 -9.84950
3 14 24.91408
4 25 32.52464
5 28 -33.25545
6 34 77.54903

[Conditional expression values]
(1) f3 / (-f5) = 0.749
(2) f3 / f4 = 0.766

図5(a)、図5(b)、及び図5(c)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における無限遠物体合焦時の諸収差図である。
図6(a)、及び図6(b)はそれぞれ、本願の第2実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
FIGS. 5A, 5B, and 5C are respectively a wide-angle end state, a first intermediate focal length state, and a second intermediate focus of the variable magnification optical system according to the second example of the present application. It is an aberration diagram at the time of focusing on an object at infinity in the distance state.
FIGS. 6A and 6B are graphs showing various aberrations when focusing on an object at infinity in the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the second example of the present application, respectively. It is.

各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、高い光学性能を有していることがわかる。   From the respective aberration diagrams, it can be seen that the variable magnification optical system according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.

(第3実施例)
図7(a)、図7(b)、図7(c)、図7(d)、及び図7(e)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、第2中間焦点距離状態、第3中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6とから構成されている。
(Third embodiment)
7 (a), FIG. 7 (b), FIG. 7 (c), FIG. 7 (d), and FIG. 7 (e) are respectively the wide-angle end state of the variable magnification optical system according to the third example of the present application, It is sectional drawing in a 1st intermediate | middle focal distance state, a 2nd intermediate | middle focal distance state, a 3rd intermediate | middle focal distance state, and a telephoto end state.
The variable magnification optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a negative refractive power, and a sixth lens group G6 having a positive refractive power.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と物体側に凹面を向けた負メニスカスレンズL24との接合レンズとからなる。なお、負メニスカスレンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
The first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. Become.
The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave negative lens L22, a biconvex positive lens L23, and a negative surface having a concave surface directed toward the object side. It consists of a cemented lens with a meniscus lens L24. The negative meniscus lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side.

第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合レンズと、物体側に凸面を向けた正メニスカスレンズL33と、物体側に凹面を向けた正メニスカスレンズL34と両凹形状の負レンズL35との接合レンズと、両凸形状の正レンズL36と物体側に凹面を向けた負メニスカスレンズL37との接合レンズとからなる。なお、第3レンズ群G3の物体側には、開口絞りSが備えられている。
第4レンズ群G4は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL41と両凸形状の正レンズL42との接合レンズからなる。なお、負メニスカスレンズL41は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
The third lens group G3 includes, in order from the object side, a cemented lens of a negative meniscus lens L31 having a convex surface facing the object side and a biconvex positive lens L32, a positive meniscus lens L33 having a convex surface facing the object side, A cemented lens of a positive meniscus lens L34 having a concave surface facing the object side and a biconcave negative lens L35, and a cemented lens of a biconvex positive lens L36 and a negative meniscus lens L37 having a concave surface facing the object side Become. An aperture stop S is provided on the object side of the third lens group G3.
The fourth lens group G4 includes, in order from the object side, a cemented lens of a negative meniscus lens L41 having a convex surface directed toward the object side and a biconvex positive lens L42. The negative meniscus lens L41 is a glass mold aspheric lens having an aspheric lens surface on the object side.

第5レンズ群G5は、物体側から順に、両凹形状の負レンズL51と、両凸形状の正レンズL52とからなる。なお、負レンズL51は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
第6レンズ群G6は、物体側に凹面を向けた正メニスカスレンズL61からなる。なお、正メニスカスレンズL61は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
The fifth lens group G5 includes, in order from the object side, a biconcave negative lens L51 and a biconvex positive lens L52. The negative lens L51 is a glass mold aspheric lens having an aspheric lens surface on the object side.
The sixth lens group G6 includes a positive meniscus lens L61 having a concave surface directed toward the object side. The positive meniscus lens L61 is a glass mold aspheric lens having an aspheric lens surface on the image side.

