JP5565676B2 - Optical element, imaging optical system having the same, and optical instrument - Google Patents

Optical element, imaging optical system having the same, and optical instrument Download PDF

Info

Publication number
JP5565676B2
JP5565676B2 JP2010051568A JP2010051568A JP5565676B2 JP 5565676 B2 JP5565676 B2 JP 5565676B2 JP 2010051568 A JP2010051568 A JP 2010051568A JP 2010051568 A JP2010051568 A JP 2010051568A JP 5565676 B2 JP5565676 B2 JP 5565676B2
Authority
JP
Japan
Prior art keywords
lens
lens group
positive
optical system
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010051568A
Other languages
Japanese (ja)
Other versions
JP2011186199A (en
Inventor
佐藤  進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2010051568A priority Critical patent/JP5565676B2/en
Publication of JP2011186199A publication Critical patent/JP2011186199A/en
Application granted granted Critical
Publication of JP5565676B2 publication Critical patent/JP5565676B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Adjustment Of Camera Lenses (AREA)
  • Lenses (AREA)

Description

本発明は、電子スチルカメラなどに好適な高変倍の結像光学系に関する。   The present invention relates to a high-magnification imaging optical system suitable for an electronic still camera or the like.

従来、電子スチルカメラなどに用いられるズームレンズにおいて、レンズ群の一部を光軸に対して垂直方向成分を含むように移動させることにより、防振を行うものが提案されている(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, zoom lenses used in electronic still cameras and the like have been proposed that perform vibration isolation by moving a part of a lens group so as to include a component perpendicular to the optical axis (for example, patents). Reference 1).

特開2002−296501号公報JP 2002-296501 A

しかしながら、従来のズームレンズでは収差補正が十分ではないという問題があった。   However, the conventional zoom lens has a problem that aberration correction is not sufficient.

本発明は、このような問題に鑑みてなされたものであり、単独レンズ群として像位置変位が可能であり、且つ、収差補正が十分である、負屈折力の光学要素、これを有する結像光学系及び光学機器を提供することを目的とする。   The present invention has been made in view of such a problem, and an optical element having a negative refractive power that can displace an image position as a single lens group and has sufficient aberration correction, and an image having the same. An object is to provide an optical system and an optical apparatus.

このような目的を達成するため、本発明に係る光学要素は、光軸に対して垂直方向成分を含むように移動する光学要素であって、物体側から順に並んだ、第1の正レンズと、負レンズと、第2の正レンズとの3枚のレンズを貼り合わせた接合レンズからなり、全体として負屈折力を有し、前記第1の正レンズ、前記負レンズ及び前記第2の正レンズのd線に対する屈折率をそれぞれNp1、Nn及びNp2としたとき、次式0.80 < (2×Nn)/(Np1+Np2) < 1.00の条件を満足するIn order to achieve such an object, an optical element according to the present invention is an optical element that moves so as to include a component in a direction perpendicular to the optical axis, and is arranged in order from the object side, and a first positive lens , a negative lens, made from a second positive lens and the three cemented lens in which a lens, have a negative refractive power as a whole, the first positive lens, the negative lens and the second positive When the refractive indexes of the lens with respect to the d-line are Np1, Nn, and Np2, respectively, the following condition 0.80 <(2 × Nn) / (Np1 + Np2) <1.00 is satisfied .

なお、本発明の光学要素において、前記第1の正レンズ、前記負レンズ及び前記第2の正レンズは、物体側に凹形状のメニスカスレンズ、両凹レンズ及び物体側に凸形状のメニスカスレンズであることが好ましい。   In the optical element of the present invention, the first positive lens, the negative lens, and the second positive lens are a meniscus lens having a concave shape on the object side, a biconcave lens, and a meniscus lens having a convex shape on the object side. It is preferable.

また、本発明の結像光学系は、上記いずれかの光学要素からなるレンズ群を含む、複数のレンズ群からなる。   The imaging optical system according to the present invention includes a plurality of lens groups including the lens group including any one of the optical elements described above.

なお、本発明の結像光学系において、前記光学要素からなるレンズ群が前記結像光学系を構成する負屈折力を有するレンズ群のうちの一つである場合、前記結像光学系を構成する物体側から数えてn番目に位置する第nレンズ群の焦点距離をFnとし、前記第nレンズ群のレンズ群のペッツバール和をPnとし、前記第nレンズ群の代表値をSn=1/(Fn×Pn)と定義したとき、前記光学要素からなるレンズ群の代表値は、前記結像光学系を構成する他の負屈折力を有するレンズ群の代表値のいずれよりも小さいことが好ましい。   In the imaging optical system of the present invention, when the lens group composed of the optical elements is one of the lens groups having negative refractive power constituting the imaging optical system, the imaging optical system is configured. The focal length of the nth lens group located at the nth position from the object side is Fn, the Petzval sum of the lens group of the nth lens group is Pn, and the representative value of the nth lens group is Sn = 1 / When defined as (Fn × Pn), it is preferable that the representative value of the lens group composed of the optical elements is smaller than any of the representative values of other lens groups having negative refractive power constituting the imaging optical system. .

また、本発明の結像光学系は、物体側から順に並んだ、正屈折力を有するレンズ群と、負屈折力を有するレンズ群と、正屈折力を有するレンズ群と、前記光学要素からなる負屈折力を有するレンズ群と、正屈折力を有するレンズ群と、負屈折力を有するレンズ群とを有して構成されることが好ましい。   The imaging optical system of the present invention includes a lens group having a positive refractive power, a lens group having a negative refractive power, a lens group having a positive refractive power, and the optical elements arranged in order from the object side. It is preferable to include a lens group having negative refractive power, a lens group having positive refractive power, and a lens group having negative refractive power.

また、本発明の結像光学系において、前記光学要素からなる負屈折力を有するレンズ群は、変倍の際に結像面に対して光軸方向に不動であることが好ましい。   In the imaging optical system of the present invention, it is preferable that the lens group having the negative refractive power composed of the optical element does not move in the optical axis direction with respect to the imaging surface during zooming.

また、本発明の結像光学系において、最も物体側に位置する前記正屈折力を有するレンズ群は、変倍の際に結像面に対して光軸方向に不動であることが好ましい。   In the imaging optical system of the present invention, it is preferable that the lens group having the positive refractive power located closest to the object side does not move in the optical axis direction with respect to the imaging surface during zooming.

また、本発明の光学機器は、上記いずれかの結像光学系を有する。   The optical apparatus of the present invention has any one of the above-described imaging optical systems.

本発明によれば、単独レンズ群として像位置変位が可能であり、且つ、収差補正が十分である、負屈折力の光学要素、これを有する結像光学系及び光学機器を提供することができる。   According to the present invention, it is possible to provide an optical element having a negative refractive power, an image forming optical system and an optical apparatus having the same, in which an image position can be displaced as a single lens group and aberration correction is sufficient. .

第1実施例に係る光学要素及びこれを有する結像光学系の構成図である。It is a block diagram of the optical element which concerns on 1st Example, and an imaging optical system which has this. 第1実施例に係る結像光学系の無限遠合焦時の諸収差図及び防振補正時での横収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 6 is a diagram illustrating various aberrations at the time of focusing on infinity and a lateral aberration diagram at the time of image stabilization in the imaging optical system according to Example 1, where (a) is a wide-angle end state, (b) is an intermediate focal length state, (C) shows a telephoto end state, respectively. 第1実施例に係る結像光学系の近距離合焦時(全系の撮影距離R=1.8m)の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 6 is a diagram illustrating various aberrations when the imaging optical system according to Example 1 is in close focus (the shooting distance R of the entire system is R = 1.8 m), (a) is a wide-angle end state, and (b) is an intermediate focal length. The state (c) shows the telephoto end state. 第2実施例に係る光学要素及びこれを有する結像光学系の構成図である。It is a block diagram of the optical element which concerns on 2nd Example, and an imaging optical system which has this. 第2実施例に係る結像光学系の無限遠合焦時の諸収差図及び防振補正時での横収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 9 is a diagram illustrating various aberrations of the imaging optical system according to Example 2 at the time of focusing on infinity and a lateral aberration diagram at the time of image stabilization, where (a) is a wide angle end state, (b) is an intermediate focal length state, (C) shows a telephoto end state, respectively. 第2実施例に係る結像光学系の近距離合焦時(全系の撮影距離R=1.8m)の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 6 is a diagram illustrating various aberrations when the imaging optical system according to Example 2 is in focus at short distances (total imaging distance R = 1.8 m), (a) is a wide-angle end state, and (b) is an intermediate focal length. The state (c) shows the telephoto end state. 第3実施例に係る光学要素及びこれを有する結像光学系の構成図である。It is a block diagram of the optical element which concerns on 3rd Example, and an imaging optical system which has this. 第3実施例に係る結像光学系の無限遠合焦時の諸収差図及び防振補正時での横収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 10 is a diagram illustrating various aberrations of the imaging optical system according to Example 3 at the time of focusing on infinity and a lateral aberration diagram at the time of image stabilization, where (a) is a wide angle end state, (b) is an intermediate focal length state, (C) shows a telephoto end state, respectively. 第3実施例に係る結像光学系の近距離合焦時(全系の撮影距離R=1.8m)の諸収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。FIG. 6A is a diagram illustrating various aberrations when the imaging optical system according to Example 3 is in focus at short distances (total imaging distance R = 1.8 m), (a) is a wide-angle end state, and (b) is an intermediate focal length. The state (c) shows the telephoto end state. 上記構成の結像光学系を撮影レンズとして備えたデジタル一眼レフカメラCAMの略断面図である。It is a schematic sectional view of a digital single-lens reflex camera CAM provided with the imaging optical system having the above configuration as a photographic lens. 上記構成の結像光学系の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the imaging optical system of the said structure.

以下、本実施形態について、図面を参照して説明する。偏芯シフトにより像位置を変位する光学要素、言い換えると光軸に対して垂直方向成分を含むように移動する光学要素は、光学要素単独で収差補正を行う必要がある。特に重要な指標は、平均像面の平坦性と球面収差である。そこで、図1に示すように、本実施形態では、光学要素(図1では第4レンズ群G4が該当)を、物体側から順に並んだ、第1の正レンズ(図1ではレンズL41が該当)と、負レンズ(図1ではレンズL42が該当)と、第2の正レンズ(図1ではレンズL43が該当)とを有し、全体として負屈折力を持つように構成した。このように負屈折力の光学要素でありながら、構成部材に負レンズよりも正レンズを多数採用する理由は、光学要素の平均像面の平坦性を担保するためである。更に具体的に説明するならば、光学要素のペッツバール和の値を定性的に0に近づけるためである。また、光学要素の球面収差を効率良く補正するために、物体側から順に、正屈折力(第1の正レンズ)、負屈折力(負レンズ)、正屈折力(第2の正レンズ)のパワー配置としている。   Hereinafter, the present embodiment will be described with reference to the drawings. An optical element that shifts the image position due to decentering shift, in other words, an optical element that moves so as to include a component in a direction perpendicular to the optical axis, needs to be corrected for aberrations by the optical element alone. Particularly important indicators are the average image plane flatness and spherical aberration. Therefore, as shown in FIG. 1, in this embodiment, the first positive lens (the lens L41 in FIG. 1 corresponds) in which the optical elements (the fourth lens group G4 corresponds in FIG. 1) are arranged in order from the object side. ), A negative lens (corresponding to the lens L42 in FIG. 1), and a second positive lens (corresponding to the lens L43 in FIG. 1), and has a negative refracting power as a whole. The reason why a large number of positive lenses rather than negative lenses are employed as the constituent members in this way is an optical element having a negative refractive power in order to ensure the flatness of the average image plane of the optical element. More specifically, this is for qualitatively bringing the Petzval sum of the optical element close to zero. In order to efficiently correct the spherical aberration of the optical element, the positive refractive power (first positive lens), the negative refractive power (negative lens), and the positive refractive power (second positive lens) are sequentially arranged from the object side. Power arrangement.

