JP6079137B2 - Variable magnification optical system, optical device - Google Patents

Variable magnification optical system, optical device Download PDF

Info

Publication number
JP6079137B2
JP6079137B2 JP2012238735A JP2012238735A JP6079137B2 JP 6079137 B2 JP6079137 B2 JP 6079137B2 JP 2012238735 A JP2012238735 A JP 2012238735A JP 2012238735 A JP2012238735 A JP 2012238735A JP 6079137 B2 JP6079137 B2 JP 6079137B2
Authority
JP
Japan
Prior art keywords
lens group
lens
optical system
end state
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012238735A
Other languages
Japanese (ja)
Other versions
JP2014089292A (en
JP2014089292A5 (en
Inventor
昭彦 小濱
昭彦 小濱
知之 幸島
知之 幸島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2012238735A priority Critical patent/JP6079137B2/en
Priority to CN201380057336.5A priority patent/CN104919354B/en
Priority to PCT/JP2013/079240 priority patent/WO2014069449A1/en
Publication of JP2014089292A publication Critical patent/JP2014089292A/en
Priority to US14/700,493 priority patent/US10168512B2/en
Publication of JP2014089292A5 publication Critical patent/JP2014089292A5/en
Application granted granted Critical
Publication of JP6079137B2 publication Critical patent/JP6079137B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、変倍光学系、光学装置、変倍光学系の製造方法に関する。   The present invention relates to a variable magnification optical system, an optical apparatus, and a method for manufacturing the variable magnification optical system.

従来、カメラ用の交換レンズ、デジタルカメラ、ビデオカメラ等に好適な変倍光学系として、最も物体側のレンズ群が正の屈折力を有するものが数多く提案されているが、これらの変倍光学系のうち、一部のレンズ群を光軸に沿って移動させることで無限遠物体から近距離物体への合焦を行なうことができる光学系が提案されている。(例えば、特許文献1を参照。)。   Conventionally, as a variable power optical system suitable for an interchangeable lens for a camera, a digital camera, a video camera, etc., many lenses having a positive refractive power in the most object side lens group have been proposed. Among the systems, there has been proposed an optical system capable of focusing from an infinitely distant object to a close object by moving some lens groups along the optical axis. (For example, see Patent Document 1).

特開2010−19959号公報JP 2010-19959 A

しかしながら、上述のような従来の変倍光学系は、高変倍比を維持しながら小型化を図り、無限遠物体から近距離物体への合焦時にも、十分に高い光学性能を得ることが困難であるという問題があった。   However, the conventional variable magnification optical system as described above can achieve a sufficiently high optical performance even when focusing from an object at infinity to a short distance object while reducing the size while maintaining a high zoom ratio. There was a problem that it was difficult.

そこで本発明は上記問題点に鑑みてなされたものであり、高変倍比を有し、小型で、無限遠物体から近距離物体への合焦時にも、高い光学性能を有する変倍光学系、光学装置、変倍光学系の製造方法を提供することを目的とする。   Therefore, the present invention has been made in view of the above problems, and has a high zoom ratio, is small, and has a high optical performance even when focusing from an object at infinity to a short distance object. An object of the present invention is to provide an optical device and a method for manufacturing a variable magnification optical system.

上記課題を解決するため、本発明は、
物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群と、最も像側に配置されており変倍時に位置が固定の固定レンズ群と、前記第3レンズ群と前記固定レンズ群の間に配置された屈折力が正の中間レンズ群とにより、実質的に5個のレンズ群からなり
前記固定レンズ群は、正屈折力を有し、
変倍時に、隣り合うレンズ群同士の間隔、前記第3レンズ群と像面との間隔が変化し
焦時に、前記第3レンズ群は光軸に沿って移動し、
以下の条件式を満足することを特徴とする変倍光学系を提供する。
−0.010 < (d3t−d3w)/ft < 0.130
但し、
ft:前記変倍光学系の望遠端状態における全系焦点距離、
d3w:広角端状態における前記第3レンズ群の最も像側のレンズ面から前記中間レンズ群の最も物体側のレンズ面までの光軸上の距離、
d3t:望遠端状態における前記第3レンズ群の最も像側のレンズ面から前記中間レンズ群の最も物体側のレンズ面までの光軸上の距離。
また本発明は、
物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群と、最も像側に配置されており変倍時に位置が固定の固定レンズ群と、前記第3レンズ群と前記固定レンズ群の間に配置された屈折力が正の中間レンズ群とにより、実質的に5個のレンズ群からなり、
前記固定レンズ群は、正屈折力を有し、
変倍時に、隣り合うレンズ群同士の間隔、前記第3レンズ群と像面との間隔が変化し、
合焦時に、前記第3レンズ群は光軸に沿って移動し、
以下の条件式を満足することを特徴とする変倍光学系を提供する。
0.410 < f3/fim < 1.000
但し、
f3:前記第3レンズ群の焦点距離、
fim:前記中間レンズ群の焦点距離。
また本発明は、
物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群と、最も像側に配置されており変倍時に位置が固定の固定レンズ群と、前記第3レンズ群と前記固定レンズ群の間に配置された屈折力が正の中間レンズ群とにより、実質的に5個のレンズ群からなり、
変倍時に、隣り合うレンズ群同士の間隔、前記第3レンズ群と像面との間隔が変化し、
合焦時に、前記第3レンズ群は光軸に沿って移動し、
以下の条件式を満足することを特徴とする変倍光学系を提供する。
0.015 ≦ (d3t−d3w)/ft < 0.130
但し、
ft:前記変倍光学系の望遠端状態における全系焦点距離、
d3w:広角端状態における前記第3レンズ群の最も像側のレンズ面から前記中間レンズ群の最も物体側のレンズ面までの光軸上の距離、
d3t:望遠端状態における前記第3レンズ群の最も像側のレンズ面から前記中間レンズ群の最も物体側のレンズ面までの光軸上の距離。
また本発明は、
物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群と、最も像側に配置されており変倍時に位置が固定の固定レンズ群と、前記第3レンズ群と前記固定レンズ群の間に配置された屈折力が正の中間レンズ群とにより、実質的に5個のレンズ群からなり、
変倍時に、隣り合うレンズ群同士の間隔、前記第3レンズ群と像面との間隔が変化し、
合焦時に、前記第3レンズ群は光軸に沿って移動し、
以下の条件式を満足することを特徴とする変倍光学系を提供する。
0.638 ≦ f3/fim < 1.000
但し、
f3:前記第3レンズ群の焦点距離、
fim:前記中間レンズ群の焦点距離。
In order to solve the above problems, the present invention provides:
In order from the object side, the first lens group having positive refractive power, the second lens group having negative refractive power, and the third lens group having positive refractive power are disposed closest to the image side, and the position is fixed at the time of zooming. The fixed lens group, and the intermediate lens group having a positive refractive power disposed between the third lens group and the fixed lens group, substantially consists of five lens groups ,
The fixed lens group has positive refractive power,
At the time of zooming, the distance between adjacent lens groups, the distance between the third lens group and the image plane changes ,
During focusing, the third lens group moves along the optical axis ,
A variable magnification optical system characterized by satisfying the following conditional expression is provided.
−0.010 <(d3t−d3w) / ft <0.130
However,
ft: the total focal length in the telephoto end state of the variable magnification optical system,
d3w: the distance on the optical axis from the most image side lens surface of the third lens group to the most object side lens surface of the intermediate lens group in the wide-angle end state;
d3t: Distance on the optical axis from the most image-side lens surface of the third lens unit to the most object-side lens surface of the intermediate lens unit in the telephoto end state.
The present invention also provides
In order from the object side, the first lens group having positive refractive power, the second lens group having negative refractive power, and the third lens group having positive refractive power are disposed closest to the image side, and the position is fixed at the time of zooming. The fixed lens group, and the intermediate lens group having a positive refractive power disposed between the third lens group and the fixed lens group, substantially consists of five lens groups,
The fixed lens group has positive refractive power,
At the time of zooming, the distance between adjacent lens groups, the distance between the third lens group and the image plane changes,
During focusing, the third lens group moves along the optical axis,
A variable magnification optical system characterized by satisfying the following conditional expression is provided.
0.410 <f3 / fim <1.00
However,
f3: focal length of the third lens group,
fim: focal length of the intermediate lens group.
The present invention also provides
In order from the object side, the first lens group having positive refractive power, the second lens group having negative refractive power, and the third lens group having positive refractive power are disposed closest to the image side, and the position is fixed at the time of zooming. The fixed lens group, and the intermediate lens group having a positive refractive power disposed between the third lens group and the fixed lens group, substantially consists of five lens groups,
At the time of zooming, the distance between adjacent lens groups, the distance between the third lens group and the image plane changes,
During focusing, the third lens group moves along the optical axis,
A variable magnification optical system characterized by satisfying the following conditional expression is provided.
0.015 ≦ (d3t−d3w) / ft <0.130
However,
ft: the total focal length in the telephoto end state of the variable magnification optical system,
d3w: the distance on the optical axis from the most image side lens surface of the third lens group to the most object side lens surface of the intermediate lens group in the wide-angle end state;
d3t: Distance on the optical axis from the most image-side lens surface of the third lens unit to the most object-side lens surface of the intermediate lens unit in the telephoto end state.
The present invention also provides
In order from the object side, the first lens group having positive refractive power, the second lens group having negative refractive power, and the third lens group having positive refractive power are disposed closest to the image side, and the position is fixed at the time of zooming. The fixed lens group, and the intermediate lens group having a positive refractive power disposed between the third lens group and the fixed lens group, substantially consists of five lens groups,
At the time of zooming, the distance between adjacent lens groups, the distance between the third lens group and the image plane changes,
During focusing, the third lens group moves along the optical axis,
A variable magnification optical system characterized by satisfying the following conditional expression is provided.
0.638 ≤ f3 / fim <1.000
However,
f3: focal length of the third lens group,
fim: focal length of the intermediate lens group.

また、本発明は、前記変倍光学系を有することを特徴とする光学装置を提供する。   The present invention also provides an optical apparatus comprising the variable magnification optical system.

本発明によれば、高変倍比を有し、小型で、無限遠物体から近距離物体への合焦時にも、高い光学性能を有する変倍光学系、光学装置、変倍光学系の製造方法を提供することができる。   According to the present invention, a variable power optical system, an optical device, and a variable power optical system that have a high zoom ratio, are small, and have high optical performance even when focusing from an object at infinity to a short distance object. A method can be provided.

(a)、(b)、(c)、(d)、及び(e)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、第2中間焦点距離状態、第3中間焦点距離状態、及び望遠端状態における断面図である。(A), (b), (c), (d), and (e) are the wide-angle end state, the first intermediate focal length state, and the second intermediate state of the variable magnification optical system according to the first example of the present application, respectively. It is sectional drawing in a focal distance state, a 3rd intermediate | middle focal distance state, and a telephoto end state. (a)、(b)、及び(c)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における無限遠物体合焦時の諸収差図である。(A), (b), and (c) are objects at infinity in the wide-angle end state, the first intermediate focal length state, and the second intermediate focal length state of the variable magnification optical system according to the first example of the present application, respectively. It is an aberration diagram at the time of focusing. (a)、及び(b)はそれぞれ、本願の第1実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。FIGS. 7A and 7B are graphs showing various aberrations when the object at infinity is in focus in the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the first example of the present application, respectively. (a)、(b)、及び(c)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における近距離物体合焦時(撮影倍率-0.0100倍)の諸収差図である。(A), (b), and (c) are short-distance objects in the wide-angle end state, the first intermediate focal length state, and the second intermediate focal length state of the variable magnification optical system according to the first example of the present application, respectively. FIG. 6 is a diagram showing various aberrations when in focus (imaging magnification: -0.0100 times). (a)、及び(b)はそれぞれ、本願の第1実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における近距離物体合焦時(撮影倍率-0.0100倍)の諸収差図である。(A) and (b) are those when focusing on a short-distance object in the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the first example of the present application (imaging magnification: -0.0100 times), respectively. It is an aberration diagram. (a)、(b)、(c)、(d)、及び(e)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、第2中間焦点距離状態、第3中間焦点距離状態、及び望遠端状態における断面図である。(A), (b), (c), (d), and (e) are the wide-angle end state, the first intermediate focal length state, and the second intermediate state of the variable magnification optical system according to the second example of the present application, respectively. It is sectional drawing in a focal distance state, a 3rd intermediate | middle focal distance state, and a telephoto end state. (a)、(b)、及び(c)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における無限遠物体合焦時の諸収差図である。(A), (b), and (c) are objects at infinity in the wide-angle end state, the first intermediate focal length state, and the second intermediate focal length state of the variable magnification optical system according to the second example of the present application, respectively. It is an aberration diagram at the time of focusing. (a)、及び(b)はそれぞれ、本願の第2実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。FIGS. 9A and 9B are graphs showing various aberrations when the object at infinity is in focus in the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the second example of the present application, respectively. (a)、(b)、及び(c)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における近距離物体合焦時(撮影倍率-0.0100倍)の諸収差図である。(A), (b), and (c) are short-distance objects in the wide-angle end state, the first intermediate focal length state, and the second intermediate focal length state of the variable magnification optical system according to the second example of the present application, respectively. FIG. 6 is a diagram showing various aberrations when in focus (imaging magnification: -0.0100 times). (a)、及び(b)はそれぞれ、本願の第2実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における近距離物体合焦時(撮影倍率-0.0100倍)の諸収差図である。(A) and (b) are those when focusing on a short-distance object in the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the second example of the present application (imaging magnification: -0.0100 times), respectively. It is an aberration diagram. (a)、(b)、(c)、(d)、及び(e)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、第2中間焦点距離状態、第3中間焦点距離状態、及び望遠端状態における断面図である。(A), (b), (c), (d), and (e) are the wide-angle end state, the first intermediate focal length state, and the second intermediate state of the variable magnification optical system according to the third example of the present application, respectively. It is sectional drawing in a focal distance state, a 3rd intermediate | middle focal distance state, and a telephoto end state. (a)、(b)、及び(c)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における無限遠物体合焦時の諸収差図である。(A), (b), and (c) are objects at infinity in the wide-angle end state, the first intermediate focal length state, and the second intermediate focal length state of the variable magnification optical system according to the third example of the present application, respectively. It is an aberration diagram at the time of focusing. (a)、及び(b)はそれぞれ、本願の第3実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。FIGS. 7A and 7B are graphs showing various aberrations when the object at infinity is in focus in the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the third example of the present application, respectively. FIGS. (a)、(b)、及び(c)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における近距離物体合焦時(撮影倍率-0.0100倍)の諸収差図である。(A), (b), and (c) are short-distance objects in the wide-angle end state, the first intermediate focal length state, and the second intermediate focal length state, respectively, of the variable magnification optical system according to the third example of the present application. FIG. 6 is a diagram showing various aberrations when in focus (imaging magnification: -0.0100 times). (a)、及び(b)はそれぞれ、本願の第3実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における近距離物体合焦時(撮影倍率-0.0100倍)の諸収差図である。(A) and (b), respectively, at the time of focusing on a short-distance object in the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the third example of the present application (imaging magnification: -0.0100 times) It is an aberration diagram. (a)、(b)、(c)、(d)、及び(e)はそれぞれ、本願の第4実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、第2中間焦点距離状態、第3中間焦点距離状態、及び望遠端状態における断面図である。(A), (b), (c), (d), and (e) are respectively the wide-angle end state, the first intermediate focal length state, and the second intermediate state of the variable magnification optical system according to the fourth example of the present application. It is sectional drawing in a focal distance state, a 3rd intermediate | middle focal distance state, and a telephoto end state. (a)、(b)、及び(c)はそれぞれ、本願の第4実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における無限遠物体合焦時の諸収差図である。(A), (b), and (c) are objects at infinity in the wide-angle end state, the first intermediate focal length state, and the second intermediate focal length state of the variable magnification optical system according to the fourth example of the present application, respectively. It is an aberration diagram at the time of focusing. (a)、及び(b)はそれぞれ、本願の第4実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。FIGS. 9A and 9B are graphs showing various aberrations when the object at infinity is in focus in the third intermediate focal length state and the telephoto end state of the zoom optical system according to the fourth example of the present application, respectively. (a)、(b)、及び(c)はそれぞれ、本願の第4実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における近距離物体合焦時(撮影倍率-0.0100倍)の諸収差図である。(A), (b), and (c) are short-distance objects in the wide-angle end state, the first intermediate focal length state, and the second intermediate focal length state, respectively, of the variable magnification optical system according to the fourth example of the present application. FIG. 6 is a diagram showing various aberrations when in focus (imaging magnification: -0.0100 times). (a)、及び(b)はそれぞれ、本願の第4実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における近距離物体合焦時(撮影倍率-0.0100倍)の諸収差図である。(A) and (b) are those when focusing on a short-distance object in the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the fourth example of the present application (imaging magnification: -0.0100 times), respectively. It is an aberration diagram. 本願の変倍光学系を備えたカメラの構成を示す図である。It is a figure which shows the structure of the camera provided with the variable magnification optical system of this application. 本願の変倍光学系の製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method of the variable magnification optical system of this application.