以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1、第3〜第5レンズ群G3〜G5、及び開口絞りSが物体側へ移動する。なお、このとき第3レンズ群G3、第5レンズ群G5、及び開口絞りSは一体的に移動する。また変倍時に、第2レンズ群G2が、広角端状態から第1中間焦点距離状態まで物体側へ移動し、第1中間焦点距離状態から第3中間焦点距離状態まで像側へ移動し、第3中間焦点距離状態から望遠端状態まで物体側へ移動する。また変倍時に、第6レンズ群G6は光軸方向の位置が固定である。
これにより、変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が増加し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少する。また変倍時に、第3レンズ群G3と第4レンズ群G4との空気間隔が、広角端状態から第3中間焦点距離状態まで減少し、第3中間焦点距離状態から望遠端状態まで増加する。また変倍時に、第4レンズ群G4と第5レンズ群G5との空気間隔が、広角端状態から第3中間焦点距離状態まで増加し、第3中間焦点距離状態から望遠端状態まで減少する。また変倍時に、第5レンズ群G5と第6レンズ群G6との空気間隔が増加する。なお、変倍時に、第3レンズ群G3と第5レンズ群G5との距離は一定である。
With the above-described configuration, in the zoom optical system according to the present embodiment, the first lens group G1, the third to fifth lens groups G3 to G5, and the aperture stop at the time of zooming from the wide-angle end state to the telephoto end state. S moves to the object side. At this time, the third lens group G3, the fifth lens group G5, and the aperture stop S move together. At the time of zooming, the second lens group G2 moves to the object side from the wide-angle end state to the first intermediate focal length state, moves to the image side from the first intermediate focal length state to the third intermediate focal length state, 3. Move to the object side from the intermediate focal length state to the telephoto end state. At the time of zooming, the sixth lens group G6 has a fixed position in the optical axis direction.
Thereby, at the time of zooming, the air gap between the first lens group G1 and the second lens group G2 increases, and the air gap between the second lens group G2 and the third lens group G3 decreases. At the time of zooming, the air gap between the third lens group G3 and the fourth lens group G4 decreases from the wide-angle end state to the third intermediate focal length state and increases from the third intermediate focal length state to the telephoto end state. At the time of zooming, the air gap between the fourth lens group G4 and the fifth lens group G5 increases from the wide-angle end state to the third intermediate focal length state and decreases from the third intermediate focal length state to the telephoto end state. At the time of zooming, the air space between the fifth lens group G5 and the sixth lens group G6 increases. At the time of zooming, the distance between the third lens group G3 and the fifth lens group G5 is constant.

また本実施例に係る変倍光学系では、手ぶれ等の発生時に、第3レンズ群G3中の正メニスカスレンズL34と負レンズL35との接合レンズを防振レンズ群として光軸と直交する方向の成分を含むように移動させることによって防振を行う。なお、これに限られず、本実施例に係る変倍光学系では、正メニスカスレンズL34と負レンズL35との接合レンズ及び正レンズL36と負メニスカスレンズL37との接合レンズを防振レンズ群としてもよい。
また、本実施例に係る変倍光学系では、第4レンズ群G4中の負メニスカスレンズL41と正レンズL42との接合レンズを光軸に沿って物体側へ移動させることにより、無限遠物体から近距離物体への合焦を行う。
以下の表3に、本実施例に係る変倍光学系の諸元の値を掲げる。
In the variable magnification optical system according to the present example, when camera shake or the like occurs, the cemented lens of the positive meniscus lens L34 and the negative lens L35 in the third lens group G3 is used as an anti-vibration lens group in a direction orthogonal to the optical axis. Anti-vibration is performed by moving to include the components. The variable magnification optical system according to the present embodiment is not limited to this, and the cemented lens of the positive meniscus lens L34 and the negative lens L35 and the cemented lens of the positive lens L36 and the negative meniscus lens L37 are also used as the anti-vibration lens group. Good.
Further, in the variable magnification optical system according to the present example, the cemented lens of the negative meniscus lens L41 and the positive lens L42 in the fourth lens group G4 is moved toward the object side along the optical axis, so that the object can be removed from the object at infinity. Focus on a close object.
Table 3 below lists values of specifications of the variable magnification optical system according to the present example.

(表3)第3実施例
[面データ]
面番号 r d nd νd
物面 ∞

1 147.9013 1.6350 1.902650 35.72
2 35.6621 9.2469 1.497820 82.57
3 -200.0000 0.1000
4 39.1600 5.4354 1.755000 52.33
5 1276.0689 可変

*6 500.0000 1.0000 1.851350 40.10
7 9.9096 4.0795
8 -21.5362 1.0000 1.883000 40.66
9 61.9357 0.5771
10 28.1760 3.3431 1.808090 22.74
11 -16.0125 1.0000 1.883000 40.66
12 -68.1696 可変

13(絞りS) ∞ 1.0000

14 19.4128 1.0000 2.001000 29.13
15 13.4853 2.3758 1.518230 58.82
16 -100.7156 0.1463
17 15.0209 4.0207 1.518230 58.82
18 204.4633 1.8000
19 -28.3320 1.8512 1.950000 29.37
20 -12.0000 1.0000 1.719990 50.27
21 39.0032 1.9232
22 61.4199 2.6210 1.593190 67.90
23 -10.6309 1.0000 2.000690 25.46
24 -19.4068 可変

*25 16.3114 1.0000 1.834410 37.28
26 11.0229 3.3231 1.487490 70.32
27 -43.6056 可変

*28 -14.4352 1.0000 1.820800 42.71
29 40.8079 0.8343
30 49.8401 2.1154 1.672700 32.18
31 -34.3561 可変

32 -30.0441 1.0940 1.583130 59.46
*33 -18.4435 BF

像面 ∞

[非球面データ]
第6面
κ 11.00000
A4 1.46758E-05
A6 -1.20928E-07
A8 3.63942E-10
A10 2.23207E-12
A12 -4.38330E-14