また、本実施形態の光学要素は、良好なる色収差とするために、第1の正レンズ、負レンズ及び第2の正レンズが、物体側に凹形状のメニスカスレンズ、両凹レンズ及び物体側に凸形状のメニスカスレンズであることが好ましい。この構成によれば、光学要素の中で最も強い曲率半径である部分が正パワーとなり、負屈折力を持つ光学要素が有する球面収差を効率良く補正することが可能である。また、軸上色収差においても同様である。   Further, in the optical element of the present embodiment, in order to obtain good chromatic aberration, the first positive lens, the negative lens, and the second positive lens are convex on the object side, a concave meniscus lens, a biconcave lens, and an object side. A meniscus lens having a shape is preferable. According to this configuration, the portion of the optical element having the strongest radius of curvature has a positive power, and it is possible to efficiently correct the spherical aberration of the optical element having a negative refractive power. The same applies to longitudinal chromatic aberration.

また、本実施形態の光学要素は、第1の正レンズ、負レンズ及び第2の正レンズを貼り合わせた接合レンズであることが好ましい。具体的には、第1の正レンズの像側面と負レンズの物体側面、負レンズの像側面と第2の正レンズの物体側面をそれぞれ貼り合わせて接合レンズとすることにより、光学要素の軸上色収差を効率良く補正することが可能となるため、好ましい。また、組立偏芯が少なくなることも好ましい理由の一つである。   In addition, the optical element of the present embodiment is preferably a cemented lens in which the first positive lens, the negative lens, and the second positive lens are bonded together. Specifically, the image side surface of the first positive lens and the object side surface of the negative lens, and the image side surface of the negative lens and the object side surface of the second positive lens are bonded to form a cemented lens. It is preferable because the upper chromatic aberration can be corrected efficiently. In addition, one of the reasons why it is preferable to reduce assembly eccentricity.

また、本実施形態の光学要素は、良好なる球面収差補正を行うために、第1の正レンズ、負レンズ及び第2の正レンズのd線に対する屈折率をそれぞれNp1、Nn及びNp2としたとき、以下の条件式(1)を満足することが好ましい。   The optical element of the present embodiment has a refractive index with respect to the d-line of the first positive lens, the negative lens, and the second positive lens as Np1, Nn, and Np2, respectively, in order to perform excellent spherical aberration correction. It is preferable that the following conditional expression (1) is satisfied.

0.80 < (2×Nn)/(Np1+Np2) < 1.00 …(1)   0.80 <(2 × Nn) / (Np1 + Np2) <1.00 (1)

上記条件式(1)の下限値を下回ると、光学要素の球面収差が大きくなり、好ましくない。逆に、条件式(1)の上限値を上回ると、光学要素の平均像面の平坦性が悪化し、好ましくない。   If the lower limit of conditional expression (1) is not reached, spherical aberration of the optical element increases, which is not preferable. On the other hand, when the value exceeds the upper limit value of the conditional expression (1), the flatness of the average image surface of the optical element deteriorates, which is not preferable.

なお、本実施形態に係る光学要素において、より良好なる球面収差を得るためには、条件式(1)の下限値を0.90とすることが好ましい。また、本実施形態に係る光学要素において、より良好なる平均像面の平坦性を得るためには、条件式(1)の上限値を0.98とすることが好ましい。   In the optical element according to this embodiment, in order to obtain better spherical aberration, it is preferable to set the lower limit value of conditional expression (1) to 0.90. In the optical element according to this embodiment, in order to obtain better average image plane flatness, it is preferable to set the upper limit of conditional expression (1) to 0.98.

また、応用例として、本実施形態に係る光学要素を、結像光学系を構成する負屈折力のレンズ群(図1では第4レンズ群G4が該当)として採用するとともに、結像光学系を構成する物体側から数えてn番目に位置する第nレンズ群の焦点距離をFnとし、第nレンズ群のレンズ群のペッツバール和をPnとし、第nレンズ群の代表値をSn=1/(Fn×Pn)と定義したとき、光学要素からなるレンズ群の代表値が、結像光学系を構成する他の負屈折力を有するレンズ群(図1では、第2レンズ群G2、第6レンズ群G6が該当)の代表値のいずれよりも小さいことが好ましい。この構成によれば、負屈折力のレンズ群が有する球面収差と色収差を緩和することができ、ひいては良好なる結像性能を達成することが可能である。   Further, as an application example, the optical element according to the present embodiment is employed as a lens group having negative refractive power (which corresponds to the fourth lens group G4 in FIG. 1) constituting the imaging optical system, and the imaging optical system is used. The focal length of the nth lens group located from the object side constituting the nth lens group is Fn, the Petzval sum of the lens group of the nth lens group is Pn, and the representative value of the nth lens group is Sn = 1 / ( When defined as Fn × Pn), the representative value of the lens group consisting of optical elements is a lens group having another negative refractive power constituting the imaging optical system (in FIG. 1, the second lens group G2, the sixth lens). It is preferably smaller than any of the representative values of group G6). According to this configuration, it is possible to alleviate the spherical aberration and chromatic aberration of the lens unit having negative refractive power, and as a result, it is possible to achieve good imaging performance.

なお、上記結像光学系は、高変倍を達成するために、物体側から順に並んだ、正屈折力を有するレンズ群(図1では第1レンズ群G1が該当)と、負屈折力を有するレンズ群(図1では第2レンズ群G2が該当)と、正屈折力を有するレンズ群(図1では第3レンズ群G3が該当)と、光学要素からなる負屈折力を有するレンズ群(図1では第4レンズ群G4が該当)と、正屈折力を有するレンズ群(図1では第5レンズ群G5が該当)と、負屈折力を有するレンズ群(図1では第6レンズ群G6が該当)とを有する構成であることが好ましい。   The imaging optical system has a positive refractive power lens group (in FIG. 1, corresponding to the first lens group G1) arranged in order from the object side and a negative refractive power in order to achieve high zooming. A lens group having a negative refracting power composed of optical elements (a second lens group G2 in FIG. 1), a lens group having a positive refractive power (in FIG. 1, corresponding to a third lens group G3), and an optical element. In FIG. 1, the fourth lens group G4 corresponds), the lens group having positive refractive power (in FIG. 1, the fifth lens group G5 corresponds), and the lens group having negative refractive power (in FIG. 1, the sixth lens group G6). Is preferable).

また、本実施形態の結像光学系において、光学要素からなる負屈折力を有するレンズ群(図1では第4レンズ群G4が該当)は、変倍の際に結像面に対して光軸方向に不動であることが好ましい。この構成により、変倍時の球面収差等の収差変動を良好に抑えることができる。   In the imaging optical system of the present embodiment, the lens group having negative refractive power made up of optical elements (corresponding to the fourth lens group G4 in FIG. 1) has an optical axis with respect to the imaging plane during zooming. It is preferably immobile in the direction. With this configuration, it is possible to satisfactorily suppress aberration fluctuations such as spherical aberration during zooming.

また、本実施形態の結像光学系において、最も物体側に位置する正屈折力を有するレンズ群(図1では第1レンズ群G1が該当)は、変倍の際に結像面に対して光軸方向に不動であることが好ましい。この構成により、変倍時の球面収差等の収差変動を良好に抑えることができる。   Further, in the imaging optical system of the present embodiment, the lens group having the positive refractive power located closest to the object side (corresponding to the first lens group G1 in FIG. 1) is located with respect to the imaging plane during zooming. It is preferably immovable in the optical axis direction. With this configuration, it is possible to satisfactorily suppress aberration fluctuations such as spherical aberration during zooming.

図10に、上記構成の光学要素を含む結像光学系を、撮影レンズ1として備えたデジタル一眼レフカメラCAM(光学機器)の略断面図を示す。図10に示すデジタル一眼レフカメラCAMにおいて、不図示の物体(被写体)からの光は、撮影レンズ1で集光されて、クイックリターンミラー3を介して焦点板4に結像される。そして、焦点板4に結像された光は、ペンタプリズム5中で複数回反射されて接眼レンズ6へと導かれる。これにより、撮影者は、物体(被写体)像を接眼レンズ6を介して正立像として観察することができる。   FIG. 10 is a schematic cross-sectional view of a digital single-lens reflex camera CAM (optical apparatus) provided with an imaging optical system including the optical element having the above configuration as a photographing lens 1. In the digital single-lens reflex camera CAM shown in FIG. 10, light from an object (subject) (not shown) is collected by the photographing lens 1 and focused on the focusing screen 4 via the quick return mirror 3. The light imaged on the focusing screen 4 is reflected a plurality of times in the pentaprism 5 and guided to the eyepiece lens 6. Thus, the photographer can observe the object (subject) image as an erect image through the eyepiece 6.

また、撮影者によって不図示のレリーズボタンが押されると、クイックリターンミラー3が光路外へ退避し、撮影レンズ1で集光された不図示の物体(被写体)の光は撮像素子7上に被写体像を形成する。これにより、物体(被写体)からの光は、当該撮像素子7により撮像され、物体(被写体)画像として不図示のメモリに記録される。このようにして、撮影者は本カメラCAMによる物体(被写体)の撮影を行うことができる。なお、図10に記載のカメラCAMは、撮影レンズ1を着脱可能に保持するものでもよく、撮影レンズ1と一体に成形されるものでもよい。また、カメラCAMは、いわゆる一眼レフカメラでもよく、クイックリターンミラー等を有さないコンパクトカメラでもよい。   Further, when a release button (not shown) is pressed by the photographer, the quick return mirror 3 is retracted out of the optical path, and light of an object (subject) (not shown) condensed by the photographing lens 1 is captured on the image sensor 7. Form an image. Thereby, the light from the object (subject) is captured by the image sensor 7 and recorded as an object (subject) image in a memory (not shown). In this way, the photographer can photograph an object (subject) with the camera CAM. Note that the camera CAM illustrated in FIG. 10 may hold the photographic lens 1 in a detachable manner, or may be formed integrally with the photographic lens 1. The camera CAM may be a so-called single-lens reflex camera or a compact camera that does not have a quick return mirror or the like.

続いて、図11を参照しながら、上記構成の結像光学系の製造方法について説明する。まず、円筒状の鏡筒内に各レンズ(例えば、図1ではレンズL11〜L62)を組み込む(ステップS1)。レンズを鏡筒内に組み込む際、光軸に沿った順にレンズを1つずつ鏡筒内に組み込んでもよく、一部又は全てのレンズを保持部材で一体保持してから鏡筒部材と組み立ててもよい。次に、鏡筒内に各レンズが組み込まれた後、鏡筒内に各レンズが組み込まれた状態で物体の像が形成されるか、すなわち各レンズの中心が揃っているかを確認する(ステップS2)。続いて、結像光学系の各種動作を確認する(ステップS3)。各種動作の一例としては、広角端状態から望遠端状態への変倍を行う変倍動作(例えば、図1では第2レンズ群G2,第3レンズ群G3,第5レンズ群G5及び第6レンズ群G6が光軸方向に沿ってそれぞれ移動する)、遠距離物点から近距離物点への合焦を行うレンズ(例えば、図1では第1レンズ群G1の後群(レンズL14,L15が該当))が光軸方向に沿って移動する合焦動作、少なくとも一部のレンズ(例えば、図1では第4レンズ群G4)を光軸と垂直方向の成分を持つように移動させる手ぶれ補正動作などが挙げられる。なお、各種動作の確認順番は任意である。   Next, a method for manufacturing the imaging optical system having the above configuration will be described with reference to FIG. First, each lens (for example, the lenses L11 to L62 in FIG. 1) is assembled in a cylindrical barrel (step S1). When assembling the lenses into the lens barrel, the lenses may be incorporated into the lens barrel one by one in the order along the optical axis, or a part or all of the lenses may be integrally held by the holding member and then assembled with the lens barrel member. Good. Next, after each lens is incorporated in the lens barrel, it is confirmed whether an object image is formed in a state where each lens is incorporated in the lens barrel, that is, whether the centers of the lenses are aligned (step) S2). Subsequently, various operations of the imaging optical system are confirmed (step S3). As an example of various operations, a zooming operation that performs zooming from the wide-angle end state to the telephoto end state (for example, in FIG. 1, the second lens group G2, the third lens group G3, the fifth lens group G5, and the sixth lens). The group G6 moves along the optical axis direction, and a lens for focusing from a long-distance object point to a short-distance object point (for example, in FIG. 1, the rear group of the first lens group G1 (the lenses L14 and L15 are Corresponding)) is a focusing operation that moves along the optical axis direction, and a camera shake correction operation that moves at least a part of the lenses (for example, the fourth lens group G4 in FIG. 1) to have a component perpendicular to the optical axis. Etc. Note that the order of confirming the various operations is arbitrary.