以下、本願の変倍光学系、光学装置、及び変倍光学系の製造方法について説明する。
本願の変倍光学系は、物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群とを有し、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と像面とが変化することを特徴としている。この構成により、本願の変倍光学系は、広角端状態から望遠端状態への変倍を実現し、変倍に伴う歪曲収差、非点収差、及び球面収差のそれぞれの変動を抑えることができる。
Hereinafter, a variable magnification optical system, an optical apparatus, and a method for manufacturing the variable magnification optical system of the present application will be described.
The variable magnification optical system of the present application includes, in order from the object side, a first lens unit having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power, and from the wide-angle end state. At the time of zooming to the telephoto end state, the distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, and the third lens group and the image plane are changed. It is characterized by doing. With this configuration, the variable magnification optical system of the present application realizes variable magnification from the wide-angle end state to the telephoto end state, and can suppress each variation of distortion aberration, astigmatism, and spherical aberration associated with variable magnification. .

また、最も像側に、広角端状態から望遠端状態への変倍時に位置が固定の固定レンズ群を有する。この構成により、広角端状態から望遠端状態への変倍時に、固定レンズ群に入射する周辺光線の光軸からの高を変化させ、非点収差の変動を抑えることができる。   Further, on the most image side, there is a fixed lens group whose position is fixed at the time of zooming from the wide-angle end state to the telephoto end state. With this configuration, the height from the optical axis of the peripheral rays incident on the fixed lens group can be changed at the time of zooming from the wide-angle end state to the telephoto end state, and astigmatism variation can be suppressed.

また、無限遠物体から近距離物体への合焦を第3レンズ群を光軸に沿って移動させる構成である。この構成により、望遠側の合焦時の移動量を抑え、光学系全系の全長を抑えて小型化できるようになり、加えて望遠側において合焦レンズ群である第3レンズ群に入射する光線の光軸からの高さの変動を抑え、合焦時における球面収差や非点収差の変動を抑えることができる。
以上の構成により、高変倍比を有し、小型で、高い光学性能を有する変倍光学系を実現することができる。
In addition, the third lens unit is moved along the optical axis for focusing from an object at infinity to an object at a short distance. With this configuration, the amount of movement during focusing on the telephoto side can be reduced, the overall length of the entire optical system can be reduced, and the size can be reduced. In addition, the telephoto side is incident on the third lens group that is the focusing lens group. It is possible to suppress variations in the height of the light beam from the optical axis, and to suppress variations in spherical aberration and astigmatism during focusing.
With the above configuration, a variable magnification optical system having a high zoom ratio, a small size, and high optical performance can be realized.

また、本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第1レンズ群が物体側へ移動することが望ましい。この構成により、変倍時に第1レンズ群を通過する軸外光束の光軸からの高さの変化を抑えることができる。これにより、第1レンズ群の径を小さくできるだけでなく、変倍時に非点収差の変動を抑えることもできる。   In the zoom optical system according to the present application, it is preferable that the first lens unit moves toward the object side when zooming from the wide-angle end state to the telephoto end state. With this configuration, it is possible to suppress a change in height from the optical axis of the off-axis light beam that passes through the first lens group during zooming. Thereby, not only can the diameter of the first lens group be reduced, but also fluctuations in astigmatism can be suppressed during zooming.

また、本願の変倍光学系は、以下の条件式(1)を満足することが望ましい。
(1) 0.220 < f3/ft < 0.500
但し、
ft:前記変倍光学系の望遠端状態における全系焦点距離、
f3:前記第3レンズ群の焦点距離。
Further, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (1).
(1) 0.220 <f3 / ft <0.500
However,
ft: the total focal length in the telephoto end state of the variable magnification optical system,
f3: focal length of the third lens group.

条件式(1)は、第3レンズ群の適切な焦点距離範囲を規定するものである。本願の変倍光学系は、条件式(1)を満足することにより、広角端から望遠端への変倍時、及び無限遠物体から近距離物体への合焦時の球面収差や非点収差の変動を抑えることができる。
本願の変倍光学系の条件式(1)の対応値の下限値を下回ると、変倍時や合焦時に第3レンズ群で発生する球面収差や非点収差の変動を抑えることが困難となり、高い光学性能を実現できなくなってしますう。なお、本願の効果をより確実にするため、条件式(1)の下限値を0.242とすることがより好ましい。
一方、本願の変倍光学系の条件式(1)の対応値が上限値を上回ると、無限遠物体から近距離物体への合焦時の第3レンズ群の移動量が大きくなる。これにより、合焦時の第3レンズ群に入射する光線の光軸からの高さが大きく変動するため、球面収差や非点収差の変動が大きくなり、高い光学性能を実現できなくなってしまう。なお、本願の効果をより確実にするため、条件式(1)の上限値を0.385とすることがより好ましい。
Conditional expression (1) defines an appropriate focal length range of the third lens group. The variable magnification optical system of the present application satisfies the conditional expression (1), so that spherical aberration and astigmatism at the time of zooming from the wide-angle end to the telephoto end and at the time of focusing from an object at infinity to a short distance object Fluctuations can be suppressed.
If the lower limit of the corresponding value of the conditional expression (1) of the variable magnification optical system of the present application is below, it becomes difficult to suppress the variation of spherical aberration and astigmatism that occurs in the third lens group at the time of zooming or focusing. You will not be able to achieve high optical performance. In order to secure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (1) to 0.242.
On the other hand, if the corresponding value of the conditional expression (1) of the variable magnification optical system of the present application exceeds the upper limit value, the amount of movement of the third lens group at the time of focusing from an infinite object to a close object increases. As a result, the height from the optical axis of the light beam incident on the third lens group at the time of focusing largely fluctuates, so that fluctuations in spherical aberration and astigmatism increase, and high optical performance cannot be realized. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (1) to 0.385.

また、本願の変倍光学系は、第3レンズ群と固定レンズ群の間に配置され、屈折力が正の中間レンズ群を有することが望ましい。本願の変倍光学系は、第3レンズ群と固定レンズ群の間に配置される正屈折力の中間レンズ群を有することで、第3レンズ群の焦点距離を相対的に長くすることができ、変倍時に第3レンズ群で発生する球面収差や非点収差の変動を抑えることができる。   In addition, it is desirable that the variable magnification optical system of the present application has an intermediate lens group that is disposed between the third lens group and the fixed lens group and has a positive refractive power. The variable magnification optical system of the present application has an intermediate lens group with positive refractive power disposed between the third lens group and the fixed lens group, so that the focal length of the third lens group can be made relatively long. The variation of spherical aberration and astigmatism occurring in the third lens group during zooming can be suppressed.

また、本願の変倍光学系は、以下の条件式(2)を満足することが望ましい。
(2) −0.010 < (d3t−d3w)/ft < 0.130
但し、
ft:前記変倍光学系の望遠端状態における全系焦点距離、
d3w:広角端状態における前記第3レンズ群の最も像側のレンズ面から前記中間レンズ群の最も物体側のレンズ面までの光軸上の距離、
d3t:望遠端状態における前記第3レンズ群の最も像側のレンズ面から前記中間レンズ群の最も物体側のレンズ面までの光軸上の距離。
Moreover, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (2).
(2) -0.010 <(d3t-d3w) / ft <0.130
However,
ft: the total focal length in the telephoto end state of the variable magnification optical system,
d3w: the distance on the optical axis from the most image side lens surface of the third lens group to the most object side lens surface of the intermediate lens group in the wide-angle end state;
d3t: Distance on the optical axis from the most image-side lens surface of the third lens unit to the most object-side lens surface of the intermediate lens unit in the telephoto end state.

条件式(2)は、広角端状態から望遠端状態への変倍時における、第3レンズ群の最も像側のレンズ面から中間レンズ群の最も物体側のレンズ面までの光軸上の距離の適切な範囲を規定するものである。本願の変倍光学系は、条件式(2)を満足することにより、変倍時のコマ収差や非点収差の変動を抑えることができる。
本願の変倍光学系の条件式(2)の対応値が下限値を下回ると、変倍時に第3レンズ群で発生する非点収差の変動を抑えることが困難となり、高い光学性能を実現できなくなってしまう。なお、本願の効果をより確実にするため、条件式(2)の下限値を0.000とすることがより好ましい。
一方、本願の変倍光学系の条件式(2)の対応値の上限値を上回ると、変倍時に中間レンズ群で発生するコマ収差の変動を抑えることが困難となり、高い光学性能を実現できなくなってしまう。なお、本願の効果をより確実にするため、条件式(2)の上限値を0.065とすることがより好ましい。また、本願の効果をさらに確実にするため、条件式(2)の上限値を0.035とすることがさらに好ましい。
Conditional expression (2) is the distance on the optical axis from the most image side lens surface of the third lens unit to the most object side lens surface of the intermediate lens unit at the time of zooming from the wide-angle end state to the telephoto end state. It defines the appropriate range. The zooming optical system according to the present application can suppress fluctuations in coma and astigmatism during zooming by satisfying conditional expression (2).
If the corresponding value of conditional expression (2) of the variable magnification optical system of the present application is below the lower limit value, it becomes difficult to suppress fluctuations in astigmatism that occurs in the third lens group during zooming, and high optical performance can be realized. It will disappear. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (2) to 0.000.
On the other hand, if the upper limit of the corresponding value of conditional expression (2) of the variable magnification optical system of the present application is exceeded, it becomes difficult to suppress fluctuations in coma generated in the intermediate lens group at the time of zooming, and high optical performance can be realized. It will disappear. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (2) to 0.065. In order to further secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (2) to 0.035.

また、本願の変倍光学系は、第3レンズ群と固定レンズ群との間には、中間レンズ群のみが配置されることが望ましい。本願の変倍光学系は、第3レンズ群と固定レンズ群との間を中間レンズ群のみで構成することで、変倍光学系全体の群数を減らし、製造時にレンズ群間で発生する偏芯に起因する偏芯コマ収差などを相対的に小さく抑える事ができるようになり、高い光学性能の光学系を提供することができる。   In the variable magnification optical system of the present application, it is desirable that only the intermediate lens group is disposed between the third lens group and the fixed lens group. In the variable power optical system of the present application, the number of groups of the entire variable power optical system is reduced by forming only the intermediate lens group between the third lens group and the fixed lens group. The decentered coma aberration caused by the core can be kept relatively small, and an optical system with high optical performance can be provided.

また、本願の変倍光学系は、以下の条件式(3)を満足することが望ましい。
(3) 0.410 < f3/fim < 1.000
但し、
f3:前記第3レンズ群の焦点距離、
fim:前記中間レンズ群の焦点距離。
Further, it is desirable that the variable magnification optical system of the present application satisfies the following conditional expression (3).
(3) 0.410 <f3 / fim <1.00
However,
f3: focal length of the third lens group,
fim: focal length of the intermediate lens group.

条件式(3)は、第3レンズ群と中間レンズ群の適切な焦点距離比の範囲を規定するものである。本願の変倍光学系は、条件式(3)を満足することにより、変倍時の球面収差や非点収差の変動を抑えることができる。
本願の変倍光学系の条件式(3)の対応値が下限値を下回ると、変倍時に第3レンズ群で発生する球面収差や非点収差の変動を抑えることが困難となり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(3)の下限値を0.550とすることがより好ましい。
一方、本願の変倍光学系の条件式(3)の対応値が上限値を上回ると、変倍時に中間レンズ群で発生する球面収差や非点収差の変動を抑えることが困難となり、高い光学性能を実現できなくなってしまう。なお、本願の効果をより確実にするために、条件式(3)の上限値を0.880とすることがより好ましい。
Conditional expression (3) defines an appropriate focal length ratio range between the third lens group and the intermediate lens group. The variable magnification optical system of the present application can suppress the variation of spherical aberration and astigmatism during zooming by satisfying conditional expression (3).
If the corresponding value of conditional expression (3) of the variable magnification optical system of the present application is less than the lower limit value, it becomes difficult to suppress variations in spherical aberration and astigmatism that occur in the third lens group at the time of variable magnification, and high optical performance. Can not be realized. In order to secure the effect of the present application, it is more preferable to set the lower limit of conditional expression (3) to 0.550.
On the other hand, if the corresponding value of conditional expression (3) of the variable magnification optical system of the present application exceeds the upper limit value, it becomes difficult to suppress variations in spherical aberration and astigmatism that occur in the intermediate lens group at the time of zooming, and high optical Performance will not be realized. In order to secure the effect of the present application, it is more preferable to set the upper limit of conditional expression (3) to 0.880.

また、本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、中間レンズ群と固定レンズ群の間隔が増加することが望ましい。本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、中間レンズ群と固定レンズ群の間隔を増加させることで第3レンズ群と中間レンズ群の合成倍率を増倍することができ、高変倍比を効率的に実現しつつ変倍時に球面収差や非点収差の変動を抑える事ができる。   In the zoom optical system of the present application, it is desirable that the distance between the intermediate lens group and the fixed lens group is increased when zooming from the wide-angle end state to the telephoto end state. The zoom optical system of the present application increases the combined magnification of the third lens group and the intermediate lens group by increasing the distance between the intermediate lens group and the fixed lens group when zooming from the wide-angle end state to the telephoto end state. In addition, it is possible to suppress a change in spherical aberration and astigmatism during zooming while efficiently realizing a high zoom ratio.

また、本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔が増加することが望ましい。この構成により、第2レンズ群の倍率を増倍することができ、高変倍比を効率的に実現しつつ変倍時に球面収差の変動や非点収差の変動を抑えることができる。   In the zoom optical system of the present application, it is desirable that the distance between the first lens group and the second lens group is increased when zooming from the wide-angle end state to the telephoto end state. With this configuration, it is possible to increase the magnification of the second lens group, and it is possible to suppress fluctuations in spherical aberration and astigmatism during zooming while efficiently realizing a high zoom ratio.