第25面
κ 1.00000
A4 -2.68760E-05
A6 3.45468E-09
A8 -1.34363E-09
A10 2.46674E-11
A12 0.00000

第28面
κ 1.00000
A4 6.88321E-05
A6 -1.36380E-07
A8 1.91010E-09
A10 -1.82027E-10
A12 0.00000

第33面
κ 1.00000
A4 6.40427E-05
A6 -1.29760E-07
A8 -9.25012E-10
A10 0.00000
A12 0.00000

[各種データ]
変倍比 14.12

W T
f 10.30 〜 145.42
FNO 4.12 〜 5.78
ω 39.66 〜 3.00°
Y 8.00 〜 8.00
TL 106.91 〜 147.55

W M1 M2 M3 T
f 10.29728 17.98475 34.94711 79.45072 145.41967
ω 39.65984 23.06221 12.28283 5.50036 2.99741
FNO 4.12 4.88 5.49 5.77 5.78
φ 8.78 8.78 8.78 9.32 10.10
d5 2.10000 11.36023 22.73111 34.07789 40.86134
d12 25.44232 18.07043 10.58381 3.75584 1.50000
d24 6.54666 6.31441 4.45845 3.00000 6.63250
d27 2.13021 2.36246 4.21842 5.67687 2.04437
d31 1.11813 8.99915 15.47141 21.61332 26.93973
BF 14.05093 14.05140 14.05141 14.03447 14.05263

[レンズ群データ]
群 始面 f
1 1 60.27060
2 6 -9.90188
3 14 23.84501
4 25 32.34765
5 28 -25.12840
6 32 79.16334

[条件式対応値]
(1) f3/(−f5) = 0.949
(2) f3/f4 = 0.737
(Table 3) Third Example
[Surface data]
Surface number r d nd νd
Object ∞

1 147.9013 1.6350 1.902650 35.72
2 35.6621 9.2469 1.497820 82.57
3 -200.0000 0.1000
4 39.1600 5.4354 1.755000 52.33
5 1276.0689 Variable

* 6 500.0000 1.0000 1.851350 40.10
7 9.9096 4.0795
8 -21.5362 1.0000 1.883000 40.66
9 61.9357 0.5771
10 28.1760 3.3431 1.808090 22.74
11 -16.0125 1.0000 1.883000 40.66
12 -68.1696 Variable

13 (Aperture S) ∞ 1.0000

14 19.4128 1.0000 2.001000 29.13
15 13.4853 2.3758 1.518230 58.82
16 -100.7156 0.1463
17 15.0209 4.0207 1.518230 58.82
18 204.4633 1.8000
19 -28.3320 1.8512 1.950000 29.37
20 -12.0000 1.0000 1.719990 50.27
21 39.0032 1.9232
22 61.4199 2.6210 1.593190 67.90
23 -10.6309 1.0000 2.000690 25.46
24 -19.4068 Variable

* 25 16.3114 1.0000 1.834410 37.28
26 11.0229 3.3231 1.487490 70.32
27 -43.6056 Variable

* 28 -14.4352 1.0000 1.820800 42.71
29 40.8079 0.8343
30 49.8401 2.1154 1.672700 32.18
31 -34.3561 Variable

32 -30.0441 1.0940 1.583130 59.46
* 33 -18.4435 BF

Image plane ∞

[Aspherical data]
6th surface κ 11.00000
A4 1.46758E-05
A6 -1.20928E-07
A8 3.63942E-10
A10 2.23207E-12
A12 -4.38330E-14

25th surface κ 1.00000
A4 -2.68760E-05
A6 3.45468E-09
A8 -1.34363E-09
A10 2.46674E-11
A12 0.00000

28th surface κ 1.00000
A4 6.88321E-05
A6 -1.36380E-07
A8 1.91010E-09
A10 -1.82027E-10
A12 0.00000

33rd surface κ 1.00000
A4 6.40427E-05
A6 -1.29760E-07
A8 -9.25012E-10
A10 0.00000
A12 0.00000

[Various data]
Scaling ratio 14.12

W T
f 10.30-145.42
FNO 4.12 to 5.78
ω 39.66 to 3.00 °
Y 8.00-8.00
TL 106.91-147.55

W M1 M2 M3 T
f 10.29728 17.98475 34.94711 79.45072 145.41967
ω 39.65984 23.06221 12.28283 5.50036 2.99741
FNO 4.12 4.88 5.49 5.77 5.78
φ 8.78 8.78 8.78 9.32 10.10
d5 2.10000 11.36023 22.73111 34.07789 40.86134
d12 25.44232 18.07043 10.58381 3.75584 1.50000
d24 6.54666 6.31441 4.45845 3.00000 6.63250
d27 2.13021 2.36246 4.21842 5.67687 2.04437
d31 1.11813 8.99915 15.47141 21.61332 26.93973
BF 14.05093 14.05140 14.05141 14.03447 14.05263