以下、本実施形態に係る各実施例について、図面に基づいて説明する。以下に、表1〜表3を示すが、これらは第1〜第3実施例における各諸元の表である。[全体諸元]において、Fはレンズ全系の焦点距離を、FNOはFナンバーを、ωは半画角を示す。[レンズデータ]においては、面番号は光線の進行する方向に沿った物体側からのレンズ面の順序を、rは各レンズ面の曲率半径を、dは各光学面から次の光学面(又は像面I)までの光軸上の距離である面間隔を、νdはd線(波長587.6nm)に対するアッベ数を、ndはd線(波長587.6nm)に対する屈折率を、Bfはバックフォーカスを示す。また、レンズ面が非球面である場合には、面番号に*印を付し、曲率半径rの欄には近軸曲率半径を示す。なお、曲率半径の「0.0000」は開口を示す。また、空気の屈折率「1.000000」の記載は省略している。   Hereinafter, each example according to the present embodiment will be described with reference to the drawings. Tables 1 to 3 are shown below, but these are tables of specifications in the first to third examples. In [Overall specifications], F represents the focal length of the entire lens system, FNO represents the F number, and ω represents the half angle of view. In [Lens data], the surface number is the order of the lens surfaces from the object side along the direction in which the light beam travels, r is the radius of curvature of each lens surface, and d is the next optical surface from each optical surface (or The distance between the surfaces on the optical axis to the image plane I), νd is the Abbe number for the d-line (wavelength 587.6 nm), nd is the refractive index for the d-line (wavelength 587.6 nm), and Bf is the back focus. Show. When the lens surface is aspherical, an asterisk is attached to the surface number, and the paraxial radius of curvature is indicated in the column of the radius of curvature r. The radius of curvature “0.0000” indicates an opening. The description of the refractive index “1.000000” of air is omitted.

[非球面データ]には、[レンズデータ]に示した非球面について、その形状を次式(a)で示す。すなわち、光軸に垂直な方向の高さをyとし、非球面の頂点における接平面から高さyにおける非球面上の位置までの光軸に沿った距離(サグ量)をS(y)とし、基準球面の曲率半径(近軸曲率半径)をrとし、円錐係数をκとし、n次の非球面係数をAnとしたとき、以下の式(a)で示す。また、E-nは、×10-nを表す。例えば、1.234E-05=1.234×10-5である。 In [Aspherical data], the shape of the aspherical surface shown in [Lens data] is shown by the following equation (a). That is, y is the height in the direction perpendicular to the optical axis, and S (y) is the distance (sag amount) along the optical axis from the tangent plane at the apex of the aspheric surface to the position on the aspheric surface at height y. When the radius of curvature of the reference spherical surface (paraxial radius of curvature) is r, the conic coefficient is κ, and the n-th aspherical coefficient is An, the following equation (a) is given. E-n represents x10 -n. For example, 1.234E-05 = 1.234 × 10 −5 .

S(y)=(y2/r)/{1+(1−κ・y2/r21/2
+A4×y4+A6×y6+A8×y8+A10×y10 …(a)
S (y) = (y 2 / r) / {1+ (1−κ · y 2 / r 2 ) 1/2 }
+ A4 × y 4 + A6 × y 6 + A8 × y 8 + A10 × y 10 ... (a)

[合焦時における可変間隙]には、無限遠合焦時と至近距離合焦時の広角端状態、中間焦点距離状態、望遠端状態の各状態における、レンズ全系の焦点距離F、撮影倍率βの可変間隔diの値を示す。なお、di(但し、iは整数)は第i面と第(i+1)面の可変間隔(但し、D0は物体から最も物体側のレンズ面までの距離)を、Bfはバックフォーカスを、TLはレンズ系全長の値をそれぞれ示す。[防振補正時の防振レンズ群移動量と像面移動量]には、無限遠合焦時と至近距離合焦時の広角端状態、中間焦点距離状態、望遠端状態の各状態における、防振レンズ移動量と像面移動量を示す。[各群焦点距離データ]において、各レンズ群の初面及び焦点距離を示す。[条件式]において、上記の条件式(1)の値、及び、負屈折力を持つ各レンズ群の代表値Snに対応する値を示す。   The “variable gap at the time of focusing” includes the focal length F of the entire lens system and the photographing magnification in each of the wide-angle end state, the intermediate focal length state, and the telephoto end state when focusing on infinity and focusing on a close range. The value of the variable interval di of β is shown. Here, di (where i is an integer) is a variable distance between the i-th surface and the (i + 1) -th surface (where D0 is the distance from the object to the lens surface closest to the object), Bf is the back focus, and TL is The value of the total lens system length is shown. The [anti-vibration lens group movement amount and image plane movement amount at the time of anti-shake correction] includes the wide-angle end state, the intermediate focal length state, and the telephoto end state at the time of focusing on infinity and focusing on the close range. The movement amount of the anti-vibration lens and the movement amount of the image plane are shown. In [Each Group Focal Length Data], the initial surface and focal length of each lens group are shown. In [Conditional Expression], the value of the conditional expression (1) and the value corresponding to the representative value Sn of each lens group having negative refractive power are shown.

なお、表中において、焦点距離F、曲率半径r、面間隔d、その他の長さの単位は、一般に「mm」が使われている。但し、光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるので、単位は「mm」に限定されることなく、他の適当な単位を用いることが可能である。   In the table, “mm” is generally used as the unit of focal length F, radius of curvature r, surface interval d, and other lengths. However, since the optical system can obtain the same optical performance even if it is proportionally enlarged or reduced, the unit is not limited to “mm”, and other appropriate units can be used.

以上の表の説明は、他の実施例においても同様とし、その説明を省略する。   The description of the above table is the same in other examples, and the description thereof is omitted.

(第1実施例)
第1実施例について、図1〜図3及び表1を用いて説明する。図1は、第1実施例に係る結像光学系のレンズ構成を示す図であり、Wは広角端状態、Mは中間焦点距離状態、Tは望遠端状態の無限遠合焦状態をそれぞれ示す。図1に示すように、第1実施例に係る結像光学系は、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、負の屈折力を持つ第4レンズ群G4と、正の屈折力を持つ第5レンズ群G5と、負の屈折力を持つ第6レンズ群G6とを有する。なお、本実施例では、第4レンズ群G4が、請求項で述べる負屈折力の光学要素からなるレンズ群に該当する。
(First embodiment)
A first embodiment will be described with reference to FIGS. 1 to 3 and Table 1. FIG. FIG. 1 is a diagram illustrating a lens configuration of an imaging optical system according to the first example, where W is a wide angle end state, M is an intermediate focal length state, and T is an infinite focus state in a telephoto end state. . As shown in FIG. 1, the imaging optical system according to the first example has a first lens group G1 having a positive refractive power, which is arranged in order from the object side along the optical axis, and a negative refractive power. The second lens group G2, the third lens group G3 having a positive refractive power, the fourth lens group G4 having a negative refractive power, the fifth lens group G5 having a positive refractive power, and the negative refractive power And a sixth lens group G6. In the present embodiment, the fourth lens group G4 corresponds to a lens group including optical elements having negative refractive power described in the claims.

第1レンズ群G1は、物体側から順に並んだ、物体側に凸形状を有する負メニスカスレンズL11と正レンズL12との貼り合わせレンズと、正レンズL13と、物体側に凸形状を有する負メニスカスレンズL14と正レンズL15との貼り合わせレンズとにより構成する。なお、無限遠から至近への合焦の際には、物体側に凸形状を有する負メニスカスレンズL14と正レンズL15との貼り合わせレンズが像面側へ移動する。   The first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex shape on the object side and a positive lens L12, a positive lens L13, and a negative meniscus having a convex shape on the object side. The lens is composed of a lens L14 and a cemented lens of a positive lens L15. When focusing from infinity to the closest distance, the cemented lens of the negative meniscus lens L14 and the positive lens L15 having a convex shape on the object side moves to the image plane side.

第2レンズ群G2は、物体側から順に並んだ、像側が強い凹形状を有する負レンズL21と、負レンズL22と正レンズL23との貼り合わせレンズと、物体側に強い凹形状を有する負レンズL24とにより構成する。   The second lens group G2 includes, in order from the object side, a negative lens L21 having a strong concave shape on the image side, a cemented lens of the negative lens L22 and the positive lens L23, and a negative lens having a strong concave shape on the object side. L24.

第3レンズ群G3は、物体側から順に並んだ、正レンズL31と物体側に凹形状を有する負メニスカスレンズL32との貼り合わせレンズと、正レンズL33と、正メニスカスレンズL34とにより構成する。   The third lens group G3 includes a cemented lens of a positive lens L31 and a negative meniscus lens L32 having a concave shape on the object side, a positive lens L33, and a positive meniscus lens L34 arranged in order from the object side.

第4レンズ群G4は、物体側から順に並んだ、物体側に凹形状を有する正メニスカスレンズL41と両凹レンズL42と物体側に凸形状を有する正メニスカスレンズL43との貼り合わせレンズにより構成する。なお、ブレ発生時には、第4レンズ群G4を、光軸に対して垂直方向成分を含むように移動させることによって、言い換えれば光軸に対して偏芯させることによって、像位置を変位し防振補正を行う。   The fourth lens group G4 is composed of a cemented lens of a positive meniscus lens L41 having a concave shape on the object side, a biconcave lens L42, and a positive meniscus lens L43 having a convex shape on the object side, which are arranged in order from the object side. When the blur occurs, the image position is displaced and the image stabilization is performed by moving the fourth lens group G4 so as to include a component perpendicular to the optical axis, in other words, by decentering the optical axis. Make corrections.

第5レンズ群G5は、光軸に沿って物体側から順に並んだ、両凸レンズL51と物体側に強い凹形状を有する負レンズL52との貼り合わせレンズと、正レンズL53とにより構成する。   The fifth lens group G5 includes a cemented lens of a biconvex lens L51 and a negative lens L52 having a strong concave shape on the object side, arranged in order from the object side along the optical axis, and a positive lens L53.

第6レンズ群G6は、光軸に沿って物体側から順に並んだ、両凹レンズL61と両凸レンズL62との貼り合わせレンズにより構成する。   The sixth lens group G6 includes a cemented lens of a biconcave lens L61 and a biconvex lens L62, which are arranged in order from the object side along the optical axis.

上記構成である本実施例に係る結像光学系では、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が増大し、第4レンズ群G4と第5レンズ群G5との間隔が減少し、第5レンズ群G5と第6レンズ群G6との間隔が減少するように、各レンズ群が移動する。但し、このような変倍に際して、第1レンズ群G1と第4レンズ群G4は像面Iに対して固定されている。   In the imaging optical system according to the present embodiment having the above-described configuration, the distance between the first lens group G1 and the second lens group G2 increases during zooming from the wide-angle end state to the telephoto end state, and the second lens group The distance between G2 and the third lens group G3 decreases, the distance between the third lens group G3 and the fourth lens group G4 increases, the distance between the fourth lens group G4 and the fifth lens group G5 decreases, Each lens group moves so that the distance between the fifth lens group G5 and the sixth lens group G6 decreases. However, during such zooming, the first lens group G1 and the fourth lens group G4 are fixed with respect to the image plane I.

開口絞りSは、第4レンズ群G4と第5レンズ群G5との間に配置され、広角端状態から望遠端状態への変倍に際して像面Iに対して固定されている。   The aperture stop S is disposed between the fourth lens group G4 and the fifth lens group G5, and is fixed with respect to the image plane I upon zooming from the wide-angle end state to the telephoto end state.

また、本実施例においては、像面Iに配置される固体撮像素子7(図10参照)の中心から対角への対角長は、21.6mmである。   In the present embodiment, the diagonal length from the center to the diagonal of the solid-state imaging device 7 (see FIG. 10) disposed on the image plane I is 21.6 mm.

