JP6540857B2 - Variable power optical system, optical device, manufacturing method of variable power optical system - Google Patents

Variable power optical system, optical device, manufacturing method of variable power optical system Download PDF

Info

Publication number
JP6540857B2
JP6540857B2 JP2018085340A JP2018085340A JP6540857B2 JP 6540857 B2 JP6540857 B2 JP 6540857B2 JP 2018085340 A JP2018085340 A JP 2018085340A JP 2018085340 A JP2018085340 A JP 2018085340A JP 6540857 B2 JP6540857 B2 JP 6540857B2
Authority
JP
Japan
Prior art keywords
lens group
lens
optical system
focal length
variable magnification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018085340A
Other languages
Japanese (ja)
Other versions
JP2018112769A (en
Inventor
知之 幸島
知之 幸島
昭彦 小濱
昭彦 小濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2018085340A priority Critical patent/JP6540857B2/en
Publication of JP2018112769A publication Critical patent/JP2018112769A/en
Application granted granted Critical
Publication of JP6540857B2 publication Critical patent/JP6540857B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Description

本発明は、変倍光学系、光学装置、変倍光学系の製造方法に関する。   The present invention relates to a variable magnification optical system, an optical device, and a method of manufacturing the variable magnification optical system.

従来、カメラ用の交換レンズ、デジタルカメラ、ビデオカメラ等に好適な変倍光学系として、最も物体側のレンズ群が正の屈折力を有するものが数多く提案されている(例えば、特許文献1を参照。)。   Heretofore, many variable magnification optical systems suitable for interchangeable lenses for cameras, digital cameras, video cameras and the like have been proposed in which the lens group on the most object side has positive refractive power (for example, Patent Document 1) reference.).

特開2007−292994号公報Unexamined-Japanese-Patent No. 2007-292994

しかしながら、上述のような従来の変倍光学系は、高変倍比を維持しながら小型化を図ろうとすれば、十分に高い光学性能を得ることが困難であるという問題があった。   However, the conventional variable magnification optical system as described above has a problem that it is difficult to obtain sufficiently high optical performance if it is attempted to miniaturize it while maintaining a high magnification ratio.

そこで本発明は上記問題点に鑑みてなされたものであり、高変倍比を有し、小型で、高い光学性能を有する変倍光学系、光学装置、変倍光学系の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a variable magnification optical system having a high magnification ratio, a small size, and high optical performance, an optical device, and a method of manufacturing the variable magnification optical system. The purpose is

上記課題を解決するために本発明は、
物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、第5レンズ群とにより実質的に5個のレンズ群からなり
前記第3レンズ群の物体側に開口絞りを備え、
倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と前記第4レンズ群との間隔、及び前記第4レンズ群と前記第5レンズ群との間隔が変化し、前記開口絞りと前記第4レンズ群とが一体的に移動し、
以下の条件式(1)、(2A)を満足することを特徴とする変倍光学系を提供する。
(1)0.650 < (−f2)/fw < 1.240
(2A)0.410 < f3/f4 < 0.880
但し、
fw:広角端状態における前記変倍光学系の焦点距離
f2:前記第2レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
また、本発明は、
物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、第5レンズ群とにより実質的に5個のレンズ群からなり、
前記第3レンズ群の物体側に開口絞りを備え、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、及び前記第3レンズ群と前記第4レンズ群との間隔が変化し、前記第4レンズ群と前記第5レンズ群との間隔が増加し、前記開口絞りと前記第4レンズ群とが一体的に移動し、
以下の条件式(1)、(2)を満足することを特徴とする変倍光学系を提供する。
(1)0.650 < (−f2)/fw < 1.240
(2)0.410 < f3/f4 < 1.000
但し、
fw:広角端状態における前記変倍光学系の焦点距離
f2:前記第2レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
また、本発明は、
物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、第5レンズ群とにより実質的に5個のレンズ群からなり、
前記第3レンズ群の物体側に開口絞りを備え、
変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と前記第4レンズ群との間隔、及び前記第4レンズ群と前記第5レンズ群との間隔が変化し、前記開口絞りと前記第4レンズ群とが一体的に移動し、前記第5レンズ群の位置が固定であり、
以下の条件式(1)、(2)を満足することを特徴とする変倍光学系を提供する。
(1)0.650 < (−f2)/fw < 1.240
(2)0.410 < f3/f4 < 1.000
但し、
fw:広角端状態における前記変倍光学系の焦点距離
f2:前記第2レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
In order to solve the above problems, the present invention is
From the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a positive refractive power The lens unit and the fifth lens unit substantially consist of five lens units ,
An aperture stop is provided on the object side of the third lens group,
During zooming , the distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, the distance between the third lens group and the fourth lens group, The distance between the fourth lens group and the fifth lens group changes, and the aperture stop and the fourth lens group move integrally.
A variable magnification optical system characterized by satisfying the following conditional expressions (1) and (2A) is provided.
(1) 0.650 <(-f2) / fw <1.240
(2A) 0.410 <f3 / f4 < 0.880
However,
fw: focal length f2 of the variable magnification optical system in the wide-angle end state: focal length f3 of the second lens group: focal length f3 of the third lens group: focal length of the fourth lens group
Also, the present invention is
From the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a positive refractive power The lens unit and the fifth lens unit substantially consist of five lens units,
An aperture stop is provided on the object side of the third lens group,
During zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, and the third lens group The distance between the fourth lens group changes, the distance between the fourth lens group and the fifth lens group increases, and the aperture stop and the fourth lens group move integrally.
A variable magnification optical system characterized by satisfying the following conditional expressions (1) and (2) is provided.
(1) 0.650 <(-f2) / fw <1.240
(2) 0.410 <f3 / f4 <1.000
However,
fw: focal length of the variable magnification optical system in the wide-angle end state
f2: focal length of the second lens group
f3: focal length of the third lens group
f4: focal length of the fourth lens group
Also, the present invention is
From the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a positive refractive power The lens unit and the fifth lens unit substantially consist of five lens units,
An aperture stop is provided on the object side of the third lens group,
During zooming, the distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, the distance between the third lens group and the fourth lens group, The distance between the fourth lens group and the fifth lens group changes, the aperture stop and the fourth lens group move integrally, and the position of the fifth lens group is fixed.
A variable magnification optical system characterized by satisfying the following conditional expressions (1) and (2) is provided.
(1) 0.650 <(-f2) / fw <1.240
(2) 0.410 <f3 / f4 <1.000
However,
fw: focal length of the variable magnification optical system in the wide-angle end state
f2: focal length of the second lens group
f3: focal length of the third lens group
f4: focal length of the fourth lens group

また本発明は、
前記変倍光学系を有することを特徴とする光学装置を提供する。
The present invention
An optical apparatus comprising the variable magnification optical system is provided.

本発明によれば、高変倍比を有し、小型で、高い光学性能を有する変倍光学系、光学装置、変倍光学系の製造方法を提供することができる。   According to the present invention, it is possible to provide a variable magnification optical system having a high zoom ratio, small size, and high optical performance, an optical device, and a method of manufacturing the variable magnification optical system.

(a)、(b)、(c)、(d)、及び(e)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、第2中間焦点距離状態、第3中間焦点距離状態、及び望遠端状態における断面図である。(A), (b), (c), (d), and (e) respectively show the wide-angle end state, the first intermediate focal length state, and the second intermediate state of the variable magnification optical system according to the first embodiment of the present application. It is sectional drawing in a focal distance state, a 3rd intermediate | middle focal distance state, and a telephoto end state. (a)、(b)、及び(c)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における無限遠物体合焦時の諸収差図である。(A), (b), and (c) show an infinite distance object in the wide-angle end state, the first intermediate focal length state, and the second intermediate focal length state of the variable magnification optical system according to the first embodiment of the present application, respectively. FIG. 7 shows various aberrations that occurred during focusing. (a)、及び(b)はそれぞれ、本願の第1実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。FIGS. 7A and 7B are aberration diagrams at the time of focusing on an infinite distance object in the third intermediate focal length state and the telephoto end state, respectively, of the zoom optical system according to the first embodiment of the present application. FIGS. (a)、(b)、(c)、(d)、及び(e)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、第2中間焦点距離状態、第3中間焦点距離状態、及び望遠端状態における断面図である。(A), (b), (c), (d) and (e) respectively show the wide-angle end state, the first intermediate focal length state, and the second intermediate state of the variable magnification optical system according to the second embodiment of the present invention. It is sectional drawing in a focal distance state, a 3rd intermediate | middle focal distance state, and a telephoto end state. (a)、(b)、及び(c)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における無限遠物体合焦時の諸収差図である。(A), (b), and (c) show an infinite distance object in the wide-angle end state, the first intermediate focal length state, and the second intermediate focal length state of the variable magnification optical system according to the second embodiment of the present application, respectively. FIG. 7 shows various aberrations that occurred during focusing. (a)、及び(b)はそれぞれ、本願の第2実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。FIGS. 7A and 7B are aberration diagrams at the time of focusing on an infinity object in the third intermediate focal length state and the telephoto end state, respectively, of the zoom lens system according to Example 2 of the present application. FIGS. (a)、(b)、(c)、(d)、及び(e)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、第2中間焦点距離状態、第3中間焦点距離状態、及び望遠端状態における断面図である。(A), (b), (c), (d) and (e) respectively show the wide-angle end state, the first intermediate focal length state, and the second intermediate state of the variable magnification optical system according to the third example of the present application. It is sectional drawing in a focal distance state, a 3rd intermediate | middle focal distance state, and a telephoto end state. (a)、(b)、及び(c)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における無限遠物体合焦時の諸収差図である。(A), (b), and (c) show an infinite distance object in the wide-angle end state, the first intermediate focal length state, and the second intermediate focal length state of the variable magnification optical system according to the third embodiment of the present application, respectively. FIG. 7 shows various aberrations that occurred during focusing. (a)、及び(b)はそれぞれ、本願の第3実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。FIGS. 7A and 7B are aberration diagrams respectively at the time of focusing on an infinite distance object in the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the third example of the present application. FIGS. (a)、(b)、(c)、(d)、及び(e)はそれぞれ、本願の第4実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、第2中間焦点距離状態、第3中間焦点距離状態、及び望遠端状態における断面図である。(A), (b), (c), (d) and (e) are respectively the wide-angle end state, the first intermediate focal length state, and the second intermediate state of the variable magnification optical system according to the fourth example of the present application. It is sectional drawing in a focal distance state, a 3rd intermediate | middle focal distance state, and a telephoto end state. (a)、(b)、及び(c)はそれぞれ、本願の第4実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における無限遠物体合焦時の諸収差図である。(A), (b) and (c) show the infinite distance object in the wide-angle end state, the first intermediate focal length state and the second intermediate focal length state of the variable magnification optical system according to the fourth example of the present application, respectively. FIG. 7 shows various aberrations that occurred during focusing. (a)、及び(b)はそれぞれ、本願の第4実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。FIGS. 7A and 7B are aberration diagrams respectively at the time of focusing on an infinity object in the third intermediate focal length state and the telephoto end state of the variable magnification optical system according to the fourth example of the present application. FIGS. 本願の変倍光学系を備えたカメラの構成を示す図である。It is a figure which shows the structure of the camera provided with the variable magnification optical system of this application. 本願の変倍光学系の製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method of the variable magnification optical system of this application.

以下、本願の変倍光学系、光学装置、及び変倍光学系の製造方法について説明する。
本願の変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、第5レンズ群とを有し、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と前記第4レンズ群との間隔、及び前記第4レンズ群と前記第5レンズ群との間隔が変化することを特徴としている。この構成により、本願の変倍光学系は、広角端状態から望遠端状態への変倍を実現し、変倍に伴う歪曲収差、非点収差、及び球面収差のそれぞれの変動を抑えることができる。
Hereinafter, the variable magnification optical system, the optical apparatus, and the method of manufacturing the variable magnification optical system according to the present application will be described.
The variable magnification optical system of the present application comprises, in order from the object side, a first lens group having positive refractive power, a second lens group having negative refractive power, a third lens group having positive refractive power, and a positive lens. A fourth lens group having a refractive power of the first lens group and a fifth lens group, and a distance between the first lens group and the second lens group at the time of zooming from the wide-angle end state to the telephoto end state; A distance between the second lens group and the third lens group, a distance between the third lens group and the fourth lens group, and a distance between the fourth lens group and the fifth lens group are changed. There is. With this configuration, the variable magnification optical system according to the present application realizes zooming from the wide-angle end state to the telephoto end state, and can suppress variations in distortion aberration, astigmatism, and spherical aberration accompanying zooming. .

また、本願の変倍光学系は、以下の条件式(1)、(2)を満足することを特徴としている。
(1) 0.650 < (−f2)/fw < 1.240
(2) 0.410 < f3/f4 < 1.000
但し、
fw:広角端状態における前記変倍光学系の焦点距離
f2:前記第2レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
Further, the variable magnification optical system according to the present application is characterized by satisfying the following conditional expressions (1) and (2).
(1) 0.650 <(-f2) / fw <1.240
(2) 0.410 <f 3 / f 4 <1. 000
However,
fw: focal length f2 of the variable magnification optical system in the wide-angle end state: focal length f3 of the second lens group: focal length f3 of the third lens group: focal length of the fourth lens group

条件式(1)は、第2レンズ群の適切な焦点距離の範囲を規定するものである。本願の変倍光学系は、条件式(1)を満足することにより、変倍時に球面収差の変動や非点収差の変動を抑えることができる。
本願の変倍光学系の条件式(1)の対応値が下限値を下回ると、変倍時に第2レンズ群で発生する球面収差の変動や非点収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(1)の下限値を0.760とすることがより好ましい。
一方、本願の変倍光学系の条件式(1)の対応値が上限値を上回ると、所定の変倍比を得るために、変倍時の第1レンズ群と第2レンズ群との間隔の変化量を大きくする必要がある。これにより、小型化しづらくなるだけでなく、第1レンズ群から第2レンズ群へ入射する軸外光束の光軸からの高さが変倍に伴って大きく変化する。このため、変倍時に非点収差の変動が過大になり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(1)の上限値を1.180とすることがより好ましい。また、本願の効果をより確実にするために、条件式(1)の上限値を1.145とすることがより好ましい。
Conditional expression (1) defines the range of an appropriate focal length of the second lens unit. By satisfying the conditional expression (1), the variable magnification optical system of the present application can suppress the fluctuation of spherical aberration and the fluctuation of astigmatism at the time of zooming.
When the corresponding value of the conditional expression (1) of the variable magnification optical system of the present application falls below the lower limit value, it becomes difficult to suppress the variation of the spherical aberration and the variation of the astigmatism generated in the second lens unit during zooming. It will not be possible to realize high optical performance. In order to further ensure the effect of the present application, it is more preferable to set the lower limit value of conditional expression (1) to 0.760.
On the other hand, when the corresponding value of the conditional expression (1) of the variable magnification optical system of the present application exceeds the upper limit value, the distance between the first lens group and the second lens group at the time of zooming in order to obtain a predetermined zooming ratio. It is necessary to increase the change amount of As a result, it becomes difficult to miniaturize, and the height from the optical axis of the off-axis luminous flux incident on the first lens group to the second lens group largely changes with the magnification change. For this reason, the variation of astigmatism becomes excessive at the time of zooming, and high optical performance can not be realized. In order to make the effect of the present invention more reliable, it is more preferable to set the upper limit value of the conditional expression (1) to 1.180. Moreover, in order to make the effect of this application more reliable, it is more preferable to set the upper limit of conditional expression (1) to 1.145.

条件式(2)は、第3レンズ群と第4レンズ群の適切な焦点距離比の範囲を規定するものである。本願の変倍光学系は、条件式(2)を満足することにより、変倍時に球面収差の変動や非点収差の変動を抑えることができる。
本願の変倍光学系の条件式(2)の対応値が下限値を下回ると、変倍時に第3レンズ群で発生する球面収差の変動や非点収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(2)の下限値を0.550とすることがより好ましい。
一方、本願の変倍光学系の条件式(2)の対応値が上限値を上回ると、変倍時に第4レンズ群で発生する球面収差の変動や非点収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(2)の上限値を0.880とすることがより好ましい。
以上の構成により、高変倍比を有し、小型で、高い光学性能を有する変倍光学系を実現することができる。
Conditional expression (2) defines the range of an appropriate focal length ratio of the third lens unit and the fourth lens unit. By satisfying the conditional expression (2), the variable magnification optical system according to the present application can suppress the fluctuation of spherical aberration and the fluctuation of astigmatism at the time of zooming.
When the corresponding value of the conditional expression (2) of the variable magnification optical system of the present application falls below the lower limit value, it becomes difficult to suppress the variation of the spherical aberration and the variation of the astigmatism generated in the third lens unit at the time of zooming. It will not be possible to realize high optical performance. In order to make the effect of the present invention more reliable, it is more preferable to set the lower limit of conditional expression (2) to 0.550.
On the other hand, when the corresponding value of the conditional expression (2) of the variable magnification optical system of the present application exceeds the upper limit value, it is difficult to suppress the variation of the spherical aberration and the variation of the astigmatism generated in the fourth lens unit at the time of zooming. As a result, high optical performance can not be realized. In order to make the effect of the present invention more reliable, it is more preferable to set the upper limit of conditional expression (2) to 0.880.
With the above configuration, it is possible to realize a variable power optical system having a high zoom ratio, a small size, and high optical performance.

また、本願の変倍光学系は、以下の条件式(3)を満足することが望ましい。
(3) −0.050 < (d3t−d3w)/fw < 0.750
但し、
fw :広角端状態における前記変倍光学系の焦点距離
d3w:広角端状態における前記第3レンズ群中の最も像側のレンズ面から前記第4レンズ群中の最も物体側のレンズ面までの距離
d3t:望遠端状態における前記第3レンズ群中の最も像側のレンズ面から前記第4レンズ群中の最も物体側のレンズ面までの距離
Further, it is desirable that the variable magnification optical system of the present application satisfy the following conditional expression (3).
(3)-0.050 <(d3t-d3w) / fw <0.750
However,
fw: focal length d3w of the variable magnification optical system in the wide-angle end state: distance from the lens surface closest to the image in the third lens group to the lens surface closest to the object in the fourth lens group in the wide-angle end d3t: distance from the lens surface closest to the image side in the third lens unit to the lens surface closest to the object in the fourth lens unit in the telephoto end state

条件式(3)は、第3レンズ群中の最も像側のレンズ面から第4レンズ群中の最も物体側のレンズ面までの光軸上の距離、即ち第3レンズ群と第4レンズ群との間隔の変倍時の適切な変化量の範囲を規定するものである。本願の変倍光学系は、条件式(3)を満足することにより、変倍時にコマ収差の変動や非点収差の変動を抑えることができる。
本願の変倍光学系の条件式(3)の対応値が下限値を下回ると、変倍時に第3レンズ群で発生する非点収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(3)の下限値を0.000とすることがより好ましい。
一方、本願の変倍光学系の条件式(3)の対応値が上限値を上回ると、変倍時に第4レンズ群で発生するコマ収差の変動を抑えることが困難になり、高い光学性能を実現することができなくなってしまう。なお、本願の効果をより確実にするために、条件式(3)の上限値を0.500とすることがより好ましい。
The conditional expression (3) is the distance on the optical axis from the lens surface closest to the image side in the third lens unit to the lens surface closest to the object in the fourth lens unit, ie, the third lens unit and the fourth lens unit And defines the range of an appropriate amount of change during zooming. By satisfying the conditional expression (3), the variable magnification optical system of the present application can suppress the fluctuation of coma and the fluctuation of astigmatism at the time of zooming.
When the corresponding value of the conditional expression (3) of the variable magnification optical system of the present application falls below the lower limit value, it becomes difficult to suppress the fluctuation of astigmatism generated in the third lens unit at the time of zooming, and high optical performance is realized It can not be done. In order to make the effect of the present invention more reliable, it is more preferable to set the lower limit value of conditional expression (3) to 0.000.
On the other hand, when the corresponding value of the conditional expression (3) of the variable magnification optical system of the present application exceeds the upper limit, it becomes difficult to suppress the fluctuation of the coma aberration generated in the fourth lens unit at the time of zooming and high optical performance It can not be realized. In order to make the effect of the present invention more reliable, it is more preferable to set the upper limit of conditional expression (3) to 0.500.

また、本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第1レンズ群が物体側へ移動することが望ましい。この構成により、変倍時に第1レンズ群を通過する軸外光束の光軸からの高さの変化を抑えることができる。これにより、第1レンズ群の径を小さくできるだけでなく、変倍時に非点収差の変動を抑えることもできる。   Further, in the variable magnification optical system of the present application, it is desirable that the first lens group move to the object side at the time of zooming from the wide angle end state to the telephoto end state. With this configuration, it is possible to suppress the change in height from the optical axis of the off-axis light beam passing through the first lens group at the time of zooming. As a result, not only the diameter of the first lens unit can be reduced, but also the fluctuation of astigmatism can be suppressed during zooming.

また、本願の変倍光学系は、前記第5レンズ群が正の屈折力を有することが望ましい。この構成により、第5レンズ群の使用倍率が等倍よりも小さくなり、その結果、第1レンズ群から第4レンズ群までの合成焦点距離を相対的に大きくすることができる。これにより、製造時に第1レンズ群から第4レンズ群において発生するレンズどうしの偏芯に起因する偏芯コマ収差等の影響を相対的に小さく抑えることができ、高い光学性能を実現することができる。   Further, in the variable magnification optical system of the present application, it is desirable that the fifth lens group have a positive refractive power. With this configuration, the use magnification of the fifth lens group is smaller than equal magnification, and as a result, the combined focal length from the first lens group to the fourth lens group can be relatively increased. By this, it is possible to relatively suppress the influence of decentering comatic aberration and the like caused by the decentering of the lenses generated in the first lens group to the fourth lens group at the time of manufacture, and realize high optical performance. it can.

また、本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔が増加することが望ましい。この構成により、第2レンズ群の倍率を増倍することができ、高変倍比を効率的に実現しつつ変倍時に球面収差の変動や非点収差の変動を抑えることができる。   Further, in the variable magnification optical system of the present application, it is desirable that the distance between the first lens group and the second lens group be increased at the time of zooming from the wide angle end state to the telephoto end state. With this configuration, it is possible to multiply the magnification of the second lens unit, and to realize a high zoom ratio efficiently, and to suppress variations in spherical aberration and astigmatism during zooming.

また、本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第2レンズ群と前記第3レンズ群との間隔が減少することが望ましい。この構成により、第3レンズ群と第4レンズ群の合成倍率を増倍することができ、高変倍比を効率的に実現しつつ変倍時に球面収差の変動や非点収差の変動を抑えることができる。   Further, in the variable magnification optical system of the present application, it is desirable that the distance between the second lens group and the third lens group be reduced at the time of zooming from the wide-angle end state to the telephoto end state. With this configuration, it is possible to multiply the combined magnification of the third lens group and the fourth lens group, and to effectively realize a high zoom ratio while suppressing variations in spherical aberration and astigmatism during zooming. be able to.

また、本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第4レンズ群と前記第5レンズ群との間隔が増加することが望ましい。この構成により、第3レンズ群と第4レンズ群の合成倍率を増倍することができ、高変倍比を効率的に実現しつつ変倍時に球面収差の変動や非点収差の変動を抑えることができる。   Further, in the variable magnification optical system of the present application, it is desirable that an interval between the fourth lens group and the fifth lens group be increased at the time of zooming from the wide angle end state to the telephoto end state. With this configuration, it is possible to multiply the combined magnification of the third lens group and the fourth lens group, and to effectively realize a high zoom ratio while suppressing variations in spherical aberration and astigmatism during zooming. be able to.

また、本願の変倍光学系は、広角端状態から望遠端状態への変倍時に、前記第5レンズ群の位置が固定であることが望ましい。この構成により、変倍時に第4レンズ群から第5レンズ群へ入射する周辺光線の光軸からの高さを変化させることができる。これにより、変倍時の非点収差の変動をより良好に抑えることができる。   Further, in the variable magnification optical system of the present application, it is desirable that the position of the fifth lens group be fixed at the time of zooming from the wide angle end state to the telephoto end state. With this configuration, it is possible to change the height from the optical axis of the marginal ray that enters the fourth lens unit to the fifth lens unit during zooming. Thereby, it is possible to better suppress the variation of astigmatism at the time of zooming.

本願の光学装置は、上述した構成の変倍光学系を有することを特徴としている。これにより、高変倍比を有し、小型で、高い光学性能を有する光学装置を実現することができる。   The optical apparatus of the present application is characterized by including the variable magnification optical system having the above-described configuration. As a result, it is possible to realize an optical apparatus having a high zoom ratio, a small size, and high optical performance.

本願の変倍光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、第5レンズ群とを有する変倍光学系の製造方法であって、前記第2レンズ群、前記第3レンズ群、及び前記第4レンズ群が以下の条件式(1)、(2)を満足するようにし、広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と前記第4レンズ群との間隔、及び前記第4レンズ群と前記第5レンズ群との間隔が変化するようにすることを特徴としている。これにより、高変倍比を有し、小型で、高い光学性能を有する変倍光学系を製造することができる。
(1) 0.650 < (−f2)/fw < 1.240
(2) 0.410 < f3/f4 < 1.000
但し、
fw:広角端状態における前記変倍光学系の焦点距離
f2:前記第2レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
In the method of manufacturing a variable magnification optical system according to the present application, a first lens group having positive refractive power, a second lens group having negative refractive power, and a third lens group having positive refractive power are arranged in order from the object side And a fourth lens group having a positive refractive power, and a fifth lens group, wherein the second lens group, the third lens group, and the fourth lens group are provided. To satisfy the following conditional expressions (1) and (2), and at the time of zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group; A distance between the second lens group and the third lens group, a distance between the third lens group and the fourth lens group, and a distance between the fourth lens group and the fifth lens group are changed. And As a result, it is possible to manufacture a variable magnification optical system having a high magnification ratio, a small size, and high optical performance.
(1) 0.650 <(-f2) / fw <1.240
(2) 0.410 <f 3 / f 4 <1. 000
However,
fw: focal length f2 of the variable magnification optical system in the wide-angle end state: focal length f3 of the second lens group: focal length f3 of the third lens group: focal length of the fourth lens group

以下、本願の数値実施例に係る変倍光学系を添付図面に基づいて説明する。   Hereinafter, a variable magnification optical system according to a numerical example of the present application will be described based on the attached drawings.

(第1実施例)
図1(a)、図1(b)、図1(c)、図1(d)、及び図1(e)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、第2中間焦点距離状態、第3中間焦点距離状態、及び望遠端状態における断面図である。
(First embodiment)
1 (a), 1 (b), 1 (c), 1 (d), and 1 (e) show the wide-angle end state of the variable magnification optical system according to the first embodiment of the present invention, respectively. FIG. 6 is a cross-sectional view in a first intermediate focal length state, a second intermediate focal length state, a third intermediate focal length state, and a telephoto end state.

本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。   The variable magnification optical system according to the present embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. It comprises a lens group G3, a fourth lens group G4 having positive refractive power, and a fifth lens group G5 having positive refractive power.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と物体側に凹面を向けた負メニスカスレンズL24との接合レンズとからなる。なお、負メニスカスレンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
The first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 with a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 with a convex surface facing the object side Become.
In the second lens group G2, in order from the object side, a negative meniscus lens L21 having a convex surface facing the object side, a biconcave negative lens L22, a biconvex positive lens L23, and a negative surface having a concave surface facing the object And a cemented lens with the meniscus lens L24. The negative meniscus lens L21 is a glass mold aspheric lens in which the lens surface on the object side is aspheric.

第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合レンズからなる。なお、第3レンズ群G3の物体側には、開口絞りSが備えられている。
第4レンズ群G4は、物体側から順に、両凸形状の正レンズL41と両凹形状の負レンズL42との接合レンズと、両凸形状の正レンズL43と物体側に凹面を向けた負メニスカスレンズL44との接合レンズと、両凹形状の負レンズL45と両凸形状の正レンズL46との接合レンズと、両凸形状の正レンズL47と物体側に凹面を向けた負メニスカスレンズL48との接合レンズとからなる。なお、負メニスカスレンズL48は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
The third lens group G3 is composed of, in order from the object side, a cemented lens of a negative meniscus lens L31 having a convex surface facing the object side and a biconvex positive lens L32. An aperture stop S is provided on the object side of the third lens group G3.
The fourth lens group G4, in order from the object side, is a cemented lens of a biconvex positive lens L41 and a biconcave negative lens L42, and a negative meniscus with a biconvex positive lens L43 and a concave surface facing the object side A cemented lens with the lens L44, a cemented lens of a biconcave negative lens L45 and a biconvex positive lens L46, and a biconvex positive lens L47 with a negative meniscus lens L48 having a concave surface facing the object side It consists of a cemented lens. The negative meniscus lens L48 is a glass mold aspheric lens having an aspheric lens surface on the image side.

第5レンズ群G5は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL51と物体側に凹面を向けた負メニスカスレンズL52との接合レンズからなる。なお、負メニスカスレンズL52は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。   The fifth lens group G5 is composed of, in order from the object side, a cemented lens of a positive meniscus lens L51 having a concave surface facing the object side and a negative meniscus lens L52 having a concave surface facing the object side. The negative meniscus lens L52 is a glass mold aspheric lens having an aspheric lens surface on the image side.

以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔、第2レンズ群G2と第3レンズ群G3との空気間隔、第3レンズ群G3と第4レンズ群G4との空気間隔、及び第4レンズ群G4と第5レンズ群G5との空気間隔がそれぞれ変化するように、第1レンズ群G1〜第4レンズ群G4が光軸に沿って移動する。
詳細には、第1レンズ群G1、第3レンズ群G3及び第4レンズ群G4は変倍時に物体側へ移動する。第2レンズ群G2は、広角端状態から第3中間焦点距離状態まで物体側へ移動し、第3中間焦点距離状態から望遠端状態まで像側へ移動する。第5レンズ群G5は変倍時に光軸方向の位置が固定である。なお、開口絞りSは変倍時に第4レンズ群G4と一体的に物体側へ移動する。
Under the above-described configuration, in the variable magnification optical system according to the present embodiment, an air gap between the first lens group G1 and the second lens group G2 and a second lens group at the time of zooming from the wide angle end state to the telephoto end state. The air spacing between G2 and the third lens group G3, the air spacing between the third lens group G3 and the fourth lens group G4, and the air spacing between the fourth lens group G4 and the fifth lens group G5 respectively change The first to fourth lens groups G1 to G4 move along the optical axis.
In detail, the first lens group G1, the third lens group G3 and the fourth lens group G4 move to the object side during zooming. The second lens group G2 moves to the object side from the wide angle end state to the third intermediate focal length state, and moves to the image side from the third intermediate focal length state to the telephoto end state. The position of the fifth lens group G5 in the optical axis direction is fixed at the time of zooming. The aperture stop S moves integrally with the fourth lens group G4 to the object side during zooming.

これにより、変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が増加し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第4レンズ群G4と第5レンズ群G5との空気間隔が増加する。第3レンズ群G3と第4レンズ群G4との空気間隔は、広角端状態から第1中間焦点距離状態まで増加し、第1中間焦点距離状態から第2中間焦点距離状態まで減少し、第2中間焦点距離状態から望遠端状態まで増加する。なお、変倍時に開口絞りSと第3レンズ群G3との空気間隔は、広角端状態から第1中間焦点距離状態まで減少し、第1中間焦点距離状態から第2中間焦点距離状態まで増加し、第2中間焦点距離状態から望遠端状態まで減少する。   As a result, the air gap between the first lens group G1 and the second lens group G2 increases during zooming, and the air gap between the second lens group G2 and the third lens group G3 decreases, and the fourth lens group G4 The air gap between the lens unit G5 and the fifth lens group G5 is increased. The air gap between the third lens group G3 and the fourth lens group G4 increases from the wide-angle end state to the first intermediate focal length state, and decreases from the first intermediate focal length state to the second intermediate focal length state. It increases from the intermediate focal length state to the telephoto end state. During zooming, the air gap between the aperture stop S and the third lens group G3 decreases from the wide-angle end state to the first intermediate focal length state, and increases from the first intermediate focal length state to the second intermediate focal length state. , Decrease from the second intermediate focal length state to the telephoto end state.

以下の表1に、本実施例に係る変倍光学系の諸元の値を掲げる。
表1において、fは焦点距離、BFはバックフォーカス(最も像側のレンズ面と像面Iとの光軸上の距離)を示す。
[面データ]において、面番号は物体側から数えた光学面の順番、rは曲率半径、dは面間隔(第n面(nは整数)と第n+1面との間隔)、ndはd線(波長587.6nm)に対する屈折率、νdはd線(波長587.6nm)に対するアッベ数をそれぞれ示している。また、物面は物体面、可変は可変の面間隔、絞りSは開口絞りS、像面は像面Iをそれぞれ示している。なお、曲率半径r=∞は平面を示している。非球面は面番号に*を付して曲率半径rの欄に近軸曲率半径の値を示している。空気の屈折率nd=1.000000の記載は省略している。
Table 1 below presents values of specifications of the variable magnification optical system according to the present example.
In Table 1, f is the focal length, and BF is the back focus (the distance between the most image side lens surface and the image plane I on the optical axis).
In [Surface Data], the surface number is the order of the optical surface counted from the object side, r is the radius of curvature, d is the surface distance (the distance between the nth surface (n is an integer) and the n + 1th surface), nd is The refractive index for the d-line (wavelength 587.6 nm) and ν d indicate the Abbe number for the d-line (wavelength 587.6 nm). The object plane indicates the object plane, the variable plane spacing is variable, the stop S indicates the aperture stop S, and the image plane indicates the image plane I. The radius of curvature r = ∞ indicates a plane. In the aspheric surface, the surface number is marked with *, and the value of the paraxial radius of curvature is shown in the column of radius of curvature r. The description of the refractive index nd = 1.000000 of air is omitted.

[非球面データ]には、[面データ]に示した非球面について、その形状を次式で表した場合の非球面係数及び円錐定数を示す。
x=(h/r)/[1+{1−κ(h/r)1/2
+A4h+A6h+A8h+A10h10+A12h12
ここで、hを光軸に垂直な方向の高さ、xを高さhにおける非球面の頂点の接平面から当該非球面までの光軸方向に沿った距離(サグ量)、κを円錐定数、A4,A6,A8,A10,A12を非球面係数、rを基準球面の曲率半径(近軸曲率半径)とする。なお、「E−n」(nは整数)は「×10−n」を示し、例えば「1.234E-05」は「1.234×10−5」を示す。2次の非球面係数A2は0であり、記載を省略している。
[Spherical surface data] shows the aspheric surface coefficient and the conical constant when the shape of the aspheric surface shown in [Surface data] is expressed by the following equation.
x = (h 2 / r) / [1+ {1-κ (h / r) 2 } 1/2 ]
+ A 4 h 4 + A 6 h 6 + A 8 h 8 + A 10 h 10 + A 12 h 12
Here, h is the height in the direction perpendicular to the optical axis, x is the distance along the optical axis direction from the tangent plane of the apex of the aspheric surface at height h to the aspheric surface (sag amount), and κ is the conical constant , A4, A6, A8, A10 and A12 are aspheric coefficients, and r is a radius of curvature (paraxial radius of curvature) of the reference spherical surface. Incidentally, "E-n" (n is an integer) indicates "× 10 -n", for example "1.234E-05" denotes "1.234 × 10 -5". The second-order aspheric coefficient A2 is 0, and the description is omitted.

[各種データ]において、FNOはFナンバー、ωは半画角(単位は「°」)、Yは像高、TLは変倍光学系の全長(無限遠物体合焦時の第1面から像面Iまでの光軸上の距離)、dnは第n面と第n+1面との可変の間隔、φは開口絞りSの絞り径をそれぞれ示す。なお、Wは広角端状態、M1は第1中間焦点距離状態、M2は第2中間焦点距離状態、M3は第3中間焦点距離状態、Tは望遠端状態をそれぞれ示す。
[レンズ群データ]には、各レンズ群の始面と焦点距離を示す。
[条件式対応値]には、本実施例に係る変倍光学系の各条件式の対応値を示す。
In [Various data], FNO is F number, ω is half angle of view (unit: “°”), Y is image height, TL is total length of variable magnification optical system (image from first surface at infinity object focusing The distance on the optical axis to the surface I), dn represents a variable distance between the nth surface and the n + 1th surface, and φ represents the diameter of the aperture stop S. W indicates the wide-angle end state, M1 indicates the first intermediate focal length state, M2 indicates the second intermediate focal length state, M3 indicates the third intermediate focal length state, and T indicates the telephoto end state.
[Lens group data] indicates the starting surface of each lens group and the focal length.
In [Conditional Expression Correspondence Value], the correspondence values of the conditional expressions of the variable magnification optical system according to the present embodiment are shown.

ここで、表1に掲載されている焦点距離f、曲率半径r及びその他の長さの単位は一般に「mm」が使われる。しかしながら光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるため、これに限られるものではない。
なお、以上に述べた表1の符号は、後述する各実施例の表においても同様に用いるものとする。
Here, the unit of focal length f, radius of curvature r and other lengths listed in Table 1 is generally “mm”. However, the optical system is not limited to this because the same optical performance can be obtained by proportional enlargement or reduction.
In addition, the code | symbol of Table 1 described above shall be similarly used also in the table | surface of each Example mentioned later.

(表1)第1実施例
[面データ]
面番号 r d nd νd
物面 ∞

1 165.4019 1.6350 1.902650 35.73
2 41.8893 9.2560 1.497820 82.57
3 -178.4364 0.1000
4 42.8430 5.1140 1.729160 54.61
5 515.0653 可変

*6 500.0000 1.0000 1.851350 40.10
7 9.0059 4.2479
8 -16.6413 1.0000 1.883000 40.66
9 50.8442 0.7538
10 32.1419 3.0566 1.808090 22.74
11 -18.1056 1.0000 1.883000 40.66
12 -29.3627 可変

13(絞りS) ∞ 可変

14 27.1583 1.0000 1.883000 40.66
15 14.3033 3.4259 1.593190 67.90
16 -43.0421 可変

17 12.5000 8.2427 1.670030 47.14
18 -79.2339 1.0000 1.883000 40.66
19 11.4345 2.0000
20 18.9834 3.3397 1.518600 69.89
21 -12.4126 1.0000 1.850260 32.35
22 -22.7118 1.5000
23 -46.2616 1.0000 1.902650 35.73
24 11.4391 3.5033 1.581440 40.98
25 -30.7870 0.1000
26 28.7953 5.0986 1.581440 40.98
27 -8.8012 1.0000 1.820800 42.71
*28 -35.2149 可変

29 -40.0000 1.6432 1.497820 82.57
30 -19.4318 1.0000 1.834410 37.28
*31 -22.7996 BF

像面 ∞

[非球面データ]
第6面
κ 11.00000
A4 3.95289E-05
A6 -2.04622E-07
A8 -4.81392E-09
A10 9.83575E-11
A12 -5.88880E-13

第28面
κ 1.0000
A4 -5.59168E-05
A6 -2.20298E-07
A8 3.87818E-10
A10 1.16318E-11
A12 0.00000

第31面
κ 1.00000
A4 2.65930E-05
A6 7.69228E-08
A8 -1.34346E-09
A10 0.00000
A12 0.00000

[各種データ]
変倍比 14.14

W T
f 9.47 〜 133.87
FNO 4.12 〜 5.78
ω 41.95 〜 3.27°
Y 8.00 〜 8.00
TL 112.25 〜 165.65

W M1 M2 M3 T
f 9.47002 17.83631 60.50026 90.50043 133.87072
ω 41.95497 23.18274 7.18201 4.82759 3.26779
FNO 4.12 5.24 5.77 5.77 5.78
φ 8.52 8.52 9.55 10.30 11.04
d5 2.10000 12.15693 36.10717 41.77210 46.27797
d12 24.77744 16.39929 5.66327 3.74451 2.20000
d13 5.18928 3.23115 4.53928 3.63928 1.80000
d16 2.25000 4.20813 2.90000 3.80000 5.63928
d28 1.86861 12.02032 28.59900 32.29005 33.66620
BF 14.04947 14.04956 14.04989 14.04993 14.05005

[レンズ群データ]
群 始面 f
1 1 68.08250
2 6 -9.98760
3 14 38.80284
4 17 60.78065
5 29 129.99998

[条件式対応値]
(1) (−f2)/fw = 1.055
(2) f3/f4 = 0.638
(3) (d3t−d3w)/fw = 0.358
(Table 1) First embodiment
[Plane data]
Face number r d nd d d
Object ∞

1 165.4019 1.6350 1.902650 35.73
2 41.88.93 9.2560 1.497820 82.57
3 -178.4364 0.1000
4 42.8430 5.1140 1.729160 54.61
5 515.0653 Variable

* 6 500.0000 1.0000 1.851350 40.10
7 9.0059 4.2479
8-16.6413 1.0000 1.883000 40.66
9 50.8442 0.7538
10 32. 1419 3.0566 1.808090 22.74
11 -18.1056 1.0000 1.883000 40.66
12-29.3627 Variable

13 (stop S) ∞ variable

14 27.1583 1.0000 1.883000 40.66
15 14.3033 3.4259 1.593190 67.90
16-43.0421 Variable

17 12.5000 8.2427 1.670030 47.14
18 -79.2339 1.0000 1.883000 40.66
19 11.4345 2.0000
20 18.9834 3.3397 1.518600 69.89
21 -12.4126 1.0000 1.850260 32.35
22-22.7118 1.5000
23-46.2616 1.0000 1.902650 35.73
24 11.4391 3.5033 1.581440 40.98
25-30.7870 0.1000
26 28.7953 5.0986 1.581440 40.98
27 -8.8012 1.0000 1.820800 42.71
* 28 -35.2149 Variable

29 -40.0000 1.6432 1.497820 82.57
30-19.4318 1.0000 1.834410 37.28
* 31-22.7996 BF

Image plane ∞

[Aspheric surface data]
Sixth face 11. 11.00000
A4 3.95289E-05
A6 -2.04622E-07
A8 -4.81392E-09
A10 9.83575E-11
A12 -5.88880E-13

The 28th face 1. 1.0000
A4 -5.59168E-05
A6-2.20298E-07
A8 3.87818E-10
A10 1.16318E-11
A12 0.00000

The 31st face 1. 1.00000
A4 2.65930E-05
A6 7.69228E-08
A8-1.34346E-09
A10 0.00000
A12 0.00000

[Various data]
Magnification ratio 14.14

W T
f 9.47 to 133.87
FNO 4.12 to 5.78
ω 41.95 to 3.27 °
Y 8.00 to 8.00
TL 112.25-165.65

W M1 M2 M3 T
f 9.47002 17.83631 60.50026 90.50043 133.87072
ω 41.95497 23.18274 7.18 201 4.82759 3.26779
FNO 4.12 5.24 5.77 5.77 5.78
φ 8.52 8.52 9.55 10.30 11.04
d5 2.10000 12.15693 36.10717 41.77210 46.27797
d12 24.77744 16.39929 5.66327 3.74451 2.20000
d13 5.18928 3.23115 4.53928 3.63928 1.80000
d16 2.25000 4.20813 2.90000 3.80000 5.63928
d28 1.86861 12.02032 28.59900 32.29005 33.66620
BF 14.04947 14.04956 14.04989 14.04993 14.05005

[Lens group data]
Group front f
1 1 68.08250
2 6-9.98760
3 14 38.80284
4 17 60.78065
5 29 129.99998

[Conditional expression corresponding value]
(1) (-f2) / fw = 1.055
(2) f3 / f4 = 0.638
(3) (d3t-d3w) / fw = 0.358

図2(a)、図2(b)、及び図2(c)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における無限遠物体合焦時の諸収差図である。
図3(a)、及び図3(b)はそれぞれ、本願の第1実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
FIGS. 2A, 2B, and 2C respectively show the wide-angle end state, the first intermediate focal length state, and the second intermediate focus of the variable magnification optical system according to the first embodiment of the present application. FIG. 7 shows various aberrations that occurred when an infinity object was in focus in the distance state.
FIGS. 3A and 3B show various aberrations of the variable magnification optical system according to the first embodiment of the present invention at the time of focusing on an infinity object at the third intermediate focal length and at the telephoto end, respectively. It is.

各収差図において、FNOはFナンバー、Aは光線入射角即ち半画角(単位は「°」)をそれぞれ示す。dはd線(波長587.6nm)、gはg線(波長435.8nm)における収差をそれぞれ示し、d、gの記載のないものはd線における収差を示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、後述する各実施例の収差図においても、本実施例と同様の符号を用いる。   In each of the aberration diagrams, FNO denotes an F number, and A denotes a light beam incident angle, that is, a half angle of view (unit: "°"). d indicates the aberration at the d-line (wavelength 587.6 nm), g indicates the aberration at the g-line (wavelength 435.8 nm), and those without d and g indicate the aberration at the d-line. In astigmatism diagrams, a solid line indicates a sagittal image plane, and a broken line indicates a meridional image plane. The same reference numerals as in this example are used also in the aberration charts of the examples which will be described later.

各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、高い光学性能を有していることがわかる。   From the aberration diagrams, it is understood that in the variable magnification optical system according to the present example, various aberrations are well corrected from the wide-angle end state to the telephoto end state, and have high optical performance.

(第2実施例)
図4(a)、図4(b)、図4(c)、図4(d)、及び図4(e)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、第2中間焦点距離状態、第3中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。
Second Embodiment
FIGS. 4 (a), 4 (b), 4 (c), 4 (d), and 4 (e) respectively show the wide-angle end state of the variable magnification optical system according to the second embodiment of the present invention; FIG. 6 is a cross-sectional view in a first intermediate focal length state, a second intermediate focal length state, a third intermediate focal length state, and a telephoto end state.
The variable magnification optical system according to the present embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. It comprises a lens group G3, a fourth lens group G4 having positive refractive power, and a fifth lens group G5 having positive refractive power.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と両凹形状の負レンズL24との接合レンズとからなる。なお、負メニスカスレンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
The first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 with a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 with a convex surface facing the object side Become.
The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface facing the object, a biconcave negative lens L22, a biconvex positive lens L23, and a biconcave negative lens L24. And a cemented lens. The negative meniscus lens L21 is a glass mold aspheric lens in which the lens surface on the object side is aspheric.

第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合レンズからなる。なお、第3レンズ群G3の物体側には、開口絞りSが備えられている。
第4レンズ群G4は、物体側から順に、物体側に凸面を向けた正メニスカスレンズL41と物体側に凸面を向けた負メニスカスレンズL42との接合レンズと、両凸形状の正レンズL43と物体側に凹面を向けた負メニスカスレンズL44との接合レンズと、両凹形状の負レンズL45と両凸形状の正レンズL46との接合レンズと、両凸形状の正レンズL47と物体側に凹面を向けた負メニスカスレンズL48との接合レンズとからなる。なお、負メニスカスレンズL48は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
The third lens group G3 is composed of, in order from the object side, a cemented lens of a negative meniscus lens L31 having a convex surface facing the object side and a biconvex positive lens L32. An aperture stop S is provided on the object side of the third lens group G3.
The fourth lens group G4 includes, in order from the object side, a cemented lens of a positive meniscus lens L41 with a convex surface facing the object side and a negative meniscus lens L42 with a convex surface facing the object side, a biconvex positive lens L43, and an object A cemented lens with a negative meniscus lens L44 concave on the side, a cemented lens with a biconcave negative lens L45 and a biconvex positive lens L46, a biconvex positive lens L47 and a concave surface on the object side And a cemented lens with a negative meniscus lens L48 directed. The negative meniscus lens L48 is a glass mold aspheric lens having an aspheric lens surface on the image side.

第5レンズ群G5は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL51と物体側に凹面を向けた負メニスカスレンズL52との接合レンズからなる。なお、負メニスカスレンズL52は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。   The fifth lens group G5 is composed of, in order from the object side, a cemented lens of a positive meniscus lens L51 having a concave surface facing the object side and a negative meniscus lens L52 having a concave surface facing the object side. The negative meniscus lens L52 is a glass mold aspheric lens having an aspheric lens surface on the image side.

以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔、第2レンズ群G2と第3レンズ群G3との空気間隔、第3レンズ群G3と第4レンズ群G4との空気間隔、及び第4レンズ群G4と第5レンズ群G5との空気間隔がそれぞれ変化するように、第1レンズ群G1〜第4レンズ群G4が光軸に沿って移動する。
詳細には、第1レンズ群G1、第3レンズ群G3及び第4レンズ群G4は変倍時に物体側へ移動する。第2レンズ群G2は、広角端状態から第3中間焦点距離状態まで物体側へ移動し、第3中間焦点距離状態から望遠端状態まで像側へ移動する。第5レンズ群G5は変倍時に光軸方向の位置が固定である。なお、開口絞りSは変倍時に第4レンズ群G4と一体的に物体側へ移動する。
Under the above-described configuration, in the variable magnification optical system according to the present embodiment, an air gap between the first lens group G1 and the second lens group G2 and a second lens group at the time of zooming from the wide angle end state to the telephoto end state. The air spacing between G2 and the third lens group G3, the air spacing between the third lens group G3 and the fourth lens group G4, and the air spacing between the fourth lens group G4 and the fifth lens group G5 respectively change The first to fourth lens groups G1 to G4 move along the optical axis.
In detail, the first lens group G1, the third lens group G3 and the fourth lens group G4 move to the object side during zooming. The second lens group G2 moves to the object side from the wide angle end state to the third intermediate focal length state, and moves to the image side from the third intermediate focal length state to the telephoto end state. The position of the fifth lens group G5 in the optical axis direction is fixed at the time of zooming. The aperture stop S moves integrally with the fourth lens group G4 to the object side during zooming.

これにより、変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が増加し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第4レンズ群G4と第5レンズ群G5との空気間隔が増加する。第3レンズ群G3と第4レンズ群G4との空気間隔は、広角端状態から第1中間焦点距離状態まで増加し、第1中間焦点距離状態から第2中間焦点距離状態まで減少し、第2中間焦点距離状態から望遠端状態まで増加する。なお、変倍時に開口絞りSと第3レンズ群G3との空気間隔は、広角端状態から第1中間焦点距離状態まで減少し、第1中間焦点距離状態から第2中間焦点距離状態まで増加し、第2中間焦点距離状態から望遠端状態まで減少する。
以下の表2に、本実施例に係る変倍光学系の諸元の値を掲げる。
As a result, the air gap between the first lens group G1 and the second lens group G2 increases during zooming, and the air gap between the second lens group G2 and the third lens group G3 decreases, and the fourth lens group G4 And the fifth lens unit G5 has an increased air gap. The air gap between the third lens group G3 and the fourth lens group G4 increases from the wide-angle end state to the first intermediate focal length state, and decreases from the first intermediate focal length state to the second intermediate focal length state. It increases from the intermediate focal length state to the telephoto end state. During zooming, the air gap between the aperture stop S and the third lens group G3 decreases from the wide-angle end state to the first intermediate focal length state, and increases from the first intermediate focal length state to the second intermediate focal length state. , Decrease from the second intermediate focal length state to the telephoto end state.
Table 2 below presents values of specifications of the variable magnification optical system according to the present example.