[Lens group data]
Group start surface f
1 1 60.27060
2 6 -9.90188
3 14 23.84501
4 25 32.34765
5 28 -25.12840
6 32 79.16334

[Conditional expression values]
(1) f3 / (-f5) = 0.949
(2) f3 / f4 = 0.737

図8(a)、図8(b)、及び図8(c)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における無限遠物体合焦時の諸収差図である。
図9(a)、及び図9(b)はそれぞれ、本願の第3実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
FIGS. 8A, 8B, and 8C are respectively a wide-angle end state, a first intermediate focal length state, and a second intermediate focus of the variable magnification optical system according to the third example of the present application. It is an aberration diagram at the time of focusing on an object at infinity in the distance state.
FIGS. 9A and 9B are graphs showing various aberrations when focusing on an object at infinity in the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the third example of the present application, respectively. It is.

各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、高い光学性能を有していることがわかる。   From the respective aberration diagrams, it can be seen that the variable magnification optical system according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.

上記各実施例によれば、高変倍比を有し、小型で、高い光学性能を有する変倍光学系を実現することができる。なお、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。以下の内容は、本願の変倍光学系の光学性能を損なわない範囲で適宜採用することが可能である。   According to each of the above embodiments, a variable power optical system having a high zoom ratio, a small size, and high optical performance can be realized. In addition, each said Example has shown one specific example of this invention, and this invention is not limited to these. The following contents can be adopted as appropriate as long as the optical performance of the variable magnification optical system of the present application is not impaired.

本願の変倍光学系の数値実施例として6群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、7群等)の変倍光学系を構成することもできる。具体的には、本願の変倍光学系の最も物体側や最も像側にレンズ又はレンズ群を追加した構成でも構わない。なお、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。   Although a six-group configuration is shown as a numerical example of the variable-magnification optical system of the present application, the present application is not limited to this, and a variable-magnification optical system having other group configurations (for example, seven groups) can also be configured. . Specifically, a configuration in which a lens or a lens group is added to the most object side or the most image side of the variable magnification optical system of the present application may be used. The lens group refers to a portion having at least one lens separated by an air interval that changes during zooming.

また、本願の変倍光学系は、無限遠物体から近距離物体への合焦を行うために、レンズ群の一部、1つのレンズ群全体、或いは複数のレンズ群を合焦レンズ群として光軸方向へ移動させる構成としてもよい。特に、第2レンズ群の少なくとも一部又は第3レンズ群の少なくとも一部又は第4レンズ群の少なくとも一部又は第5レンズ群の少なくとも一部を合焦レンズ群とすることが好ましい。また、斯かる合焦レンズ群は、オートフォーカスに適用することも可能であり、オートフォーカス用のモータ、例えば超音波モータ等による駆動にも適している。   In addition, the variable magnification optical system of the present application uses a part of a lens group, an entire lens group, or a plurality of lens groups as a focusing lens group for focusing from an object at infinity to a near object. It is good also as a structure moved to an axial direction. In particular, it is preferable that at least part of the second lens group, at least part of the third lens group, at least part of the fourth lens group, or at least part of the fifth lens group be the focusing lens group. Such a focusing lens group can also be applied to autofocus, and is also suitable for driving by an autofocus motor, such as an ultrasonic motor.

また、本願の変倍光学系において、いずれかのレンズ群全体又はその一部を、防振レンズ群として光軸に対して垂直な方向の成分を含むように移動させ、又は光軸を含む面内方向へ回転移動(揺動)させることにより、手ぶれ等によって生じる像ぶれを補正する構成とすることもできる。特に、第2レンズ群の少なくとも一部又は第3レンズ群の少なくとも一部又は第4レンズ群の少なくとも一部又は第5レンズ群の少なくとも一部を防振レンズ群とすることが好ましい。   Further, in the variable magnification optical system of the present application, any lens group or a part thereof is moved as a vibration-proof lens group so as to include a component in a direction perpendicular to the optical axis, or a surface including the optical axis A configuration in which image blur caused by camera shake or the like is corrected by rotationally moving (swinging) inward is also possible. In particular, it is preferable that at least a part of the second lens group, at least a part of the third lens group, at least a part of the fourth lens group, or at least a part of the fifth lens group be an anti-vibration lens group.

また、本願の変倍光学系を構成するレンズのレンズ面は、球面又は平面としてもよく、或いは非球面としてもよい。レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防ぐことができるため好ましい。また、像面がずれた場合でも描写性能の劣化が少ないため好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、又はガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。   The lens surface of the lens constituting the variable magnification optical system of the present application may be a spherical surface, a flat surface, or an aspheric surface. When the lens surface is a spherical surface or a flat surface, it is preferable because lens processing and assembly adjustment are easy, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance. When the lens surface is aspherical, any of aspherical surface by grinding, glass mold aspherical surface in which glass is molded into an aspherical shape, or composite aspherical surface in which resin provided on the glass surface is formed in an aspherical shape Good. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

また、本願の変倍光学系において開口絞りは第3レンズ群中又は第3レンズ群の近傍に配置されることが好ましく、開口絞りとして部材を設けずにレンズ枠でその役割を代用する構成としてもよい。
また、本願の変倍光学系を構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。
In the variable magnification optical system of the present application, the aperture stop is preferably arranged in the third lens group or in the vicinity of the third lens group, and the role of the aperture stop is replaced by a lens frame without providing a member. Also good.
Further, an antireflection film having a high transmittance in a wide wavelength range may be applied to the lens surface of the lens constituting the variable magnification optical system of the present application. Thereby, flare and ghost can be reduced, and high optical performance with high contrast can be achieved.