以下の表1に第1実施例に係る結像光学系の各諸元の値を掲げる。なお、表1に示す面番号1〜35は、図1に示す面1〜35に対応している。   Table 1 below lists values of various specifications of the imaging optical system according to the first example. The surface numbers 1 to 35 shown in Table 1 correspond to the surfaces 1 to 35 shown in FIG.

(表1)
[全体諸元]
広角端状態 中間焦点距離状態 望遠端状態
f 81.6 〜 200.0 〜 392.0
FNO 4.6 〜 5.2 〜 5.8
ω 29.5 〜 12.1 〜 6.2
[レンズデータ]
面番号 r d νd nd
1 128.8106 3.4000 40.77 1.883000
2 87.6553 8.5000 82.56 1.497820
3 669.6733 0.1000
4 103.5398 5.5000 60.68 1.603110
5 300.3589 d5
6 65.4042 3.0000 23.78 1.846660
7 48.0767 11.0000 70.45 1.487490
8 711.3003 d8
9 144.3903 1.8000 40.77 1.883000
10 39.8321 6.0000
11 -142.2035 2.0000 54.66 1.729160
12 37.0380 7.0000 22.79 1.808090
13 -221.5218 3.5000
14 -75.0633 2.0000 40.77 1.883000
15 193.6263 d15
16 115.5037 7.3000 64.12 1.516800
17 -39.8870 1.8000 31.31 1.903660
18 -75.8599 0.2000
19 61.6825 4.4000 64.12 1.516800
20 -1597.1930 0.2000
21 44.2152 3.2000 64.12 1.516800
22 63.7291 d22
23 -189.2468 1.7000 40.77 1.883000
24 -180.0000 1.6000 63.38 1.618000
25 25.0987 3.7000 40.77 1.883000
26 40.8581 5.5000
27 0.0000 d27 (開口絞りS)
28 37.7608 5.9000 82.56 1.497820
29 -54.5516 4.2000 23.78 1.846660
30 -160.3361 3.2000
31 114.2173 3.8000 64.12 1.516800
*32 -72.3825 d32
33 -35.6061 1.5000 40.77 1.883000
34 41.4535 4.2000 22.79 1.808090
35 -172.7908 Bf
[非球面データ]
第32面
κ=3.9309,C4=4.32020E-06,C6=0.00000E-00,C8=0.00000E-00,C10=0.00000E-00
[合焦時における可変間隔]
無限遠 至近距離
広角端 中間 望遠端 広角端 中間 望遠端
F、β 81.60000 200.00000 392.00000 -0.05526 -0.13545 -0.14635
D0 ∞ ∞ ∞ 1531.2708 1531.2708 2731.2708
d5 11.28861 11.28861 11.28861 2.03448 2.03448 6.10672
d8 2.10000 20.56288 26.97112 11.35413 29.81701 32.15302
d15 47.87954 22.21504 1.86212 47.87954 22.21504 1.86212
d22 5.34522 12.54684 26.49152 5.34522 12.54684 26.49152
d27 22.92746 13.44386 1.87149 22.92746 13.44386 1.87149
d32 17.88278 16.12852 10.50487 17.88278 16.12852 10.50487
Bf 55.10557 66.34342 83.53945 55.10557 66.34341 83.53941
TL 268.72917 268.72917 268.72917 268.72917 268.72917 268.72917
[防振補正時の防振レンズ群移動量と像面移動量]
無限遠 至近距離
広角端 中間 望遠端 広角端 中間 望遠端
F、β 81.60000 200.00000 392.00000 -0.05526 -0.13545 -0.26549
レンズ ±0.194 ±0.419 ±0.731 ±0.194 ±0.419 ±0.731
像面 ±0.285 ±0.698 ±1.368 ±0.285 ±0.698 ±1.368
[各群焦点距離データ]
群番号 群初面 群焦点距離
G1 1 99.26
G2 9 -28.42
G3 16 52.57
G4 23 -71.40
G5 28 45.10
G6 33 -46.33
[条件式]
条件式(1) (2×Nn)/(Np1+Np2) = 0.859
代表値 S2 = 2.01549
S4 = 1.39916
S6 = 1.94270
(Table 1)
[Overall specifications]
Wide-angle end state Intermediate focal length state Telephoto end state f 81.6 to 200.0 to 392.0
FNO 4.6-5.2-5.8
ω 29.5-12.1-6.2
[Lens data]
Surface number r d νd nd
1 128.8106 3.4000 40.77 1.883000
2 87.6553 8.5000 82.56 1.497820
3 669.6733 0.1000
4 103.5398 5.5000 60.68 1.603110
5 300.3589 d5
6 65.4042 3.0000 23.78 1.846660
7 48.0767 11.0000 70.45 1.487490
8 711.3003 d8
9 144.3903 1.8000 40.77 1.883000
10 39.8321 6.0000
11 -142.2035 2.0000 54.66 1.729160
12 37.0380 7.0000 22.79 1.808090
13 -221.5218 3.5000
14 -75.0633 2.0000 40.77 1.883000
15 193.6263 d15
16 115.5037 7.3000 64.12 1.516800
17 -39.8870 1.8000 31.31 1.903660
18 -75.8599 0.2000
19 61.6825 4.4000 64.12 1.516800
20 -1597.1930 0.2000
21 44.2152 3.2000 64.12 1.516800
22 63.7291 d22
23 -189.2468 1.7000 40.77 1.883000
24 -180.0000 1.6000 63.38 1.618000
25 25.0987 3.7000 40.77 1.883000
26 40.8581 5.5000
27 0.0000 d27 (Aperture stop S)
28 37.7608 5.9000 82.56 1.497820
29 -54.5516 4.2000 23.78 1.846660
30 -160.3361 3.2000
31 114.2173 3.8000 64.12 1.516800
* 32 -72.3825 d32
33 -35.6061 1.5000 40.77 1.883000
34 41.4535 4.2000 22.79 1.808090
35 -172.7908 Bf
[Aspherical data]
32nd surface κ = 3.9309, C4 = 4.32020E-06, C6 = 0.00000E-00, C8 = 0.00000E-00, C10 = 0.00000E-00
[Variable interval during focusing]
Infinity close range
Wide-angle end Medium telephoto end Wide-angle end Medium telephoto end
F, β 81.60000 200.00000 392.00000 -0.05526 -0.13545 -0.14635
D0 ∞ ∞ ∞ 1531.2708 1531.2708 2731.2708
d5 11.28861 11.28861 11.28861 2.03448 2.03448 6.10672
d8 2.10000 20.56288 26.97112 11.35413 29.81701 32.15302
d15 47.87954 22.21504 1.86212 47.87954 22.21504 1.86212
d22 5.34522 12.54684 26.49152 5.34522 12.54684 26.49152
d27 22.92746 13.44386 1.87149 22.92746 13.44386 1.87149
d32 17.88278 16.12852 10.50487 17.88278 16.12852 10.50487
Bf 55.10557 66.34342 83.53945 55.10557 66.34341 83.53941
TL 268.72917 268.72917 268.72917 268.72917 268.72917 268.72917
[Moving amount of image stabilizing lens group and image surface moving amount during image stabilization]
Infinity close range
Wide-angle end Medium telephoto end Wide-angle end Medium telephoto end
F, β 81.60000 200.00000 392.00000 -0.05526 -0.13545 -0.26549
Lens ± 0.194 ± 0.419 ± 0.731 ± 0.194 ± 0.419 ± 0.731
Image plane ± 0.285 ± 0.698 ± 1.368 ± 0.285 ± 0.698 ± 1.368
[Each group focal length data]
Group number Group first surface Group focal length G1 1 99.26
G2 9 -28.42
G3 16 52.57
G4 23 -71.40
G5 28 45.10
G6 33 -46.33
[Conditional expression]
Conditional expression (1) (2 × Nn) / (Np1 + Np2) = 0.859
Typical value S2 = 2.01549
S4 = 1.39916
S6 = 1.94270

表1に示す諸元の表から、本実施例に係る結像光学系では、上記条件式(1)を満たすとともに、第4レンズ群G4の代表値S4が他の負屈折力のレンズ群G2,G6の代表値S2,S6よりも小さいことが分かる。   From the table of specifications shown in Table 1, in the imaging optical system according to the present example, the conditional expression (1) is satisfied, and the representative value S4 of the fourth lens group G4 is another lens group G2 having a negative refractive power. , G6 is smaller than the representative values S2 and S6.

図2は、第1実施例に係る結像光学系の無限遠合焦時の諸収差図(球面収差、非点収差、歪曲収差、コマ収差、倍率色収差)及び防振補正時の横収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図3は、第1実施例に係る結像光学系の至近距離合焦時の諸収差図(球面収差、非点収差、歪曲収差、コマ収差、倍率色収差)及び防振補正時の横収差図であり、(a)は広角端状態(全系の撮影距離Rw=1.8m)、(b)は中間焦点距離状態(全系の撮影距離Rm=1.8m)、(c)は望遠端状態(全系の撮影距離Rt=3.0m)をそれぞれ示す。   FIG. 2 shows various aberration diagrams (spherical aberration, astigmatism, distortion aberration, coma aberration, lateral chromatic aberration) at the time of focusing on infinity of the imaging optical system according to the first example, and lateral aberration diagram at the time of image stabilization correction. (A) shows the wide-angle end state, (b) shows the intermediate focal length state, and (c) shows the telephoto end state. FIG. 3 is a diagram showing various aberrations (spherical aberration, astigmatism, distortion aberration, coma aberration, chromatic aberration of magnification) at the time of focusing on the close-up distance of the imaging optical system according to the first example, and lateral aberration diagram at the time of image stabilization correction. (A) is a wide-angle end state (entire system photographing distance Rw = 1.8 m), (b) is an intermediate focal length state (entire system photographing distance Rm = 1.8 m), and (c) is a telephoto end. Each state (total imaging distance Rt = 3.0 m) is shown.

各収差図において、FNOはFナンバーを、Yは像高を、NAは開口数を示す。なお、球面収差図では最大口径に対応するFナンバーの値を示し、非点収差図及び歪曲収差図では像高の最大値をそれぞれ示し、コマ収差図では各像高の値を示す。また、dはd線(波長587.6nm)、gはg線(波長435.8nm)に対する諸収差を、CはC線(波長656.3nm)、FはF線(波長486.1nm)に対する諸収差を、記載のないものはd線に対する諸収差をそれぞれ示す。また、非点収差図において、実線はサジタル像面を示し、破線はメリディオナル像面を示す。また、倍率色収差図では、d線を基準として示す。以上の収差図の説明は、他の実施例においても同様とし、その説明を省略する。   In each aberration diagram, FNO indicates an F number, Y indicates an image height, and NA indicates a numerical aperture. The spherical aberration diagram shows the F-number value corresponding to the maximum aperture, the astigmatism diagram and the distortion diagram show the maximum image height, and the coma diagram shows the value of each image height. Also, d is various aberrations for the d-line (wavelength 587.6 nm), g is various aberrations for the g-line (wavelength 435.8 nm), C is various aberrations for the C-line (wavelength 656.3 nm), F is various aberrations for the F-line (wavelength 486.1 nm), Those not described indicate various aberrations with respect to the d-line. In the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane. In the chromatic aberration diagram of magnification, the d line is used as a reference. The explanation of the above aberration diagrams is the same in the other examples, and the explanation is omitted.

各収差図から明らかなように、第1実施例では、広角端状態から望遠端状態までの各焦点距離状態において諸収差が良好に補正され、優れた結像性能を有することが分かる。   As is apparent from the respective aberration diagrams, in the first example, it is understood that various aberrations are well corrected in each focal length state from the wide-angle end state to the telephoto end state, and excellent imaging performance is obtained.