また、本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第2レンズ群と前記第3レンズ群との間隔が減少することが望ましい。この構成により、第3レンズ群とそれ以降のレンズ群の合成倍率を増倍することができ、高変倍比を効率的に実現しつつ変倍時に球面収差の変動や非点収差の変動を抑えることができる。   In the zoom optical system of the present application, it is preferable that the distance between the second lens group and the third lens group is reduced when zooming from the wide-angle end state to the telephoto end state. With this configuration, the composite magnification of the third lens group and the subsequent lens groups can be increased, and the variation in spherical aberration and astigmatism during zooming can be achieved while efficiently realizing a high zoom ratio. Can be suppressed.

また、本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第3レンズ群と像面との間隔が増加することが望ましい。本願の変倍光学系は、変倍時に第3レンズ群と像面との間隔を増加させることで第3レンズ群とそれ以降のレンズ群の合成倍率を増倍することができ、高変倍比を効率的に実現しつつ変倍時に球面収差や非点収差の変動を抑える事ができる。   In the zoom optical system of the present application, it is desirable that the distance between the third lens group and the image plane is increased when zooming from the wide-angle end state to the telephoto end state. The variable power optical system of the present application can increase the combined magnification of the third lens group and the subsequent lens groups by increasing the distance between the third lens group and the image plane at the time of zooming. While realizing the ratio efficiently, it is possible to suppress fluctuations in spherical aberration and astigmatism during zooming.

また、本願の変倍光学系では、前記固定レンズ群は正屈折力を有することが望ましい。本願の変倍光学系では、固定レンズ群が正屈折力となることで、固定レンズ群の使用倍率は等倍より小さくなる。その結果、本願の変倍光学系は、固定レンズ群より物体側にあるレンズ群の合成焦点距離を相対的に長くでき、製造上発生する固定レンズ群より物体側にあるレンズ群の中のレンズ間の偏芯に起因する偏芯コマ収差などを相対的に小さく抑える事ができるようになり、高い光学性能を実現することができる。   In the variable magnification optical system of the present application, it is desirable that the fixed lens group has a positive refractive power. In the variable magnification optical system of the present application, the use magnification of the fixed lens group becomes smaller than the same magnification because the fixed lens group has positive refractive power. As a result, the variable magnification optical system of the present application can make the combined focal length of the lens group on the object side relatively longer than the fixed lens group, and the lens in the lens group on the object side than the fixed lens group generated in manufacturing. Eccentric coma due to decentration in the middle can be kept relatively small, and high optical performance can be realized.

また、本願の変倍光学系は、無限遠物体から近距離物体への合焦時に、前記第3レンズ群が像側へ移動することが望ましい。本願の変倍光学系は、合焦時に第3レンズ群を像側へ移動させることで無限遠物体から近距離物体への合焦を良好に行うことができる。   In the variable power optical system of the present application, it is desirable that the third lens group moves to the image side when focusing from an object at infinity to an object at a short distance. The variable magnification optical system of the present application can favorably focus from an object at infinity to a near object by moving the third lens group toward the image side during focusing.

本願の光学装置は、上述した構成の変倍光学系を有することを特徴としている。これにより、高変倍比を有し、小型で、高い光学性能を有する光学装置を実現することができる。   The optical device of the present application is characterized by having the variable magnification optical system having the above-described configuration. Thereby, an optical device having a high zoom ratio, a small size, and high optical performance can be realized.

本願の変倍光学系の製造方法は、物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群とを有する変倍光学系の製造方法であって、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と像面との間隔が変化するようにし、最も像側に、広角端状態から望遠端状態への変倍時に位置が固定の固定レンズ群を有するようにし、無限遠物体から近距離物体への合焦時に、前記第3レンズ群は光軸に沿って移動することを特徴とする。   The variable power optical system manufacturing method according to the present application includes, in order from the object side, a variable power optical system including a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens group having a positive refractive power. A manufacturing method of the system, wherein the distance between the first lens group and the second lens group and the distance between the second lens group and the third lens group at the time of zooming from the wide-angle end state to the telephoto end state The distance between the third lens group and the image plane is changed, and a fixed lens group whose position is fixed at the time of zooming from the wide-angle end state to the telephoto end state is arranged closest to the image side. The third lens group moves along the optical axis when focusing on an object from a short distance.

以下、本願の数値実施例に係る変倍光学系を添付図面に基づいて説明する。
(第1実施例)
図1(a)、図1(b)、図1(c)、図1(d)、及び図1(e)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、第2中間焦点距離状態、第3中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、中間レンズ群である正の屈折力を有する第4レンズ群G4と、固定レンズ群である正の屈折力を有する第5レンズ群G5とから構成されている。
Hereinafter, a variable magnification optical system according to numerical examples of the present application will be described with reference to the accompanying drawings.
(First embodiment)
1 (a), FIG. 1 (b), FIG. 1 (c), FIG. 1 (d), and FIG. 1 (e) are respectively the wide-angle end state of the variable magnification optical system according to the first example of the present application, It is sectional drawing in a 1st intermediate | middle focal distance state, a 2nd intermediate | middle focal distance state, a 3rd intermediate | middle focal distance state, and a telephoto end state.
The variable magnification optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power that is an intermediate lens group, and a fifth lens group G5 having a positive refractive power that is a fixed lens group.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と物体側に凹面を向けた負メニスカスレンズL24との接合レンズとからなる。なお、負メニスカスレンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
The first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. Become.
The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave negative lens L22, a biconvex positive lens L23, and a negative surface having a concave surface directed toward the object side. It consists of a cemented lens with a meniscus lens L24. The negative meniscus lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side.

第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合レンズからなる。なお、第3レンズ群G3の物体側には、開口絞りSが備えられている。
第4レンズ群G4は、物体側から順に、両凸形状の正レンズL41と両凹形状の負レンズL42との接合レンズと、両凸形状の正レンズL43と物体側に凹面を向けた負メニスカスレンズL44との接合レンズと、両凹形状の負レンズL45と両凸形状の正レンズL46との接合レンズと、両凸形状の正レンズL47と物体側に凹面を向けた負メニスカスレンズL48との接合レンズとからなる。なお、負メニスカスレンズL48は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
The third lens group G3 is composed of a cemented lens of a negative meniscus lens L31 having a convex surface directed toward the object side and a biconvex positive lens L32 in order from the object side. An aperture stop S is provided on the object side of the third lens group G3.
The fourth lens group G4 includes, in order from the object side, a cemented lens of a biconvex positive lens L41 and a biconcave negative lens L42, and a negative meniscus with a biconvex positive lens L43 and a concave meniscus facing the object side. A cemented lens with a lens L44, a cemented lens with a biconcave negative lens L45 and a biconvex positive lens L46, a biconvex positive lens L47, and a negative meniscus lens L48 with a concave surface facing the object side. It consists of a cemented lens. The negative meniscus lens L48 is a glass mold aspheric lens having an aspheric lens surface on the image side.

第5レンズ群G5は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL51と物体側に凹面を向けた負メニスカスレンズL52との接合レンズからなる。なお、負メニスカスレンズL52は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。   The fifth lens group G5 includes, in order from the object side, a cemented lens including a positive meniscus lens L51 having a concave surface facing the object side and a negative meniscus lens L52 having a concave surface facing the object side. The negative meniscus lens L52 is a glass mold aspheric lens having an aspheric lens surface on the image side.

以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔、第2レンズ群G2と第3レンズ群G3との空気間隔、第3レンズ群G3と第4レンズ群G4との空気間隔、及び第4レンズ群G4と第5レンズ群G5との空気間隔がそれぞれ変化するように、第1レンズ群G1〜第4レンズ群G4が光軸に沿って移動する。
詳細には、第1レンズ群G1、第3レンズ群G3及び第4レンズ群G4は変倍時に物体側へ移動する。第2レンズ群G2は、広角端状態から第3中間焦点距離状態まで物体側へ移動し、第3中間焦点距離状態から望遠端状態まで像側へ移動する。第5レンズ群G5は変倍時に光軸方向の位置が固定である。なお、開口絞りSは変倍時に第4レンズ群G4と一体的に物体側へ移動する。
また、無限遠物体から近距離物体への合焦は、第3レンズ群G3を光軸に沿って像面I側に移動させることで行う。
With the above-described configuration, in the zoom optical system according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 and the second lens group at the time of zooming from the wide-angle end state to the telephoto end state. The air gap between G2 and the third lens group G3, the air gap between the third lens group G3 and the fourth lens group G4, and the air gap between the fourth lens group G4 and the fifth lens group G5 are changed. The first lens group G1 to the fourth lens group G4 move along the optical axis.
Specifically, the first lens group G1, the third lens group G3, and the fourth lens group G4 move to the object side during zooming. The second lens group G2 moves toward the object side from the wide-angle end state to the third intermediate focal length state, and moves toward the image side from the third intermediate focal length state to the telephoto end state. The position of the fifth lens group G5 in the optical axis direction is fixed during zooming. The aperture stop S moves to the object side integrally with the fourth lens group G4 during zooming.
Further, focusing from an infinitely distant object to a close object is performed by moving the third lens group G3 to the image plane I side along the optical axis.

これにより、変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が増加し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第4レンズ群G4と第5レンズ群G5との空気間隔が増加する。第3レンズ群G3と第4レンズ群G4との空気間隔は、広角端状態から第1中間焦点距離状態まで増加し、第1中間焦点距離状態から第2中間焦点距離状態まで減少し、第2中間焦点距離状態から望遠端状態まで増加する。なお、変倍時に開口絞りSと第3レンズ群G3との空気間隔は、広角端状態から第1中間焦点距離状態まで減少し、第1中間焦点距離状態から第2中間焦点距離状態まで増加し、第2中間焦点距離状態から望遠端状態まで減少する。   Thereby, at the time of zooming, the air gap between the first lens group G1 and the second lens group G2 increases, the air gap between the second lens group G2 and the third lens group G3 decreases, and the fourth lens group G4. And the fifth lens group G5 increase in air space. The air gap between the third lens group G3 and the fourth lens group G4 increases from the wide-angle end state to the first intermediate focal length state, decreases from the first intermediate focal length state to the second intermediate focal length state, and second It increases from the intermediate focal length state to the telephoto end state. During zooming, the air gap between the aperture stop S and the third lens group G3 decreases from the wide-angle end state to the first intermediate focal length state and increases from the first intermediate focal length state to the second intermediate focal length state. , And decreases from the second intermediate focal length state to the telephoto end state.

以下の表1に、本実施例に係る変倍光学系の諸元の値を掲げる。
表1において、fは焦点距離、BFはバックフォーカス(最も像側のレンズ面と像面Iとの光軸上の距離)を示す。
[面データ]において、面番号は物体側から数えた光学面の順番、rは曲率半径、dは面間隔(第n面(nは整数)と第n+1面との間隔)、ndはd線(波長587.6nm)に対する屈折率、νdはd線(波長587.6nm)に対するアッベ数をそれぞれ示している。また、物面は物体面、可変は可変の面間隔、絞りSは開口絞りS、像面は像面Iをそれぞれ示している。なお、曲率半径r=∞は平面を示している。非球面は面番号に*を付して曲率半径rの欄に近軸曲率半径の値を示している。空気の屈折率nd=1.000000の記載は省略している。
Table 1 below lists values of specifications of the variable magnification optical system according to the present example.
In Table 1, f indicates the focal length, and BF indicates the back focus (the distance on the optical axis between the lens surface closest to the image side and the image plane I).
In [Surface data], the surface number is the order of the optical surfaces counted from the object side, r is the radius of curvature, d is the surface interval (the interval between the nth surface (n is an integer) and the n + 1th surface), and nd is The refractive index for d-line (wavelength 587.6 nm) and νd indicate the Abbe number for d-line (wavelength 587.6 nm), respectively. In addition, the object plane indicates the object plane, the variable indicates the variable plane spacing, the stop S indicates the aperture stop S, and the image plane indicates the image plane I. The radius of curvature r = ∞ indicates a plane. For the aspherical surface, * is added to the surface number, and the value of the paraxial radius of curvature is indicated in the column of the radius of curvature r. The description of the refractive index of air nd = 1.00000 is omitted.

[非球面データ]には、[面データ]に示した非球面について、その形状を次式で表した場合の非球面係数及び円錐定数を示す。
x=(h/r)/[1+{1−κ(h/r)1/2
+A4h+A6h+A8h+A10h10+A12h12
ここで、hを光軸に垂直な方向の高さ、xを高さhにおける非球面の頂点の接平面から当該非球面までの光軸方向に沿った距離(サグ量)、κを円錐定数、A4,A6,A8,A10,A12を非球面係数、rを基準球面の曲率半径(近軸曲率半径)とする。なお、「E−n」(nは整数)は「×10−n」を示し、例えば「1.234E-05」は「1.234×10−5」を示す。2次の非球面係数A2は0であり、記載を省略している。
[Aspherical data] shows an aspherical coefficient and a conic constant when the shape of the aspherical surface shown in [Surface data] is expressed by the following equation.
x = (h 2 / r) / [1+ {1−κ (h / r) 2 } 1/2 ]
+ A4h 4 + A6h 6 + A8h 8 + A10h 10 + A12h 12
Here, h is the height in the direction perpendicular to the optical axis, x is the distance (sag amount) from the tangent plane of the apex of the aspheric surface to the aspheric surface at the height h, and κ is the conic constant. , A4, A6, A8, A10, A12 are aspherical coefficients, and r is the radius of curvature of the reference sphere (paraxial radius of curvature). “E−n” (n is an integer) indicates “× 10 −n ”, for example “1.234E-05” indicates “1.234 × 10 −5 ”. The secondary aspherical coefficient A2 is 0 and is not shown.

[各種データ]において、FNOはFナンバー、ωは半画角(単位は「°」)、Yは像高、TLは変倍光学系の全長(無限遠物体合焦時の第1面から像面Iまでの光軸上の距離)、dnは第n面と第n+1面との可変の間隔、φは開口絞りSの絞り径をそれぞれ示す。なお、Wは広角端状態、M1は第1中間焦点距離状態、M2は第2中間焦点距離状態、M3は第3中間焦点距離状態、Tは望遠端状態をそれぞれ示す。
[合焦時の合焦群移動量]は、無限遠合焦状態から近距離合焦状態(撮影倍率-0.0100倍)への、合焦レンズ群(第3レンズ群)の移動量を示す。ここで、合焦レンズ群の移動方向は像側への移動を正とする。また撮影距離は、物体から像面までの距離を示す。
[レンズ群データ]には、各レンズ群の始面と焦点距離を示す。
[条件式対応値]には、本実施例に係る変倍光学系の各条件式の対応値を示す。
In [Various data], FNO is the F number, ω is the half angle of view (unit is “°”), Y is the image height, TL is the total length of the variable magnification optical system (image from the first surface when focusing on an object at infinity) (Distance on the optical axis to the surface I), dn represents the variable distance between the nth surface and the (n + 1) th surface, and φ represents the diameter of the aperture stop S. W represents the wide-angle end state, M1 represents the first intermediate focal length state, M2 represents the second intermediate focal length state, M3 represents the third intermediate focal length state, and T represents the telephoto end state.
[Focus group movement amount at the time of focusing] indicates the movement amount of the focusing lens group (third lens group) from the infinitely focused state to the short-distance focused state (imaging magnification: -0.0100 times). Here, the moving direction of the focusing lens group is positive when moving toward the image side. The shooting distance indicates the distance from the object to the image plane.
[Lens Group Data] indicates the start surface and focal length of each lens group.
[Conditional Expression Corresponding Value] shows the corresponding value of each conditional expression of the variable magnification optical system according to the present example.