次に、本願の変倍光学系を備えたカメラを図10に基づいて説明する。
図10は、本願の変倍光学系を備えたカメラの構成を示す図である。
図10に示すようにカメラ1は、撮影レンズ2として上記第1実施例に係る変倍光学系を備えたレンズ交換式の所謂ミラーレスカメラである。
本カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部3の撮像面上に被写体像を形成する。そして、撮像部3に設けられた光電変換素子によって被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられたEVF(Electronic view finder:電子ビューファインダ)4に表示される。これにより撮影者は、EVF4を介して被写体を観察することができる。
また、撮影者によって不図示のレリーズボタンが押されると、撮像部3で生成された被写体の画像が不図示のメモリに記憶される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。
Next, a camera provided with the variable magnification optical system of the present application will be described with reference to FIG.
FIG. 10 is a diagram illustrating a configuration of a camera including the variable magnification optical system of the present application.
As shown in FIG. 10, the camera 1 is a so-called mirrorless camera of an interchangeable lens provided with the variable magnification optical system according to the first example as the photographing lens 2.
In the camera 1, light from an object (subject) (not shown) is collected by the photographing lens 2 and is on the imaging surface of the imaging unit 3 via an OLPF (Optical low pass filter) (not shown). A subject image is formed on the screen. Then, the subject image is photoelectrically converted by the photoelectric conversion element provided in the imaging unit 3 to generate an image of the subject. This image is displayed on an EVF (Electronic view finder) 4 provided in the camera 1. Thus, the photographer can observe the subject via the EVF 4.
When the release button (not shown) is pressed by the photographer, the subject image generated by the imaging unit 3 is stored in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.

ここで、本カメラ1に撮影レンズ2として搭載した上記第1実施例に係る変倍光学系は、高変倍比を有し、小型で、高い光学性能を有する変倍光学系である。したがって本カメラ1は、高変倍比を有しつつ、小型化と高い光学性能を実現することができる。なお、上記第2、第3実施例に係る変倍光学系を撮影レンズ2として搭載したカメラを構成しても、上記カメラ1と同様の効果を奏することができる。また、クイックリターンミラーを有し、ファインダ光学系によって被写体を観察する一眼レフタイプのカメラに上記各実施例に係る変倍光学系を搭載した場合でも、上記カメラ1と同様の効果を奏することができる。   Here, the zoom optical system according to the first embodiment mounted as the photographing lens 2 on the camera 1 is a zoom optical system having a high zoom ratio, a small size, and high optical performance. Therefore, the present camera 1 can achieve downsizing and high optical performance while having a high zoom ratio. Even if a camera equipped with the variable magnification optical system according to the second and third examples as the photographing lens 2 is configured, the same effect as the camera 1 can be obtained. Further, even when the variable magnification optical system according to each of the above embodiments is mounted on a single-lens reflex camera that has a quick return mirror and observes a subject with a finder optical system, the same effect as the camera 1 can be obtained. it can.

最後に、本願の変倍光学系の製造方法の概略を図11に基づいて説明する。
図11に示す本願の変倍光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、第4レンズ群と、第5レンズ群と、第6レンズ群とを有する変倍光学系の製造方法であって、以下のステップS1を含むものである。
Finally, the outline of the manufacturing method of the variable magnification optical system of this application is demonstrated based on FIG.
The variable power optical system manufacturing method shown in FIG. 11 has, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power. A method for manufacturing a variable magnification optical system having a third lens group, a fourth lens group, a fifth lens group, and a sixth lens group, including the following step S1.

ステップS1:第1〜第6レンズ群をレンズ鏡筒内に物体側から順に配置し、レンズ鏡筒に公知の移動機構を設ける等することで、広角端状態から望遠端状態への変倍時に、第1レンズ群と第2レンズ群との間隔、第2レンズ群と第3レンズ群との間隔、第3レンズ群と第4レンズ群との間隔、第4レンズ群と第5レンズ群との間隔、及び第5レンズ群と第6レンズ群との間隔が変化し、第3レンズ群と第5レンズ群との距離が一定となるようにする。   Step S1: The first to sixth lens groups are arranged in order from the object side in the lens barrel, and a known moving mechanism is provided in the lens barrel, for example, during zooming from the wide-angle end state to the telephoto end state. , The distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, the distance between the third lens group and the fourth lens group, and the fourth lens group and the fifth lens group. And the distance between the fifth lens group and the sixth lens group are changed so that the distance between the third lens group and the fifth lens group is constant.