(第2実施例)
第2実施例について、図4〜図6及び表2を用いて説明する。図4は、第2実施例に係る結像光学系のレンズ構成を示す図であり、Wは広角端状態、Mは中間焦点距離状態、Tは望遠端状態の無限遠合焦状態をそれぞれ示す。図4に示すように、第2実施例に係る結像光学系は、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群G1と、負の屈折力を持つ第2レンズ群G2と、正の屈折力を持つ第3レンズ群G3と、負の屈折力を持つ第4レンズ群G4と、正の屈折力を持つ第5レンズ群G5と、負の屈折力を持つ第6レンズ群G6とを有する。なお、本実施例では、第4レンズ群G4が、請求項で述べる負屈折力の光学要素からなるレンズ群に該当する。
(Second embodiment)
A second embodiment will be described with reference to FIGS. 4 to 6 and Table 2. FIG. FIG. 4 is a diagram illustrating a lens configuration of the imaging optical system according to the second example, where W is a wide-angle end state, M is an intermediate focal length state, and T is an infinite focus state in a telephoto end state. . As shown in FIG. 4, the imaging optical system according to the second example has a first lens group G1 having a positive refractive power arranged in order from the object side along the optical axis, and a negative refractive power. The second lens group G2, the third lens group G3 having a positive refractive power, the fourth lens group G4 having a negative refractive power, the fifth lens group G5 having a positive refractive power, and the negative refractive power And a sixth lens group G6. In the present embodiment, the fourth lens group G4 corresponds to a lens group including optical elements having negative refractive power described in the claims.

第1レンズ群G1は、物体側から順に並んだ、物体側に凸形状を有する負メニスカスレンズL11と正レンズL12との貼り合わせレンズと、正レンズL13と、物体側に凸形状を有する負メニスカスレンズL14と正レンズL15との貼り合わせレンズとにより構成する。なお、無限遠から至近への合焦の際には、物体側に凸形状を有する負メニスカスレンズL14と正レンズL15との貼り合わせレンズが像面側へ移動する。   The first lens group G1 includes, in order from the object side, a cemented lens of a negative meniscus lens L11 having a convex shape on the object side and a positive lens L12, a positive lens L13, and a negative meniscus having a convex shape on the object side. The lens is composed of a lens L14 and a cemented lens of a positive lens L15. When focusing from infinity to the closest distance, the cemented lens of the negative meniscus lens L14 and the positive lens L15 having a convex shape on the object side moves to the image plane side.

第2レンズ群G2は、物体側から順に並んだ、像側が強い凹形状を有する負レンズL21と、負レンズL22と正レンズL23との貼り合わせレンズと、物体側に強い凹形状を有する負レンズL24とにより構成する。   The second lens group G2 includes, in order from the object side, a negative lens L21 having a strong concave shape on the image side, a cemented lens of the negative lens L22 and the positive lens L23, and a negative lens having a strong concave shape on the object side. L24.

第3レンズ群G3は、物体側から順に並んだ、正レンズL31と、正レンズL32と物体側に凹形状を有する負メニスカスレンズL33との貼り合わせレンズと、正メニスカスレンズL34とにより構成する。   The third lens group G3 includes a positive lens L31, a cemented lens of a positive lens L32, and a negative meniscus lens L33 having a concave shape on the object side, and a positive meniscus lens L34 arranged in order from the object side.

第4レンズ群G4は、物体側から順に並んだ、物体側に凹形状を有する正メニスカスレンズL41と両凹レンズL42と物体側に凸形状を有する正メニスカスレンズL43との貼り合わせレンズにより構成する。なお、ブレ発生時には、第4レンズ群G4を、光軸に対して垂直方向成分を含むように移動させることによって、言い換えれば光軸に対して偏芯させることによって、像位置を変位し防振補正を行う。   The fourth lens group G4 is composed of a cemented lens of a positive meniscus lens L41 having a concave shape on the object side, a biconcave lens L42, and a positive meniscus lens L43 having a convex shape on the object side, which are arranged in order from the object side. When the blur occurs, the image position is displaced and the image stabilization is performed by moving the fourth lens group G4 so as to include a component perpendicular to the optical axis, in other words, by decentering the optical axis. Make corrections.

第5レンズ群G5は、物体側から順に並んだ、両凸レンズL51と物体側に凹形状を有する負メニスカスレンズL52との貼り合わせレンズと、物体側に凸形状を有する負メニスカスレンズL53と正レンズL54との貼り合わせレンズとにより構成する。   The fifth lens group G5 includes a cemented lens of a biconvex lens L51 and a negative meniscus lens L52 having a concave shape on the object side, a negative meniscus lens L53 and a positive lens having a convex shape on the object side, which are arranged in order from the object side. It is constituted by a bonded lens with L54.

第6レンズ群G6は、物体側から順に並んだ、物体側に凹形状を有する負メニスカスレンズL61と正レンズL62と負レンズL63との貼り合わせレンズにより構成する。   The sixth lens group G6 includes a cemented lens including a negative meniscus lens L61 having a concave shape on the object side, a positive lens L62, and a negative lens L63 arranged in order from the object side.

上記構成である本実施例に係る結像光学系では、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が増大し、第4レンズ群G4と第5レンズ群G5との間隔が減少し、第5レンズ群G5と第6レンズ群G6との間隔が減少するように、各レンズ群が移動する。但し、このような変倍に際して、第1レンズ群G1と第4レンズ群G4は像面Iに対して固定されている。   In the imaging optical system according to the present embodiment having the above-described configuration, the distance between the first lens group G1 and the second lens group G2 increases during zooming from the wide-angle end state to the telephoto end state, and the second lens group The distance between G2 and the third lens group G3 decreases, the distance between the third lens group G3 and the fourth lens group G4 increases, the distance between the fourth lens group G4 and the fifth lens group G5 decreases, Each lens group moves so that the distance between the fifth lens group G5 and the sixth lens group G6 decreases. However, during such zooming, the first lens group G1 and the fourth lens group G4 are fixed with respect to the image plane I.

開口絞りSは、第4レンズ群G4と第5レンズ群G5との間に配置され、広角端状態から望遠端状態への変倍に際して像面Iに対して固定されている。   The aperture stop S is disposed between the fourth lens group G4 and the fifth lens group G5, and is fixed with respect to the image plane I upon zooming from the wide-angle end state to the telephoto end state.

また、本実施例においては、像面Iに配置される固体撮像素子7(図10参照)の中心から対角への対角長は、21.6mmである。   In the present embodiment, the diagonal length from the center to the diagonal of the solid-state imaging device 7 (see FIG. 10) disposed on the image plane I is 21.6 mm.

以下の表2に第2実施例に係る結像光学系の各諸元の値を掲げる。なお、表2に示す面番号1〜38は、図4に示す面1〜38に対応している。   Table 2 below lists values of various specifications of the imaging optical system according to the second example. The surface numbers 1 to 38 shown in Table 2 correspond to the surfaces 1 to 38 shown in FIG.

(表2)
[全体諸元]
広角端状態 中間焦点距離状態 望遠端状態
F 81.6 〜 200.0 〜 392.0
FNO 4.6 〜 5.3 〜 5.8
ω 29.8 〜 12.0 〜 6.2
[レンズデータ]
面番号 r d νd nd
1 186.4861 3.3000 46.63 1.816000
2 106.6690 7.5000 67.87 1.593190
3 1119.8255 0.1000
4 114.1516 4.5000 52.29 1.755000
5 233.5175 d5
6 81.5519 3.0000 23.78 1.846660
7 52.7323 10.0000 67.87 1.593190
8 856.6409 d8
9 139.1716 2.0000 48.54 1.697000
10 36.7860 6.0000
11 -88.7502 2.0000 52.29 1.755000
12 47.0665 7.0000 23.06 1.860740
13 -265.5947 3.0000
14 -65.0460 2.0000 48.54 1.697000
15 262.0507 d15
16 269.8438 4.0000 67.87 1.593190
17 -122.2828 0.1000
18 60.2642 7.5000 67.87 1.593190
19 -60.7216 1.8000 31.31 1.903660
20 -921.0984 0.5000
*21 57.6774 4.5000 67.87 1.593190
22 270.6309 d22
23 -191.4794 2.5000 34.96 1.801000
24 -150.0062 1.8000 63.38 1.618000
25 23.1879 4.0000 34.96 1.801000
26 37.4930 4.5000
27 0.0000 d27 (開口絞りS)
28 32.2154 7.7000 82.56 1.497820
29 -39.0918 1.4000 46.63 1.816000
30 -84.3555 0.2000
31 67.5820 1.2000 39.57 1.804400
32 22.3216 6.5000 64.12 1.516800
33 -110.4829 d33
34 -33.6088 1.5000 54.66 1.729160
35 -84.7241 0.1000
36 120.9173 5.5000 32.11 1.672700
37 -24.5237 1.5000 54.66 1.729160
38 97.6230 Bf
[非球面データ]
第21面
κ=1.6330,C4=0.00000E-00,C6=0.00000E-00,C8=0.00000E-00,C10=0.00000E-00
[合焦時における可変間隔]
無限遠 至近距離
広角端 中間 望遠端 広角端 中間 望遠端
F、β 81.00000 200.00000 392.00000 -0.05546 -0.13594 -0.14664
D0 ∞ ∞ ∞ 1529.5171 1529.5171 2729.5170
d5 11.88871 11.88871 11.88871 2.23022 2.23022 6.49113
d8 2.58276 21.62529 28.34814 12.24125 31.28378 33.74572
d15 51.37235 23.87409 2.09452 51.37235 23.87409 2.09452
d22 3.75456 12.21029 27.26700 3.75456 12.21029 27.26700
d27 22.95489 13.28437 2.68873 22.95489 13.28437 2.68873
d33 15.18816 12.07498 4.13378 15.18816 12.07498 4.13378
Bf 55.54148 68.32520 86.86212 55.54148 68.32519 86.86207
TL 270.48291 270.48291 270.48291 270.48291 270.48291 270.48291
[防振補正時の防振レンズ群移動量と像面移動量]
無限遠 至近距離
広角端 中間 望遠端 広角端 中間 望遠端
F、β 81.00000 200.00000 392.00000 -0.05546 -0.13594 -0.26645
レンズ +0.166 +0.361 +0.653 +0.166 +0.361 +0.653
像面 −0.285 −0.698 −1.368 −0.285 −0.698 −1.368

無限遠 至近距離
広角端 中間 望遠端 広角端 中間 望遠端
F、β 81.00000 200.00000 392.00000 -0.05546 -0.13594 -0.26645
レンズ −0.166 −0.361 −0.653 −0.166 −0.361 −0.653
像面 +0.285 +0.698 +1.368 +0.285 +0.698 +1.368
[各群焦点距離データ]
群番号 群初面 群焦点距離
G1 1 102.78
G2 9 -30.09
G3 16 49.00
G4 23 -61.30
G5 28 50.00
G6 34 -57.09
[条件式]
条件式(1) (2×Nn)/(Np1+Np2) = 0.898
代表値 S2 = 1.79565
S4 = 1.47496
S6 = 1.87132
(Table 2)
[Overall specifications]
Wide-angle end state Intermediate focal length state Telephoto end state F 81.6 to 200.0 to 392.0
FNO 4.6-5.3-5.8
ω 29.8-12.0-6.2
[Lens data]
Surface number r d νd nd
1 186.4861 3.3000 46.63 1.816000
2 106.6690 7.5000 67.87 1.593190
3 1119.8255 0.1000
4 114.1516 4.5000 52.29 1.755000
5 233.5175 d5
6 81.5519 3.0000 23.78 1.846660
7 52.7323 10.0000 67.87 1.593190
8 856.6409 d8
9 139.1716 2.0000 48.54 1.697000
10 36.7860 6.0000
11 -88.7502 2.0000 52.29 1.755000
12 47.0665 7.0000 23.06 1.860740
13 -265.5947 3.0000
14 -65.0460 2.0000 48.54 1.697000
15 262.0507 d15
16 269.8438 4.0000 67.87 1.593190
17 -122.2828 0.1000
18 60.2642 7.5000 67.87 1.593190
19 -60.7216 1.8000 31.31 1.903660
20 -921.0984 0.5000
* 21 57.6774 4.5000 67.87 1.593190
22 270.6309 d22
23 -191.4794 2.5000 34.96 1.801000
24 -150.0062 1.8000 63.38 1.618000
25 23.1879 4.0000 34.96 1.801000
26 37.4930 4.5000
27 0.0000 d27 (Aperture stop S)
28 32.2154 7.7000 82.56 1.497820
29 -39.0918 1.4000 46.63 1.816000
30 -84.3555 0.2000
31 67.5820 1.2000 39.57 1.804400
32 22.3216 6.5000 64.12 1.516800
33 -110.4829 d33
34 -33.6088 1.5000 54.66 1.729160
35 -84.7241 0.1000
36 120.9173 5.5000 32.11 1.672700
37 -24.5237 1.5000 54.66 1.729160
38 97.6230 Bf
[Aspherical data]
21st surface κ = 1.6330, C4 = 0.00000E-00, C6 = 0.00000E-00, C8 = 0.00000E-00, C10 = 0.00000E-00
[Variable interval during focusing]
Infinity close range
Wide-angle end Medium telephoto end Wide-angle end Medium telephoto end
F, β 81.00000 200.00000 392.00000 -0.05546 -0.13594 -0.14664
D0 ∞ ∞ ∞ 1529.5171 1529.5171 2729.5170
d5 11.88871 11.88871 11.88871 2.23022 2.23022 6.49113
d8 2.58276 21.62529 28.34814 12.24125 31.28378 33.74572
d15 51.37235 23.87409 2.09452 51.37235 23.87409 2.09452
d22 3.75456 12.21029 27.26700 3.75456 12.21029 27.26700
d27 22.95489 13.28437 2.68873 22.95489 13.28437 2.68873
d33 15.18816 12.07498 4.13378 15.18816 12.07498 4.13378
Bf 55.54148 68.32520 86.86212 55.54148 68.32519 86.86207
TL 270.48291 270.48291 270.48291 270.48291 270.48291 270.48291
[Moving amount of image stabilizing lens group and image surface moving amount during image stabilization]
Infinity close range
Wide-angle end Medium telephoto end Wide-angle end Medium telephoto end
F, β 81.00000 200.00000 392.00000 -0.05546 -0.13594 -0.26645
Lens +0.166 +0.361 +0.653 +0.166 +0.361 +0.653
Image plane -0.285 -0.698 -1.368 -0.285 -0.698 -1.368