ここで、表1に掲載されている焦点距離f、曲率半径r及びその他の長さの単位は一般に「mm」が使われる。しかしながら光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるため、これに限られるものではない。
なお、以上に述べた表1の符号は、後述する各実施例の表においても同様に用いるものとする。
Here, the focal length f, the radius of curvature r, and other length units listed in Table 1 are generally “mm”. However, the optical system is not limited to this because an equivalent optical performance can be obtained even when proportionally enlarged or proportionally reduced.
In addition, the code | symbol of Table 1 described above shall be similarly used also in the table | surface of each Example mentioned later.

(表1)第1実施例
[面データ]
面番号 r d nd νd
物面 ∞

1 165.4019 1.6350 1.902650 35.73
2 41.8893 9.2560 1.497820 82.57
3 -178.4364 0.1000
4 42.8430 5.1140 1.729160 54.61
5 515.0653 可変

*6 500.0000 1.0000 1.851350 40.10
7 9.0059 4.2479
8 -16.6413 1.0000 1.883000 40.66
9 50.8442 0.7538
10 32.1419 3.0566 1.808090 22.74
11 -18.1056 1.0000 1.883000 40.66
12 -29.3627 可変

13(絞りS) ∞ 可変

14 27.1583 1.0000 1.883000 40.66
15 14.3033 3.4259 1.593190 67.90
16 -43.0421 可変

17 12.5000 8.2427 1.670030 47.14
18 -79.2339 1.0000 1.883000 40.66
19 11.4345 2.0000
20 18.9834 3.3397 1.518600 69.89
21 -12.4126 1.0000 1.850260 32.35
22 -22.7118 1.5000
23 -46.2616 1.0000 1.902650 35.73
24 11.4391 3.5033 1.581440 40.98
25 -30.7870 0.1000
26 28.7953 5.0986 1.581440 40.98
27 -8.8012 1.0000 1.820800 42.71
*28 -35.2149 可変

29 -40.0000 1.6432 1.497820 82.57
30 -19.4318 1.0000 1.834410 37.28
*31 -22.7996 BF

像面 ∞

[非球面データ]
第6面
κ 11.00000
A4 3.95289E-05
A6 -2.04622E-07
A8 -4.81392E-09
A10 9.83575E-11
A12 -5.88880E-13

第28面
κ 1.0000
A4 -5.59168E-05
A6 -2.20298E-07
A8 3.87818E-10
A10 1.16318E-11
A12 0.00000

第31面
κ 1.00000
A4 2.65930E-05
A6 7.69228E-08
A8 -1.34346E-09
A10 0.00000
A12 0.00000

[各種データ]
変倍比 14.14

W T
f 9.47 〜 133.87
FNO 4.12 〜 5.78
ω 41.95 〜 3.27°
Y 8.00 〜 8.00
TL 112.25 〜 165.65

W M1 M2 M3 T
f 9.47002 17.83631 60.50026 90.50043 133.87072
ω 41.95497 23.18274 7.18201 4.82759 3.26779
FNO 4.12 5.24 5.77 5.77 5.78
φ 8.52 8.52 9.55 10.30 11.04
d5 2.10000 12.15693 36.10717 41.77210 46.27797
d12 24.77744 16.39929 5.66327 3.74451 2.20000
d13 5.18928 3.23115 4.53928 3.63928 1.80000
d16 2.25000 4.20813 2.90000 3.80000 5.63928
d28 1.86861 12.02032 28.59900 32.29005 33.66620
BF 14.04947 14.04956 14.04999 14.04993 14.05005

[合焦時の合焦群移動量]
W M1 M2 M3 T
撮影倍率 -0.0100 -0.0100 -0.0100 -0.0100 -0.0100
撮影距離 919.8426 1738.0661 5883.2483 8797.7469 12999.8339
移動量 0.1898 0.1340 0.1875 0.2426 0.3440

[レンズ群データ]
群 始面 f
1 1 68.08250
2 6 -9.98760
3 14 38.80284
4 17 60.78065
5 29 129.99998

[条件式対応値]
(1)f3/ft = 0.290
(2)(d3t−d3w)/ft = 0.025
(4)f3/f4(fim) = 0.638
(Table 1) First Example
[Surface data]
Surface number r d nd νd
Object ∞

1 165.4019 1.6350 1.902650 35.73
2 41.8893 9.2560 1.497820 82.57
3 -178.4364 0.1000
4 42.8430 5.1140 1.729160 54.61
5 515.0653 Variable

* 6 500.0000 1.0000 1.851350 40.10
7 9.0059 4.2479
8 -16.6413 1.0000 1.883000 40.66
9 50.8442 0.7538
10 32.1419 3.0566 1.808090 22.74
11 -18.1056 1.0000 1.883000 40.66
12 -29.3627 Variable

13 (Aperture S) ∞ Variable

14 27.1583 1.0000 1.883000 40.66
15 14.3033 3.4259 1.593190 67.90
16 -43.0421 Variable

17 12.5000 8.2427 1.670030 47.14
18 -79.2339 1.0000 1.883000 40.66
19 11.4345 2.0000
20 18.9834 3.3397 1.518600 69.89
21 -12.4126 1.0000 1.850260 32.35
22 -22.7118 1.5000
23 -46.2616 1.0000 1.902650 35.73
24 11.4391 3.5033 1.581440 40.98
25 -30.7870 0.1000
26 28.7953 5.0986 1.581440 40.98
27 -8.8012 1.0000 1.820800 42.71
* 28 -35.2149 Variable

29 -40.0000 1.6432 1.497820 82.57
30 -19.4318 1.0000 1.834410 37.28
* 31 -22.7996 BF

Image plane ∞

[Aspherical data]
6th surface κ 11.00000
A4 3.95289E-05
A6 -2.04622E-07
A8 -4.81392E-09
A10 9.83575E-11
A12 -5.88880E-13

No. 28 κ 1.0000
A4 -5.59168E-05
A6 -2.20298E-07
A8 3.87818E-10
A10 1.16318E-11
A12 0.00000

31st surface κ 1.00000
A4 2.65930E-05
A6 7.69228E-08
A8 -1.34346E-09
A10 0.00000
A12 0.00000

[Various data]
Scaling ratio 14.14

W T
f 9.47 to 133.87
FNO 4.12 to 5.78
ω 41.95 〜 3.27 °
Y 8.00-8.00
TL 112.25-165.65

W M1 M2 M3 T
f 9.47002 17.83631 60.50026 90.50043 133.87072
ω 41.95497 23.18274 7.18201 4.82759 3.26779
FNO 4.12 5.24 5.77 5.77 5.78
φ 8.52 8.52 9.55 10.30 11.04
d5 2.10000 12.15693 36.10717 41.77210 46.27797
d12 24.77744 16.39929 5.66327 3.74451 2.20000
d13 5.18928 3.23115 4.53928 3.63928 1.80000
d16 2.25000 4.20813 2.90000 3.80000 5.63928
d28 1.86861 12.02032 28.59900 32.29005 33.66620
BF 14.04947 14.04956 14.04999 14.04993 14.05005

[Focus group movement during focusing]
W M1 M2 M3 T
Shooting magnification -0.0100 -0.0100 -0.0100 -0.0100 -0.0100
Shooting distance 919.8426 1738.0661 5883.2483 8797.7469 12999.8339
Travel 0.1898 0.1340 0.1875 0.2426 0.3440

[Lens group data]
Group start surface f
1 1 68.08250
2 6 -9.98760
3 14 38.80284
4 17 60.78065
5 29 129.99998

[Conditional expression values]
(1) f3 / ft = 0.290
(2) (d3t−d3w) /ft=0.025
(4) f3 / f4 (fim) = 0.638

図2(a)、図2(b)、及び図2(c)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における無限遠物体合焦時の諸収差図である。
図3(a)、及び図3(b)はそれぞれ、本願の第1実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
図4(a)、図4(b)、及び図4(c)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における近距離物体合焦時(撮影倍率-0.0100倍)の諸収差図である。
図5(a)、及び図5(b)はそれぞれ、本願の第1実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における近距離物体合焦時(撮影倍率-0.0100倍)の諸収差図である。
FIGS. 2A, 2B, and 2C are respectively a wide-angle end state, a first intermediate focal length state, and a second intermediate focus of the zoom optical system according to the first example of the present application. It is an aberration diagram at the time of focusing on an object at infinity in the distance state.
FIGS. 3A and 3B are graphs showing various aberrations when the object at infinity is in focus in the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the first example of the present application, respectively. It is.
4 (a), 4 (b), and 4 (c) respectively show the wide-angle end state, the first intermediate focal length state, and the second intermediate focus of the variable magnification optical system according to the first example of the present application. FIG. 6 is a diagram showing various aberrations when focusing on a short-distance object in a distance state (imaging magnification: -0.0100 times).
FIGS. 5 (a) and 5 (b) respectively show the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the first example of the present application when focusing on a short-distance object (shooting magnification − It is an aberration diagram of (0.0100 times).

各収差図において、FNOはFナンバー、NAは第1レンズ群に入射する光線の開口数、Aは光線入射角即ち半画角(単位は「°」)、H0は物体高(単位:mm)をそれぞれ示す。dはd線(波長587.6nm)、gはg線(波長435.8nm)における収差をそれぞれ示し、d、gの記載のないものはd線における収差を示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、後述する各実施例の収差図においても、本実施例と同様の符号を用いる。   In each aberration diagram, FNO is the F number, NA is the numerical aperture of the light beam incident on the first lens group, A is the light beam incident angle, that is, the half field angle (unit is “°”), and H0 is the object height (unit: mm). Respectively. d indicates the aberration at the d-line (wavelength 587.6 nm), g indicates the aberration at the g-line (wavelength 435.8 nm), and those without d and g indicate the aberration at the d-line. In the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane. Note that the same reference numerals as in this embodiment are used in the aberration diagrams of each embodiment described later.

各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、高い光学性能を有していることがわかる。   From the respective aberration diagrams, it can be seen that the variable magnification optical system according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.

(第2実施例)
図6(a)、図6(b)、図6(c)、図6(d)、及び図6(e)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、第2中間焦点距離状態、第3中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、中間レンズ群である正の屈折力を有する第4レンズ群G4と、固定レンズ群である正の屈折力を有する第5レンズ群G5とから構成されている。
(Second embodiment)
6 (a), FIG. 6 (b), FIG. 6 (c), FIG. 6 (d), and FIG. 6 (e) are respectively the wide-angle end state of the variable magnification optical system according to the second example of the present application, It is sectional drawing in a 1st intermediate | middle focal distance state, a 2nd intermediate | middle focal distance state, a 3rd intermediate | middle focal distance state, and a telephoto end state.
The variable magnification optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power that is an intermediate lens group, and a fifth lens group G5 having a positive refractive power that is a fixed lens group.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と両凹形状の負レンズL24との接合レンズとからなる。なお、負メニスカスレンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
The first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. Become.
The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave negative lens L22, a biconvex positive lens L23, and a biconcave negative lens L24. The cemented lens. The negative meniscus lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side.

第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合レンズからなる。なお、第3レンズ群G3の物体側には、開口絞りSが備えられている。
第4レンズ群G4は、物体側から順に、物体側に凸面を向けた正メニスカスレンズL41と物体側に凸面を向けた負メニスカスレンズL42との接合レンズと、両凸形状の正レンズL43と物体側に凹面を向けた負メニスカスレンズL44との接合レンズと、両凹形状の負レンズL45と両凸形状の正レンズL46との接合レンズと、両凸形状の正レンズL47と物体側に凹面を向けた負メニスカスレンズL48との接合レンズとからなる。なお、負メニスカスレンズL48は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
The third lens group G3 is composed of a cemented lens of a negative meniscus lens L31 having a convex surface directed toward the object side and a biconvex positive lens L32 in order from the object side. An aperture stop S is provided on the object side of the third lens group G3.
In order from the object side, the fourth lens group G4 includes a cemented lens of a positive meniscus lens L41 having a convex surface directed toward the object side and a negative meniscus lens L42 having a convex surface directed toward the object side, a biconvex positive lens L43, and an object. A cemented lens with a negative meniscus lens L44 having a concave surface facing side, a cemented lens with a biconcave negative lens L45 and a biconvex positive lens L46, and a biconvex positive lens L47 and a concave surface on the object side. And a cemented lens with a negative meniscus lens L48 directed. The negative meniscus lens L48 is a glass mold aspheric lens having an aspheric lens surface on the image side.

第5レンズ群G5は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL51と物体側に凹面を向けた負メニスカスレンズL52との接合レンズからなる。なお、負メニスカスレンズL52は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。   The fifth lens group G5 includes, in order from the object side, a cemented lens including a positive meniscus lens L51 having a concave surface facing the object side and a negative meniscus lens L52 having a concave surface facing the object side. The negative meniscus lens L52 is a glass mold aspheric lens having an aspheric lens surface on the image side.

以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔、第2レンズ群G2と第3レンズ群G3との空気間隔、第3レンズ群G3と第4レンズ群G4との空気間隔、及び第4レンズ群G4と第5レンズ群G5との空気間隔がそれぞれ変化するように、第1レンズ群G1〜第4レンズ群G4が光軸に沿って移動する。
詳細には、第1レンズ群G1、第3レンズ群G3及び第4レンズ群G4は変倍時に物体側へ移動する。第2レンズ群G2は、広角端状態から第3中間焦点距離状態まで物体側へ移動し、第3中間焦点距離状態から望遠端状態まで像側へ移動する。第5レンズ群G5は変倍時に光軸方向の位置が固定である。なお、開口絞りSは変倍時に第4レンズ群G4と一体的に物体側へ移動する。
また、無限遠物体から近距離物体への合焦は、第3レンズ群G3を光軸に沿って像面I側に移動させることで行う。
With the above-described configuration, in the zoom optical system according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 and the second lens group at the time of zooming from the wide-angle end state to the telephoto end state. The air gap between G2 and the third lens group G3, the air gap between the third lens group G3 and the fourth lens group G4, and the air gap between the fourth lens group G4 and the fifth lens group G5 are changed. The first lens group G1 to the fourth lens group G4 move along the optical axis.
Specifically, the first lens group G1, the third lens group G3, and the fourth lens group G4 move to the object side during zooming. The second lens group G2 moves toward the object side from the wide-angle end state to the third intermediate focal length state, and moves toward the image side from the third intermediate focal length state to the telephoto end state. The position of the fifth lens group G5 in the optical axis direction is fixed during zooming. The aperture stop S moves to the object side integrally with the fourth lens group G4 during zooming.
Further, focusing from an infinitely distant object to a close object is performed by moving the third lens group G3 to the image plane I side along the optical axis.