斯かる本願の変倍光学系の製造方法によれば、高変倍比を有し、小型で、高い光学性能を有する変倍光学系を製造することができる。   According to such a method for manufacturing a variable magnification optical system of the present application, a variable magnification optical system having a high zoom ratio, a small size, and high optical performance can be manufactured.

G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
G5 第5レンズ群
G6 第6レンズ群
S 開口絞り
I 像面
G1 1st lens group G2 2nd lens group G3 3rd lens group G4 4th lens group G5 5th lens group G6 6th lens group S Aperture stop I Image plane

Claims (15)

物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、第4レンズ群と、第5レンズ群と、第6レンズ群とを有し、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と前記第4レンズ群との間隔、前記第4レンズ群と前記第5レンズ群との間隔、及び前記第5レンズ群と前記第6レンズ群との間隔が変化し、前記第3レンズ群と前記第5レンズ群との距離が一定であることを特徴とする変倍光学系。
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, a fourth lens group, and a fifth lens A group and a sixth lens group,
At the time of zooming from the wide angle end state to the telephoto end state, the distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, the third lens group and the The distance between the fourth lens group, the distance between the fourth lens group and the fifth lens group, and the distance between the fifth lens group and the sixth lens group change, and the third lens group and the fifth lens group change. A variable magnification optical system characterized in that the distance from the five lens units is constant.
以下の条件式を満足することを特徴とする請求項1に記載の変倍光学系。
0.350 < f3/(−f5) < 2.000
但し、
f3:前記第3レンズ群の焦点距離
f5:前記第5レンズ群の焦点距離
The variable magnification optical system according to claim 1, wherein the following conditional expression is satisfied.
0.350 <f3 / (-f5) <2,000
However,
f3: focal length of the third lens group f5: focal length of the fifth lens group
以下の条件式を満足することを特徴とする請求項1又は請求項2に記載の変倍光学系。
0.420 < f3/f4 < 2.300
但し、
f3:前記第3レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
The zoom lens system according to claim 1 or 2, wherein the following conditional expression is satisfied.
0.420 <f3 / f4 <2.300
However,
f3: focal length of the third lens group f4: focal length of the fourth lens group
広角端状態から望遠端状態への変倍時に、前記第1レンズ群が物体側へ移動することを特徴とする請求項1から請求項3のいずれか一項に記載の変倍光学系。   4. The zoom optical system according to claim 1, wherein the first lens unit moves toward the object side during zooming from the wide-angle end state to the telephoto end state. 5. 広角端状態から望遠端状態への変倍時に、前記第3レンズ群が物体側へ移動することを特徴とする請求項1から請求項4のいずれか一項に記載の変倍光学系。   5. The zoom optical system according to claim 1, wherein the third lens unit moves toward the object side during zooming from the wide-angle end state to the telephoto end state. 6. 広角端状態から望遠端状態への変倍時に、前記第6レンズ群の位置が固定であることを特徴とする請求項1から請求項5のいずれか一項に記載の変倍光学系。   6. The zoom optical system according to claim 1, wherein the position of the sixth lens group is fixed at the time of zooming from the wide-angle end state to the telephoto end state. 前記第6レンズ群が正の屈折力を有することを特徴とする請求項1から請求項6のいずれか一項に記載の変倍光学系。   The variable power optical system according to any one of claims 1 to 6, wherein the sixth lens group has a positive refractive power. 前記第5レンズ群が負の屈折力を有することを特徴とする請求項1から請求項7のいずれか一項に記載の変倍光学系。   The variable power optical system according to any one of claims 1 to 7, wherein the fifth lens group has a negative refractive power. 前記第4レンズ群が正の屈折力を有することを特徴とする請求項1から請求項8のいずれか一項に記載の変倍光学系。   The variable power optical system according to any one of claims 1 to 8, wherein the fourth lens group has a positive refractive power. 広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔が増加することを特徴とする請求項1から請求項9のいずれか一項に記載の変倍光学系。   10. The distance between the first lens group and the second lens group increases during zooming from the wide-angle end state to the telephoto end state. Variable magnification optical system. 広角端状態から望遠端状態への変倍時に、前記第2レンズ群と前記第3レンズ群との間隔が減少することを特徴とする請求項1から請求項10のいずれか一項に記載の変倍光学系。   11. The distance between the second lens group and the third lens group decreases during zooming from the wide-angle end state to the telephoto end state. Variable magnification optical system. 前記第3レンズ群の少なくとも一部が光軸と直交する方向の成分を含むように移動することを特徴とする請求項1から請求項11のいずれか一項に記載の変倍光学系。   The variable magnification optical system according to any one of claims 1 to 11, wherein at least a part of the third lens group moves so as to include a component in a direction orthogonal to the optical axis. 無限遠物体から近距離物体への合焦時に、前記第4レンズ群の少なくとも一部が光軸方向へ移動することを特徴とする請求項1から請求項12のいずれか一項に記載の変倍光学系。   The change according to any one of claims 1 to 12, wherein at least a part of the fourth lens group moves in the optical axis direction when focusing from an object at infinity to an object at a short distance. Double optical system. 請求項1から請求項13のいずれか一項に記載の変倍光学系を有することを特徴とする光学装置。   An optical apparatus comprising the variable magnification optical system according to any one of claims 1 to 13. 物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、第4レンズ群と、第5レンズ群と、第6レンズ群とを有する変倍光学系の製造方法であって、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と前記第4レンズ群との間隔、前記第4レンズ群と前記第5レンズ群との間隔、及び前記第5レンズ群と前記第6レンズ群との間隔が変化し、前記第3レンズ群と前記第5レンズ群との距離が一定となるようにすることを特徴とする変倍光学系の製造方法。
In order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, a fourth lens group, and a fifth lens A variable magnification optical system having a group and a sixth lens group,
At the time of zooming from the wide angle end state to the telephoto end state, the distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, the third lens group and the The distance between the fourth lens group, the distance between the fourth lens group and the fifth lens group, and the distance between the fifth lens group and the sixth lens group change, and the third lens group and the fifth lens group change. 5. A method of manufacturing a variable magnification optical system, characterized in that the distance from the five lens groups is constant.
JP2012250253A 2012-11-14 2012-11-14 Variable magnification optical system, optical device Active JP6229259B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2012250253A JP6229259B2 (en) 2012-11-14 2012-11-14 Variable magnification optical system, optical device
PCT/JP2013/079241 WO2014077120A1 (en) 2012-11-14 2013-10-29 Variable power optical assembly, optical device, and variable power optical assembly fabrication method
CN201711159252.9A CN107884917B (en) 2012-11-14 2013-10-29 Variable magnification optical system and optical device
CN201380057471.XA CN104769476B (en) 2012-11-14 2013-10-29 The manufacture method of variable-power optical system, Optical devices and variable-power optical system
EP13854627.0A EP2921897A4 (en) 2012-11-14 2013-10-29 Variable power optical assembly, optical device, and variable power optical assembly fabrication method
US14/700,631 US9983391B2 (en) 2012-11-14 2015-04-30 Variable power optical assembly, optical device, and variable power optical assembly fabrication method
US15/972,004 US20180252902A1 (en) 2012-11-14 2018-05-04 Variable power optical assembly, optical device, and variable power optical assembly fabrication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012250253A JP6229259B2 (en) 2012-11-14 2012-11-14 Variable magnification optical system, optical device