Infinity close range
Wide-angle end Medium telephoto end Wide-angle end Medium telephoto end
F, β 81.00000 200.00000 392.00000 -0.05546 -0.13594 -0.26645
Lens -0.166 -0.361 -0.653 -0.166 -0.361 -0.653
Image plane +0.285 +0.698 +1.368 +0.285 +0.698 +1.368
[Each group focal length data]
Group number Group first surface Group focal length G1 1 102.78
G2 9 -30.09
G3 16 49.00
G4 23 -61.30
G5 28 50.00
G6 34 -57.09
[Conditional expression]
Conditional expression (1) (2 × Nn) / (Np1 + Np2) = 0.898
Typical value S2 = 1.79565
S4 = 1.47496
S6 = 1.87132

表2に示す諸元の表から、本実施例に係る結像光学系では、上記条件式(1)を満たすとともに、第4レンズ群G4の代表値S4が他の負屈折力のレンズ群G2,G6の代表値S2,S6よりも小さいことが分かる。   From the table of specifications shown in Table 2, in the imaging optical system according to the present example, the conditional expression (1) is satisfied, and the representative value S4 of the fourth lens group G4 is another lens group G2 having a negative refractive power. , G6 is smaller than the representative values S2 and S6.

図5は、第2実施例に係る結像光学系の無限遠合焦時の諸収差図(球面収差、非点収差、歪曲収差、コマ収差、倍率色収差)及び防振補正時の横収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図6は、第2実施例に係る結像光学系の至近距離合焦時の諸収差図(球面収差、非点収差、歪曲収差、コマ収差、倍率色収差)及び防振補正時の横収差図であり、(a)は広角端状態(全系の撮影距離Rw=1.8m)、(b)は中間焦点距離状態(全系の撮影距離Rm=1.8m)、(c)は望遠端状態(全系の撮影距離Rt=3.0m)をそれぞれ示す。   FIG. 5 shows various aberration diagrams (spherical aberration, astigmatism, distortion aberration, coma aberration, lateral chromatic aberration) at the time of focusing on infinity of the imaging optical system according to the second example, and lateral aberration diagram at the time of image stabilization correction. (A) shows the wide-angle end state, (b) shows the intermediate focal length state, and (c) shows the telephoto end state. FIG. 6 is a diagram showing various aberrations (spherical aberration, astigmatism, distortion aberration, coma aberration, chromatic aberration of magnification) at the time of focusing on the close-up distance of the imaging optical system according to the second example, and lateral aberration diagram at the time of image stabilization correction. (A) is a wide-angle end state (entire system photographing distance Rw = 1.8 m), (b) is an intermediate focal length state (entire system photographing distance Rm = 1.8 m), and (c) is a telephoto end. Each state (total imaging distance Rt = 3.0 m) is shown.

各収差図から明らかなように、第2実施例では、広角端状態から望遠端状態までの各焦点距離状態において諸収差が良好に補正され、優れた結像性能を有することが分かる。   As is apparent from the respective aberration diagrams, in the second example, it is understood that various aberrations are favorably corrected in each focal length state from the wide-angle end state to the telephoto end state, and excellent imaging performance is obtained.

(第3実施例)
第3実施例について、図7〜図9及び表3を用いて説明する。図7は、第3実施例に係る結像光学系のレンズ構成を示す図であり、Wは広角端状態、Mは中間焦点距離状態、Tは望遠端状態の無限遠合焦状態をそれぞれ示す。図7に示すように、第3実施例に係る結像光学系は、光軸に沿って物体側から順に並んだ、正の屈折力を持つ第1レンズ群G1と、正の屈折力を持つ第2レンズ群G2と、負の屈折力を持つ第3レンズ群G3と、正の屈折力を持つ第4レンズ群G4と、負の屈折力を持つ第5レンズ群G5と、正の屈折力を持つ第6レンズ群G6と、負屈折力を持つ第7レンズ群G7とを有する。なお、本実施例では、第5レンズ群G5が、請求項で述べる負屈折力の光学要素からなるレンズ群に該当する。
(Third embodiment)
A third embodiment will be described with reference to FIGS. FIG. 7 is a diagram illustrating the lens configuration of the imaging optical system according to the third example, where W is a wide-angle end state, M is an intermediate focal length state, and T is an infinite focus state in a telephoto end state. . As shown in FIG. 7, the imaging optical system according to the third example has a first lens group G1 having a positive refractive power and arranged in order from the object side along the optical axis, and has a positive refractive power. Second lens group G2, third lens group G3 having negative refractive power, fourth lens group G4 having positive refractive power, fifth lens group G5 having negative refractive power, and positive refractive power And a seventh lens group G7 having a negative refractive power. In the present embodiment, the fifth lens group G5 corresponds to a lens group including optical elements having negative refractive power described in the claims.

第1レンズ群G1は、物体側から順に並んだ、物体側に凸形状を有する負メニスカスレンズL11と正レンズL12との貼り合わせレンズと、正レンズL13とにより構成する。   The first lens group G1 includes a cemented lens of a negative meniscus lens L11 having a convex shape on the object side and a positive lens L12 arranged in order from the object side, and a positive lens L13.

第2レンズ群G2は、物体側から順に並んだ、物体側に凸形状を有する負メニスカスレンズL21と正レンズL22との貼り合わせレンズにより構成する。なお、無限遠から至近への合焦の際には、物体側に凸形状を有する負メニスカスレンズL21と正レンズL22との貼り合わせレンズが像面側へ移動する。   The second lens group G2 includes a cemented lens of a negative meniscus lens L21 having a convex shape on the object side and a positive lens L22 arranged in order from the object side. When focusing from infinity to the closest distance, the cemented lens of the negative meniscus lens L21 and the positive lens L22 having a convex shape on the object side moves to the image plane side.

第3レンズ群G3は、物体側から順に並んだ、像側が強い凹形状を有する負レンズL31と、負レンズL32と正レンズL33との貼り合わせレンズと、物体側に強い凹形状を有する負レンズL34とにより構成する。   The third lens group G3 includes, in order from the object side, a negative lens L31 having a strong concave shape on the image side, a cemented lens of the negative lens L32 and the positive lens L33, and a negative lens having a strong concave shape on the object side. L34.

第4レンズ群G4は、物体側から順に並んだ、正レンズL41と、正レンズL42と物体側に凹形状を有する負メニスカスレンズL43との貼り合わせレンズと、正メニスカスレンズL44とにより構成する。   The fourth lens group G4 includes a positive lens L41, a cemented lens of a positive lens L42 and a negative meniscus lens L43 having a concave shape on the object side, and a positive meniscus lens L44, which are arranged in order from the object side.

第5レンズ群G5は、物体側から順に並んだ、物体側に凹形状を有する正メニスカスレンズL51と両凹レンズL52と物体側に凸形状を有する正メニスカスレンズL53との貼り合わせレンズにより構成する。なお、ブレ発生時には、第5レンズ群G5を、光軸に対して垂直方向成分を含むように移動させることによって、言い換えれば光軸に対して偏芯させることによって、像位置を変位し防振補正を行う。   The fifth lens group G5 is composed of a cemented lens of a positive meniscus lens L51 having a concave shape on the object side, a biconcave lens L52, and a positive meniscus lens L53 having a convex shape on the object side, which are arranged in order from the object side. When the blur occurs, the image position is displaced and the image stabilization is performed by moving the fifth lens group G5 so as to include a component perpendicular to the optical axis, in other words, by decentering the optical axis. Make corrections.

第6レンズ群G6は、物体側から順に並んだ、両凸レンズL61と物体側に凹形状を有する負メニスカスレンズL62との貼り合わせレンズと、物体側に凸形状を有する負メニスカスレンズL63と正レンズL64との貼り合わせレンズとにより構成する。   The sixth lens group G6 includes a cemented lens of a biconvex lens L61 and a negative meniscus lens L62 having a concave shape on the object side, a negative meniscus lens L63 and a positive lens having a convex shape on the object side, which are arranged in order from the object side. The lens is composed of a laminated lens with L64.

第7レンズ群G7は、物体側から順に並んだ、物体側に凹形状を有する負メニスカスレンズL71と正レンズL72と負レンズL73との貼り合わせレンズにより構成する。   The seventh lens group G7 includes a cemented lens including a negative meniscus lens L71 having a concave shape on the object side, a positive lens L72, and a negative lens L73, which are arranged in order from the object side.

上記構成である本実施例に係る結像光学系では、広角端状態から望遠端状態への変倍に際して、第1レンズ群G1と第2レンズ群G2との間隔が増大した後減少し、第2レンズ群G2と第3レンズ群G3との間隔が増大し、第3レンズ群G3と第4レンズ群G4との間隔が減少し、第4レンズ群G4と第5レンズ群G5との間隔が増大し、第5レンズ群G5と第6レンズ群G6との間隔が減少し、第6レンズ群G6と第7レンズ群G7との間隔が減少するように、各レンズ群が移動する。但し、このような変倍に際して、第1レンズ群G1と第5レンズ群G5は像面Iに対して固定されている。   In the imaging optical system according to the present embodiment having the above-described configuration, when the magnification is changed from the wide-angle end state to the telephoto end state, the distance between the first lens group G1 and the second lens group G2 increases and then decreases. The distance between the second lens group G2 and the third lens group G3 increases, the distance between the third lens group G3 and the fourth lens group G4 decreases, and the distance between the fourth lens group G4 and the fifth lens group G5 increases. Each lens group moves so that the distance between the fifth lens group G5 and the sixth lens group G6 decreases, and the distance between the sixth lens group G6 and the seventh lens group G7 decreases. However, during such zooming, the first lens group G1 and the fifth lens group G5 are fixed with respect to the image plane I.

開口絞りSは、第5レンズ群G5と第6レンズ群G6との間に配置され、広角端状態から望遠端状態への変倍に際して像面Iに対して固定されている。   The aperture stop S is disposed between the fifth lens group G5 and the sixth lens group G6, and is fixed with respect to the image plane I upon zooming from the wide-angle end state to the telephoto end state.

また、本実施例においては、像面Iに配置される固体撮像素子7(図10参照)の中心から対角への対角長は、21.6mmである。   In the present embodiment, the diagonal length from the center to the diagonal of the solid-state imaging device 7 (see FIG. 10) disposed on the image plane I is 21.6 mm.