(表2)第2実施例
[面データ]
面番号 r d nd νd
物面 ∞

1 149.1393 1.6350 1.902650 35.73
2 39.3210 9.1912 1.497820 82.57
3 -200.0000 0.1000
4 41.9637 5.4484 1.729160 54.61
5 1039.4250 可変

*6 500.0000 1.0000 1.851350 40.10
7 9.7424 3.8435
8 -27.3991 1.0000 1.883000 40.66
9 89.0051 0.2895
10 21.6984 3.7554 1.808090 22.74
11 -15.0205 1.0000 1.883000 40.66
12 103.6128 可変

13(絞りS) ∞ 可変

14 26.3876 1.0000 1.883000 40.66
15 13.2001 3.5030 1.593190 67.90
16 -39.4805 可変

17 12.5000 8.2088 1.743200 49.26
18 25.6321 1.0000 1.834000 37.18
19 9.6066 2.0000
20 17.4828 3.0696 1.516800 63.88
21 -13.7429 1.0000 1.850260 32.35
22 -25.6259 1.5000
23 -19.7745 1.0000 1.850260 32.35
24 12.4270 3.9453 1.620040 36.40
25 -17.2177 0.3559
26 44.5160 5.3272 1.581440 40.98
27 -8.1562 1.0000 1.820800 42.71
*28 -28.1926 可変

29 -40.0000 1.7646 1.497820 82.57
30 -18.8409 1.0000 1.834410 37.28
*31 -25.0038 BF

像面 ∞

[非球面データ]
第6面
κ 10.29120
A4 1.05982E-05
A6 1.47868E-07
A8 -6.64708E-09
A10 8.77431E-11
A12 -4.23990E-13

第28面
κ 1.0000
A4 -7.26393E-05
A6 -3.38257E-07
A8 1.26743E-09
A10 -2.83030E-11
A12 0.00000

第31面
κ 1.00000
A4 2.68564E-05
A6 7.91224E-08
A8 -8.06538E-10
A10 0.00000
A12 0.00000

[各種データ]
変倍比 14.13

W T
f 10.30 〜 145.50
FNO 4.08 〜 5.71
ω 39.62 〜 3.01°
Y 8.00 〜 8.00
TL 112.60 〜 162.60

W M1 M2 M3 T
f 10.30001 18.00395 60.55030 89.50052 145.50102
ω 39.61866 23.08393 7.20247 4.88583 3.00545
FNO 4.08 4.79 5.49 5.75 5.72
φ 9.01 9.02 9.02 9.26 10.08
d5 2.10000 11.86757 33.84673 38.94667 43.98780
d12 24.38938 17.21960 5.86923 4.42463 2.20000
d13 2.46923 1.80000 4.59702 3.69702 1.80000
d16 5.02779 5.69702 2.90000 3.80000 5.69702
d28 1.62642 10.35671 26.30176 30.05048 31.92800
BF 14.04946 14.04953 14.04979 14.04990 14.05006

[レンズ群データ]
群 始面 f
1 1 64.91265
2 6 -9.00339
3 14 38.07719
4 17 46.69911
5 29 260.10501

[条件式対応値]
(1) (−f2)/fw = 0.874
(2) f3/f4 = 0.815
(3) (d3t−d3w)/fw = 0.065
(Table 2) Second embodiment
[Plane data]
Face number r d nd d d
Object ∞

1 149.1393 1.6350 1.902650 35.73
2 39.3210 9.1912 1.497820 82.57
3-200.0000 0.1000
4 41.9637 5.4484 1.729160 54.61
5 1039.4250 Variable

* 6 500.0000 1.0000 1.851350 40.10
7 9.7424 3.8435
8-27.3991 1.0000 1.883000 40.66
9 89.0051 0.2895
10 21.6984 3.7554 1.808090 22.74
11-15.0205 1.0000 1.883000 40.66
12 103.6128 Variable

13 (stop S) ∞ variable

14 26.3876 1.0000 1.883000 40.66
15 13. 2001 3.5030 1.593190 67.90
16-39.4805 Variable

17 12.5000 8.2088 1.743200 49.26
18 25.6321 1.0000 1.834000 37.18
19 9.6066 2.0000
20 17.4828 3.0696 1.516800 63.88
21 -13.7429 1.0000 1.850260 32.35
22-25.6259 1.5000
23-19.7745 1.0000 1.850260 32.35
24 12.4270 3.9453 1.620040 36.40
25-17.2177 0.3559
26 44.5160 5.3272 1.581440 40.98
27 -8.1562 1.0000 1.820800 42.71
* 28-28.1926 Variable

29-40.0000 1.7646 1.497820 82.57
30-18.8409 1.0000 1.834410 37.28
* 31-25.0038 BF

Image plane ∞

[Aspheric surface data]
Sixth aspect 10. 10.29120
A4 1.05982E-05
A6 1.47868E-07
A8 -6.64708E-09
A10 8.77431E-11
A12 -4.23990E-13

The 28th face 1. 1.0000
A4 -7.26393E-05
A6-3.38257E-07
A8 1.26743E-09
A10-2.83030E-11
A12 0.00000

The 31st face 1. 1.00000
A4 2.68564E-05
A6 7.91224E-08
A8 -8.06538E-10
A10 0.00000
A12 0.00000

[Various data]
Magnification ratio 14.13

W T
f 10.30 to 145.50
FNO 4.08 to 5.71
ω 39.62 to 3.01 °
Y 8.00 to 8.00
TL 112.60 to 162.60

W M1 M2 M3 T
f 10.30001 18.00395 60.50530 89.50052 145.50102
ω 39.61 866 23.08393 7.20247 4.88583 3.000545
FNO 4.08 4.79 5.49 5.75 5.72
φ 9.01 9.02 9.02 9.26 10.08
d5 2.10000 11.86757 33.84673 38.94667 43.98780
d12 24.38938 17.21960 5.86923 4.42463 2.20000
d13 2.46923 1.80000 4.59702 3.69702 1.80000
d16 5.02779 5.69702 2.90000 3.80000 5.69702
d28 1.6624 10.35671 26.30176 30.05048 31.92800
BF 14.04946 14.04953 14.04979 14.04990 14.05006

[Lens group data]
Group front f
1 1 64.91265
2 6-9.00 339
3 14 38.07719
4 17 46.69911
5 29 260.10501

[Conditional expression corresponding value]
(1) (-f2) / fw = 0.874
(2) f3 / f4 = 0.815
(3) (d3t-d3w) / fw = 0.065

図5(a)、図5(b)、及び図5(c)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における無限遠物体合焦時の諸収差図である。
図6(a)、及び図6(b)はそれぞれ、本願の第2実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
FIGS. 5 (a), 5 (b) and 5 (c) respectively show the wide-angle end state, the first intermediate focal length state, and the second intermediate focus of the variable magnification optical system according to the second embodiment of the present invention. FIG. 7 shows various aberrations that occurred when an infinity object was in focus in the distance state.
FIGS. 6A and 6B show various aberrations of the variable magnification optical system according to the second embodiment of the present invention at the time of focusing on an infinity object at the third intermediate focal length and at the telephoto end, respectively. It is.

各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、高い光学性能を有していることがわかる。   From the aberration diagrams, it is understood that in the variable magnification optical system according to the present example, various aberrations are well corrected from the wide-angle end state to the telephoto end state, and have high optical performance.

(第3実施例)
図7(a)、図7(b)、図7(c)、図7(d)、及び図7(e)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、第2中間焦点距離状態、第3中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。
Third Embodiment
7 (a), 7 (b), 7 (c), 7 (d), and 7 (e) show the wide-angle end state of the variable magnification optical system according to the third embodiment of the present invention, respectively. FIG. 6 is a cross-sectional view in a first intermediate focal length state, a second intermediate focal length state, a third intermediate focal length state, and a telephoto end state.
The variable magnification optical system according to the present embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. It comprises a lens group G3, a fourth lens group G4 having positive refractive power, and a fifth lens group G5 having positive refractive power.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と物体側に凹面を向けた負メニスカスレンズL24との接合レンズとからなる。なお、負メニスカスレンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
The first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 with a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 with a convex surface facing the object side Become.
In the second lens group G2, in order from the object side, a negative meniscus lens L21 having a convex surface facing the object side, a biconcave negative lens L22, a biconvex positive lens L23, and a negative surface having a concave surface facing the object And a cemented lens with the meniscus lens L24. The negative meniscus lens L21 is a glass mold aspheric lens in which the lens surface on the object side is aspheric.

第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合レンズからなる。なお、第3レンズ群G3の物体側には、開口絞りSが備えられている。
第4レンズ群G4は、物体側から順に、両凸形状の正レンズL41と両凹形状の負レンズL42との接合レンズと、両凸形状の正レンズL43と物体側に凹面を向けた負メニスカスレンズL44との接合レンズと、両凹形状の負レンズL45と両凸形状の正レンズL46との接合レンズと、両凸形状の正レンズL47と物体側に凹面を向けた負メニスカスレンズL48との接合レンズとからなる。なお、負メニスカスレンズL48は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
The third lens group G3 is composed of, in order from the object side, a cemented lens of a negative meniscus lens L31 having a convex surface facing the object side and a biconvex positive lens L32. An aperture stop S is provided on the object side of the third lens group G3.
The fourth lens group G4, in order from the object side, is a cemented lens of a biconvex positive lens L41 and a biconcave negative lens L42, and a negative meniscus with a biconvex positive lens L43 and a concave surface facing the object side A cemented lens with the lens L44, a cemented lens of a biconcave negative lens L45 and a biconvex positive lens L46, and a biconvex positive lens L47 with a negative meniscus lens L48 having a concave surface facing the object side It consists of a cemented lens. The negative meniscus lens L48 is a glass mold aspheric lens having an aspheric lens surface on the image side.

第5レンズ群G5は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL51と物体側に凹面を向けた負メニスカスレンズL52との接合レンズからなる。なお、負メニスカスレンズL52は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。   The fifth lens group G5 is composed of, in order from the object side, a cemented lens of a positive meniscus lens L51 having a concave surface facing the object side and a negative meniscus lens L52 having a concave surface facing the object side. The negative meniscus lens L52 is a glass mold aspheric lens having an aspheric lens surface on the image side.

以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔、第2レンズ群G2と第3レンズ群G3との空気間隔、第3レンズ群G3と第4レンズ群G4との空気間隔、及び第4レンズ群G4と第5レンズ群G5との空気間隔がそれぞれ変化するように、第1レンズ群G1〜第4レンズ群G4が光軸に沿って物体側へ移動する。第5レンズ群G5は変倍時に光軸方向の位置が固定である。なお、開口絞りSは変倍時に第4レンズ群G4と一体的に物体側へ移動する。   Under the above-described configuration, in the variable magnification optical system according to the present embodiment, an air gap between the first lens group G1 and the second lens group G2 and a second lens group at the time of zooming from the wide angle end state to the telephoto end state. The air spacing between G2 and the third lens group G3, the air spacing between the third lens group G3 and the fourth lens group G4, and the air spacing between the fourth lens group G4 and the fifth lens group G5 respectively change The first to fourth lens groups G1 to G4 move to the object side along the optical axis. The position of the fifth lens group G5 in the optical axis direction is fixed at the time of zooming. The aperture stop S moves integrally with the fourth lens group G4 to the object side during zooming.

詳細には、変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が増加し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第4レンズ群G4と第5レンズ群G5との空気間隔が増加する。第3レンズ群G3と第4レンズ群G4との空気間隔は、広角端状態から第1中間焦点距離状態まで増加し、第1中間焦点距離状態から第2中間焦点距離状態まで減少し、第2中間焦点距離状態から望遠端状態まで増加する。なお、変倍時に開口絞りSと第3レンズ群G3との空気間隔は、広角端状態から第1中間焦点距離状態まで減少し、第1中間焦点距離状態から第2中間焦点距離状態まで増加し、第2中間焦点距離状態から望遠端状態まで減少する。
以下の表3に、本実施例に係る変倍光学系の諸元の値を掲げる。
Specifically, at the time of zooming, the air gap between the first lens group G1 and the second lens group G2 increases, and the air gap between the second lens group G2 and the third lens group G3 decreases, and the fourth lens group The air gap between G4 and the fifth lens group G5 is increased. The air gap between the third lens group G3 and the fourth lens group G4 increases from the wide-angle end state to the first intermediate focal length state, and decreases from the first intermediate focal length state to the second intermediate focal length state. It increases from the intermediate focal length state to the telephoto end state. During zooming, the air gap between the aperture stop S and the third lens group G3 decreases from the wide-angle end state to the first intermediate focal length state, and increases from the first intermediate focal length state to the second intermediate focal length state. , Decrease from the second intermediate focal length state to the telephoto end state.
Table 3 below presents values of specifications of the variable magnification optical system according to the present example.

(表3)第3実施例
[面データ]
面番号 r d nd νd
物面 ∞

1 142.4935 1.6350 1.950000 29.37
2 42.2502 8.5971 1.497820 82.57
3 -244.5599 0.1000
4 43.5280 4.7901 1.834810 42.73
5 290.5464 可変

*6 500.0000 1.0000 1.851350 40.10
7 9.0471 4.3168
8 -20.3544 1.0000 1.903660 31.27
9 42.4575 0.7313
10 28.0881 4.0634 1.808090 22.74
11 -12.5975 1.0000 1.883000 40.66
12 -38.6924 可変

13(絞りS) ∞ 可変

14 31.6163 1.0000 1.883000 40.66
15 15.7262 3.3464 1.593190 67.90
16 -39.3012 可変

17 13.5000 9.6782 1.717000 47.98
18 -38.7323 1.0000 1.883000 40.66
19 11.8099 2.0000
20 19.9976 3.2554 1.516800 63.88
21 -12.0110 1.0000 1.850260 32.35
22 -20.9691 1.5000
23 -39.8308 1.0000 1.950000 29.37
24 10.4776 3.5701 1.672700 32.19
25 -30.1182 0.5349
26 36.6513 5.1773 1.581440 40.98
27 -8.5118 1.0000 1.820800 42.71
*28 -28.2741 可変

29 -40.0000 1.9141 1.497820 82.57
30 -18.1052 1.0000 1.834410 37.28
*31 -22.6207 BF

像面 ∞

[非球面データ]
第6面
κ -3.81950
A4 4.21558E-05
A6 -2.17082E-07
A8 -2.45102E-09
A10 5.51411E-11
A12 -2.85950E-13

第28面
κ 1.0000
A4 -6.70317E-05
A6 -2.82990E-07
A8 5.39592E-10
A10 -1.47007E-11
A12 0.00000

第31面
κ 1.00000
A4 2.67692E-05
A6 2.52197E-08
A8 -6.04092E-10
A10 0.00000
A12 0.00000

[各種データ]
変倍比 14.13

W T
f 9.27 〜 130.95
FNO 4.11 〜 5.71
ω 42.66 〜 3.37°
Y 8.00 〜 8.00
TL 113.35 〜 167.85

W M1 M2 M3 T
f 9.27001 17.98649 60.50024 89.50040 130.95047
ω 42.66459 22.98882 7.25983 4.93130 3.37079
FNO 4.11 5.12 5.73 5.75 5.71
φ 8.59 8.59 9.57 10.18 11.03
d5 2.10000 14.22823 35.96983 41.57489 45.70436
d12 24.57776 16.27840 5.38702 3.71762 2.20000
d13 5.01075 3.17327 4.36075 3.46075 1.80000
d16 2.25000 4.08748 2.90000 3.80000 5.46075
d28 1.15583 11.01481 29.01229 32.10086 34.42483
BF 14.04945 14.04946 14.04979 14.04987 14.04999

[レンズ群データ]
群 始面 f
1 1 67.49208
2 6 -9.52181
3 14 41.09622
4 17 53.39457
5 29 147.67270

[条件式対応値]
(1) (−f2)/fw = 1.027
(2) f3/f4 = 0.770
(3) (d3t−d3w)/fw = 0.346
(Table 3) Third embodiment
[Plane data]
Face number r d nd d d
Object ∞

1 142.4935 1.6350 1.950000 29.37
2 42.2502 8.5971 1.497820 82.57
3-244.5599 0.1000
4 43.5280 4.7901 1.834810 42.73
5 290.5464 Variable

* 6 500.0000 1.0000 1.851350 40.10
7 9.0471 4.3168
8-20. 3544 1.0000 1.903660 31.27
9 42.4575 0.7313
10 28.0 881 4.0634 1.808090 22.74
11-12.5975 1.0000 1.883000 40.66
12-38.6924 Variable

13 (stop S) ∞ variable

14 31.6163 1.0000 1.883000 40.66
15 15.7262 3.3464 1.593190 67.90
16 -39.3012 Variable

17 13.5000 9.6782 1.717000 47.98
18-38.7323 1.0000 1.883000 40.66
19 11.8099 2.0000
20 19.9976 3.2554 1.516800 63.88
21-12.0110 1.0000 1.850260 32.35
22 -20.9691 1.5000
23-39.8308 1.0000 1.950000 29.37
24 10.4776 3.5701 1.672700 32.19
25-30.1182 0.5349
26 36.6513 5.1773 1.581440 40.98
27-8.5118 1.0000 1.820800 42.71
* 28-28.2741 variable

29-40.0000 1.9141 1.497820 82.57
30 -18.1052 1.0000 1.834410 37.28
* 31-22.6207 BF

Image plane ∞

[Aspheric surface data]
Sixth face--3.81950
A4 4.21558E-05
A6-2.17082E-07
A8 -2.45102E-09
A10 5.51411E-11
A12-2.85950 E-13

The 28th face 1. 1.0000
A4-6.70317E-05
A6-2.82990E-07
A8 5.39592E-10
A10 -1.47007E-11
A12 0.00000

The 31st face 1. 1.00000
A4 2.67692E-05
A6 2.52197E-08
A8-6.04092E-10
A10 0.00000
A12 0.00000

[Various data]
Magnification ratio 14.13

W T
f 9.27 to 130.95
FNO 4.11 to 5.71
ω 42.66 to 3.37 °
Y 8.00 to 8.00
TL 113.35-167.85

W M1 M2 M3 T
f 9.27001 17.98649 60.50024 89.50040 130.95047
ω 42.66459 22.98882 7.25983 4.93130 3.37079
FNO 4.11 5.12 5.73 5.75 5.71
φ 8.59 8.59 9.57 10.18 11.03
d5 2.10000 14.22823 35.96983 41.57489 45.070436
d12 24.57776 16.27840 5.38702 3.71762 20000
d13 5.01075 3.17327 4.36075 3.46075 1.80000
d16 2.25000 4.08748 2.90000 3.80000 5.46075
d28 1.15583 11.01481 29.01229 32.10086 34.42483
BF 14.04945 14.04946 14.04979 14.04987 14.04999

[Lens group data]
Group front f
1 1 67.49208
2 6-9.52181
3 14 41.09622
4 17 53.39457
5 29 147.67270

[Conditional expression corresponding value]
(1) (-f2) / fw = 1.027
(2) f3 / f4 = 0.770
(3) (d3t-d3w) / fw = 0.346

図8(a)、図8(b)、及び図8(c)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における無限遠物体合焦時の諸収差図である。
図9(a)、及び図9(b)はそれぞれ、本願の第3実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
FIGS. 8A, 8B, and 8C respectively show the wide-angle end state, the first intermediate focal length state, and the second intermediate focus of the variable magnification optical system according to the third example of the present application. FIG. 7 shows various aberrations that occurred when an infinity object was in focus in the distance state.
FIGS. 9 (a) and 9 (b) show various aberrations of the variable magnification optical system according to the third embodiment of the present invention at the time of focusing on an infinity object at the third intermediate focal length and at the telephoto end, respectively. It is.

各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、高い光学性能を有していることがわかる。   From the aberration diagrams, it is understood that in the variable magnification optical system according to the present example, various aberrations are well corrected from the wide-angle end state to the telephoto end state, and have high optical performance.

(第4実施例)
図10(a)、図10(b)、図10(c)、図10(d)、及び図10(e)はそれぞれ、本願の第4実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、第2中間焦点距離状態、第3中間焦点距離状態、及び望遠端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。
Fourth Embodiment
10 (a), 10 (b), 10 (c), 10 (d) and 10 (e) respectively show the wide-angle end state of the variable magnification optical system according to the fourth embodiment of the present invention; FIG. 6 is a cross-sectional view in a first intermediate focal length state, a second intermediate focal length state, a third intermediate focal length state, and a telephoto end state.
The variable magnification optical system according to the present embodiment includes, in order from the object side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. It comprises a lens group G3, a fourth lens group G4 having positive refractive power, and a fifth lens group G5 having positive refractive power.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向けた正メニスカスレンズL13とからなる。
第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と両凹形状の負レンズL24との接合レンズとからなる。なお、負メニスカスレンズL21は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
The first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 with a convex surface facing the object side and a biconvex positive lens L12, and a positive meniscus lens L13 with a convex surface facing the object side Become.
The second lens group G2 includes, in order from the object side, a negative meniscus lens L21 having a convex surface facing the object, a biconcave negative lens L22, a biconvex positive lens L23, and a biconcave negative lens L24. And a cemented lens. The negative meniscus lens L21 is a glass mold aspheric lens in which the lens surface on the object side is aspheric.

第3レンズ群G3は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL31と両凸形状の正レンズL32との接合レンズからなる。なお、第3レンズ群G3の物体側には、開口絞りSが備えられている。
第4レンズ群G4は、物体側から順に、物体側に凸面を向けた正メニスカスレンズL41と物体側に凸面を向けた負メニスカスレンズL42との接合レンズと、両凸形状の正レンズL43と物体側に凹面を向けた負メニスカスレンズL44との接合レンズと、両凹形状の負レンズL45と、両凸形状の正レンズL46と物体側に凹面を向けた負メニスカスレンズL47との接合レンズとからなる。なお、負レンズL45は物体側のレンズ面を非球面形状としたガラスモールド非球面レンズであり、負メニスカスレンズL47は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。
The third lens group G3 is composed of, in order from the object side, a cemented lens of a negative meniscus lens L31 having a convex surface facing the object side and a biconvex positive lens L32. An aperture stop S is provided on the object side of the third lens group G3.
The fourth lens group G4 includes, in order from the object side, a cemented lens of a positive meniscus lens L41 with a convex surface facing the object side and a negative meniscus lens L42 with a convex surface facing the object side, a biconvex positive lens L43, and an object From a cemented lens with a negative meniscus lens L44 concave on the side, a biconcave negative lens L45, and a cemented lens with a biconvex positive lens L46 and a negative meniscus lens L47 concave on the object side Become. The negative lens L45 is a glass mold aspheric lens in which the lens surface on the object side is aspheric, and the negative meniscus lens L47 is a glass mold aspheric lens in which the lens surface on the image side is aspheric.

第5レンズ群G5は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL51と物体側に凹面を向けた負メニスカスレンズL52との接合レンズからなる。なお、負メニスカスレンズL52は像側のレンズ面を非球面形状としたガラスモールド非球面レンズである。   The fifth lens group G5 is composed of, in order from the object side, a cemented lens of a positive meniscus lens L51 having a concave surface facing the object side and a negative meniscus lens L52 having a concave surface facing the object side. The negative meniscus lens L52 is a glass mold aspheric lens having an aspheric lens surface on the image side.

以上の構成の下、本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔、第2レンズ群G2と第3レンズ群G3との空気間隔、第3レンズ群G3と第4レンズ群G4との空気間隔、及び第4レンズ群G4と第5レンズ群G5との空気間隔がそれぞれ変化するように、第1レンズ群G1〜第4レンズ群G4が光軸に沿って移動する。
詳細には、第1レンズ群G1、第3レンズ群G3及び第4レンズ群G4は変倍時に物体側へ移動する。第2レンズ群G2は、広角端状態から第2中間焦点距離状態まで物体側へ移動し、第2中間焦点距離状態から第3中間焦点距離状態まで像側へ移動し、第3中間焦点距離状態から望遠端状態まで物体側へ移動する。第5レンズ群G5は変倍時に光軸方向の位置が固定である。なお、開口絞りSは変倍時に第4レンズ群G4と一体的に物体側へ移動する。
Under the above-described configuration, in the variable magnification optical system according to the present embodiment, an air gap between the first lens group G1 and the second lens group G2 and a second lens group at the time of zooming from the wide angle end state to the telephoto end state. The air spacing between G2 and the third lens group G3, the air spacing between the third lens group G3 and the fourth lens group G4, and the air spacing between the fourth lens group G4 and the fifth lens group G5 respectively change The first to fourth lens groups G1 to G4 move along the optical axis.
In detail, the first lens group G1, the third lens group G3 and the fourth lens group G4 move to the object side during zooming. The second lens group G2 moves to the object side from the wide-angle end state to the second intermediate focal length state, moves to the image side from the second intermediate focal length state to the third intermediate focal length state, and moves to the third intermediate focal length state Move to the object side from to the telephoto end state. The position of the fifth lens group G5 in the optical axis direction is fixed at the time of zooming. The aperture stop S moves integrally with the fourth lens group G4 to the object side during zooming.

これにより、変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が増加し、第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第4レンズ群G4と第5レンズ群G5との空気間隔が増加する。第3レンズ群G3と第4レンズ群G4との空気間隔は、広角端状態から第1中間焦点距離状態まで増加し、第1中間焦点距離状態から第2中間焦点距離状態まで減少し、第2中間焦点距離状態から望遠端状態まで増加する。なお、変倍時に開口絞りSと第3レンズ群G3との空気間隔は、広角端状態から第1中間焦点距離状態まで減少し、第1中間焦点距離状態から第2中間焦点距離状態まで増加し、第2中間焦点距離状態から望遠端状態まで減少する。
以下の表4に、本実施例に係る変倍光学系の諸元の値を掲げる。
As a result, the air gap between the first lens group G1 and the second lens group G2 increases during zooming, and the air gap between the second lens group G2 and the third lens group G3 decreases, and the fourth lens group G4 And the fifth lens unit G5 has an increased air gap. The air gap between the third lens group G3 and the fourth lens group G4 increases from the wide-angle end state to the first intermediate focal length state, and decreases from the first intermediate focal length state to the second intermediate focal length state. It increases from the intermediate focal length state to the telephoto end state. During zooming, the air gap between the aperture stop S and the third lens group G3 decreases from the wide-angle end state to the first intermediate focal length state, and increases from the first intermediate focal length state to the second intermediate focal length state. , Decrease from the second intermediate focal length state to the telephoto end state.
Table 4 below presents values of specifications of the variable magnification optical system according to the present example.

(表4)第4実施例
[面データ]
面番号 r d nd νd
物面 ∞

1 128.2103 1.6350 1.950000 29.37
2 42.8046 8.6432 1.497820 82.57
3 -200.0000 0.1000
4 42.6819 4.9663 1.816000 46.59
5 290.0414 可変

*6 500.0000 1.0000 1.851350 40.10
7 9.6706 3.8612
8 -31.6340 1.0000 1.883000 40.66
9 50.5774 0.3860
10 20.2802 4.0969 1.808090 22.74
11 -12.7389 1.0000 1.902650 35.73
12 182.6358 可変

13(絞りS) ∞ 可変

14 22.0943 1.0000 1.883000 40.66
15 12.0211 3.4295 1.593190 67.90
16 -54.4618 可変

17 13.5315 7.0129 1.816000 46.59
18 20.2242 1.0000 1.850260 32.35
19 10.9126 2.0000
20 18.6799 3.1628 1.516800 63.88
21 -12.1205 1.0000 1.850260 32.35
22 -21.9214 1.5000
*23 -2373.2040 1.0000 1.806100 40.71
24 15.4976 2.3426
25 18.1342 5.9256 1.567320 42.58
26 -8.0000 1.0000 1.851350 40.10
*27 -22.6238 可変

28 -75.6072 2.0606 1.497820 82.57
29 -18.0744 1.0000 1.834410 37.28
*30 -25.8110 BF

像面 ∞

[非球面データ]
第6面
κ -9.00000
A4 1.14894E-05
A6 2.79933E-07
A8 -1.11589E-08
A10 1.42629E-10
A12 -6.44930E-13

第23面
κ 1.00000
A4 -3.10495E-05
A6 4.64001E-07
A8 -2.52074E-09
A10 1.73753E-10
A12 0.00000

第27面
κ 1.0000
A4 -5.63578E-05
A6 -8.97938E-08
A8 1.47935E-09
A10 -1.36135E-11
A12 0.00000

第30面
κ 1.00000
A4 2.81743E-05
A6 -2.96842E-08
A8 -7.80468E-10
A10 0.00000
A12 0.00000

[各種データ]
変倍比 14.13

W T
f 10.30 〜 145.50
FNO 4.12 〜 5.77
ω 39.65 〜 3.02°
Y 8.00 〜 8.00
TL 107.35 〜 157.35

W M1 M2 M3 T
f 10.30004 17.99586 60.49785 100.49280 145.50011
ω 39.65487 23.02121 7.21558 4.36760 3.01679
FNO 4.12 4.94 5.67 5.75 5.77
φ 8.34 8.34 9.08 9.22 10.26
d5 2.10000 12.12447 32.02336 38.52508 41.21393
d12 22.23850 16.63220 7.10168 3.99200 2.20000
d13 3.91359 2.69844 3.58860 3.47054 1.80000
d16 3.65694 4.87210 3.98194 4.10000 5.77054
d27 1.26857 9.13237 25.54504 27.42933 32.19314
BF 14.04952 14.04918 14.04790 14.04914 14.04886

[レンズ群データ]
群 始面 f
1 1 62.23195
2 6 -9.03822
3 14 37.53030
4 17 49.24516
5 28 130.00164

[条件式対応値]
(1) (−f2)/fw = 0.877
(2) f3/f4 = 0.762
(3) (d3t−d3w)/fw = 0.205
(Table 4) Fourth embodiment
[Plane data]
Face number r d nd d d
Object ∞

1 128.2103 1.6350 1.950000 29.37
2 42.8046 8.6432 1.497820 82.57
3-200.0000 0.1000
4 42.6819 4.9663 1.816000 46.59
5 290.0414 Variable

* 6 500.0000 1.0000 1.851350 40.10
7 9.6706 3.8612
8-31.6340 1.0000 1.883000 40.66
9 50.5774 0.3860
10 20.2802 4.0969 1.808090 22.74
11-12.7389 1.0000 1.902650 35.73
12 182.6358 Variable

13 (stop S) ∞ variable

14 22.0943 1.0000 1.883000 40.66
15 12.0211 3.4295 1.593190 67.90
16-54.4618 Variable

17 13.5315 7.0129 1.816000 46.59
18 20.22 24 1.0000 1.850 260 32.35
19 10.9126 2.0000
20 18.6799 3.1628 1.516800 63.88
21 -12.1205 1.0000 1.850260 32.35
22-21.9214 1.5000
* 23-2373.2040 1.0000 1.806100 40.71
24 15.4976 2.3426
25 18.1342 5.9256 1.567320 42.58
26-8.0000 1.0000 1.851350 40.10
* 27-22.6238 Variable

28 -75.6072 2.0606 1.497820 82.57
29-18.0744 1.0000 1.834410 37.28
* 30-25.8110 BF

Image plane ∞

[Aspheric surface data]
Sixth face κ -9.00000
A4 1.14894E-05
A6 2.79933E-07
A8 -1.11589E-08
A10 1.42629E-10
A12 -6.44930E-13

The 23rd side κ 1.00000
A4-3.10495E-05
A6 4.64001E-07
A8-2.52074E-09
A10 1.73753E-10
A12 0.00000

Plane 27 κ 1.0000
A4 -5.63578E-05
A6 -8.97938E-08
A8 1.47935E-09
A10 -1.36135E-11
A12 0.00000

The 30th κ 1.00000
A4 2.81743E-05
A6 -2.96842E-08
A8 -7.80468E-10
A10 0.00000
A12 0.00000

[Various data]
Magnification ratio 14.13

W T
f 10.30 to 145.50
FNO 4.12 to 5.77
ω 39.65 to 3.02 °
Y 8.00 to 8.00
TL 107.35-157.35

W M1 M2 M3 T
f 10.30004 17.99586 60.49785 100.49280 145.50011
ω 39.65487 23.02121 7.21558 4.36760 3.01679
FNO 4.12 4.94 5.67 5.75 5.77
φ 8.34 8.34 9.08 9.22 10.26
d5 2.10000 12.12447 32.02336 38.52508 41.21393
d12 22.23850 16.63220 7.10168 3.99200 2.20000
d13 3.91359 2.69844 3.58860 3.47051 1.80000
d16 3.65694 4.87210 3.98194 4.10000 5.77054
d27 1.26857 9.13237 25.54504 27.42933 32.19314
BF 14.04952 14.04918 14.04790 14.04914 14.04088

[Lens group data]
Group front f
1 1 62.23195
2 6-9.03822
3 14 37.53030
4 17 49.24516
5 28 130.0156

[Conditional expression corresponding value]
(1) (-f2) / fw = 0.877
(2) f3 / f4 = 0.762
(3) (d3t-d3w) / fw = 0.205

図11(a)、図11(b)、及び図11(c)はそれぞれ、本願の第4実施例に係る変倍光学系の広角端状態、第1中間焦点距離状態、及び第2中間焦点距離状態における無限遠物体合焦時の諸収差図である。
図12(a)、及び図12(b)はそれぞれ、本願の第4実施例に係る変倍光学系の第3中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。
11 (a), 11 (b) and 11 (c) respectively show the wide-angle end state, the first intermediate focal length state, and the second intermediate focus of the variable magnification optical system according to the fourth example of the present application. It is various aberrations figure at the time of an infinite point object focus in a distance state.
FIGS. 12A and 12B show various aberrations of the zoom optical system according to the fourth embodiment of the present invention, at the time of focusing on an infinity object at the third intermediate focal length and at the telephoto end, respectively. It is.

各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、高い光学性能を有していることがわかる。   From the aberration diagrams, it is understood that in the variable magnification optical system according to the present example, various aberrations are well corrected from the wide-angle end state to the telephoto end state, and have high optical performance.

上記各実施例によれば、高変倍比を有し、小型で、高い光学性能を有する変倍光学系を実現することができる。
なお、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。以下の内容は、本願の変倍光学系の光学性能を損なわない範囲で適宜採用することが可能である。
According to each of the above embodiments, it is possible to realize a variable power optical system having a high zoom ratio, a small size, and high optical performance.
The above-described embodiments show one specific example of the present invention, and the present invention is not limited thereto. The following contents can be suitably adopted within the range that does not impair the optical performance of the variable magnification optical system of the present application.

本願の変倍光学系の数値実施例として5群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、6群、7群等)の変倍光学系を構成することもできる。具体的には、本願の変倍光学系の最も物体側や最も像側にレンズ又はレンズ群を追加した構成でも構わない。なお、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。   Although a five-group configuration is shown as a numerical example of the variable-magnification optical system according to the present application, the present application is not limited to this, and forms a variable-magnification optical system of other group configurations (for example, six groups, seven groups, etc. It can also be done. Specifically, a lens or lens group may be added to the most object side or most image side of the variable magnification optical system of the present application. The lens group indicates a portion having at least one lens separated by an air gap that changes at the time of zooming.

また、本願の変倍光学系は、無限遠物体から近距離物体への合焦を行うために、レンズ群の一部、1つのレンズ群全体、或いは複数のレンズ群を合焦レンズ群として光軸方向へ移動させる構成としてもよい。特に、第2レンズ群の少なくとも一部又は第3レンズ群の少なくとも一部又は第4レンズ群の少なくとも一部又は第5レンズ群の少なくとも一部を合焦レンズ群とすることが好ましい。また、斯かる合焦レンズ群は、オートフォーカスに適用することも可能であり、オートフォーカス用のモータ、例えば超音波モータ等による駆動にも適している。   Further, in the variable magnification optical system according to the present invention, in order to focus from an infinite distance object to a close distance object, a part of the lens group, an entire lens group, or a plurality of lens groups is used as a focusing lens group. It may be configured to move in the axial direction. In particular, it is preferable to set at least a part of the second lens group, at least a part of the third lens group, or at least a part of the fourth lens group, or at least a part of the fifth lens group as a focusing lens group. Further, such a focusing lens group can also be applied to auto focusing, and is also suitable for driving by a motor for auto focusing such as an ultrasonic motor.

また、本願の変倍光学系において、いずれかのレンズ群全体又はその一部を、防振レンズ群として光軸に対して垂直な方向の成分を含むように移動させ、又は光軸を含む面内方向へ回転移動(揺動)させることにより、手ぶれ等によって生じる像ぶれを補正する構成とすることもできる。特に、本願の変倍光学系では第3レンズ群の少なくとも一部又は第4レンズ群の少なくとも一部又は第5レンズ群の少なくとも一部を防振レンズ群とすることが好ましい。   Further, in the variable magnification optical system according to the present application, all or part of any lens group is moved as a vibration reduction lens group so as to include a component in a direction perpendicular to the optical axis, or a surface including the optical axis It is also possible to correct image blurring caused by camera shake or the like by rotating (swinging) inward. In particular, in the variable magnification optical system of the present application, it is preferable that at least a part of the third lens group or at least a part of the fourth lens group or at least a part of the fifth lens group be a vibration reduction lens group.

また、本願の変倍光学系を構成するレンズのレンズ面は、球面又は平面としてもよく、或いは非球面としてもよい。レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防ぐことができるため好ましい。また、像面がずれた場合でも描写性能の劣化が少ないため好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、又はガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。   Further, the lens surface of the lens constituting the variable magnification optical system of the present invention may be a spherical surface or a plane, or may be an aspheric surface. When the lens surface is spherical or flat, it is preferable because lens processing and assembly adjustment can be facilitated, and deterioration of optical performance due to lens processing and assembly adjustment errors can be prevented. In addition, even when the image plane shifts, it is preferable because the deterioration of the imaging performance is small. When the lens surface is aspheric, any of aspheric aspheric surfaces by grinding, a glass mold aspheric surface formed by shaping a glass into aspheric surface shape, or a composite aspheric surface formed by forming a resin on a glass surface into an aspheric surface shape Good. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

また、本願の変倍光学系において開口絞りは第3レンズ群中又は第3レンズ群の近傍に配置されることが好ましく、開口絞りとして部材を設けずにレンズ枠でその役割を代用する構成としてもよい。
また、本願の変倍光学系を構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。
Further, in the variable magnification optical system of the present application, the aperture stop is preferably disposed in the third lens group or in the vicinity of the third lens group, and the lens frame substitutes its role without providing a member as the aperture stop. It is also good.
In addition, an anti-reflection film having high transmittance over a wide wavelength range may be provided on the lens surface of the lens constituting the variable magnification optical system of the present application. This can reduce flare and ghost and achieve high contrast and high optical performance.

次に、本願の変倍光学系を備えたカメラを図13に基づいて説明する。
図13は、本願の変倍光学系を備えたカメラの構成を示す図である。
図13に示すようにカメラ1は、撮影レンズ2として上記第1実施例に係る変倍光学系を備えたレンズ交換式の所謂ミラーレスカメラである。
本カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部3の撮像面上に被写体像を形成する。そして、撮像部3に設けられた光電変換素子によって被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられたEVF(Electronic view finder:電子ビューファインダ)4に表示される。これにより撮影者は、EVF4を介して被写体を観察することができる。
また、撮影者によって不図示のレリーズボタンが押されると、撮像部3で生成された被写体の画像が不図示のメモリに記憶される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。
Next, a camera provided with the variable magnification optical system of the present application will be described based on FIG.
FIG. 13 is a diagram showing a configuration of a camera provided with the variable magnification optical system of the present application.
As shown in FIG. 13, the camera 1 is a so-called mirrorless camera of an interchangeable lens type provided with the variable magnification optical system according to the first embodiment as the photographing lens 2.
In the present camera 1, light from an object (not shown) from the object (not shown) is collected by the photographing lens 2 and passes through an OLPF (Optical Low Pass Filter) (not shown) on the imaging surface of the imaging unit 3 Form an image of the subject. Then, the subject image is photoelectrically converted by the photoelectric conversion element provided in the imaging unit 3 to generate the image of the subject. This image is displayed on an EVF (Electronic view finder) 4 provided in the camera 1. Thereby, the photographer can observe the subject via the EVF 4.
When the photographer presses a release button (not shown), the image of the subject generated by the imaging unit 3 is stored in a memory (not shown). In this way, the photographer can shoot a subject with the main camera 1.

ここで、本カメラ1に撮影レンズ2として搭載した上記第1実施例に係る変倍光学系は、高変倍比を有し、小型で、高い光学性能を有する変倍光学系である。したがって本カメラ1は、高変倍比を有しつつ、小型化と高い光学性能を実現することができる。なお、上記第2〜第4実施例に係る変倍光学系を撮影レンズ2として搭載したカメラを構成しても、上記カメラ1と同様の効果を奏することができる。また、クイックリターンミラーを有し、ファインダ光学系によって被写体を観察する一眼レフタイプのカメラに上記各実施例に係る変倍光学系を搭載した場合でも、上記カメラ1と同様の効果を奏することができる。   Here, the variable magnification optical system according to the first embodiment mounted as the photographing lens 2 in the present camera 1 is a variable magnification optical system having a high magnification ratio, small size, and high optical performance. Therefore, the camera 1 can realize downsizing and high optical performance while having a high zoom ratio. Even if a camera mounted with the variable magnification optical system according to the second to fourth examples as the photographing lens 2 can be provided, the same effect as the camera 1 can be obtained. Even when the variable magnification optical system according to each of the above embodiments is mounted on a single-lens reflex camera having a quick return mirror and observing a subject by a finder optical system, the same effect as that of the camera 1 can be obtained. it can.

最後に、本願の変倍光学系の製造方法の概略を図14に基づいて説明する。
図14に示す本願の変倍光学系の製造方法は、物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、第5レンズ群とを有する変倍光学系の製造方法であって、以下のステップS1、S2を含むものである。
Finally, an outline of a method of manufacturing a variable magnification optical system according to the present application will be described based on FIG.
The manufacturing method of the variable magnification optical system of the present application shown in FIG. 14 has a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power in order from the object side. A manufacturing method of a variable power optical system including a third lens group, a fourth lens group having positive refractive power, and a fifth lens group, and includes the following steps S1 and S2.

ステップS1:第2レンズ群、第3レンズ群、及び第4レンズ群が以下の条件式(1)、(2)を満足するようにし、第1〜第5レンズ群をレンズ鏡筒内に物体側から順に配置する。
(1) 0.650 < (−f2)/fw < 1.240
(2) 0.410 < f3/f4 < 1.000
但し、
fw:広角端状態における変倍光学系の焦点距離
f2:第2レンズ群の焦点距離
f3:第3レンズ群の焦点距離
f4:第4レンズ群の焦点距離
Step S1: The second lens group, the third lens group, and the fourth lens group satisfy the following conditional expressions (1) and (2), and the first to fifth lens groups are arranged in the lens barrel: Arrange in order from the side.
(1) 0.650 <(-f2) / fw <1.240
(2) 0.410 <f 3 / f 4 <1. 000
However,
fw: Focal length f2 of the variable magnification optical system in the wide-angle end state: Focal length f2 of the second lens group: Focal length f3 of the third lens group f4: Focal length of the fourth lens group

ステップS2:レンズ鏡筒に公知の移動機構を設ける等することで、広角端状態から望遠端状態への変倍時に、第1レンズ群と第2レンズ群との間隔、第2レンズ群と第3レンズ群との間隔、第3レンズ群と第4レンズ群との間隔、及び第4レンズ群と第5レンズ群との間隔が変化するようにする。   Step S2: The distance between the first lens group and the second lens group, the second lens group and the second lens group, and the like at the time of zooming from the wide-angle end state to the telephoto end state by providing a known moving mechanism in the lens barrel. The distance between the third lens unit, the distance between the third lens unit and the fourth lens unit, and the distance between the fourth lens unit and the fifth lens unit are changed.

斯かる本願の変倍光学系の製造方法によれば、高変倍比を有し、小型で、高い光学性能を有する変倍光学系を製造することができる。   According to the manufacturing method of such a variable power optical system of the present application, it is possible to manufacture a variable power optical system having a high power ratio, a small size, and high optical performance.

G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
G5 第5レンズ群
S 開口絞り
I 像面
G1 first lens group G2 second lens group G3 third lens group G4 fourth lens group G5 fifth lens group S aperture stop I image plane

Claims (10)

物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、第5レンズ群とにより実質的に5個のレンズ群からなり
前記第3レンズ群の物体側に開口絞りを備え、
倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と前記第4レンズ群との間隔、及び前記第4レンズ群と前記第5レンズ群との間隔が変化し、前記開口絞りと前記第4レンズ群とが一体的に移動し、
以下の条件式(1)、(2A)を満足することを特徴とする変倍光学系。
(1)0.650 < (−f2)/fw < 1.240
(2A)0.410 < f3/f4 < 0.880
但し、
fw:広角端状態における前記変倍光学系の焦点距離
f2:前記第2レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
From the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a positive refractive power The lens unit and the fifth lens unit substantially consist of five lens units ,
An aperture stop is provided on the object side of the third lens group,
During zooming , the distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, the distance between the third lens group and the fourth lens group, The distance between the fourth lens group and the fifth lens group changes, and the aperture stop and the fourth lens group move integrally.
A variable magnification optical system characterized by satisfying the following conditional expressions (1) and (2A) .
(1) 0.650 <(-f2) / fw <1.240
(2A) 0.410 <f3 / f4 < 0.880
However,
fw: focal length f2 of the variable magnification optical system in the wide-angle end state: focal length f3 of the second lens group: focal length f3 of the third lens group: focal length of the fourth lens group
物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、第5レンズ群とにより実質的に5個のレンズ群からなり
前記第3レンズ群の物体側に開口絞りを備え、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と前記第4レンズ群との間隔が変化し、前記第4レンズ群と前記第5レンズ群との間隔が増加し、前記開口絞りと前記第4レンズ群とが一体的に移動し、
以下の条件式(1)、(2)を満足することを特徴とする変倍光学系。
(1)0.650 < (−f2)/fw < 1.240
(2)0.410 < f3/f4 < 1.000
但し、
fw:広角端状態における前記変倍光学系の焦点距離
f2:前記第2レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
From the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a positive refractive power The lens unit and the fifth lens unit substantially consist of five lens units ,
An aperture stop is provided on the object side of the third lens group,
When zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, the third lens group and the third lens group interval to vary between the fourth lens group increases the distance between the front Symbol said fifth lens group and the fourth lens group, and the aperture stop and the fourth lens unit move integrally,
A variable magnification optical system characterized by satisfying the following conditional expressions (1) and (2) .
(1) 0.650 <(-f2) / fw <1.240
(2) 0.410 <f 3 / f 4 <1. 000
However,
fw: focal length f2 of the variable magnification optical system in the wide-angle end state: focal length f3 of the second lens group: focal length f3 of the third lens group: focal length of the fourth lens group
物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、第5レンズ群とにより実質的に5個のレンズ群からなり
前記第3レンズ群の物体側に開口絞りを備え、
倍時に、前記第1レンズ群と前記第2レンズ群との間隔、前記第2レンズ群と前記第3レンズ群との間隔、前記第3レンズ群と前記第4レンズ群との間隔、及び前記第4レンズ群と前記第5レンズ群との間隔が変化し、前記開口絞りと前記第4レンズ群とが一体的に移動し、前記第5レンズ群の位置が固定であり、
以下の条件式(1)、(2)を満足することを特徴とする変倍光学系。
(1)0.650 < (−f2)/fw < 1.240
(2)0.410 < f3/f4 < 1.000
但し、
fw:広角端状態における前記変倍光学系の焦点距離
f2:前記第2レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
From the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens having a positive refractive power The lens unit and the fifth lens unit substantially consist of five lens units ,
An aperture stop is provided on the object side of the third lens group,
During zooming , the distance between the first lens group and the second lens group, the distance between the second lens group and the third lens group, the distance between the third lens group and the fourth lens group, The distance between the fourth lens group and the fifth lens group changes, the aperture stop and the fourth lens group move integrally, and the position of the fifth lens group is fixed.
A variable magnification optical system characterized by satisfying the following conditional expressions (1) and (2) .
(1) 0.650 <(-f2) / fw <1.240
(2) 0.410 <f 3 / f 4 <1. 000
However,
fw: focal length f2 of the variable magnification optical system in the wide-angle end state: focal length f3 of the second lens group: focal length f3 of the third lens group: focal length of the fourth lens group
倍時に、前記第5レンズ群の位置が固定であることを特徴とする請求項に記載の変倍光学系。 Upon zooming, zooming optical system according to claim 2 in which the position of the fifth lens group is equal to or is a fixed. 以下の条件式(3)を満足することを特徴とする請求項1から請求項4のいずれか一項に記載の変倍光学系。
(3)−0.050 < (d3t−d3w)/fw < 0.750
但し、
fw :広角端状態における前記変倍光学系の焦点距離
d3w:広角端状態における前記第3レンズ群中の最も像側のレンズ面から前記第4レンズ群中の最も物体側のレンズ面までの距離
d3t:望遠端状態における前記第3レンズ群中の最も像側のレンズ面から前記第4レンズ群中の最も物体側のレンズ面までの距離
The variable magnification optical system according to any one of claims 1 to 4, wherein the following conditional expression (3) is satisfied.
(3) -0.050 <(d3t-d3w) / fw <0.750
However,
fw: focal length d3w of the variable magnification optical system in the wide-angle end state: distance from the lens surface closest to the image in the third lens group to the lens surface closest to the object in the fourth lens group in the wide-angle end d3t: distance from the lens surface closest to the image side in the third lens unit to the lens surface closest to the object in the fourth lens unit in the telephoto end state
広角端状態から望遠端状態への変倍時に、前記第1レンズ群が物体側へ移動することを特徴とする請求項1から請求項5のいずれか一項に記載の変倍光学系。 The variable magnification optical system according to any one of claims 1 to 5 , wherein the first lens group moves to the object side at the time of zooming from the wide angle end state to the telephoto end state. 前記第5レンズ群が正の屈折力を有することを特徴とする請求項1から請求項のいずれか一項に記載の変倍光学系。 The variable power optical system according to any one of claims 1 to 6 , wherein the fifth lens group has a positive refractive power. 広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔が増加することを特徴とする請求項1から請求項のいずれか一項に記載の変倍光学系。 The distance between the first lens group and the second lens group is increased at the time of zooming from the wide-angle end state to the telephoto end state, according to any one of claims 1 to 7 , Variable magnification optical system. 広角端状態から望遠端状態への変倍時に、前記第2レンズ群と前記第3レンズ群との間隔が減少することを特徴とする請求項1から請求項のいずれか一項に記載の変倍光学系。 The distance between the second lens group and the third lens group is decreased at the time of zooming from the wide-angle end state to the telephoto end state, according to any one of claims 1 to 8 , Variable magnification optical system. 請求項1から請求項のいずれか一項に記載の変倍光学系を有することを特徴とする光学装置。 An optical apparatus comprising the variable magnification optical system according to any one of claims 1 to 9 .
JP2018085340A 2018-04-26 2018-04-26 Variable power optical system, optical device, manufacturing method of variable power optical system Active JP6540857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018085340A JP6540857B2 (en) 2018-04-26 2018-04-26 Variable power optical system, optical device, manufacturing method of variable power optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018085340A JP6540857B2 (en) 2018-04-26 2018-04-26 Variable power optical system, optical device, manufacturing method of variable power optical system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012238729A Division JP2014089286A (en) 2012-10-30 2012-10-30 Variable power optical system, optical device, and method of manufacturing variable power optical system

Publications (2)

Publication Number Publication Date
JP2018112769A JP2018112769A (en) 2018-07-19
JP6540857B2 true JP6540857B2 (en) 2019-07-10

Family

ID=62912144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018085340A Active JP6540857B2 (en) 2018-04-26 2018-04-26 Variable power optical system, optical device, manufacturing method of variable power optical system

Country Status (1)

Country Link
JP (1) JP6540857B2 (en)

Also Published As

Publication number Publication date
JP2018112769A (en) 2018-07-19

Similar Documents

Publication Publication Date Title
JP6127462B2 (en) Variable magnification optical system, optical device
JP6229259B2 (en) Variable magnification optical system, optical device
WO2014112176A1 (en) Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
WO2014077120A1 (en) Variable power optical assembly, optical device, and variable power optical assembly fabrication method
JP6299060B2 (en) Variable magnification optical system, optical device
WO2014069447A1 (en) Variable magnification optical system, optical device, and production method for variable magnification optical system
WO2014069446A1 (en) Variable magnification optical system, optical device, and production method for variable magnification optical system
WO2015163368A1 (en) Variable power optical system, optical device, and method of manufacturing variable power optical system
WO2015079679A1 (en) Zoom lens, optical device, and production method for zoom lens
JP6540857B2 (en) Variable power optical system, optical device, manufacturing method of variable power optical system
JP6326712B2 (en) Variable magnification optical system, optical device
JP6451074B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6424414B2 (en) Variable magnification optical system, optical device
WO2014069448A1 (en) Variable magnification optical system, optical device, and production method for variable magnification optical system
WO2014069449A1 (en) Variable magnification optical system, optical device, and production method for variable magnification optical system
JP6145991B2 (en) Variable magnification optical system, optical device
JP6299059B2 (en) Variable magnification optical system, optical device
JP6131566B2 (en) Variable magnification optical system, optical device
JP6131567B2 (en) Variable magnification optical system, optical device
JP6355885B2 (en) Variable magnification optical system, optical device
JP6136195B2 (en) Variable magnification optical system, optical device
JP6326713B2 (en) Variable magnification optical system, optical device
JP6079137B2 (en) Variable magnification optical system, optical device
JP6398292B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6311433B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180510

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190527

R150 Certificate of patent or registration of utility model

Ref document number: 6540857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250