Publications (3)

Publication Number Publication Date
JP2014098795A true JP2014098795A (en) 2014-05-29
JP2014098795A5 JP2014098795A5 (en) 2015-11-05
JP6229259B2 JP6229259B2 (en) 2017-11-15

Family

ID=50940849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012250253A Active JP6229259B2 (en) 2012-11-14 2012-11-14 Variable magnification optical system, optical device

Country Status (1)

Country Link
JP (1) JP6229259B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014219616A (en) * 2013-05-10 2014-11-20 キヤノン株式会社 Zoom lens and imaging apparatus including the same
WO2016031256A1 (en) * 2014-08-29 2016-03-03 株式会社ニコン Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
JP2016161887A (en) * 2015-03-05 2016-09-05 キヤノン株式会社 Zoom lens and imaging apparatus including the same
JP2017161933A (en) * 2017-05-19 2017-09-14 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP2019028258A (en) * 2017-07-31 2019-02-21 キヤノン株式会社 Zoom lens and imaging apparatus having the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195757A (en) * 2004-01-05 2005-07-21 Sony Corp Zoom lens and imaging device
JP2006301474A (en) * 2005-04-25 2006-11-02 Sony Corp Zoom lens and imaging apparatus
JP2008129238A (en) * 2006-11-20 2008-06-05 Olympus Imaging Corp Zoom lens and imaging device using the same
US20090040621A1 (en) * 2007-08-10 2009-02-12 Asia Optical Co., Inc. Zoom lens
JP2009217167A (en) * 2008-03-12 2009-09-24 Sony Corp Zoom optical system and imaging apparatus
JP2010039271A (en) * 2008-08-06 2010-02-18 Sony Corp Variable focal length lens system
JP2010128032A (en) * 2008-11-26 2010-06-10 Olympus Imaging Corp Zoom lens and image pickup apparatus equipped with the zoom lens
JP2011095505A (en) * 2009-10-29 2011-05-12 Sony Corp Zoom lens and imaging apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195757A (en) * 2004-01-05 2005-07-21 Sony Corp Zoom lens and imaging device
JP2006301474A (en) * 2005-04-25 2006-11-02 Sony Corp Zoom lens and imaging apparatus
JP2008129238A (en) * 2006-11-20 2008-06-05 Olympus Imaging Corp Zoom lens and imaging device using the same
US20090040621A1 (en) * 2007-08-10 2009-02-12 Asia Optical Co., Inc. Zoom lens
JP2009217167A (en) * 2008-03-12 2009-09-24 Sony Corp Zoom optical system and imaging apparatus
JP2010039271A (en) * 2008-08-06 2010-02-18 Sony Corp Variable focal length lens system
JP2010128032A (en) * 2008-11-26 2010-06-10 Olympus Imaging Corp Zoom lens and image pickup apparatus equipped with the zoom lens
JP2011095505A (en) * 2009-10-29 2011-05-12 Sony Corp Zoom lens and imaging apparatus