以下の表3に第3実施例に係る結像光学系の各諸元の値を掲げる。なお、表3に示す面番号1〜38は、図7に示す面1〜38に対応している。   Table 3 below lists values of various specifications of the imaging optical system according to the third example. The surface numbers 1 to 38 shown in Table 3 correspond to the surfaces 1 to 38 shown in FIG.

(表3)
[全体諸元]
広角端状態 中間焦点距離状態 望遠端状態
F 81.60 〜 180.00 〜 392.00
FNO 4.8 〜 5.3 〜 5.6
ω 30.2 〜 13.8 〜 8.0
[レンズデータ]
面番号 r d νd nd
1 154.2555 3.3000 46.63 1.816000
2 126.7818 7.5000 67.87 1.593190
3 453.1361 0.1000
4 127.6743 4.5000 52.29 1.755000
5 251.3421 d5
6 81.2589 3.0000 23.78 1.846660
7 50.8327 10.0000 67.87 1.593190
8 1087.4945 d8
9 145.2703 2.0000 48.54 1.697000
10 35.7981 6.0000
11 -62.8079 2.0000 52.29 1.755000
12 48.1634 7.0000 23.06 1.860740
13 -203.0688 3.0000
14 -67.9950 2.0000 48.54 1.697000
15 3787.4667 d15
16 486.9634 4.0000 67.87 1.593190
17 -100.3726 0.1000
18 81.9285 7.5000 67.87 1.593190
19 -48.5922 1.8000 31.31 1.903660
20 -210.4948 0.5000
*21 55.2534 4.5000 67.87 1.593190
22 288.2057 d22
23 -191.4794 2.5000 34.96 1.801000
24 -150.0062 1.8000 63.38 1.618000
25 23.1879 4.0000 34.96 1.801000
26 37.4930 4.5000
27 0.0000 d27 (開口絞りS)
28 53.5837 7.7000 82.56 1.497820
29 -24.8104 1.4000 46.63 1.816000
30 -81.7198 0.2000
31 111.9706 1.2000 39.57 1.804400
32 42.6991 6.5000 64.12 1.516800
33 -36.6012 d33
34 -34.8799 1.5000 54.66 1.729160
35 -75.7209 0.1000
36 163.7667 5.5000 32.11 1.672700
37 -27.4456 1.5000 54.66 1.729160
38 90.5054 Bf
[非球面データ]
第21面
κ=1.6330,C4=0.00000E-00,C6=0.00000E-00,C8=0.00000E-00,C10=0.00000E-00
[合焦時における可変間隔]
無限遠 至近距離
広角端 中間 望遠端 広角端 中間 望遠端
F、β 81.60000 180.00000 320.00000 -0.05545 -0.12227 -0.11967
D0 ∞ ∞ ∞ 1530.5304 1530.5304 2730.5304
d5 10.37597 11.48416 10.92082 0.71928 1.75627 5.50317
d8 3.80926 20.69922 27.15389 13.46595 30.42710 32.57154
d15 49.19569 24.51554 6.62875 49.19569 24.51554 6.62875
d22 4.60287 11.28487 23.28033 4.60287 11.28487 23.28033
d27 18.18130 9.39213 0.46222 18.18130 9.39213 0.46222
d33 19.59346 17.82187 11.90053 19.59346 17.82187 11.90053
Bf 55.64065 66.20141 81.05261 55.64065 66.20141 81.05261
TL 268.59919 268.59919 268.59919 268.59919 268.59919 268.59919
[防振補正時の防振レンズ群移動量と像面移動量]
無限遠 至近距離
広角端 中間 望遠端 広角端 中間 望遠端
F、β 81.60000 180.00000 320.00000 -0.05545 -0.12227 -0.11967
レンズ +0.166 +0.328 +0.536 +0.166 +0.328 +0.536
像面 −0.285 −0.628 −1.117 −0.285 −0.628 −1.117

無限遠 至近距離
広角端 中間 望遠端 広角端 中間 望遠端
F、β 81.60000 180.00000 320.00000 -0.05545 -0.12227 -0.11967
レンズ −0.166 −0.328 −0.536 −0.166 −0.328 −0.536
像面 +0.285 +0.628 +1.117 +0.285 +0.628 +1.117
[各群焦点距離データ]
群番号 群初面 群焦点距離
G1 1 193.46
G2 6 200.00
G3 9 -30.09
G4 16 49.00
G5 23 -61.30
G6 28 50.00
G7 34 -57.09
[条件式]
条件式(1) (2×Nn)/(Np1+Np2) = 0.898
代表値 S3 = 1.79565
S5 = 1.47496
S7 = 1.87132
(Table 3)
[Overall specifications]
Wide-angle end state Intermediate focal length state Telephoto end state F 81.60 to 180.00 to 392.00
FNO 4.8 to 5.3 to 5.6
ω 30.2 to 13.8 to 8.0
[Lens data]
Surface number r d νd nd
1 154.2555 3.3000 46.63 1.816000
2 126.7818 7.5000 67.87 1.593190
3 453.1361 0.1000
4 127.6743 4.5000 52.29 1.755000
5 251.3421 d5
6 81.2589 3.0000 23.78 1.846660
7 50.8327 10.0000 67.87 1.593190
8 1087.4945 d8
9 145.2703 2.0000 48.54 1.697000
10 35.7981 6.0000
11 -62.8079 2.0000 52.29 1.755000
12 48.1634 7.0000 23.06 1.860740
13 -203.0688 3.0000
14 -67.9950 2.0000 48.54 1.697000
15 3787.4667 d15
16 486.9634 4.0000 67.87 1.593190
17 -100.3726 0.1000
18 81.9285 7.5000 67.87 1.593190
19 -48.5922 1.8000 31.31 1.903660
20 -210.4948 0.5000
* 21 55.2534 4.5000 67.87 1.593190
22 288.2057 d22
23 -191.4794 2.5000 34.96 1.801000
24 -150.0062 1.8000 63.38 1.618000
25 23.1879 4.0000 34.96 1.801000
26 37.4930 4.5000
27 0.0000 d27 (Aperture stop S)
28 53.5837 7.7000 82.56 1.497820
29 -24.8104 1.4000 46.63 1.816000
30 -81.7198 0.2000
31 111.9706 1.2000 39.57 1.804400
32 42.6991 6.5000 64.12 1.516800
33 -36.6012 d33
34 -34.8799 1.5000 54.66 1.729160
35 -75.7209 0.1000
36 163.7667 5.5000 32.11 1.672700
37 -27.4456 1.5000 54.66 1.729160
38 90.5054 Bf
[Aspherical data]
21st surface κ = 1.6330, C4 = 0.00000E-00, C6 = 0.00000E-00, C8 = 0.00000E-00, C10 = 0.00000E-00
[Variable interval during focusing]
Infinity close range
Wide-angle end Medium telephoto end Wide-angle end Medium telephoto end
F, β 81.60000 180.00000 320.00000 -0.05545 -0.12227 -0.11967
D0 ∞ ∞ ∞ 1530.5304 1530.5304 2730.5304
d5 10.37597 11.48416 10.92082 0.71928 1.75627 5.50317
d8 3.80926 20.69922 27.15389 13.46595 30.42710 32.57154
d15 49.19569 24.51554 6.62875 49.19569 24.51554 6.62875
d22 4.60287 11.28487 23.28033 4.60287 11.28487 23.28033
d27 18.18130 9.39213 0.46222 18.18130 9.39213 0.46222
d33 19.59346 17.82187 11.90053 19.59346 17.82187 11.90053
Bf 55.64065 66.20141 81.05261 55.64065 66.20141 81.05261
TL 268.59919 268.59919 268.59919 268.59919 268.59919 268.59919
[Moving amount of image stabilizing lens group and image surface moving amount during image stabilization]
Infinity close range
Wide-angle end Medium telephoto end Wide-angle end Medium telephoto end
F, β 81.60000 180.00000 320.00000 -0.05545 -0.12227 -0.11967
Lens +0.166 +0.328 +0.536 +0.166 +0.328 +0.536
Image plane −0.285 −0.628 −1.117 −0.285 −0.628 −1.117

Infinity close range
Wide-angle end Medium telephoto end Wide-angle end Medium telephoto end
F, β 81.60000 180.00000 320.00000 -0.05545 -0.12227 -0.11967
Lens -0.166 -0.328 -0.536 -0.166 -0.328 -0.536
Image plane +0.285 +0.628 +1.117 +0.285 +0.628 +1.117
[Each group focal length data]
Group number Group first surface Group focal length G1 1
G2 6 200.00
G3 9 -30.09
G4 16 49.00
G5 23 -61.30
G6 28 50.00
G7 34 -57.09
[Conditional expression]
Conditional expression (1) (2 × Nn) / (Np1 + Np2) = 0.898
Typical value S3 = 1.79565
S5 = 1.47496
S7 = 1.87132

表3に示す諸元の表から、本実施例に係る結像光学系では、上記条件式(1)を満たすとともに、第5レンズ群G5の代表値S5が他の負屈折力のレンズ群G3,G7の代表値S3,S7よりも小さいことが分かる。   From the table of specifications shown in Table 3, in the imaging optical system according to the present example, the conditional expression (1) is satisfied, and the representative value S5 of the fifth lens group G5 is another lens group G3 having a negative refractive power. , G7 is smaller than the representative values S3, S7.

図8は、第3実施例に係る結像光学系の無限遠合焦時の諸収差図(球面収差、非点収差、歪曲収差、コマ収差、倍率色収差)及び防振補正時の横収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図9は、第3実施例に係る結像光学系の至近距離合焦時の諸収差図(球面収差、非点収差、歪曲収差、コマ収差、倍率色収差)及び防振補正時の横収差図であり、(a)は広角端状態(全系の撮影距離Rw=1.8m)、(b)は中間焦点距離状態(全系の撮影距離Rm=1.8m)、(c)は望遠端状態(全系の撮影距離Rt=3.0m)をそれぞれ示す。   FIG. 8 shows various aberration diagrams (spherical aberration, astigmatism, distortion aberration, coma aberration, lateral chromatic aberration) at the time of focusing on infinity of the imaging optical system according to Example 3, and lateral aberration diagram at the time of image stabilization correction. (A) shows the wide-angle end state, (b) shows the intermediate focal length state, and (c) shows the telephoto end state. FIG. 9 is a diagram showing various aberrations (spherical aberration, astigmatism, distortion aberration, coma aberration, lateral chromatic aberration) at the time of focusing on the close-up distance of the imaging optical system according to the third example, and lateral aberration diagram at the time of image stabilization correction. (A) is a wide-angle end state (entire system photographing distance Rw = 1.8 m), (b) is an intermediate focal length state (entire system photographing distance Rm = 1.8 m), and (c) is a telephoto end. Each state (total imaging distance Rt = 3.0 m) is shown.

各収差図から明らかなように、第3実施例では、広角端状態から望遠端状態までの各焦点距離状態において諸収差が良好に補正され、優れた結像性能を有することが分かる。   As is apparent from the respective aberration diagrams, in the third example, it is understood that various aberrations are well corrected in each focal length state from the wide-angle end state to the telephoto end state, and excellent imaging performance is obtained.

以上、各実施例における説明を行った。いずれの実施例もズーミングの際に第1レンズ群G1と第4レンズ群G4とを固定しているが、本実施形態はこのズーミング方式に限定されるものではない。例えば、第1レンズ群G1を移動すれば、広角端の状態で全長が短くできるので、携帯性に優れ好ましい。   The description of each example has been given above. In any of the examples, the first lens group G1 and the fourth lens group G4 are fixed during zooming. However, the present embodiment is not limited to this zooming method. For example, if the first lens group G1 is moved, the overall length can be shortened at the wide-angle end, which is excellent in portability.

また、第1、第2実施例では第4レンズ群G4を、第3実施例では第5レンズ群G5を光軸に対して垂直方向成分を含むように移動させ、光軸に対して偏芯させることにより、所謂手ブレによる像揺れを補正しているが、第1、第2実施例では第2レンズ群G2を、第3実施例では第3レンズ群G3レンズ群を光軸に対して垂直方向成分を含むように移動させ、光軸に対して偏芯させることにより、所謂手ブレによる像揺れを補正しても良い。   In the first and second embodiments, the fourth lens group G4 is moved, and in the third embodiment, the fifth lens group G5 is moved so as to include a component perpendicular to the optical axis, and decentered with respect to the optical axis. Thus, the image shake caused by so-called camera shake is corrected. In the first and second embodiments, the second lens group G2 is used, and in the third embodiment, the third lens group G3 is used with respect to the optical axis. Image movement caused by so-called camera shake may be corrected by moving so as to include a vertical component and decentering the optical axis.