これにより、変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が増加し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第4レンズ群G4と第5レンズ群G5との空気間隔が増加する。第3レンズ群G3と第4レンズ群G4との空気間隔は、広角端状態から第1中間焦点距離状態まで増加し、第1中間焦点距離状態から第2中間焦点距離状態まで減少し、第2中間焦点距離状態から望遠端状態まで増加する。なお、変倍時に開口絞りSと第3レンズ群G3との空気間隔は、広角端状態から第1中間焦点距離状態まで減少し、第1中間焦点距離状態から第2中間焦点距離状態まで増加し、第2中間焦点距離状態から望遠端状態まで減少する。
以下の表2に、本実施例に係る変倍光学系の諸元の値を掲げる。
Thereby, at the time of zooming, the air gap between the first lens group G1 and the second lens group G2 increases, the air gap between the second lens group G2 and the third lens group G3 decreases, and the fourth lens group G4. And the fifth lens group G5 increase in air space. The air gap between the third lens group G3 and the fourth lens group G4 increases from the wide-angle end state to the first intermediate focal length state, decreases from the first intermediate focal length state to the second intermediate focal length state, and second It increases from the intermediate focal length state to the telephoto end state. During zooming, the air gap between the aperture stop S and the third lens group G3 decreases from the wide-angle end state to the first intermediate focal length state and increases from the first intermediate focal length state to the second intermediate focal length state. , And decreases from the second intermediate focal length state to the telephoto end state.
Table 2 below provides values of specifications of the variable magnification optical system according to the present example.

(表2)第2実施例
[面データ]
面番号 r d nd νd
物面 ∞

1 149.1393 1.6350 1.902650 35.73
2 39.3210 9.1912 1.497820 82.57
3 -200.0000 0.1000
4 41.9637 5.4484 1.729160 54.61
5 1039.4250 可変

*6 500.0000 1.0000 1.851350 40.10
7 9.7424 3.8435
8 -27.3991 1.0000 1.883000 40.66
9 89.0051 0.2895
10 21.6984 3.7554 1.808090 22.74
11 -15.0205 1.0000 1.883000 40.66
12 103.6128 可変

13(絞りS) ∞ 可変

14 26.3876 1.0000 1.883000 40.66
15 13.2001 3.5030 1.593190 67.90
16 -39.4805 可変

17 12.5000 8.2088 1.743200 49.26
18 25.6321 1.0000 1.834000 37.18
19 9.6066 2.0000
20 17.4828 3.0696 1.516800 63.88
21 -13.7429 1.0000 1.850260 32.35
22 -25.6259 1.5000
23 -19.7745 1.0000 1.850260 32.35
24 12.4270 3.9453 1.620040 36.40
25 -17.2177 0.3559
26 44.5160 5.3272 1.581440 40.98
27 -8.1562 1.0000 1.820800 42.71
*28 -28.1926 可変

29 -40.0000 1.7646 1.497820 82.57
30 -18.8409 1.0000 1.834410 37.28
*31 -25.0038 BF

像面 ∞

[非球面データ]
第6面
κ 10.29120
A4 1.05982E-05
A6 1.47868E-07
A8 -6.64708E-09
A10 8.77431E-11
A12 -4.23990E-13

第28面
κ 1.0000
A4 -7.26393E-05
A6 -3.38257E-07
A8 1.26743E-09
A10 -2.83030E-11
A12 0.00000

第31面
κ 1.00000
A4 2.68564E-05
A6 7.91224E-08
A8 -8.06538E-10
A10 0.00000
A12 0.00000

[各種データ]
変倍比 14.13

W T
f 10.30 〜 145.50
FNO 4.08 〜 5.71
ω 39.62 〜 3.01°
Y 8.00 〜 8.00
TL 112.60 〜 162.60

W M1 M2 M3 T
f 10.30001 18.00395 60.55030 89.50052 145.50102
ω 39.61866 23.08393 7.20247 4.88583 3.00545
FNO 4.08 4.79 5.49 5.75 5.72
φ 9.01 9.02 9.02 9.26 10.08
d5 2.10000 11.86757 33.84673 38.94667 43.98780
d12 24.38938 17.21960 5.86923 4.42463 2.20000
d13 2.46923 1.80000 4.59702 3.69702 1.80000
d16 5.02779 5.69702 2.90000 3.80000 5.69702
d28 1.62642 10.35671 26.30176 30.05048 31.92800
BF 14.04946 14.04953 14.04979 14.04990 14.05006

[合焦時の合焦群移動量]
W M1 M2 M3 T
撮影倍率 -0.0100 -0.0100 -0.0100 -0.0100 -0.0100
撮影距離 1002.7184 1753.8805 5887.3315 8709.3640 14147.3818
移動量 0.1340 0.1142 0.1657 0.2131 0.3302

[レンズ群データ]
群 始面 f
1 1 64.91265
2 6 -9.00339
3 14 38.07719
4 17 46.69911
5 29 260.10501

[条件式対応値]
(1)f3/ft = 0.262
(2)(d3t−d3w)/ft = 0.005
(4)f3/f4(fim) = 0.815
(Table 2) Second Example
[Surface data]
Surface number r d nd νd
Object ∞

1 149.1393 1.6350 1.902650 35.73
2 39.3210 9.1912 1.497820 82.57
3 -200.0000 0.1000
4 41.9637 5.4484 1.729160 54.61
5 1039.4250 Variable

* 6 500.0000 1.0000 1.851350 40.10
7 9.7424 3.8435
8 -27.3991 1.0000 1.883000 40.66
9 89.0051 0.2895
10 21.6984 3.7554 1.808090 22.74
11 -15.0205 1.0000 1.883000 40.66
12 103.6128 Variable

13 (Aperture S) ∞ Variable

14 26.3876 1.0000 1.883000 40.66
15 13.2001 3.5030 1.593190 67.90
16 -39.4805 Variable

17 12.5000 8.2088 1.743200 49.26
18 25.6321 1.0000 1.834000 37.18
19 9.6066 2.0000
20 17.4828 3.0696 1.516800 63.88
21 -13.7429 1.0000 1.850260 32.35
22 -25.6259 1.5000
23 -19.7745 1.0000 1.850260 32.35
24 12.4270 3.9453 1.620040 36.40
25 -17.2177 0.3559
26 44.5160 5.3272 1.581440 40.98
27 -8.1562 1.0000 1.820800 42.71
* 28 -28.1926 Variable

29 -40.0000 1.7646 1.497820 82.57
30 -18.8409 1.0000 1.834410 37.28
* 31 -25.0038 BF

Image plane ∞

[Aspherical data]
6th surface κ 10.29120
A4 1.05982E-05
A6 1.47868E-07
A8 -6.64708E-09
A10 8.77431E-11
A12 -4.23990E-13

No. 28 κ 1.0000
A4 -7.26393E-05
A6 -3.38257E-07
A8 1.26743E-09
A10 -2.83030E-11
A12 0.00000

31st surface κ 1.00000
A4 2.68564E-05
A6 7.91224E-08
A8 -8.06538E-10
A10 0.00000
A12 0.00000

[Various data]
Scaling ratio 14.13

W T
f 10.30 to 145.50
FNO 4.08 to 5.71
ω 39.62 to 3.01 °
Y 8.00-8.00
TL 112.60-162.60

W M1 M2 M3 T
f 10.30001 18.00395 60.55030 89.50052 145.50102
ω 39.61866 23.08393 7.20247 4.88583 3.00545
FNO 4.08 4.79 5.49 5.75 5.72
φ 9.01 9.02 9.02 9.26 10.08
d5 2.10000 11.86757 33.84673 38.94667 43.98780
d12 24.38938 17.21960 5.86923 4.42463 2.20000
d13 2.46923 1.80000 4.59702 3.69702 1.80000
d16 5.02779 5.69702 2.90000 3.80000 5.69702
d28 1.62642 10.35671 26.30176 30.05048 31.92800
BF 14.04946 14.04953 14.04979 14.04990 14.05006

[Focus group movement during focusing]
W M1 M2 M3 T
Shooting magnification -0.0100 -0.0100 -0.0100 -0.0100 -0.0100
Shooting distance 1002.7184 1753.8805 5887.3315 8709.3640 14147.3818
Travel 0.1340 0.1142 0.1657 0.2131 0.3302

[Lens group data]
Group start surface f
1 1 64.91265
2 6 -9.00339
3 14 38.07719
4 17 46.69911
5 29 260.10501

[Conditional expression values]
(1) f3 / ft = 0.262
(2) (d3t−d3w) /ft=0.005
(4) f3 / f4 (fim) = 0.815

図7(a)、図7(b)、及び図7(c)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における無限遠物体合焦時の諸収差図である。
図8(a)、及び図8(b)はそれぞれ、本願の第2実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
図9(a)、図9(b)、及び図9(c)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における近距離物体合焦時(撮影倍率-0.0100倍)の諸収差図である。
図10(a)、及び図10(b)はそれぞれ、本願の第2実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における近距離物体合焦時(撮影倍率-0.0100倍)の諸収差図である。
FIGS. 7A, 7B, and 7C are respectively a wide-angle end state, a first intermediate focal length state, and a second intermediate focus of the zoom optical system according to the second example of the present application. It is an aberration diagram at the time of focusing on an object at infinity in the distance state.
FIGS. 8A and 8B are graphs showing various aberrations when focusing on an object at infinity in the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the second example of the present application, respectively. It is.
FIGS. 9A, 9B, and 9C are respectively a wide-angle end state, a first intermediate focal length state, and a second intermediate focus of the variable magnification optical system according to the second example of the present application. FIG. 6 is a diagram showing various aberrations when focusing on a short-distance object in a distance state (imaging magnification: -0.0100 times).
FIGS. 10 (a) and 10 (b) respectively show the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the second example of the present application at the time of focusing on a short distance object (imaging magnification − It is an aberration diagram of (0.0100 times).

各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、高い光学性能を有していることがわかる。   From the respective aberration diagrams, it can be seen that the variable magnification optical system according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.

(第3実施例)
図11(a)、図11(b)、図11(c)、図11(d)、及び図11(e)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、第2中間焦点距離状態、第3中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、中間レンズ群である正の屈折力を有する第4レンズ群G4と、固定レンズ群である正の屈折力を有する第5レンズ群G5とから構成されている。
(Third embodiment)
11 (a), FIG. 11 (b), FIG. 11 (c), FIG. 11 (d), and FIG. 11 (e) are respectively the wide-angle end state of the variable magnification optical system according to the third example of the present application, It is sectional drawing in a 1st intermediate | middle focal distance state, a 2nd intermediate | middle focal distance state, a 3rd intermediate | middle focal distance state, and a telephoto end state.
The variable magnification optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power that is an intermediate lens group, and a fifth lens group G5 having a positive refractive power that is a fixed lens group.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と物体側に凹面を向けた負メニスカスレンズL24との接合レンズとからなる。なお、負メニスカスレンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
The first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. Become.
The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave negative lens L22, a biconvex positive lens L23, and a negative surface having a concave surface directed toward the object side. It consists of a cemented lens with a meniscus lens L24. The negative meniscus lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side.

第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合レンズからなる。なお、第3レンズ群G3の物体側には、開口絞りSが備えられている。
第4レンズ群G4は、物体側から順に、両凸形状の正レンズL41と両凹形状の負レンズL42との接合レンズと、両凸形状の正レンズL43と物体側に凹面を向けた負メニスカスレンズL44との接合レンズと、両凹形状の負レンズL45と両凸形状の正レンズL46との接合レンズと、両凸形状の正レンズL47と物体側に凹面を向けた負メニスカスレンズL48との接合レンズとからなる。なお、負メニスカスレンズL48は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
The third lens group G3 is composed of a cemented lens of a negative meniscus lens L31 having a convex surface directed toward the object side and a biconvex positive lens L32 in order from the object side. An aperture stop S is provided on the object side of the third lens group G3.
The fourth lens group G4 includes, in order from the object side, a cemented lens of a biconvex positive lens L41 and a biconcave negative lens L42, and a negative meniscus with a biconvex positive lens L43 and a concave meniscus facing the object side. A cemented lens with a lens L44, a cemented lens with a biconcave negative lens L45 and a biconvex positive lens L46, a biconvex positive lens L47, and a negative meniscus lens L48 with a concave surface facing the object side. It consists of a cemented lens. The negative meniscus lens L48 is a glass mold aspheric lens having an aspheric lens surface on the image side.

第5レンズ群G5は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL51と物体側に凹面を向けた負メニスカスレンズL52との接合レンズからなる。なお、負メニスカスレンズL52は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。   The fifth lens group G5 includes, in order from the object side, a cemented lens including a positive meniscus lens L51 having a concave surface facing the object side and a negative meniscus lens L52 having a concave surface facing the object side. The negative meniscus lens L52 is a glass mold aspheric lens having an aspheric lens surface on the image side.

以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔、第2レンズ群G2と第3レンズ群G3との空気間隔、第3レンズ群G3と第4レンズ群G4との空気間隔、及び第4レンズ群G4と第5レンズ群G5との空気間隔がそれぞれ変化するように、第1レンズ群G1〜第4レンズ群G4が光軸に沿って物体側へ移動する。第5レンズ群G5は変倍時に光軸方向の位置が固定である。なお、開口絞りSは変倍時に第4レンズ群G4と一体的に物体側へ移動する。
また、無限遠物体から近距離物体への合焦は、第3レンズ群G3を光軸に沿って像面I側に移動させることで行う。
With the above-described configuration, in the zoom optical system according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 and the second lens group at the time of zooming from the wide-angle end state to the telephoto end state. The air gap between G2 and the third lens group G3, the air gap between the third lens group G3 and the fourth lens group G4, and the air gap between the fourth lens group G4 and the fifth lens group G5 are changed. The first lens group G1 to the fourth lens group G4 move toward the object side along the optical axis. The position of the fifth lens group G5 in the optical axis direction is fixed during zooming. The aperture stop S moves to the object side integrally with the fourth lens group G4 during zooming.
Further, focusing from an infinitely distant object to a close object is performed by moving the third lens group G3 to the image plane I side along the optical axis.

詳細には、変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が増加し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第4レンズ群G4と第5レンズ群G5との空気間隔が増加する。第3レンズ群G3と第4レンズ群G4との空気間隔は、広角端状態から第1中間焦点距離状態まで増加し、第1中間焦点距離状態から第2中間焦点距離状態まで減少し、第2中間焦点距離状態から望遠端状態まで増加する。なお、変倍時に開口絞りSと第3レンズ群G3との空気間隔は、広角端状態から第1中間焦点距離状態まで減少し、第1中間焦点距離状態から第2中間焦点距離状態まで増加し、第2中間焦点距離状態から望遠端状態まで減少する。
以下の表3に、本実施例に係る変倍光学系の諸元の値を掲げる。
Specifically, during zooming, the air gap between the first lens group G1 and the second lens group G2 increases, the air gap between the second lens group G2 and the third lens group G3 decreases, and the fourth lens group. The air space between G4 and the fifth lens group G5 increases. The air gap between the third lens group G3 and the fourth lens group G4 increases from the wide-angle end state to the first intermediate focal length state, decreases from the first intermediate focal length state to the second intermediate focal length state, and second It increases from the intermediate focal length state to the telephoto end state. During zooming, the air gap between the aperture stop S and the third lens group G3 decreases from the wide-angle end state to the first intermediate focal length state and increases from the first intermediate focal length state to the second intermediate focal length state. , And decreases from the second intermediate focal length state to the telephoto end state.
Table 3 below lists values of specifications of the variable magnification optical system according to the present example.

(表3)第3実施例
[面データ]
面番号 r d nd νd
物面 ∞

1 142.4935 1.6350 1.950000 29.37
2 42.2502 8.5971 1.497820 82.57
3 -244.5599 0.1000
4 43.5280 4.7901 1.834810 42.73
5 290.5464 可変

*6 500.0000 1.0000 1.851350 40.10
7 9.0471 4.3168
8 -20.3544 1.0000 1.903660 31.27
9 42.4575 0.7313
10 28.0881 4.0634 1.808090 22.74
11 -12.5975 1.0000 1.883000 40.66
12 -38.6924 可変

13(絞りS) ∞ 可変

14 31.6163 1.0000 1.883000 40.66
15 15.7262 3.3464 1.593190 67.90
16 -39.3012 可変

17 13.5000 9.6782 1.717000 47.98
18 -38.7323 1.0000 1.883000 40.66
19 11.8099 2.0000
20 19.9976 3.2554 1.516800 63.88
21 -12.0110 1.0000 1.850260 32.35
22 -20.9691 1.5000
23 -39.8308 1.0000 1.950000 29.37
24 10.4776 3.5701 1.672700 32.19
25 -30.1182 0.5349
26 36.6513 5.1773 1.581440 40.98
27 -8.5118 1.0000 1.820800 42.71
*28 -28.2741 可変

29 -40.0000 1.9141 1.497820 82.57
30 -18.1052 1.0000 1.834410 37.28
*31 -22.6207 BF

像面 ∞

[非球面データ]
第6面
κ -3.81950
A4 4.21558E-05
A6 -2.17082E-07
A8 -2.45102E-09
A10 5.51411E-11
A12 -2.85950E-13

第28面
κ 1.0000
A4 -6.70317E-05
A6 -2.82990E-07
A8 5.39592E-10
A10 -1.47007E-11
A12 0.00000

第31面
κ 1.00000
A4 2.67692E-05
A6 2.52197E-08
A8 -6.04092E-10
A10 0.00000
A12 0.00000

[各種データ]
変倍比 14.13

W T
f 9.27 〜 130.95
FNO 4.11 〜 5.71
ω 42.66 〜 3.37°
Y 8.00 〜 8.00
TL 113.35 〜 167.85

W M1 M2 M3 T
f 9.27001 17.98649 60.50024 89.50040 130.95047
ω 42.66459 22.98882 7.25983 4.93130 3.37079
FNO 4.11 5.12 5.73 5.75 5.71
φ 8.59 8.59 9.57 10.18 11.03
d5 2.10000 14.22823 35.96983 41.57489 45.70436
d12 24.57776 16.27840 5.38702 3.71762 2.20000
d13 5.01075 3.17327 4.36075 3.46075 1.80000
d16 2.25000 4.08748 2.90000 3.80000 5.46075
d28 1.15583 11.01481 29.01229 32.10086 34.42483
BF 14.04945 14.04946 14.04979 14.04987 14.04999

[合焦時の合焦群移動量]
W M1 M2 M3 T
撮影倍率 -0.0100 -0.0100 -0.0100 -0.0100 -0.0100
撮影距離 901.3901 1749.0924 5884.2963 8698.3557 12722.0798
移動量 0.1657 0.1331 0.1783 0.2359 0.3221

[レンズ群データ]
群 始面 f
1 1 67.49208
2 6 -9.52181
3 14 41.09622
4 17 53.39457
5 29 147.67270

[条件式対応値]
(1)f3/ft = 0.314
(2)(d3t−d3w)/ft = 0.025
(4)f3/f4(fim) = 0.770
(Table 3) Third Example
[Surface data]
Surface number r d nd νd
Object ∞

1 142.4935 1.6350 1.950000 29.37
2 42.2502 8.5971 1.497820 82.57
3 -244.5599 0.1000
4 43.5280 4.7901 1.834810 42.73
5 290.5464 Variable

* 6 500.0000 1.0000 1.851350 40.10
7 9.0471 4.3168
8 -20.3544 1.0000 1.903660 31.27
9 42.4575 0.7313
10 28.0881 4.0634 1.808090 22.74
11 -12.5975 1.0000 1.883000 40.66
12 -38.6924 Variable

13 (Aperture S) ∞ Variable

14 31.6163 1.0000 1.883000 40.66
15 15.7262 3.3464 1.593190 67.90
16 -39.3012 variable

17 13.5000 9.6782 1.717000 47.98
18 -38.7323 1.0000 1.883000 40.66
19 11.8099 2.0000
20 19.9976 3.2554 1.516800 63.88
21 -12.0110 1.0000 1.850260 32.35
22 -20.9691 1.5000
23 -39.8308 1.0000 1.950000 29.37
24 10.4776 3.5701 1.672700 32.19
25 -30.1182 0.5349
26 36.6513 5.1773 1.581440 40.98
27 -8.5118 1.0000 1.820800 42.71
* 28 -28.2741 Variable

29 -40.0000 1.9141 1.497820 82.57
30 -18.1052 1.0000 1.834410 37.28
* 31 -22.6207 BF

Image plane ∞

[Aspherical data]
6th surface κ -3.81950
A4 4.21558E-05
A6 -2.17082E-07
A8 -2.45102E-09
A10 5.51411E-11
A12 -2.85950E-13

No. 28 κ 1.0000
A4 -6.70317E-05
A6 -2.82990E-07
A8 5.39592E-10
A10 -1.47007E-11
A12 0.00000

31st surface κ 1.00000
A4 2.67692E-05
A6 2.52197E-08
A8 -6.04092E-10
A10 0.00000
A12 0.00000

[Various data]
Scaling ratio 14.13

W T
f 9.27 to 130.95
FNO 4.11 to 5.71
ω 42.66-3.37 °
Y 8.00-8.00
TL 113.35-167.85

W M1 M2 M3 T
f 9.27001 17.98649 60.50024 89.50040 130.95047
ω 42.66459 22.98882 7.25983 4.93130 3.37079
FNO 4.11 5.12 5.73 5.75 5.71
φ 8.59 8.59 9.57 10.18 11.03
d5 2.10000 14.22823 35.96983 41.57489 45.70436
d12 24.57776 16.27840 5.38702 3.71762 2.20000
d13 5.01075 3.17327 4.36075 3.46075 1.80000
d16 2.25000 4.08748 2.90000 3.80000 5.46075
d28 1.15583 11.01481 29.01229 32.10086 34.42483
BF 14.04945 14.04946 14.04979 14.04987 14.04999

[Focus group movement during focusing]
W M1 M2 M3 T
Shooting magnification -0.0100 -0.0100 -0.0100 -0.0100 -0.0100
Shooting distance 901.3901 1749.0924 5884.2963 8698.3557 12722.0798
Travel 0.1657 0.1331 0.1783 0.2359 0.3221

[Lens group data]
Group start surface f
1 1 67.49208
2 6 -9.52181
3 14 41.09622
4 17 53.39457
5 29 147.67270

[Conditional expression values]
(1) f3 / ft = 0.314
(2) (d3t−d3w) /ft=0.025
(4) f3 / f4 (fim) = 0.770

図12(a)、図12(b)、及び図12(c)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における無限遠物体合焦時の諸収差図である。
図13(a)、及び図13(b)はそれぞれ、本願の第3実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
図14(a)、図14(b)、及び図14(c)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における近距離物体合焦時(撮影倍率-0.0100倍)の諸収差図である。
図15(a)、及び図15(b)はそれぞれ、本願の第3実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における近距離物体合焦時(撮影倍率-0.0100倍)の諸収差図である。
12 (a), 12 (b), and 12 (c) respectively show the wide-angle end state, the first intermediate focal length state, and the second intermediate focus of the zoom optical system according to the third example of the present application. It is an aberration diagram at the time of focusing on an infinity object in the distance state.
FIGS. 13A and 13B are graphs showing various aberrations when focusing on an object at infinity in the third intermediate focal length state and the telephoto end state of the zoom optical system according to the third example of the present application, respectively. It is.
FIGS. 14A, 14B, and 14C are respectively a wide-angle end state, a first intermediate focal length state, and a second intermediate focus of the variable magnification optical system according to the third example of the present application. FIG. 6 is a diagram showing various aberrations when focusing on a short-distance object in a distance state (imaging magnification: -0.0100 times).
FIGS. 15 (a) and 15 (b) respectively show the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the third example of the present application at the time of focusing on a short distance object (imaging magnification − It is an aberration diagram of (0.0100 times).

各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、高い光学性能を有していることがわかる。   From the respective aberration diagrams, it can be seen that the variable magnification optical system according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.

(第4実施例)
図16(a)、図16(b)、図16(c)、図16(d)、及び図16(e)はそれぞれ、本願の第4実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、第2中間焦点距離状態、第3中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、中間レンズ群である正の屈折力を有する第4レンズ群G4と、固定レンズ群である正の屈折力を有する第5レンズ群G5とから構成されている。
(Fourth embodiment)
16 (a), FIG. 16 (b), FIG. 16 (c), FIG. 16 (d), and FIG. 16 (e) are respectively the wide-angle end state of the variable magnification optical system according to the fourth example of the present application, It is sectional drawing in a 1st intermediate | middle focal distance state, a 2nd intermediate | middle focal distance state, a 3rd intermediate | middle focal distance state, and a telephoto end state.
The variable magnification optical system according to the present example includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens having a positive refractive power. The lens group G3 includes a fourth lens group G4 having a positive refractive power that is an intermediate lens group, and a fifth lens group G5 having a positive refractive power that is a fixed lens group.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と両凹形状の負レンズL24との接合レンズとからなる。なお、負メニスカスレンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
The first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. Become.
The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave negative lens L22, a biconvex positive lens L23, and a biconcave negative lens L24. The cemented lens. The negative meniscus lens L21 is a glass mold aspheric lens having an aspheric lens surface on the object side.

第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合レンズからなる。なお、第3レンズ群G3の物体側には、開口絞りSが備えられている。
第4レンズ群G4は、物体側から順に、物体側に凸面を向けた正メニスカスレンズL41と物体側に凸面を向けた負メニスカスレンズL42との接合レンズと、両凸形状の正レンズL43と物体側に凹面を向けた負メニスカスレンズL44との接合レンズと、両凹形状の負レンズL45と、両凸形状の正レンズL46と物体側に凹面を向けた負メニスカスレンズL47との接合レンズとからなる。なお、負レンズL45は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズであり、負メニスカスレンズL47は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
The third lens group G3 is composed of a cemented lens of a negative meniscus lens L31 having a convex surface directed toward the object side and a biconvex positive lens L32 in order from the object side. An aperture stop S is provided on the object side of the third lens group G3.
In order from the object side, the fourth lens group G4 includes a cemented lens of a positive meniscus lens L41 having a convex surface directed toward the object side and a negative meniscus lens L42 having a convex surface directed toward the object side, a biconvex positive lens L43, and an object. A cemented lens with a negative meniscus lens L44 with a concave surface facing the side, a biconcave negative lens L45, a cemented lens with a biconvex positive lens L46 and a negative meniscus lens L47 with a concave surface facing the object side Become. The negative lens L45 is a glass mold aspheric lens having an aspheric lens surface on the object side, and the negative meniscus lens L47 is a glass mold aspheric lens having an aspheric lens surface on the image side.

第5レンズ群G5は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL51と物体側に凹面を向けた負メニスカスレンズL52との接合レンズからなる。なお、負メニスカスレンズL52は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。   The fifth lens group G5 includes, in order from the object side, a cemented lens including a positive meniscus lens L51 having a concave surface facing the object side and a negative meniscus lens L52 having a concave surface facing the object side. The negative meniscus lens L52 is a glass mold aspheric lens having an aspheric lens surface on the image side.

以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔、第2レンズ群G2と第3レンズ群G3との空気間隔、第3レンズ群G3と第4レンズ群G4との空気間隔、及び第4レンズ群G4と第5レンズ群G5との空気間隔がそれぞれ変化するように、第1レンズ群G1〜第4レンズ群G4が光軸に沿って移動する。
詳細には、第1レンズ群G1、第3レンズ群G3及び第4レンズ群G4は変倍時に物体側へ移動する。第2レンズ群G2は、広角端状態から第2中間焦点距離状態まで物体側へ移動し、第2中間焦点距離状態から第3中間焦点距離状態まで像側へ移動し、第3中間焦点距離状態から望遠端状態まで物体側へ移動する。第5レンズ群G5は変倍時に光軸方向の位置が固定である。なお、開口絞りSは変倍時に第4レンズ群G4と一体的に物体側へ移動する。
また、無限遠物体から近距離物体への合焦は、第3レンズ群G3を光軸に沿って像面I側に移動させることで行う。
With the above-described configuration, in the zoom optical system according to the present embodiment, the air gap between the first lens group G1 and the second lens group G2 and the second lens group at the time of zooming from the wide-angle end state to the telephoto end state. The air gap between G2 and the third lens group G3, the air gap between the third lens group G3 and the fourth lens group G4, and the air gap between the fourth lens group G4 and the fifth lens group G5 are changed. The first lens group G1 to the fourth lens group G4 move along the optical axis.
Specifically, the first lens group G1, the third lens group G3, and the fourth lens group G4 move to the object side during zooming. The second lens group G2 moves toward the object side from the wide-angle end state to the second intermediate focal length state, moves toward the image side from the second intermediate focal length state to the third intermediate focal length state, and is in the third intermediate focal length state. To the telephoto end state. The position of the fifth lens group G5 in the optical axis direction is fixed during zooming. The aperture stop S moves to the object side integrally with the fourth lens group G4 during zooming.
Further, focusing from an infinitely distant object to a close object is performed by moving the third lens group G3 to the image plane I side along the optical axis.

これにより、変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が増加し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第4レンズ群G4と第5レンズ群G5との空気間隔が増加する。第3レンズ群G3と第4レンズ群G4との空気間隔は、広角端状態から第1中間焦点距離状態まで増加し、第1中間焦点距離状態から第2中間焦点距離状態まで減少し、第2中間焦点距離状態から望遠端状態まで増加する。なお、変倍時に開口絞りSと第3レンズ群G3との空気間隔は、広角端状態から第1中間焦点距離状態まで減少し、第1中間焦点距離状態から第2中間焦点距離状態まで増加し、第2中間焦点距離状態から望遠端状態まで減少する。
以下の表4に、本実施例に係る変倍光学系の諸元の値を掲げる。
Thereby, at the time of zooming, the air gap between the first lens group G1 and the second lens group G2 increases, the air gap between the second lens group G2 and the third lens group G3 decreases, and the fourth lens group G4. And the fifth lens group G5 increase in air space. The air gap between the third lens group G3 and the fourth lens group G4 increases from the wide-angle end state to the first intermediate focal length state, decreases from the first intermediate focal length state to the second intermediate focal length state, and second It increases from the intermediate focal length state to the telephoto end state. During zooming, the air gap between the aperture stop S and the third lens group G3 decreases from the wide-angle end state to the first intermediate focal length state and increases from the first intermediate focal length state to the second intermediate focal length state. , And decreases from the second intermediate focal length state to the telephoto end state.
Table 4 below lists values of specifications of the variable magnification optical system according to the present example.

(表4)第4実施例
[面データ]
面番号 r d nd νd
物面 ∞

1 128.2103 1.6350 1.950000 29.37
2 42.8046 8.6432 1.497820 82.57
3 -200.0000 0.1000
4 42.6819 4.9663 1.816000 46.59
5 290.0414 可変

*6 500.0000 1.0000 1.851350 40.10
7 9.6706 3.8612
8 -31.6340 1.0000 1.883000 40.66
9 50.5774 0.3860
10 20.2802 4.0969 1.808090 22.74
11 -12.7389 1.0000 1.902650 35.73
12 182.6358 可変

13(絞りS) ∞ 可変

14 22.0943 1.0000 1.883000 40.66
15 12.0211 3.4295 1.593190 67.90
16 -54.4618 可変

17 13.5315 7.0129 1.816000 46.59
18 20.2242 1.0000 1.850260 32.35
19 10.9126 2.0000
20 18.6799 3.1628 1.516800 63.88
21 -12.1205 1.0000 1.850260 32.35
22 -21.9214 1.5000
*23 -2373.2040 1.0000 1.806100 40.71
24 15.4976 2.3426
25 18.1342 5.9256 1.567320 42.58
26 -8.0000 1.0000 1.851350 40.10
*27 -22.6238 可変

28 -75.6072 2.0606 1.497820 82.57
29 -18.0744 1.0000 1.834410 37.28
*30 -25.8110 BF

像面 ∞

[非球面データ]
第6面
κ -9.00000
A4 1.14894E-05
A6 2.79933E-07
A8 -1.11589E-08
A10 1.42629E-10
A12 -6.44930E-13

第23面
κ 1.00000
A4 -3.10495E-05
A6 4.64001E-07
A8 -2.52074E-09
A10 1.73753E-10
A12 0.00000

第27面
κ 1.0000
A4 -5.63578E-05
A6 -8.97938E-08
A8 1.47935E-09
A10 -1.36135E-11
A12 0.00000

第30面
κ 1.00000
A4 2.81743E-05
A6 -2.96842E-08
A8 -7.80468E-10
A10 0.00000
A12 0.00000

[各種データ]
変倍比 14.13

W T
f 10.30 〜 145.50
FNO 4.12 〜 5.77
ω 39.65 〜 3.02°
Y 8.00 〜 8.00
TL 107.35 〜 157.35

W M1 M2 M3 T
f 10.30004 17.99586 60.49785 100.49280 145.50011
ω 39.65487 23.02121 7.21558 4.36760 3.01679
FNO 4.12 4.94 5.67 5.75 5.77
φ 8.34 8.34 9.08 9.22 10.26
d5 2.10000 12.12447 32.02336 38.52508 41.21393
d12 22.23850 16.63220 7.10168 3.99200 2.20000
d13 3.91359 2.69844 3.58860 3.47054 1.80000
d16 3.65694 4.87210 3.98194 4.10000 5.77054
d27 1.26857 9.13237 25.54504 27.42933 32.19314
BF 14.04952 14.04918 14.04790 14.04914 14.04886

[合焦時の合焦群移動量]
W M1 M2 M3 T
撮影倍率 -0.0100 -0.0100 -0.0100 -0.0100 -0.0100
撮影距離 1002.8412 1751.1017 5887.3639 9762.4492 14160.5711
移動量 0.1413 0.1262 0.1768 0.2719 0.3338

[レンズ群データ]
群 始面 f
1 1 62.23195
2 6 -9.03822
3 14 37.53030
4 17 49.24516
5 28 130.00164

[条件式対応値]
(1)f3/ft = 0.258
(2)(d3T−d3W)/ft = 0.015
(4)f3/f4(fim) = 0.762
(Table 4) Fourth Example
[Surface data]
Surface number r d nd νd
Object ∞

1 128.2103 1.6350 1.950000 29.37
2 42.8046 8.6432 1.497820 82.57
3 -200.0000 0.1000
4 42.6819 4.9663 1.816000 46.59
5 290.0414 Variable

* 6 500.0000 1.0000 1.851350 40.10
7 9.6706 3.8612
8 -31.6340 1.0000 1.883000 40.66
9 50.5774 0.3860
10 20.2802 4.0969 1.808090 22.74
11 -12.7389 1.0000 1.902650 35.73
12 182.6358 Variable

13 (Aperture S) ∞ Variable

14 22.0943 1.0000 1.883000 40.66
15 12.0211 3.4295 1.593190 67.90
16 -54.4618 Variable

17 13.5315 7.0129 1.816000 46.59
18 20.2242 1.0000 1.850260 32.35
19 10.9126 2.0000
20 18.6799 3.1628 1.516800 63.88
21 -12.1205 1.0000 1.850260 32.35
22 -21.9214 1.5000
* 23 -2373.2040 1.0000 1.806100 40.71
24 15.4976 2.3426
25 18.1342 5.9256 1.567320 42.58
26 -8.0000 1.0000 1.851350 40.10
* 27 -22.6238 Variable

28 -75.6072 2.0606 1.497820 82.57
29 -18.0744 1.0000 1.834410 37.28
* 30 -25.8110 BF

Image plane ∞

[Aspherical data]
6th surface κ -9.00000
A4 1.14894E-05
A6 2.79933E-07
A8 -1.11589E-08
A10 1.42629E-10
A12 -6.44930E-13

23rd surface κ 1.00000
A4 -3.10495E-05
A6 4.64001E-07
A8 -2.52074E-09
A10 1.73753E-10
A12 0.00000

27th surface κ 1.0000
A4 -5.63578E-05
A6 -8.97938E-08
A8 1.47935E-09
A10 -1.36135E-11
A12 0.00000

30th surface κ 1.00000
A4 2.81743E-05
A6 -2.96842E-08
A8 -7.80468E-10
A10 0.00000
A12 0.00000

[Various data]
Scaling ratio 14.13

W T
f 10.30 to 145.50
FNO 4.12 to 5.77
ω 39.65 to 3.02 °
Y 8.00-8.00
TL 107.35-157.35

W M1 M2 M3 T
f 10.30004 17.99586 60.49785 100.49280 145.50011
ω 39.65487 23.02121 7.21558 4.36760 3.01679
FNO 4.12 4.94 5.67 5.75 5.77
φ 8.34 8.34 9.08 9.22 10.26
d5 2.10000 12.12447 32.02336 38.52508 41.21393
d12 22.23850 16.63220 7.10168 3.99200 2.20000
d13 3.91359 2.69844 3.58860 3.47054 1.80000
d16 3.65694 4.87210 3.98194 4.10000 5.77054
d27 1.26857 9.13237 25.54504 27.42933 32.19314
BF 14.04952 14.04918 14.04790 14.04914 14.04886

[Focus group movement during focusing]
W M1 M2 M3 T
Shooting magnification -0.0100 -0.0100 -0.0100 -0.0100 -0.0100
Shooting distance 1002.8412 1751.1017 5887.3639 9762.4492 14160.5711
Travel 0.1413 0.1262 0.1768 0.2719 0.3338

[Lens group data]
Group start surface f
1 1 62.23195
2 6 -9.03822
3 14 37.53030
4 17 49.24516
5 28 130.00164

[Conditional expression values]
(1) f3 / ft = 0.258
(2) (d3T-d3W) /ft=0.015
(4) f3 / f4 (fim) = 0.762

図17(a)、図17(b)、及び図17(c)はそれぞれ、本願の第4実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における無限遠物体合焦時の諸収差図である。
図18(a)、及び図18(b)はそれぞれ、本願の第4実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
図19(a)、図19(b)、及び図19(c)はそれぞれ、本願の第4実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における近距離物体合焦時(撮影倍率-0.0100倍)の諸収差図である。
図20(a)、及び図20(b)はそれぞれ、本願の第4実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における近距離物体合焦時(撮影倍率-0.0100倍)の諸収差図である。
FIGS. 17A, 17B, and 17C are respectively a wide-angle end state, a first intermediate focal length state, and a second intermediate focus of the zoom optical system according to the fourth example of the present application. It is an aberration diagram at the time of focusing on an object at infinity in the distance state.
FIGS. 18A and 18B are graphs showing various aberrations when focusing on an object at infinity in the third intermediate focal length state and the telephoto end state of the zoom optical system according to the fourth example of the present application, respectively. It is.
19 (a), 19 (b), and 19 (c) are respectively a wide-angle end state, a first intermediate focal length state, and a second intermediate focus of the zoom optical system according to the fourth example of the present application. FIG. 6 is a diagram showing various aberrations when focusing on a short-distance object in a distance state (imaging magnification: -0.0100 times).
FIGS. 20 (a) and 20 (b) respectively show the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the fourth example of the present application at the time of focusing on a short distance object (imaging magnification − It is an aberration diagram of (0.0100 times).

各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、高い光学性能を有していることがわかる。   From the respective aberration diagrams, it can be seen that the variable magnification optical system according to the present example has high optical performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.

上記各実施例によれば、高変倍比を有し、小型で、高い光学性能を有する変倍光学系を実現することができる。
なお、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。以下の内容は、本願の変倍光学系の光学性能を損なわない範囲で適宜採用することが可能である。
According to each of the above embodiments, a variable power optical system having a high zoom ratio, a small size, and high optical performance can be realized.
In addition, each said Example has shown one specific example of this invention, and this invention is not limited to these. The following contents can be adopted as appropriate as long as the optical performance of the variable magnification optical system of the present application is not impaired.

本願の変倍光学系の数値実施例として5群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、6群、7群等)の変倍光学系を構成することもできる。具体的には、本願の変倍光学系の最も物体側や最も像側にレンズ又はレンズ群を追加した構成でも構わない。なお、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。   A numerical example of the variable magnification optical system of the present application is shown as having a five-group configuration, but the present application is not limited to this, and constitutes a variable magnification optical system of other group configurations (for example, six groups, seven groups, etc.). You can also. Specifically, a configuration in which a lens or a lens group is added to the most object side or the most image side of the variable magnification optical system of the present application may be used. The lens group refers to a portion having at least one lens separated by an air interval that changes during zooming.

また、本願の変倍光学系において、合焦レンズ群は、オートフォーカスに適用することも可能であり、オートフォーカス用のモータ、例えば超音波モータ等による駆動にも適している。   In the zoom optical system of the present application, the focusing lens group can also be applied to autofocus, and is also suitable for driving by an autofocus motor, such as an ultrasonic motor.

また、本願の変倍光学系において、いずれかのレンズ群全体又はその一部を、防振レンズ群として光軸に対して垂直な方向の成分を含むように移動させ、又は光軸を含む面内方向へ回転移動(揺動)させることにより、手ぶれ等によって生じる像ぶれを補正する構成とすることもできる。特に、本願の変倍光学系では第3レンズ群の少なくとも一部又は第4レンズ群の少なくとも一部又は第5レンズ群の少なくとも一部を防振レンズ群とすることが好ましい。   Further, in the variable magnification optical system of the present application, any lens group or a part thereof is moved as a vibration-proof lens group so as to include a component in a direction perpendicular to the optical axis, or a surface including the optical axis A configuration in which image blur caused by camera shake or the like is corrected by rotationally moving (swinging) inward is also possible. In particular, in the variable magnification optical system of the present application, it is preferable that at least a part of the third lens group, at least a part of the fourth lens group, or at least a part of the fifth lens group be an anti-vibration lens group.

また、本願の変倍光学系を構成するレンズのレンズ面は、球面又は平面としてもよく、或いは非球面としてもよい。レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防ぐことができるため好ましい。また、像面がずれた場合でも描写性能の劣化が少ないため好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、又はガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。   The lens surface of the lens constituting the variable magnification optical system of the present application may be a spherical surface, a flat surface, or an aspheric surface. When the lens surface is a spherical surface or a flat surface, it is preferable because lens processing and assembly adjustment are easy, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance. When the lens surface is aspherical, any of aspherical surface by grinding, glass mold aspherical surface in which glass is molded into an aspherical shape, or composite aspherical surface in which resin provided on the glass surface is formed in an aspherical shape Good. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

また、本願の変倍光学系において開口絞りは第3レンズ群中又は第3レンズ群の近傍に配置されることが好ましく、開口絞りとして部材を設けずにレンズ枠でその役割を代用する構成としてもよい。
また、本願の変倍光学系を構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。
In the variable magnification optical system of the present application, the aperture stop is preferably arranged in the third lens group or in the vicinity of the third lens group, and the role of the aperture stop is replaced by a lens frame without providing a member. Also good.
Further, an antireflection film having a high transmittance in a wide wavelength range may be applied to the lens surface of the lens constituting the variable magnification optical system of the present application. Thereby, flare and ghost can be reduced, and high optical performance with high contrast can be achieved.

次に、本願の変倍光学系を備えたカメラを図21に基づいて説明する。
図21は、本願の変倍光学系を備えたカメラの構成を示す図である。
図21に示すようにカメラ1は、撮影レンズ2として上記第1実施例に係る変倍光学系を備えたレンズ交換式の所謂ミラーレスカメラである。
本カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部3の撮像面上に被写体像を形成する。そして、撮像部3に設けられた光電変換素子によって被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられたEVF(Electronic view finder:電子ビューファインダ)4に表示される。これにより撮影者は、EVF4を介して被写体を観察することができる。
また、撮影者によって不図示のレリーズボタンが押されると、撮像部3で生成された被写体の画像が不図示のメモリに記憶される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。
Next, a camera provided with the variable magnification optical system of the present application will be described with reference to FIG.
FIG. 21 is a diagram illustrating a configuration of a camera including the variable magnification optical system of the present application.
As shown in FIG. 21, the camera 1 is a so-called mirrorless camera of an interchangeable lens provided with the variable magnification optical system according to the first example as the photographing lens 2.
In the camera 1, light from an object (subject) (not shown) is collected by the photographing lens 2 and is on the imaging surface of the imaging unit 3 via an OLPF (Optical low pass filter) (not shown). A subject image is formed on the screen. Then, the subject image is photoelectrically converted by the photoelectric conversion element provided in the imaging unit 3 to generate an image of the subject. This image is displayed on an EVF (Electronic view finder) 4 provided in the camera 1. Thus, the photographer can observe the subject via the EVF 4.
When the release button (not shown) is pressed by the photographer, the subject image generated by the imaging unit 3 is stored in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.

ここで、本カメラ1に撮影レンズ2として搭載した上記第1実施例に係る変倍光学系は、高変倍比を有し、小型で、高い光学性能を有する変倍光学系である。したがって本カメラ1は、高変倍比を有しつつ、小型化と高い光学性能を実現することができる。なお、上記第2〜第4実施例に係る変倍光学系を撮影レンズ2として搭載したカメラを構成しても、上記カメラ1と同様の効果を奏することができる。また、クイックリターンミラーを有し、ファインダ光学系によって被写体を観察する一眼レフタイプのカメラに上記各実施例に係る変倍光学系を搭載した場合でも、上記カメラ1と同様の効果を奏することができる。   Here, the zoom optical system according to the first embodiment mounted as the photographing lens 2 on the camera 1 is a zoom optical system having a high zoom ratio, a small size, and high optical performance. Therefore, the present camera 1 can achieve downsizing and high optical performance while having a high zoom ratio. Even if a camera equipped with the variable magnification optical system according to the second to fourth examples as the photographing lens 2 is configured, the same effect as the camera 1 can be obtained. Further, even when the variable magnification optical system according to each of the above embodiments is mounted on a single-lens reflex camera that has a quick return mirror and observes a subject with a finder optical system, the same effect as the camera 1 can be obtained. it can.

最後に、本願の変倍光学系の製造方法の概略を図22に基づいて説明する。
図22に示す本願の変倍光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群とを有する変倍光学系の製造方法であって、以下のステップS1、S2、S3を含むものである。
Finally, the outline of the manufacturing method of the variable magnification optical system of this application is demonstrated based on FIG.
The manufacturing method of the variable magnification optical system of the present application shown in FIG. 22 has, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power. A method for manufacturing a variable magnification optical system having a third lens group, which includes the following steps S1, S2, and S3.

ステップS1:レンズ鏡筒の最も像側に、広角端状態から望遠端状態への変倍時に位置が固定の固定レンズ群を配置する。   Step S1: A fixed lens group whose position is fixed at the time of zooming from the wide-angle end state to the telephoto end state is arranged on the most image side of the lens barrel.

ステップS2:レンズ鏡筒に公知の移動機構を設ける等することで、広角端状態から望遠端状態への変倍時に、第1レンズ群と第2レンズ群との間隔、第2レンズ群と第3レンズ群との間隔、第3レンズ群と第4レンズ群との間隔、及び第4レンズ群と第5レンズ群との間隔が変化するようにする。
ステップS3:レンズ鏡筒に公知の移動機構を設ける等することで、無限遠物体から近距離物体への合焦時に、第3レンズ群が光軸に沿って移動するようにする。
Step S2: By providing a known moving mechanism in the lens barrel, the distance between the first lens group and the second lens group, the second lens group and the second lens group at the time of zooming from the wide-angle end state to the telephoto end state. The distance between the third lens group, the distance between the third lens group and the fourth lens group, and the distance between the fourth lens group and the fifth lens group are changed.
Step S3: A known moving mechanism is provided on the lens barrel so that the third lens group moves along the optical axis when focusing from an object at infinity to an object at a short distance.

斯かる本願の変倍光学系の製造方法によれば、高変倍比を有し、小型で、高い光学性能を有する変倍光学系を製造することができる。   According to such a method for manufacturing a variable magnification optical system of the present application, a variable magnification optical system having a high zoom ratio, a small size, and high optical performance can be manufactured.

G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
G5 第5レンズ群
S 開口絞り
I 像面
G1 1st lens group G2 2nd lens group G3 3rd lens group G4 4th lens group G5 5th lens group S Aperture stop I Image surface

Claims (15)

物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群と、最も像側に配置されており変倍時に位置が固定の固定レンズ群と、前記第3レンズ群と前記固定レンズ群の間に配置された屈折力が正の中間レンズ群とにより、実質的に5個のレンズ群からなり
前記固定レンズ群は、正屈折力を有し、
変倍時に、隣り合うレンズ群同士の間隔、前記第3レンズ群と像面との間隔が変化し
焦時に、前記第3レンズ群は光軸に沿って移動し、
以下の条件式を満足することを特徴とする変倍光学系。
−0.010 < (d3t−d3w)/ft < 0.130
但し、
ft:前記変倍光学系の望遠端状態における全系焦点距離、
d3w:広角端状態における前記第3レンズ群の最も像側のレンズ面から前記中間レンズ群の最も物体側のレンズ面までの光軸上の距離、
d3t:望遠端状態における前記第3レンズ群の最も像側のレンズ面から前記中間レンズ群の最も物体側のレンズ面までの光軸上の距離。
In order from the object side, the first lens group having positive refractive power, the second lens group having negative refractive power, and the third lens group having positive refractive power are disposed closest to the image side, and the position is fixed at the time of zooming. The fixed lens group, and the intermediate lens group having a positive refractive power disposed between the third lens group and the fixed lens group, substantially consists of five lens groups ,
The fixed lens group has positive refractive power,
At the time of zooming, the distance between adjacent lens groups, the distance between the third lens group and the image plane changes ,
During focusing, the third lens group moves along the optical axis ,
A zoom optical system characterized by satisfying the following conditional expression:
−0.010 <(d3t−d3w) / ft <0.130
However,
ft: the total focal length in the telephoto end state of the variable magnification optical system,
d3w: the distance on the optical axis from the most image side lens surface of the third lens group to the most object side lens surface of the intermediate lens group in the wide-angle end state;
d3t: Distance on the optical axis from the most image-side lens surface of the third lens unit to the most object-side lens surface of the intermediate lens unit in the telephoto end state.
物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群と、最も像側に配置されており変倍時に位置が固定の固定レンズ群と、前記第3レンズ群と前記固定レンズ群の間に配置された屈折力が正の中間レンズ群とにより、実質的に5個のレンズ群からなり
前記固定レンズ群は、正屈折力を有し、
変倍時に、隣り合うレンズ群同士の間隔、前記第3レンズ群と像面との間隔が変化し
焦時に、前記第3レンズ群は光軸に沿って移動し、
以下の条件式を満足することを特徴とする変倍光学系。
0.410 < f3/fim < 1.000
但し、
f3:前記第3レンズ群の焦点距離、
fim:前記中間レンズ群の焦点距離。
In order from the object side, the first lens group having positive refractive power, the second lens group having negative refractive power, and the third lens group having positive refractive power are disposed closest to the image side, and the position is fixed at the time of zooming. The fixed lens group, and the intermediate lens group having a positive refractive power disposed between the third lens group and the fixed lens group, substantially consists of five lens groups ,
The fixed lens group has positive refractive power,
At the time of zooming, the distance between adjacent lens groups, the distance between the third lens group and the image plane changes ,
During focusing, the third lens group moves along the optical axis ,
A zoom optical system characterized by satisfying the following conditional expression:
0.410 <f3 / fim <1.00
However,
f3: focal length of the third lens group,
fim: focal length of the intermediate lens group.
物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群と、最も像側に配置されており変倍時に位置が固定の固定レンズ群と、前記第3レンズ群と前記固定レンズ群の間に配置された屈折力が正の中間レンズ群とにより、実質的に5個のレンズ群からなり
変倍時に、隣り合うレンズ群同士の間隔、前記第3レンズ群と像面との間隔が変化し
焦時に、前記第3レンズ群は光軸に沿って移動し、
以下の条件式を満足することを特徴とする変倍光学系。
0.015 ≦ (d3t−d3w)/ft < 0.130
但し、
ft:前記変倍光学系の望遠端状態における全系焦点距離、
d3w:広角端状態における前記第3レンズ群の最も像側のレンズ面から前記中間レンズ群の最も物体側のレンズ面までの光軸上の距離、
d3t:望遠端状態における前記第3レンズ群の最も像側のレンズ面から前記中間レンズ群の最も物体側のレンズ面までの光軸上の距離。
In order from the object side, the first lens group having positive refractive power, the second lens group having negative refractive power, and the third lens group having positive refractive power are disposed closest to the image side, and the position is fixed at the time of zooming. The fixed lens group, and the intermediate lens group having a positive refractive power disposed between the third lens group and the fixed lens group, substantially consists of five lens groups ,
At the time of zooming, the distance between adjacent lens groups, the distance between the third lens group and the image plane changes ,
During focusing, the third lens group moves along the optical axis ,
A zoom optical system characterized by satisfying the following conditional expression:
0.015 ≦ (d3t−d3w) / ft <0.130
However,
ft: the total focal length in the telephoto end state of the variable magnification optical system,
d3w: the distance on the optical axis from the most image side lens surface of the third lens group to the most object side lens surface of the intermediate lens group in the wide-angle end state;
d3t: Distance on the optical axis from the most image-side lens surface of the third lens unit to the most object-side lens surface of the intermediate lens unit in the telephoto end state.
物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群と、最も像側に配置されており変倍時に位置が固定の固定レンズ群と、前記第3レンズ群と前記固定レンズ群の間に配置された屈折力が正の中間レンズ群とにより、実質的に5個のレンズ群からなり
変倍時に、隣り合うレンズ群同士の間隔、前記第3レンズ群と像面との間隔が変化し
焦時に、前記第3レンズ群は光軸に沿って移動し、
以下の条件式を満足することを特徴とする変倍光学系。
0.638 ≦ f3/fim < 1.000
但し、
f3:前記第3レンズ群の焦点距離、
fim:前記中間レンズ群の焦点距離。
In order from the object side, the first lens group having positive refractive power, the second lens group having negative refractive power, and the third lens group having positive refractive power are disposed closest to the image side, and the position is fixed at the time of zooming. The fixed lens group, and the intermediate lens group having a positive refractive power disposed between the third lens group and the fixed lens group, substantially consists of five lens groups ,
At the time of zooming, the distance between adjacent lens groups, the distance between the third lens group and the image plane changes ,
During focusing, the third lens group moves along the optical axis ,
A zoom optical system characterized by satisfying the following conditional expression:
0.638 ≤ f3 / fim <1.000
However,
f3: focal length of the third lens group,
fim: focal length of the intermediate lens group.
以下の条件式を満足することを特徴とする請求項2又は請求項4に記載の変倍光学系。
−0.010 < (d3t−d3w)/ft < 0.130
但し、
ft:前記変倍光学系の望遠端状態における全系焦点距離、
d3w:広角端状態における前記第3レンズ群の最も像側のレンズ面から前記中間レンズ群の最も物体側のレンズ面までの光軸上の距離、
d3t:望遠端状態における前記第3レンズ群の最も像側のレンズ面から前記中間レンズ群の最も物体側のレンズ面までの光軸上の距離。
5. The variable magnification optical system according to claim 2, wherein the following conditional expression is satisfied.
−0.010 <(d3t−d3w) / ft <0.130
However,
ft: the total focal length in the telephoto end state of the variable magnification optical system,
d3w: the distance on the optical axis from the most image side lens surface of the third lens group to the most object side lens surface of the intermediate lens group in the wide-angle end state;
d3t: Distance on the optical axis from the most image-side lens surface of the third lens unit to the most object-side lens surface of the intermediate lens unit in the telephoto end state.
以下の条件式を満足することを特徴とする請求項3に記載の変倍光学系。
0.410 < f3/fim < 1.000
但し、
f3:前記第3レンズ群の焦点距離、
fim:前記中間レンズ群の焦点距離。
The zoom lens system according to claim 3, wherein the following conditional expression is satisfied.
0.410 <f3 / fim <1.00
However,
f3: focal length of the third lens group,
fim: focal length of the intermediate lens group.
広角端状態から望遠端状態への変倍時に、前記第1レンズ群は物体側へ移動することを特徴とする請求項1から請求項6のいずれか一項に記載の変倍光学系。 The zoom optical system according to any one of claims 1 to 6 , wherein the first lens unit moves toward the object side during zooming from the wide-angle end state to the telephoto end state. 以下の条件式を満足することを特徴とする請求項1から請求項7のいずれか一項に記載の変倍光学系。
0.220 < f3/ft < 0.500
但し、
ft:前記変倍光学系の望遠端状態における全系焦点距離、
f3:前記第3レンズ群の焦点距離。
The zoom lens system according to any one of claims 1 to 7, wherein the following conditional expression is satisfied.
0.220 <f3 / ft <0.500
However,
ft: the total focal length in the telephoto end state of the variable magnification optical system,
f3: focal length of the third lens group.
広角端状態から望遠端状態への変倍時に、前記中間レンズ群と前記固定レンズ群の間隔が増加することを特徴とする請求項からのいずれか1項に記載の変倍光学系。 Upon zooming from the wide-angle end state to the telephoto end state, the variable magnification optical system according to any one of claims 1 to 8, wherein the distance between the middle lens group the stationary lens group is characterized in that to increase. 広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群の間隔が増加することを特徴とする請求項1からのいずれか1項に記載の変倍光学系。 Upon zooming from the wide-angle end state to the telephoto end state, the variable magnification optical according to any one of claims 1-9, wherein the distance between the first lens group and the second lens group and wherein the increasing system. 広角端状態から望遠端状態への変倍時に、前記第2レンズ群と前記第3レンズ群の間隔が減少することを特徴とする請求項1から10のいずれか1項に記載の変倍光学系。 Upon zooming from the wide-angle end state to the telephoto end state, the variable magnification optical according to any one of claims 1 to 10, interval between the third lens group and the second lens group and said reducing system. 広角端状態から望遠端状態への変倍時に、前記第3レンズ群と像面との間隔が増加することを特徴とする請求項1から11のいずれか1項に記載の変倍光学系。 Upon zooming from the wide-angle end state to the telephoto end state, the variable magnification optical system according to any one of claims 1 to 11, a distance between the third lens group and the image plane, characterized in that the increase. 前記固定レンズ群は、正屈折力を有することを特徴とする請求項1から12のいずれか1項に記載の変倍光学系。 The fixed lens group, the variable magnification optical system according to any one of claims 1 to 12, characterized in that it has a positive refractive power. 無限遠物体から近距離物体への合焦時に、前記第3レンズ群は像側へ移動することを特徴とする請求項1から13のいずれか1項に記載の変倍光学系。 Infinity when focusing on a close object from distant object, the third lens group zoom optical system according to any one of claims 1 to 13, characterized in that moves toward the image side. 請求項1から14のいずれか1項に記載の変倍光学系を有することを特徴とする光学装置。 Optical apparatus characterized by having a variable magnification optical system according to any one of claims 1 to 14.
JP2012238735A 2012-10-30 2012-10-30 Variable magnification optical system, optical device Active JP6079137B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012238735A JP6079137B2 (en) 2012-10-30 2012-10-30 Variable magnification optical system, optical device
CN201380057336.5A CN104919354B (en) 2012-10-30 2013-10-29 Variable magnification optical system, Optical devices, and the production method for variable magnification optical system
PCT/JP2013/079240 WO2014069449A1 (en) 2012-10-30 2013-10-29 Variable magnification optical system, optical device, and production method for variable magnification optical system
US14/700,493 US10168512B2 (en) 2012-10-30 2015-04-30 Variable magnification optical system, optical device, and production method for variable magnification optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012238735A JP6079137B2 (en) 2012-10-30 2012-10-30 Variable magnification optical system, optical device

Publications (3)

Publication Number Publication Date
JP2014089292A JP2014089292A (en) 2014-05-15
JP2014089292A5 JP2014089292A5 (en) 2015-12-03
JP6079137B2 true JP6079137B2 (en) 2017-02-15

Family

ID=50791246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012238735A Active JP6079137B2 (en) 2012-10-30 2012-10-30 Variable magnification optical system, optical device

Country Status (1)

Country Link
JP (1) JP6079137B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3376143B2 (en) * 1994-12-21 2003-02-10 キヤノン株式会社 Zoom lens
JP4301226B2 (en) * 2005-09-15 2009-07-22 コニカミノルタオプト株式会社 Variable magnification optical system and imaging apparatus

Also Published As

Publication number Publication date
JP2014089292A (en) 2014-05-15

Similar Documents

Publication Publication Date Title
JP6229259B2 (en) Variable magnification optical system, optical device
JP6127462B2 (en) Variable magnification optical system, optical device
JP6182868B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
WO2014112176A1 (en) Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
WO2014077120A1 (en) Variable power optical assembly, optical device, and variable power optical assembly fabrication method
JP6102269B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6098176B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6299060B2 (en) Variable magnification optical system, optical device
WO2015163368A1 (en) Variable power optical system, optical device, and method of manufacturing variable power optical system
WO2014069446A1 (en) Variable magnification optical system, optical device, and production method for variable magnification optical system
WO2014069447A1 (en) Variable magnification optical system, optical device, and production method for variable magnification optical system
JP6268697B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6326712B2 (en) Variable magnification optical system, optical device
JP6451074B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
WO2014069449A1 (en) Variable magnification optical system, optical device, and production method for variable magnification optical system
JP6540857B2 (en) Variable power optical system, optical device, manufacturing method of variable power optical system
WO2014069448A1 (en) Variable magnification optical system, optical device, and production method for variable magnification optical system
JP6079137B2 (en) Variable magnification optical system, optical device
JP6326713B2 (en) Variable magnification optical system, optical device
JP6131567B2 (en) Variable magnification optical system, optical device
JP6145991B2 (en) Variable magnification optical system, optical device
JP6131566B2 (en) Variable magnification optical system, optical device
JP6136195B2 (en) Variable magnification optical system, optical device
JP6355885B2 (en) Variable magnification optical system, optical device
JP6299059B2 (en) Variable magnification optical system, optical device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151020

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170102

R150 Certificate of patent or registration of utility model

Ref document number: 6079137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250