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9664885B2 (en) 2013-05-10 2017-05-30 Canon Kabushiki Kaisha Zoom lens and image pickup apparatus including zoom lens
JP2014219616A (en) * 2013-05-10 2014-11-20 キヤノン株式会社 Zoom lens and imaging apparatus including the same
JP2022003421A (en) * 2014-08-29 2022-01-11 株式会社ニコン Zoom optical system and optical device
US10451859B2 (en) 2014-08-29 2019-10-22 Nikon Corporation Zoom optical system, optical device and method for manufacturing the zoom optical system
CN106796339A (en) * 2014-08-29 2017-05-31 株式会社尼康 The manufacture method of variable-power optical system, optical device and variable-power optical system
JPWO2016031256A1 (en) * 2014-08-29 2017-06-01 株式会社ニコン Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
US12025783B2 (en) 2014-08-29 2024-07-02 Nikon Corporation Zoom optical system, optical device and method for manufacturing the zoom optical system
US10018814B2 (en) 2014-08-29 2018-07-10 Nikon Corporation Zoom optical system, optical device and method for manufacturing the zoom optical system
US10209499B2 (en) 2014-08-29 2019-02-19 Nikon Corporation Zoom optical system, optical device and method for manufacturing the zoom optical system
US10209498B2 (en) 2014-08-29 2019-02-19 Nikon Corporation Zoom optical system, optical device and method for manufacturing the zoom optical system
US11740444B2 (en) 2014-08-29 2023-08-29 Nikon Corporation Zoom optical system, optical device and method for manufacturing the zoom optical system
CN111880295B (en) * 2014-08-29 2022-12-09 株式会社尼康 Variable magnification optical system and optical apparatus
US10684455B2 (en) 2014-08-29 2020-06-16 Nikon Corporation Zoom optical system, optical device and method for manufacturing the zoom optical system
CN106796339B (en) * 2014-08-29 2020-07-21 株式会社尼康 Variable magnification optical system and optical apparatus
CN111880295A (en) * 2014-08-29 2020-11-03 株式会社尼康 Variable magnification optical system and optical apparatus
WO2016031256A1 (en) * 2014-08-29 2016-03-03 株式会社ニコン Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
US11327279B2 (en) 2014-08-29 2022-05-10 Nikon Corporation Zoom optical system, optical device and method for manufacturing the zoom optical system
JP2016161887A (en) * 2015-03-05 2016-09-05 キヤノン株式会社 Zoom lens and imaging apparatus including the same
JP2017161933A (en) * 2017-05-19 2017-09-14 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP2019028258A (en) * 2017-07-31 2019-02-21 キヤノン株式会社 Zoom lens and imaging apparatus having the same

Also Published As

Publication number Publication date
JP6229259B2 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
JP6127462B2 (en) Variable magnification optical system, optical device
WO2014112176A1 (en) Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
JP6229259B2 (en) Variable magnification optical system, optical device
JP6182868B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
WO2014077120A1 (en) Variable power optical assembly, optical device, and variable power optical assembly fabrication method
JP6098176B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6102269B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6299060B2 (en) Variable magnification optical system, optical device
WO2015163368A1 (en) Variable power optical system, optical device, and method of manufacturing variable power optical system
WO2014069446A1 (en) Variable magnification optical system, optical device, and production method for variable magnification optical system
JP6451074B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6326712B2 (en) Variable magnification optical system, optical device
JP6191246B2 (en) Zoom lens, optical device
WO2014069448A1 (en) Variable magnification optical system, optical device, and production method for variable magnification optical system
JP6311433B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6398292B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6145991B2 (en) Variable magnification optical system, optical device
JP6355885B2 (en) Variable magnification optical system, optical device
JP6131566B2 (en) Variable magnification optical system, optical device
JP6364930B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6131567B2 (en) Variable magnification optical system, optical device
JP6299059B2 (en) Variable magnification optical system, optical device
JP6136195B2 (en) Variable magnification optical system, optical device
JP6326713B2 (en) Variable magnification optical system, optical device
JP6079137B2 (en) Variable magnification optical system, optical device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150909

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160615

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171002

R150 Certificate of patent or registration of utility model

Ref document number: 6229259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250