また、第1、第2実施例では第1レンズ群G1内の後群(例えば、図1のレンズL14,L15)で、第3実施例では第2レンズ群G2内で近距離合焦を行っているが、他のレンズ群全体で近距離合焦を行っても構わない。   In the first and second embodiments, short distance focusing is performed in the rear group (for example, the lenses L14 and L15 in FIG. 1) in the first lens group G1, and in the second lens group G2 in the third embodiment. However, the short distance focusing may be performed on the entire other lens group.

なお、上述の実施形態において、以下に記載の内容は、光学性能を損なわない範囲で適宜採用可能である。   In the above-described embodiment, the following description can be appropriately adopted as long as the optical performance is not impaired.

上記実施例では、5群又は6群構成のものを示したが、7群等の他の群構成にも適用可能である。また、最も物体側にレンズ又はレンズ群を追加した構成や、最も像側にレンズ又はレンズ群を追加した構成でも構わない。また、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。   In the above-described embodiment, the five-group or six-group configuration is shown, but the present invention can be applied to other group configurations such as the seventh group. Further, a configuration in which a lens or a lens group is added closest to the object side, or a configuration in which a lens or a lens group is added closest to the image side may be used. The lens group refers to a portion having at least one lens separated by an air interval that changes during zooming.

また、単独又は複数のレンズ群、又は部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としてもよい。前記合焦レンズ群は、オートフォーカスにも適用でき、オートフォーカス用の(超音波モータ等の)モータ駆動にも適している。特に、第1レンズ群又は第2レンズ群の少なくとも一部を合焦レンズ群とするのが好ましい。   In addition, a single lens group, a plurality of lens groups, or a partial lens group may be moved in the optical axis direction to be a focusing lens group that performs focusing from an object at infinity to a near object. The focusing lens group can be applied to autofocus, and is also suitable for driving a motor for autofocus (such as an ultrasonic motor). In particular, it is preferable that at least a part of the first lens group or the second lens group is a focusing lens group.

また、レンズ群又は部分レンズ群を光軸に垂直な方向の成分を持つように移動させ、又は、光軸を含む面内方向に回転移動(揺動)させて、手ブレによって生じる像ブレを補正する防振レンズ群としてもよい。特に、第4レンズ群の少なくとも一部を防振レンズ群とするのが好ましい。   In addition, the lens group or the partial lens group is moved so as to have a component in a direction perpendicular to the optical axis, or is rotated (swayed) in the in-plane direction including the optical axis to cause image blur caused by camera shake. A vibration-proof lens group to be corrected may be used. In particular, it is preferable that at least a part of the fourth lens group is an anti-vibration lens group.

また、各レンズ面は、球面又は平面で形成されても、非球面で形成されても構わない。なお、レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、加工及び組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、各レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしてもよい。   Each lens surface may be formed as a spherical surface, a flat surface, or an aspheric surface. In addition, it is preferable that the lens surface is a spherical surface or a flat surface because lens processing and assembly adjustment are facilitated, and deterioration of optical performance due to errors in processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance. When the lens surface is an aspheric surface, the aspheric surface is an aspheric surface by grinding, a glass mold aspheric surface made of glass with an aspheric shape, or a composite aspheric surface made of resin with an aspheric shape on the glass surface. Any aspherical surface may be used. Each lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

また、開口絞りは、第4レンズ群の近傍に配置されるのが好ましいが、開口絞りとしての部材を設けずに、レンズ枠でその役割を代用してもよい。   The aperture stop is preferably arranged in the vicinity of the fourth lens group, but the role of the aperture stop may be substituted by a lens frame without providing a member as the aperture stop.

また、各レンズ面には、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施してもよい。   Further, each lens surface may be provided with an antireflection film having a high transmittance in a wide wavelength range in order to reduce flare and ghost and achieve high optical performance with high contrast.

本実施形態の結像光学系は、変倍比が3〜10程度である。   The imaging optical system of the present embodiment has a zoom ratio of about 3 to 10.

なお、本発明を分かりやすくするために、実施形態の構成要件を付して説明したが、本発明がこれに限定されるものではないことは言うまでもない。   In addition, in order to make this invention intelligible, although demonstrated with the component requirement of embodiment, it cannot be overemphasized that this invention is not limited to this.

G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
G5 第5レンズ群
G6 第6レンズ群
G7 第7レンズ群
S 開口絞り
I 像面
CAM デジタル一眼レフカメラ(光学機器)
G1 1st lens group G2 2nd lens group G3 3rd lens group G4 4th lens group G5 5th lens group G6 6th lens group G7 7th lens group S Aperture stop I Image surface CAM Digital single lens reflex camera (optical equipment)

Claims (8)

光軸に対して垂直方向成分を含むように移動する光学要素であって、
物体側から順に並んだ、第1の正レンズと、負レンズと、第2の正レンズとの3枚のレンズを貼り合わせた接合レンズからなり、全体として負屈折力を有し、
前記第1の正レンズ、前記負レンズ及び前記第2の正レンズのd線に対する屈折率をそれぞれNp1、Nn及びNp2としたとき、次式
0.80 < (2×Nn)/(Np1+Np2) < 1.00
の条件を満足することを特徴とする光学要素。
An optical element that moves to include a component perpendicular to the optical axis,
In order from an object, it possesses a first positive lens, a negative lens, made from a second positive lens and the three cemented lens in which a lens, a negative refractive power as a whole,
When the refractive indexes of the first positive lens, the negative lens, and the second positive lens with respect to the d-line are Np1, Nn, and Np2, respectively,
0.80 <(2 × Nn) / (Np1 + Np2) <1.00
An optical element characterized by satisfying the following conditions .
前記第1の正レンズ、前記負レンズ及び前記第2の正レンズは、
物体側に凹形状のメニスカスレンズ、両凹レンズ及び物体側に凸形状のメニスカスレンズであることを特徴とする請求項1に記載の光学要素。
The first positive lens, the negative lens, and the second positive lens are
The optical element according to claim 1, wherein the optical element is a concave meniscus lens on the object side, a biconcave lens, and a convex meniscus lens on the object side.
請求項1又は2に記載の前記光学要素からなるレンズ群を含む、複数のレンズ群からなる結像光学系。 Claim 1 or a lens group composed of the optical element according to 2, an imaging optical system including a plurality of lens groups. 前記光学要素からなるレンズ群が、前記結像光学系を構成する負屈折力を有するレンズ群のうちの一つである場合、
前記結像光学系を構成する物体側から数えてn番目に位置する第nレンズ群の焦点距離をFnとし、前記第nレンズ群のレンズ群のペッツバール和をPnとし、前記第nレンズ群の代表値をSn=1/(Fn×Pn)と定義したとき、
前記光学要素からなるレンズ群の代表値は、前記結像光学系を構成する他の負屈折力を有するレンズ群の代表値のいずれよりも小さいことを特徴とする請求項に記載の結像光学系。
When the lens group consisting of the optical element is one of the lens groups having negative refractive power constituting the imaging optical system,
The focal length of the nth lens group located nth from the object side constituting the imaging optical system is Fn, the Petzval sum of the lens group of the nth lens group is Pn, and the nth lens group When the representative value is defined as Sn = 1 / (Fn × Pn),
4. The imaging according to claim 3 , wherein a representative value of the lens group composed of the optical elements is smaller than any of representative values of other lens groups having negative refractive power constituting the imaging optical system. Optical system.
物体側から順に並んだ、正屈折力を有するレンズ群と、負屈折力を有するレンズ群と、正屈折力を有するレンズ群と、前記光学要素からなる負屈折力を有するレンズ群と、正屈折力を有するレンズ群と、負屈折力を有するレンズ群とを有して構成されることを特徴とする請求項3又は4に記載の結像光学系。 A lens group having positive refracting power, a lens group having negative refracting power, a lens group having positive refracting power, a lens group having negative refracting power composed of the optical elements, and positive refracting, arranged in order from the object side 5. The imaging optical system according to claim 3 , wherein the imaging optical system includes a lens group having a power and a lens group having a negative refractive power. 前記光学要素からなる負屈折力を有するレンズ群は、変倍の際に結像面に対して光軸方向に不動であることを特徴とする請求項に記載の結像光学系。 6. The imaging optical system according to claim 5 , wherein the lens group having negative refractive power composed of the optical element is immovable in the optical axis direction with respect to the imaging plane during zooming. 最も物体側に位置する前記正屈折力を有するレンズ群は、変倍の際に結像面に対して光軸方向に不動であることを特徴とする請求項5又は6に記載の結像光学系。 The imaging optical system according to claim 5 or 6 , wherein the lens group having the positive refractive power located closest to the object side does not move in the optical axis direction with respect to the imaging plane during zooming. system. 請求項のいずれか一項に記載の結像光学系を有する光学機器。 An optical apparatus having the imaging optical system according to any one of claims 3 to 7 .
JP2010051568A 2010-03-09 2010-03-09 Optical element, imaging optical system having the same, and optical instrument Expired - Fee Related JP5565676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010051568A JP5565676B2 (en) 2010-03-09 2010-03-09 Optical element, imaging optical system having the same, and optical instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010051568A JP5565676B2 (en) 2010-03-09 2010-03-09 Optical element, imaging optical system having the same, and optical instrument

Publications (2)

Publication Number Publication Date
JP2011186199A JP2011186199A (en) 2011-09-22
JP5565676B2 true JP5565676B2 (en) 2014-08-06

Family

ID=44792549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010051568A Expired - Fee Related JP5565676B2 (en) 2010-03-09 2010-03-09 Optical element, imaging optical system having the same, and optical instrument

Country Status (1)

Country Link
JP (1) JP5565676B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6207266B2 (en) * 2013-07-04 2017-10-04 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP6553984B2 (en) * 2015-08-21 2019-07-31 株式会社タムロン Zoom lens and imaging apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002082367A (en) * 2000-06-22 2002-03-22 Nikon Corp Front teleconverter having vibration isolating function

Also Published As

Publication number Publication date
JP2011186199A (en) 2011-09-22

Similar Documents

Publication Publication Date Title
JP5544959B2 (en) Variable-magnification optical system, optical apparatus, and variable-magnification optical system manufacturing method
JP5407119B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system magnification method
JP5458477B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system magnification method
JP5176410B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system magnification method
JP2010032702A (en) Zoom lens, optical device comprising the same, and power variation method
WO2010004806A1 (en) Zoom lens, optical device having same, and zoom lens manufacturing method
JP5344291B2 (en) Zoom lens, optical device, and method of manufacturing zoom lens
JP5668409B2 (en) Zoom lens and optical equipment
JP5845972B2 (en) Variable magnification optical system, optical device
JP5974722B2 (en) Variable magnification optical system, optical device
JP5201460B2 (en) Zoom lens, optical apparatus having the same, and zooming method
JP5326434B2 (en) Variable magnification optical system and optical apparatus equipped with the variable magnification optical system
JP5565676B2 (en) Optical element, imaging optical system having the same, and optical instrument
WO2015079679A1 (en) Zoom lens, optical device, and production method for zoom lens
JP5540513B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
WO2013129487A1 (en) Variable-power optical system, optical device, and method for producing variable-power optical system
JP5617277B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP5201461B2 (en) Zoom lens, optical apparatus having the same, and zooming method
JP5740965B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
JP6436184B2 (en) Variable magnification optical system, optical device
WO2020136746A1 (en) Variable power optical system, optical device, and method for manufacturing variable power optical system
WO2020136745A1 (en) Variable power optical system, optical device, and method for manufacturing variable power optical system
WO2020136744A1 (en) Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
JP5831294B2 (en) Variable magnification optical system, optical device
JP5935390B2 (en) Variable magnification optical system, optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140605

R150 Certificate of patent or registration of utility model

Ref document number: 5565676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees