JP6265022B2 - Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method - Google Patents

Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method Download PDF

Info

Publication number
JP6265022B2
JP6265022B2 JP2014087085A JP2014087085A JP6265022B2 JP 6265022 B2 JP6265022 B2 JP 6265022B2 JP 2014087085 A JP2014087085 A JP 2014087085A JP 2014087085 A JP2014087085 A JP 2014087085A JP 6265022 B2 JP6265022 B2 JP 6265022B2
Authority
JP
Japan
Prior art keywords
lens group
lens
optical system
end state
focal length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014087085A
Other languages
Japanese (ja)
Other versions
JP2015206890A (en
Inventor
昭彦 小濱
昭彦 小濱
健介 内田
健介 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2014087085A priority Critical patent/JP6265022B2/en
Priority to CN201910171013.8A priority patent/CN110058391B/en
Priority to PCT/JP2015/002101 priority patent/WO2015162883A1/en
Priority to CN201580030859.XA priority patent/CN106461921B/en
Publication of JP2015206890A publication Critical patent/JP2015206890A/en
Priority to US15/299,451 priority patent/US10451858B2/en
Application granted granted Critical
Publication of JP6265022B2 publication Critical patent/JP6265022B2/en
Priority to US16/563,814 priority patent/US11385446B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Description

本発明は、変倍光学系、光学機器及び変倍光学系の製造方法に関する。   The present invention relates to a variable magnification optical system, an optical apparatus, and a method for manufacturing the variable magnification optical system.

従来、カメラ用の交換レンズ、デジタルカメラ、ビデオカメラ等に好適な変倍光学系と
して、最も物体側のレンズ群が正の屈折力を有するものが数多く提案されている。これら
の変倍光学系のうち、一部のレンズ群を光軸に沿って移動させることにより合焦を行って
いる光学系が提案されている(例えば、特許文献1を参照)。
Conventionally, many variable-power optical systems suitable for interchangeable lenses for cameras, digital cameras, video cameras, etc. have been proposed in which the lens group closest to the object side has a positive refractive power. Among these variable magnification optical systems, an optical system in which focusing is performed by moving some lens groups along the optical axis has been proposed (see, for example, Patent Document 1).

特開平8−179214号公報JP-A-8-179214

しかしながら、従来の変倍光学系では、合焦時に、十分に高い光学性能を維持すること
が困難であるという問題があった。
However, the conventional variable power optical system has a problem that it is difficult to maintain sufficiently high optical performance during focusing.

本発明は、このような問題に鑑みてなされたものであり、変倍時と、合焦時に、高い光
学性能を有する変倍光学系、光学機器及び変倍光学系の製造方法を提供することを目的と
する。
The present invention has been made in view of such problems, and provides a variable power optical system, an optical apparatus, and a variable power optical system manufacturing method having high optical performance at the time of zooming and at the time of focusing. With the goal.

このような目的を達成するため、第1の本発明に係る変倍光学系は、光軸に沿って物体側より順に並んだ、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、第5レンズ群とを有し、変倍時に、隣り合う各レンズ群の間隔が変化し、変倍時に、最も像側のレンズ群は、像面に対して固定され、広角端状態から望遠端状態への変倍時に、前記第1レンズ群は物体側へ移動し、合焦時に、前記第3レンズ群は光軸に沿って移動し、次の条件式を満足する。 In order to achieve such an object, a variable magnification optical system according to the first aspect of the present invention includes a first lens group having a positive refractive power, arranged in order from the object side along the optical axis, and a negative refractive power. Each having a second lens group having a positive refractive power, a fourth lens group having a positive refractive power, and a fifth lens group. When the magnification is changed, the lens unit closest to the image side is fixed with respect to the image plane, and when the magnification is changed from the wide-angle end state to the telephoto end state, the first lens group moves to the object side. During focusing, the third lens group moves along the optical axis, and satisfies the following conditional expression.

0.480 < f3/ft < 4.000
但し、
ft:望遠端状態における前記変倍光学系の焦点距離、
f3:前記第3レンズ群の焦点距離。
0.480 <f3 / ft <4.0000
However,
ft: focal length of the variable magnification optical system in the telephoto end state,
f3: focal length of the third lens group.

第2の本発明に係る変倍光学系は、光軸に沿って物体側より順に並んだ、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、第5レンズ群とを有し、変倍時に、隣り合う各レンズ群の間隔が変化し、変倍時に、最も像側のレンズ群は、像面に対して固定され、合焦時に、前記第3レンズ群は光軸に沿って移動し、次の条件式を満足する。 The zoom optical system according to the second aspect of the present invention includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, arranged in order from the object side along the optical axis, And a fourth lens group having a positive refractive power, and a fifth lens group. During zooming, the distance between adjacent lens groups changes, The most image-side lens unit is fixed with respect to the image plane, and the third lens unit moves along the optical axis at the time of focusing, and satisfies the following conditional expression .

0.480 < f3/ft < 4.000
3.000 < fR/fw < 9.500
但し、
ft:望遠端状態における前記変倍光学系の焦点距離、
f3:前記第3レンズ群の焦点距離、
fw:広角端状態における前記変倍光学系の焦点距離、
fR:前記最も像側のレンズ群の焦点距離
0.480 <f3 / ft <4.0000
3.000 <fR / fw <9.500
However,
ft: focal length of the variable magnification optical system in the telephoto end state,
f3: focal length of the third lens group,
fw: focal length of the zoom optical system in the wide-angle end state,
fR: focal length of the lens group closest to the image side .

本発明に係る光学機器は、上述のいずれかの変倍光学系を搭載する。   An optical apparatus according to the present invention includes any one of the above-described variable magnification optical systems.

本発明に係る変倍光学系の製造方法は、光軸に沿って物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群と、正屈折力の第4レンズ群と、第5レンズ群とを有する変倍光学系の製造方法であって、変倍時に、隣り合う各レンズ群の間隔が変化し、変倍時に、最も像側のレンズ群は、像面に対して固定され、広角端状態から望遠端状態への変倍時に、前記第1レンズ群は物体側へ移動し、合焦時に、前記第3レンズ群は光軸に沿って移動し、次の条件式を満足するように、レンズ鏡筒内に各レンズを配置する。 The variable magnification optical system manufacturing method according to the present invention includes a first lens unit having a positive refractive power, a second lens unit having a negative refractive power, and a third lens having a positive refractive power in order from the object side along the optical axis. Group, a fourth lens group having positive refracting power, and a fifth lens group, a method of manufacturing a variable power optical system, wherein the distance between adjacent lens groups changes during zooming, The lens group closest to the image side is fixed with respect to the image plane , and the first lens group moves to the object side during zooming from the wide-angle end state to the telephoto end state, and the third lens group during focusing. Moves along the optical axis, and each lens is arranged in the lens barrel so as to satisfy the following conditional expression.

0.480 < f3/ft < 4.000
但し、
ft:望遠端状態における前記変倍光学系の焦点距離、
f3:前記第3レンズ群の焦点距離。
0.480 <f3 / ft <4.0000
However,
ft: focal length of the variable magnification optical system in the telephoto end state,
f3: focal length of the third lens group.

本発明によれば、変倍時と、合焦時に、高い光学性能を有する変倍光学系、光学機器及
び変倍光学系の製造方法を提供することができる。
According to the present invention, it is possible to provide a variable power optical system, an optical apparatus, and a method for manufacturing the variable power optical system having high optical performance at the time of zooming and focusing.

(W)、(M)、及び(T)はそれぞれ、第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。(W), (M), and (T) are cross-sectional views of the zoom optical system according to the first example in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. (a)、(b)、及び(c)はそれぞれ、第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。(A), (b), and (c) are graphs showing various aberrations during focusing on an object at infinity in the wide-angle end state, intermediate focal length state, and telephoto end state of the variable magnification optical system according to the first example. It is. (a)、(b)、及び(c)はそれぞれ、第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における近距離物体合焦時(物像間距離1.00m)の諸収差図である。(A), (b), and (c) are respectively when focusing on a short-distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the zoom optical system according to the first example (between object images). It is a diagram of various aberrations at a distance of 1.00 m). (a)、(b)、及び(c)はそれぞれ、第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時に像ブレ補正を行った時(防振レンズ群のシフト量=0.1mm)のメリディオナル横収差図である。(A), (b), and (c) respectively perform image blur correction at the time of focusing on an object at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the first example. FIG. 6 is a meridional lateral aberration diagram when it is performed (shift amount of the image stabilizing lens group = 0.1 mm). (W)、(M)、及び(T)はそれぞれ、第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。(W), (M), and (T) are cross-sectional views of the zoom optical system according to the second example in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. (a)、(b)、及び(c)はそれぞれ、第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。(A), (b), and (c) are graphs showing various aberrations when focusing on an object at infinity in the wide-angle end state, intermediate focal length state, and telephoto end state of the variable magnification optical system according to the second example. It is. (a)、(b)、及び(c)はそれぞれ、第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における近距離物体合焦時(物像間距離1.00m)の諸収差図である。(A), (b), and (c) are respectively when focusing on a short-distance object in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the zoom optical system according to the second example (between object images). It is a diagram of various aberrations at a distance of 1.00 m). (a)、(b)、及び(c)はそれぞれ、第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時に像ブレ補正を行った時(防振レンズ群のシフト量=0.1mm)のメリディオナル横収差図である。(A), (b), and (c) respectively perform image blur correction at the time of focusing on an object at infinity in the wide-angle end state, the intermediate focal length state, and the telephoto end state of the variable magnification optical system according to the second example. FIG. 6 is a meridional lateral aberration diagram when it is performed (shift amount of the image stabilizing lens group = 0.1 mm). (W)、(M)、及び(T)はそれぞれ、第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。(W), (M), and (T) are sectional views of the zoom optical system according to the third example in the wide-angle end state, the intermediate focal length state, and the telephoto end state, respectively. (a)、(b)、及び(c)はそれぞれ、第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時の諸収差図である。(A), (b), and (c) are graphs showing various aberrations when focusing on an object at infinity in the wide-angle end state, intermediate focal length state, and telephoto end state of the variable magnification optical system according to the third example. It is. (a)、(b)、及び(c)はそれぞれ、第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における近距離物体合焦時(物像間距離1.00m)の諸収差図である。(A), (b), and (c) are respectively when focusing on a short-distance object (between object images) in the wide-angle end state, intermediate focal length state, and telephoto end state of the variable magnification optical system according to the third example. It is a diagram of various aberrations at a distance of 1.00 m). (a)、(b)、及び(c)はそれぞれ、第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠物体合焦時に像ブレ補正を行った時(防振レンズ群のシフト量=0.1mm)のメリディオナル横収差図である。(A), (b), and (c) respectively perform image blur correction at the time of focusing on an object at infinity in the wide-angle end state, intermediate focal length state, and telephoto end state of the variable magnification optical system according to the third example. FIG. 6 is a meridional lateral aberration diagram when it is performed (shift amount of the image stabilizing lens group = 0.1 mm). 本実施形態に係る変倍光学系を搭載したカメラの構成を示す図である。It is a figure which shows the structure of the camera carrying the variable magnification optical system which concerns on this embodiment. 本実施形態に係る変倍光学系の製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method of the variable magnification optical system which concerns on this embodiment.

以下、実施形態について、図面を参照しながら説明する。本実施形態に係る変倍光学系
ZLは、図1に示すように、光軸に沿って物体側より順に並んだ、正の屈折力を有する第
1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レ
ンズ群G3と、正の屈折力を有する第4レンズ群G4と、第5レンズ群G5とを有し、変
倍時に、第1レンズ群G1と第2レンズ群G2との間隔、第2レンズ群G2と第3レンズ
群G3との間隔、第3レンズ群G3と第4レンズ群G4との間隔、第4レンズ群G4と第
5レンズ群G5との間隔が変化する構成である。この構成により、変倍を実現し、変倍に
伴う歪曲収差、非点収差、及び球面収差のそれぞれの変動を抑えることができる。
Hereinafter, embodiments will be described with reference to the drawings. As shown in FIG. 1, the variable magnification optical system ZL according to the present embodiment has a first lens group G1 having a positive refractive power arranged in order from the object side along the optical axis, and a negative refractive power. It has a second lens group G2, a third lens group G3 having a positive refractive power, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5. At the time of zooming, the first lens The distance between the group G1 and the second lens group G2, the distance between the second lens group G2 and the third lens group G3, the distance between the third lens group G3 and the fourth lens group G4, and the fourth lens group G4 and the fifth lens group G4. In this configuration, the distance from the lens group G5 changes. With this configuration, zooming can be realized, and variations in distortion, astigmatism, and spherical aberration associated with zooming can be suppressed.

本実施形態に係る変倍光学系ZLは、変倍時に、最も像側のレンズ群(図1では、第5
レンズ群G5が該当)を像面Iに対して略固定とする構成である。この構成により、変倍
の際、最も像側のレンズ群を通過する軸外光束の高さの変化を最適にし、歪曲収差や非点
収差の変動を抑えることができる。加えて、本実施形態に係る変倍光学系ZLを構成する
鏡筒構造を簡略化することができ、製造誤差等による偏芯を抑え、最も像側のレンズ群の
偏芯によって発生する偏芯コマ収差や周辺像面の倒れを抑えることができる。
The zoom optical system ZL according to the present embodiment has a lens group (the fifth lens in FIG.
The lens group G5 corresponds to the image plane I and is substantially fixed. With this configuration, it is possible to optimize the change in the height of the off-axis light beam that passes through the lens group closest to the image during zooming, and to suppress variations in distortion and astigmatism. In addition, the lens barrel structure constituting the variable magnification optical system ZL according to the present embodiment can be simplified, the eccentricity caused by the manufacturing error is suppressed, and the eccentricity caused by the eccentricity of the lens unit closest to the image side. It is possible to suppress coma and peripheral image surface tilt.

本実施形態に係る変倍光学系ZLは、合焦を、第3レンズ群G3を光軸に沿って移動さ
せて行う構成である。この構成により、望遠側の合焦時の移動量を抑え、望遠端状態にお
いて合焦レンズ群である第3レンズ群G3に入射する光線の光軸からの高さの変動を抑え
て、合焦時における球面収差や非点収差の変動を抑えることができる。
The variable magnification optical system ZL according to the present embodiment is configured to perform focusing by moving the third lens group G3 along the optical axis. With this configuration, the amount of movement during focusing on the telephoto side is suppressed, and fluctuation in height from the optical axis of the light beam incident on the third lens group G3 that is the focusing lens group in the telephoto end state is suppressed, thereby focusing. Variations in spherical aberration and astigmatism at the time can be suppressed.

本実施形態に係る変倍光学系ZLは、次の条件式(1)を満足する。   The variable magnification optical system ZL according to the present embodiment satisfies the following conditional expression (1).

0.480 < f3/ft < 4.000 …(1)
但し、
ft:望遠端状態における変倍光学系ZLの焦点距離、
f3:第3レンズ群G3の焦点距離。
0.480 <f3 / ft <4.0000 (1)
However,
ft: focal length of the variable magnification optical system ZL in the telephoto end state,
f3: focal length of the third lens group G3.

条件式(1)は、第3レンズ群G3の適切な焦点距離の範囲を規定するものである。条
件式(1)を満足することにより、変倍時の球面収差や非点収差の変動を抑えることがで
きる。
Conditional expression (1) defines an appropriate focal length range of the third lens group G3. By satisfying conditional expression (1), it is possible to suppress fluctuations in spherical aberration and astigmatism during zooming.

条件式(1)の対応値が下限値を下回ると、変倍時において、第3レンズ群G3で発生
する球面収差や非点収差の変動を抑えることが困難となり、高い光学性能を実現できない
。また、このような収差変動を抑えようとすると、より多くの構成レンズが必要となるた
め、小型化を図ることができない。
If the corresponding value of the conditional expression (1) is less than the lower limit value, it becomes difficult to suppress fluctuations in spherical aberration and astigmatism occurring in the third lens group G3 during zooming, and high optical performance cannot be realized. Further, if it is intended to suppress such aberration fluctuations, a larger number of constituent lenses are required, and thus it is not possible to reduce the size.

本実施形態の効果をより確実にするために、条件式(1)の下限値を0.570とする
ことが好ましい。
In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (1) to 0.570.

条件式(1)の対応値が上限値を上回ると、変倍時において、第4レンズ群G4で発生
する非点収差の変動が過大になり、高い光学性能を実現できない。
If the corresponding value of conditional expression (1) exceeds the upper limit value, the variation of astigmatism occurring in the fourth lens group G4 at the time of zooming becomes excessive, and high optical performance cannot be realized.

本実施形態の効果をより確実にするために、条件式(1)の上限値を3.200とする
ことが好ましい。本実施形態の効果をさらに確実にするために、条件式(1)の上限値を
2.400とすることが好ましい。
In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (1) to 3.200. In order to further secure the effect of this embodiment, it is preferable to set the upper limit of conditional expression (1) to 2.400.

本実施形態に係る変倍光学系ZLは、次の条件式(2)を満足することが好ましい。   The zoom optical system ZL according to the present embodiment preferably satisfies the following conditional expression (2).

0.900 < (−f2)/fw < 1.800 …(2)
但し、
fw:広角端状態における変倍光学系ZLの焦点距離、
f2:第2レンズ群G2の焦点距離。
0.900 <(− f2) / fw <1.800 (2)
However,
fw: focal length of the variable magnification optical system ZL in the wide-angle end state,
f2: focal length of the second lens group G2.

条件式(2)は、第2レンズ群G2の適切な焦点距離の範囲を規定するものである。条
件式(2)を満足することにより、変倍時の球面収差や非点収差の変動を抑えることがで
きる。
Conditional expression (2) defines an appropriate focal length range of the second lens group G2. By satisfying conditional expression (2), it is possible to suppress fluctuations in spherical aberration and astigmatism during zooming.

条件式(2)の対応値が下限値を下回ると、変倍時に第2レンズ群G2で発生する球面
収差や非点収差の変動を抑えることが困難となり、高い光学性能を実現できない。
If the corresponding value of conditional expression (2) is less than the lower limit, it becomes difficult to suppress variations in spherical aberration and astigmatism that occur in the second lens group G2 during zooming, and high optical performance cannot be realized.

本実施形態の効果をより確実にするために、条件式(2)の下限値を0.970とする
ことが好ましい。本実施形態の効果をさらに確実にするために、条件式(2)の下限値を
1.065とすることが好ましい。
In order to ensure the effect of the present embodiment, it is preferable to set the lower limit value of conditional expression (2) to 0.970. In order to further secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (2) to 1.065.

条件式(2)の対応値が上限値を上回ると、所定の変倍比を確保するために、変倍時に
おける第1レンズ群G1と第2レンズ群G2との間隔変化を大きくする必要がある。その
結果、第1レンズ群G1と第2レンズ群G2を通る軸上光束の径の比が大きく変化するた
め、変倍時の球面収差の変動が過大になり、高い光学性能を実現できない。
If the corresponding value of the conditional expression (2) exceeds the upper limit value, it is necessary to increase the change in the distance between the first lens group G1 and the second lens group G2 at the time of zooming in order to ensure a predetermined zooming ratio. is there. As a result, since the ratio of the diameters of the axial light beams passing through the first lens group G1 and the second lens group G2 changes greatly, the variation in spherical aberration at the time of zooming becomes excessive, and high optical performance cannot be realized.

本実施形態の効果をより確実にするために、条件式(2)の上限値を1.600とする
ことが好ましい。
In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (2) to 1.600.

本実施形態に係る変倍光学系ZLは、次の条件式(3)を満足することが好ましい。   The zoom optical system ZL according to the present embodiment preferably satisfies the following conditional expression (3).

0.600 < f3/f4 < 4.000 …(3)
但し、
f4:第4レンズ群G4の焦点距離。
0.600 <f3 / f4 <4.0000 (3)
However,
f4: focal length of the fourth lens group G4.

条件式(3)は、第3レンズ群G3と第4レンズ群G4の適切な焦点距離の範囲を規定
するものである。条件式(3)を満足することにより、合焦時の球面収差や非点収差の変
動を抑えることができる。
Conditional expression (3) defines an appropriate focal length range of the third lens group G3 and the fourth lens group G4. By satisfying conditional expression (3), it is possible to suppress fluctuations in spherical aberration and astigmatism during focusing.

条件式(3)の対応値が下限値を下回ると、合焦時に第3レンズ群G3で発生する球面
収差や非点収差の変動を抑えることが困難となり、高い光学性能を実現できない。
If the corresponding value of conditional expression (3) is below the lower limit value, it becomes difficult to suppress variations in spherical aberration and astigmatism that occur in the third lens group G3 during focusing, and high optical performance cannot be realized.

本実施形態の効果をより確実にするために、条件式(3)の下限値を0.840とする
ことが好ましい。本実施形態の効果をさらに確実にするために、条件式(3)の下限値を
0.970とすることが好ましい。
In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (3) to 0.840. In order to further secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (3) to 0.970.

条件式(3)の対応値が上限値を上回ると、所定の合焦範囲を確保するために、合焦時
における第3レンズ群G3と第4レンズ群G4との間隔を大きく変化させる必要がある。
その結果、第3レンズ群G3を通る軸上光束の径が大きく変化するため、合焦時の球面収
差の変動が過大になり、高い光学性能を実現できない。
When the corresponding value of the conditional expression (3) exceeds the upper limit value, it is necessary to largely change the distance between the third lens group G3 and the fourth lens group G4 at the time of focusing in order to ensure a predetermined focusing range. is there.
As a result, since the diameter of the axial light beam passing through the third lens group G3 changes greatly, the variation of spherical aberration at the time of focusing becomes excessive, and high optical performance cannot be realized.

本実施形態の効果をより確実にするために、条件式(3)の上限値を2.880とする
ことが好ましい。
In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (3) to 2.880.

本実施形態に係る変倍光学系ZLは、合焦時に、第3レンズ群G3のみが光軸に沿って
移動することが好ましい。この構成により、複数のレンズ群で合焦を行う場合に比べて、
合焦時の合焦レンズ群間における製造上の相互偏芯を抑え、偏芯コマ収差の発生を抑制で
き、高い光学性能を実現できる。
In the variable magnification optical system ZL according to the present embodiment, it is preferable that only the third lens group G3 moves along the optical axis during focusing. With this configuration, compared to when focusing with multiple lens groups,
The mutual decentration in manufacturing between the focusing lens groups at the time of focusing can be suppressed, the occurrence of decentering coma aberration can be suppressed, and high optical performance can be realized.

本実施形態に係る変倍光学系ZLにおいて、第3レンズ群G3は、1つのレンズ成分に
より構成されることが好ましい。この構成により、合焦レンズ群の小型化を図ることがで
き、合焦時における球面収差の変動を抑えることができる。また、合焦時の高速化に貢献
できる。
In the variable magnification optical system ZL according to the present embodiment, it is preferable that the third lens group G3 includes one lens component. With this configuration, it is possible to reduce the size of the focusing lens group, and it is possible to suppress fluctuations in spherical aberration during focusing. In addition, it can contribute to speeding up during focusing.

本実施形態に係る変倍光学系ZLにおいて、第3レンズ群G3は、1枚の単レンズによ
り構成されることが好ましい。この構成により、合焦レンズ群の小型化を図ることができ
る。また、合焦時の高速化に貢献できる。また、第3レンズ群G3を構成するレンズを、
複数枚且つ接合レンズで構成しないことから、相互のレンズどうしの偏芯に起因する偏芯
コマ収差等の影響を相対的に小さく抑えることができ、より高い光学性能を実現できる。
In the zoom optical system ZL according to the present embodiment, it is preferable that the third lens group G3 is configured by a single lens. With this configuration, the focusing lens group can be reduced in size. In addition, it can contribute to speeding up during focusing. The lenses constituting the third lens group G3 are
Since it is not composed of a plurality of lenses and a cemented lens, the influence of decentration coma and the like caused by decentering of the mutual lenses can be suppressed relatively small, and higher optical performance can be realized.

本実施形態に係る変倍光学系ZLにおいて、第3レンズ群G3は、次の条件式(4)を
満足する光学材料を用いたレンズを有することが好ましい。
In the zoom optical system ZL according to the present embodiment, the third lens group G3 preferably includes a lens using an optical material that satisfies the following conditional expression (4).

48.00 < ν3 …(4)
但し、
ν3:第3レンズ群G3を構成するレンズに用いた光学材料のd線を基準とするアッベ
数。
48.00 <ν3 (4)
However,
ν3: Abbe number based on the d-line of the optical material used for the lenses constituting the third lens group G3.

条件式(4)は、第3レンズ群G3を構成するレンズに用いた光学材料の適切なアッベ
数の範囲を規定するものである。条件式(4)の対応値が下限値を下回ると、合焦時の色
収差の変動を抑えることが困難となり、高い光学性能を実現できない。
Conditional expression (4) defines an appropriate Abbe number range of the optical material used for the lenses constituting the third lens group G3. If the corresponding value of conditional expression (4) is less than the lower limit value, it becomes difficult to suppress fluctuations in chromatic aberration during focusing, and high optical performance cannot be realized.

本実施形態の効果をより確実にするために、条件式(4)の下限値を55.00とする
ことが好ましい。本実施形態の効果をさらに確実にするために、条件式(4)の下限値を
58.00とすることが好ましい。
In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (4) to 55.00. In order to further secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (4) to 58.00.

また、本実施形態の効果をより確実にするために、条件式(4)の上限値を90.00
とすることが好ましい。本実施形態の上記効果をさらに確実にするために、条件式(4)
の上限値を75.00とすることが好ましい。
In order to further secure the effect of the present embodiment, the upper limit value of conditional expression (4) is set to 90.00.
It is preferable that In order to further secure the effect of the present embodiment, conditional expression (4)
The upper limit value is preferably 75.00.

本実施形態に係る変倍光学系ZLにおいて、第3レンズ群G3は、少なくとも1面が非
球面形状であることが好ましい。この構成により、変倍時、及び合焦時における球面収差
や非点収差の変動を抑えることができる。
In the zoom optical system ZL according to this embodiment, it is preferable that at least one surface of the third lens group G3 has an aspheric shape. With this configuration, it is possible to suppress variations in spherical aberration and astigmatism during zooming and focusing.

本実施形態に係る変倍光学系ZLは、次の条件式(5)を満足することが好ましい。   The variable magnification optical system ZL according to the present embodiment preferably satisfies the following conditional expression (5).

−0.050 < (d3t−d3w)/fw < 0.330 …(5)
但し、
fw:広角端状態における変倍光学系ZLの焦点距離、
d3w:広角端状態における第3レンズ群G3の最も像側のレンズ面から第4レンズ群
G4の最も物体側のレンズ面までの光軸上の距離、
d3t:望遠端状態における第3レンズ群G3の最も像側のレンズ面から第4レンズ群
G4の最も物体側のレンズ面までの光軸上の距離。
−0.050 <(d3t−d3w) / fw <0.330 (5)
However,
fw: focal length of the variable magnification optical system ZL in the wide-angle end state,
d3w: the distance on the optical axis from the most image side lens surface of the third lens group G3 to the most object side lens surface of the fourth lens group G4 in the wide-angle end state;
d3t: Distance on the optical axis from the most image-side lens surface of the third lens group G3 to the most object-side lens surface of the fourth lens group G4 in the telephoto end state.

条件式(5)は、変倍時における、第3レンズ群G3と第4レンズ群G4との間隔変化
の適切な範囲を規定するものである。条件式(5)を満足することにより、変倍時の非点
収差の変動を抑えることができる。
Conditional expression (5) defines an appropriate range of the change in the distance between the third lens group G3 and the fourth lens group G4 during zooming. By satisfying conditional expression (5), it is possible to suppress fluctuations in astigmatism during zooming.

条件式(5)の対応値が下限値を下回ると、変倍時に第3レンズ群G3で発生する非点
収差の変動を抑えることが困難となり、高い光学性能を実現できない。
If the corresponding value of conditional expression (5) is less than the lower limit, it becomes difficult to suppress fluctuations in astigmatism that occurs in the third lens group G3 during zooming, and high optical performance cannot be realized.

本実施形態の効果をより確実にするために、条件式(5)の下限値を0.010とする
ことが好ましい。
In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (5) to 0.010.

条件式(5)の対応値が上限値を上回ると、変倍時における第4レンズ群G4を通る軸
外光束の光軸からの高さの変化が大きくなることにより、第4レンズ群G4で発生する非
点収差の変動が過大になり、高い光学性能を実現できない。
When the corresponding value of the conditional expression (5) exceeds the upper limit value, the change in height from the optical axis of the off-axis light beam passing through the fourth lens group G4 at the time of zooming becomes large, so that the fourth lens group G4 Astigmatism fluctuations that occur are excessive, and high optical performance cannot be realized.

本実施形態の効果をより確実にするために、条件式(5)の上限値を0.275とする
ことが好ましい。
In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (5) to 0.275.

本実施形態に係る変倍光学系ZLにおいて、第4レンズ群G4は、開口絞りSを有する
ことが好ましい。この構成により、変倍時に、第4レンズ群G4で発生する非点収差の変
動を抑え、高い光学性能を実現できる。
In the zoom optical system ZL according to the present embodiment, it is preferable that the fourth lens group G4 has an aperture stop S. With this configuration, it is possible to suppress the fluctuation of astigmatism generated in the fourth lens group G4 at the time of zooming and realize high optical performance.

本実施形態に係る変倍光学系ZLにおいて、開口絞りSは、第3レンズ群G3と第4レ
ンズ群G4との間に配置されていることが好ましい。この構成により、変倍時における第
3レンズ群G3と第4レンズ群G4を通る軸外光束の光軸からの高さ方向の変化を減らし
、第3レンズ群G3と第4レンズ群G4で発生する非点収差の変動を抑えることができ、
高い光学性能を実現できる。
In the zoom optical system ZL according to the present embodiment, it is preferable that the aperture stop S is disposed between the third lens group G3 and the fourth lens group G4. With this configuration, the change in the height direction from the optical axis of the off-axis light beam passing through the third lens group G3 and the fourth lens group G4 during zooming is reduced, and is generated in the third lens group G3 and the fourth lens group G4. To suppress fluctuations in astigmatism,
High optical performance can be realized.

本実施形態に係る変倍光学系ZLは、次の条件式(6)を満足することが好ましい。   The zoom optical system ZL according to the present embodiment preferably satisfies the following conditional expression (6).

0.470 < f4/ft < 0.900 …(6)
但し、
f4:第4レンズ群G4の焦点距離。
0.470 <f4 / ft <0.900 (6)
However,
f4: focal length of the fourth lens group G4.

条件式(6)は、第4レンズ群G4の適切な焦点距離の範囲を規定するものである。条
件式(6)を満足することにより、変倍時の球面収差や非点収差の変動を抑えることがで
きる。
Conditional expression (6) defines an appropriate focal length range of the fourth lens group G4. By satisfying conditional expression (6), it is possible to suppress fluctuations in spherical aberration and astigmatism during zooming.

条件式(6)の対応値が下限値を下回ると、変倍時に第4レンズ群G4で発生する球面
収差や非点収差の変動を抑えることが困難となり、高い光学性能を実現できない。
If the corresponding value of conditional expression (6) is less than the lower limit, it becomes difficult to suppress variations in spherical aberration and astigmatism that occur in the fourth lens group G4 during zooming, and high optical performance cannot be realized.

本実施形態の効果をより確実にするために、条件式(6)の下限値を0.530とする
ことが好ましい。
In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (6) to 0.530.

条件式(6)の対応値が上限値を上回ると、所定の変倍比を確保するために、変倍時に
おいて、像面Iに対する第4レンズ群G4の移動量を大きくする必要がある。その結果、
第4レンズ群G4を通る軸上光束の径が大きく変化するため、変倍時の球面収差の変動が
過大になり、高い光学性能を実現できない。
When the corresponding value of the conditional expression (6) exceeds the upper limit value, it is necessary to increase the amount of movement of the fourth lens group G4 with respect to the image plane I at the time of zooming in order to ensure a predetermined zoom ratio. as a result,
Since the diameter of the axial light beam passing through the fourth lens group G4 changes greatly, the variation in spherical aberration during zooming becomes excessive, and high optical performance cannot be realized.

本実施形態の効果をより確実にするために、条件式(6)の上限値を0.720とする
ことが好ましい。
In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (6) to 0.720.

本実施形態に係る変倍光学系ZLにおいて、最も像側のレンズ群は、正の屈折力を有す
ることが好ましい。この構成により、最も像側のレンズ群の使用倍率が等倍より小さくな
り、最も像側のレンズ群よりも物体側のレンズ群(例えば、図1では、第1レンズ群G1
〜第4レンズ群G4が該当)の合成焦点距離を相対的に大きくすることができる。その結
果、製造時に最も像側のレンズ群よりも物体側のレンズ群において発生する、レンズどう
しの偏芯に起因する偏芯コマ収差等の影響を相対的に小さく抑えることができ、高い光学
性能を実現できる。
In the zoom optical system ZL according to this embodiment, it is preferable that the most image side lens unit has a positive refractive power. With this configuration, the use magnification of the lens group closest to the image side is smaller than the same magnification, and the lens group closer to the object side than the lens group closest to the image side (for example, the first lens group G1 in FIG. 1).
To the fourth lens group G4) can be made relatively large. As a result, the influence of decentration coma aberration caused by the decentration of the lenses, which occurs in the lens group on the object side rather than the lens group on the most image side at the time of manufacturing, can be relatively suppressed, and high optical performance Can be realized.

本実施形態に係る変倍光学系ZLは、次の条件式(7)を満足することが好ましい。   The zoom optical system ZL according to the present embodiment preferably satisfies the following conditional expression (7).

3.000 < fR/fw < 9.500 …(7)
但し、
fw:広角端状態における変倍光学系ZLの焦点距離、
fR:最も像側のレンズ群の焦点距離。
3.000 <fR / fw <9.500 (7)
However,
fw: focal length of the variable magnification optical system ZL in the wide-angle end state,
fR: focal length of the lens unit closest to the image side.

条件式(7)は、最も像側のレンズ群の適切な焦点距離の範囲を規定するものである。
条件式(7)を満足することにより、変倍時の非点収差や歪曲収差の変動を抑えることが
できる。
Conditional expression (7) defines an appropriate focal length range of the lens group closest to the image side.
By satisfying conditional expression (7), it is possible to suppress fluctuations in astigmatism and distortion during zooming.

条件式(7)の対応値が下限値を下回ると、変倍時に、最も像側のレンズ群で発生する
非点収差や歪曲収差の変動を抑えることが困難となり、高い光学性能を実現できない。
If the corresponding value of conditional expression (7) is less than the lower limit, it becomes difficult to suppress fluctuations in astigmatism and distortion occurring in the lens group closest to the image during zooming, and high optical performance cannot be realized.

本実施形態の効果をより確実にするために、条件式(7)の下限値を4.200とする
ことが好ましい。
In order to secure the effect of the present embodiment, it is preferable to set the lower limit of conditional expression (7) to 4.200.

条件式(7)の対応値が上限値を上回ると、変倍時に、最も像側のレンズ群より物体側
のレンズ群で発生した非点収差の変動を、最も像側のレンズ群で補正することが困難とな
り、高い光学性能を実現できない。
When the corresponding value of the conditional expression (7) exceeds the upper limit value, the astigmatism variation generated in the lens unit closer to the object side than the lens unit closest to the image during zooming is corrected by the lens unit closest to the image side. It is difficult to achieve high optical performance.

本実施形態の効果をより確実にするために、条件式(7)の上限値を7.600とする
ことが好ましい。
In order to secure the effect of the present embodiment, it is preferable to set the upper limit of conditional expression (7) to 7.600.

本実施形態に係る変倍光学系ZLにおいて、最も像側のレンズ群は、第5レンズ群G5
であることが好ましい。この構成により、変倍時における球面収差の変動を良好に補正す
ることができる。
In the zoom optical system ZL according to the present embodiment, the lens group closest to the image side is the fifth lens group G5.
It is preferable that With this configuration, it is possible to satisfactorily correct spherical aberration fluctuations during zooming.

本実施形態に係る変倍光学系ZLにおいて、最も像側のレンズ群を、第6レンズ群G6
とすることも可能である。この構成により、変倍時における非点収差の変動を良好に補正
することができる。
In the zoom optical system ZL according to the present embodiment, the most image side lens unit is defined as a sixth lens unit G6.
It is also possible. With this configuration, it is possible to satisfactorily correct astigmatism fluctuations during zooming.

本実施形態に係る変倍光学系ZLにおいて、無限遠物体から近距離物体への合焦時に、
第3レンズ群G3は像側へ移動することが好ましい。この構成により、第3レンズ群G3
のみで合焦することが可能になり、合焦レンズ群の小型化を図りつつ、合焦時における球
面収差や非点収差の変動を抑えることができ、高い光学性能を実現できる。
In the variable magnification optical system ZL according to the present embodiment, when focusing from an object at infinity to an object at a short distance,
The third lens group G3 is preferably moved to the image side. With this configuration, the third lens group G3
In this way, focusing can be achieved only by reducing the variation of spherical aberration and astigmatism during focusing while reducing the size of the focusing lens group, and high optical performance can be realized.

本実施形態に係る変倍光学系ZLにおいて、広角端状態から望遠端状態への変倍時に、
第1レンズ群G1は物体側へ移動することが好ましい。この構成により、変倍時に第1レ
ンズ群G1を通過する軸外光束の光軸からの高さの変化を抑えることができる。その結果
、第1レンズ群G1によって発生する変倍時の非点収差の変動を抑えることができる。な
お、第1レンズ群G1は、物体側へ、単調に移動しても、像側に凸の軌跡を描くように移
動しても構わない。
In the zoom optical system ZL according to the present embodiment, at the time of zooming from the wide-angle end state to the telephoto end state,
The first lens group G1 is preferably moved toward the object side. With this configuration, it is possible to suppress a change in height from the optical axis of the off-axis light beam that passes through the first lens group G1 during zooming. As a result, it is possible to suppress fluctuations in astigmatism during zooming that are generated by the first lens group G1. The first lens group G1 may move monotonously toward the object side or move so as to draw a convex locus on the image side.

本実施形態に係る変倍光学系ZLは、広角端状態から望遠端状態への変倍時に、第1レ
ンズ群G1と第2レンズ群G2との間隔が増加することが好ましい。この構成により、広
角端状態から望遠端状態への変倍時に、第2レンズ群G2の倍率を増倍することができる
ため、全てのレンズ群の焦点距離を長く構成することができ、変倍時の球面収差や非点収
差の変動を抑えることができる。
In the zoom optical system ZL according to the present embodiment, it is preferable that the distance between the first lens group G1 and the second lens group G2 increases when zooming from the wide-angle end state to the telephoto end state. With this configuration, the magnification of the second lens group G2 can be increased at the time of zooming from the wide-angle end state to the telephoto end state. Variation of spherical aberration and astigmatism at the time can be suppressed.

本実施形態に係る変倍光学系ZLは、広角端状態から望遠端状態への変倍時に、第2レ
ンズ群G2と第3レンズ群G3との間隔が減少することが好ましい。この構成により、広
角端端状態から望遠端状態への変倍時に、第3レンズ群G3から最も像側のレンズ群まで
の合成倍率を増倍することができるため、全てのレンズ群の焦点距離を長く構成すること
ができ、変倍時の球面収差や非点収差の変動を抑えることができる。
In the zoom optical system ZL according to the present embodiment, it is preferable that the distance between the second lens group G2 and the third lens group G3 is reduced when zooming from the wide-angle end state to the telephoto end state. With this configuration, when zooming from the wide-angle end state to the telephoto end state, the composite magnification from the third lens group G3 to the most image side lens group can be increased. Can be made long and fluctuations in spherical aberration and astigmatism during zooming can be suppressed.

本実施形態に係る変倍光学系ZLにおいて、広角端状態から望遠端状態への変倍時に、
第2レンズ群G2は物体側へ移動することが好ましい。この構成により、小型化を図るこ
とができる。また、変倍時の球面収差や非点収差の変動を抑えることができる。なお、第
2レンズ群G2は、物体側へ、単調に移動しても、像側に凸の軌跡を描くように移動して
も構わない。
In the zoom optical system ZL according to the present embodiment, at the time of zooming from the wide-angle end state to the telephoto end state,
The second lens group G2 is preferably moved toward the object side. With this configuration, the size can be reduced. In addition, fluctuations in spherical aberration and astigmatism during zooming can be suppressed. Note that the second lens group G2 may move monotonously toward the object side or may move so as to draw a convex locus on the image side.

以上のような構成を備える本実施形態に係る変倍光学系ZLによれば、変倍時と、合焦
時に、高い光学性能を有する変倍光学系を実現することができる。
According to the zoom optical system ZL according to the present embodiment having the above-described configuration, a zoom optical system having high optical performance can be realized at the time of zooming and at the time of focusing.

次に、図13を参照しながら、上述の変倍光学系ZLを備えたカメラ(光学機器)につ
いて説明する。カメラ1は、図13に示すように、撮影レンズ2として上述の変倍光学系
ZLを備えたレンズ交換式のカメラ(所謂ミラーレスカメラ)である。このカメラ1にお
いて、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、不図示のOLP
F(Optical low pass filter:光学ローパスフィルタ)を介して撮像部3の撮像面上に
被写体像を形成する。そして、撮像部3に設けられた光電変換素子によって被写体像が光
電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられたEVF(El
ectronic view finder:電子ビューファインダ)4に表示される。これにより撮影者は、
EVF4を介して被写体を観察することができる。また、撮影者によって不図示のレリー
ズボタンが押されると、撮像部3で生成された被写体の画像が不図示のメモリーに記憶さ
れる。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。
Next, a camera (optical apparatus) including the above-described variable magnification optical system ZL will be described with reference to FIG. As shown in FIG. 13, the camera 1 is an interchangeable lens camera (so-called mirrorless camera) provided with the above-described variable magnification optical system ZL as the photographing lens 2. In this camera 1, light from an object (subject) (not shown) is collected by the photographing lens 2 and is not shown.
A subject image is formed on the imaging surface of the imaging unit 3 via F (Optical low pass filter). Then, the subject image is photoelectrically converted by the photoelectric conversion element provided in the imaging unit 3 to generate an image of the subject. This image is displayed on the EVF (El
ectronic view finder (electronic viewfinder) 4 is displayed. This allows the photographer to
The subject can be observed via the EVF 4. When a release button (not shown) is pressed by the photographer, the subject image generated by the imaging unit 3 is stored in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.

ここで、本カメラ1に撮影レンズ2として搭載した本実施形態に係る変倍光学系ZLは
、後述の各実施例からも分かるように、その特徴的なレンズ構成によって、変倍時と、合
焦時に、高い光学性能を有している。したがって、本カメラ1によれば、変倍時と、合焦
時に、高い光学性能を有する光学機器を実現することができる。
Here, the variable magnification optical system ZL according to the present embodiment mounted on the camera 1 as the photographing lens 2, as can be seen from each of the examples described later, depends on the characteristic lens configuration and at the time of variable magnification. Has high optical performance when in focus. Therefore, according to the present camera 1, it is possible to realize an optical device having high optical performance at the time of zooming and at the time of focusing.

なお、クイックリターンミラーを有し、ファインダ光学系によって被写体を観察する一
眼レフタイプのカメラに、上述の変倍光学系ZLを搭載した場合でも、上記カメラ1と同
様の効果を奏することができる。また、ビデオカメラに、上述の変倍光学系ZLを搭載し
た場合でも、上記カメラ1と同様の効果を奏することができる。
Even when the above-described variable magnification optical system ZL is mounted on a single-lens reflex camera that has a quick return mirror and observes a subject with a finder optical system, the same effect as the camera 1 can be obtained. Further, even when the above-described variable magnification optical system ZL is mounted on a video camera, the same effects as the camera 1 can be obtained.

続いて、図14を参照しながら、上述の変倍光学系ZLの製造方法について概説する。
まず、レンズ鏡筒内に、光軸に沿って物体側より順に並んだ、正の屈折力を有する第1レ
ンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ
群G3と、正の屈折力を有する第4レンズ群G4と、第5レンズ群G5を有するように、
各レンズを配置する(ステップST10)。このとき、変倍時に、第1レンズ群G1と第
2レンズ群G2との間隔、第2レンズ群G2と第3レンズ群G3との間隔、第3レンズ群
G3と第4レンズ群G4との間隔、第4レンズ群G4と第5レンズ群G5との間隔が変化
するように、各レンズを配置する(ステップST20)。また、変倍時に、最も像側のレ
ンズ群は像面に対して略固定であるように、各レンズを配置する(ステップST30)。
合焦時に、第3レンズ群G3は光軸に沿って移動するように、各レンズを配置する(ステ
ップST40)。そして、次の条件式(1)を満足するように、各レンズを配置する(ス
テップST50)。
Next, a method for manufacturing the above-described variable magnification optical system ZL will be outlined with reference to FIG.
First, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a positive refractive power arranged in order from the object side along the optical axis in the lens barrel. So as to have a third lens group G3 having, a fourth lens group G4 having a positive refractive power, and a fifth lens group G5.
Each lens is arranged (step ST10). At this time, at the time of zooming, the distance between the first lens group G1 and the second lens group G2, the distance between the second lens group G2 and the third lens group G3, and the distance between the third lens group G3 and the fourth lens group G4. The lenses are arranged such that the distance between the fourth lens group G4 and the fifth lens group G5 changes (step ST20). Further, at the time of zooming, each lens is arranged so that the lens group closest to the image side is substantially fixed with respect to the image plane (step ST30).
At the time of focusing, each lens is arranged so that the third lens group G3 moves along the optical axis (step ST40). Then, each lens is arranged so as to satisfy the following conditional expression (1) (step ST50).

0.480 < f3/ft < 4.000 …(1)
但し、
ft:望遠端状態における変倍光学系ZLの焦点距離、
f3:第3レンズ群G3の焦点距離。
0.480 <f3 / ft <4.0000 (1)
However,
ft: focal length of the variable magnification optical system ZL in the telephoto end state,
f3: focal length of the third lens group G3.

本実施形態におけるレンズ配置の一例を挙げると、図1に示す変倍光学系ZLでは、正
の屈折力を有する第1レンズ群G1として、光軸に沿って物体側から順に、物体側に凸面
を向けた負メニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体
側に凸面を向けた正メニスカスレンズL13を、鏡筒内に配置している。負の屈折力を有
する第2レンズ群G2として、光軸に沿って物体側から順に、物体側に凸面を向けた負メ
ニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23を、
鏡筒内に配置している。正の屈折力を有する第3レンズ群G3として、両凸形状の正レン
ズL31を、鏡筒内に配置している。正の屈折力を有する第4レンズ群G4として、光軸
に沿って物体側から順に、物体側に凸面を向けた負メニスカスレンズL41と両凸形状の
正レンズL42との接合レンズと、両凸形状の正レンズL43と物体側に凹面を向けた負
メニスカスレンズL44との接合レンズと、物体側に凸面を向けた負メニスカスレンズL
45を鏡筒内に配置している。第5レンズ群G5として、物体側に凹面を向けた正メニス
カスレンズL51を鏡筒内に配置している。各レンズは、条件式(1)を満足するように
、鏡筒内に配置されている(条件式(1)の対応値は1.031)。
As an example of the lens arrangement in the present embodiment, in the variable magnification optical system ZL shown in FIG. 1, the first lens group G1 having positive refractive power is convex on the object side in order from the object side along the optical axis. A cemented lens of a negative meniscus lens L11 facing the lens and a biconvex positive lens L12, and a positive meniscus lens L13 having a convex surface facing the object side are arranged in the lens barrel. As the second lens group G2 having negative refractive power, in order from the object side along the optical axis, a negative meniscus lens L21 having a convex surface directed toward the object side, a biconcave negative lens L22, and a biconvex positive lens Lens L23
It is arranged in the lens barrel. As the third lens group G3 having positive refractive power, a biconvex positive lens L31 is arranged in the lens barrel. As a fourth lens group G4 having a positive refractive power, a cemented lens of a negative meniscus lens L41 having a convex surface facing the object side and a biconvex positive lens L42 in order from the object side along the optical axis, and a biconvex lens A cemented lens of a positive lens L43 having a shape and a negative meniscus lens L44 having a concave surface facing the object side, and a negative meniscus lens L having a convex surface facing the object side
45 is arranged in the lens barrel. As the fifth lens group G5, a positive meniscus lens L51 having a concave surface directed toward the object side is disposed in the lens barrel. Each lens is arranged in the lens barrel so as to satisfy the conditional expression (1) (the corresponding value of the conditional expression (1) is 1.031).

本実施形態に係る変倍光学系の製造方法によれば、変倍時と、合焦時に、高い光学性能
を有する変倍光学系ZLを製造することができる。
According to the zoom optical system manufacturing method according to the present embodiment, the zoom optical system ZL having high optical performance can be manufactured at the time of zooming and at the time of focusing.

これより本実施形態に係る各実施例について、図面に基づいて説明する。以下に、表1
〜表3を示すが、これらは第1実施例〜第3実施例における各諸元の表である。
Each example according to the present embodiment will be described with reference to the drawings. Table 1 below
Table 3 is shown, but these are tables of specifications in the first to third examples.

第1実施例に係る図1に対する各参照符号は、参照符号の桁数の増大による説明の煩雑
化を避けるため、実施例ごとに独立して用いている。ゆえに、他の実施例に係る図面と共
通の参照符号を付していても、それらは他の実施例とは必ずしも共通の構成ではない。
Each reference code for FIG. 1 according to the first embodiment is used independently for each embodiment in order to avoid complication of explanation due to an increase in the number of digits of the reference code. Therefore, even if the same reference numerals as those in the drawings according to the other embodiments are given, they are not necessarily in the same configuration as the other embodiments.

各実施例では収差特性の算出対象として、d線(波長587.5620nm)、g線(波長435.83
50nm)を選んでいる。
In each embodiment, the d-line (wavelength: 587.5620 nm) and g-line (wavelength: 435.83) are calculated as aberration characteristics.
50nm) is selected.

表中の[レンズ諸元]において、面番号は光線の進行する方向に沿った物体側からの光
学面の順序、Rは各光学面の曲率半径、Dは各光学面から次の光学面(又は像面)までの
光軸上の距離である面間隔、ndは光学部材の材質のd線に対する屈折率、νdは光学部
材の材質のd線を基準とするアッベ数をそれぞれ示す。物面は物体面、(可変)は可変の
面間隔、曲率半径の「∞」は平面又は開口、(絞りS)は開口絞りS、像面は像面Iをそ
れぞれ示す。空気の屈折率「1.000000」は省略する。光学面が非球面である場合には、面
番号に*印を付し、曲率半径Rの欄には近軸曲率半径を示す。
In [Lens Specifications] in the table, the surface number is the order of the optical surfaces from the object side along the light traveling direction, R is the radius of curvature of each optical surface, D is the next optical surface from each optical surface ( Or nd is the refractive index of the material of the optical member with respect to the d-line, and νd is the Abbe number based on the d-line of the material of the optical member. The object plane is the object plane, (variable) is the variable plane spacing, the curvature radius “∞” is the plane or aperture, (aperture S) is the aperture stop S, and the image plane is the image plane I. The refractive index of air “1.000000” is omitted. When the optical surface is an aspherical surface, the surface number is marked with *, and the column of curvature radius R indicates the paraxial curvature radius.

表中の[非球面データ]には、[レンズ諸元]に示した非球面について、その形状を次
式(a)で示す。X(y)は非球面の頂点における接平面から高さyにおける非球面上の
位置までの光軸方向に沿った距離を、Rは基準球面の曲率半径(近軸曲率半径)を、κは
円錐定数を、Aiは第i次の非球面係数を示す。「E-n」は、「×10-n」を示す。例え
ば、1.234E-05=1.234×10-5である。なお、2次の非球面係数A2は0であり、記載を省
略する。
In [Aspherical data] in the table, the shape of the aspherical surface shown in [Lens specifications] is shown by the following equation (a). X (y) is the distance along the optical axis direction from the tangential plane at the apex of the aspheric surface to the position on the aspheric surface at height y, R is the radius of curvature of the reference sphere (paraxial radius of curvature), and κ is Ai represents the i-th aspherical coefficient. “E-n” indicates “× 10 −n ”. For example, 1.234E-05 = 1.234 × 10 −5 . The secondary aspherical coefficient A2 is 0, and the description is omitted.

X(y)=(y2/R)/{1+(1−κ×y2/R21/2}+A4y4+A6y6+A8y8
+A10y10+A12y12 …(a)
X (y) = (y 2 / R) / {1+ (1-κ × y 2 / R 2 ) 1/2 } + A4y 4 + A6y 6 + A8y 8
+ A10y 10 + A12y 12 ... ( a)

表中の[各種データ]において、無限遠物体合焦時における、fはレンズ全系の焦点距
離、FNOはFナンバー、ωは半画角(単位は「°」)、Yは像高、φは開口絞りSの絞
り径、TLは光学全長(無限遠物体合焦時の第1面から像面Iまでの光軸上の距離)、B
Fはバックフォーカス(無限遠物体合焦時の最も像面側のレンズ面から像面Iまでの光軸
上の距離)を示す。また、Wは広角端状態、Mは中間焦点距離状態、Tは望遠端状態をそ
れぞれ示す。
In [Various data] in the table, when focusing on an object at infinity, f is the focal length of the entire lens system, FNO is the F number, ω is the half field angle (unit is “°”), Y is the image height, φ Is the aperture diameter of the aperture stop S, TL is the total optical length (distance on the optical axis from the first surface to the image plane I when focusing on an object at infinity), B
F indicates back focus (distance on the optical axis from the lens surface closest to the image plane to the image plane I when an object at infinity is focused). W represents the wide-angle end state, M represents the intermediate focal length state, and T represents the telephoto end state.

表中の[可変間隔データ]において、無限遠合焦時の広角端状態(W)、中間焦点距離
状態(M)、望遠端状態(T)の各状態における可変間隔の値Diを示す。なお、Diは
、第i面と第(i+1)面の可変間隔を示す。
In [Variable interval data] in the table, variable interval values Di in the wide-angle end state (W), the intermediate focal length state (M), and the telephoto end state (T) at the time of focusing on infinity are shown. Di represents a variable interval between the i-th surface and the (i + 1) -th surface.

表中の[合焦時の合焦群移動量]において、無限遠合焦状態から近距離合焦状態(物像
間距離1.00m)への、合焦レンズ群(第3レンズ群G3)の移動量を示す。ここで、合焦
レンズ群の移動方向は、像側への移動を正とする。また、撮影距離は、物体から像面Iま
での距離を示す。
In [Focus group movement amount at the time of focusing] in the table, the focusing lens group (third lens group G3) from the infinite focusing state to the short-distance focusing state (object-image distance 1.00 m). Indicates the amount of movement. Here, the moving direction of the focusing lens group is positive when moving toward the image side. The shooting distance indicates the distance from the object to the image plane I.

表中の[レンズ群データ]において、各レンズ群の始面と焦点距離を示す。   In [Lens Group Data] in the table, the starting surface and focal length of each lens group are shown.

表中の[条件式対応値]には、上記の条件式(1)〜(7)に対応する値を示す。   “Values corresponding to conditional expressions” in the table indicate values corresponding to the conditional expressions (1) to (7).

以下、全ての諸元値において、掲載されている焦点距離f、曲率半径R、面間隔D、そ
の他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大又は比例
縮小しても同等の光学性能が得られるので、これに限られるものではない。また、単位は
「mm」に限定されることなく、他の適当な単位を用いることが可能である。
Hereinafter, in all the specification values, “mm” is generally used for the focal length f, curvature radius R, surface distance D, and other lengths, etc. unless otherwise specified, but the optical system is proportionally enlarged. Alternatively, the same optical performance can be obtained even by proportional reduction, and the present invention is not limited to this. Further, the unit is not limited to “mm”, and other appropriate units can be used.

ここまでの表の説明は全ての実施例において共通であり、以下での説明を省略する。   The description of the table so far is common to all the embodiments, and the description below is omitted.

(第1実施例)
第1実施例について、図1〜図4及び表1を用いて説明する。第1実施例に係る変倍光
学系ZL(ZL1)は、図1に示すように、光軸に沿って物体側から順に並んだ、正の屈
折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力
を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有
する第5レンズ群G5とからなる。第3レンズ群G3と第4レンズ群G4との間には開口
絞りSが備えられ、開口絞りSは第4レンズ群G4を構成する。第5レンズ群G5は、最
も像側のレンズ群である。
(First embodiment)
A first embodiment will be described with reference to FIGS. As shown in FIG. 1, the variable magnification optical system ZL (ZL1) according to the first example includes a first lens group G1 having a positive refractive power arranged in order from the object side along the optical axis, and a negative lens group G1. From the second lens group G2 having refractive power, the third lens group G3 having positive refractive power, the fourth lens group G4 having positive refractive power, and the fifth lens group G5 having positive refractive power Become. An aperture stop S is provided between the third lens group G3 and the fourth lens group G4, and the aperture stop S constitutes the fourth lens group G4. The fifth lens group G5 is the most image side lens group.

第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メ
ニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向
けた正メニスカスレンズL13とからなる。
The first lens group G1 is arranged in order from the object side along the optical axis, and is a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a convex surface facing the object side. And a positive meniscus lens L13.

第2レンズ群G2は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メ
ニスカスレンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23とか
らなる。なお、負メニスカスレンズL21は、物体側のレンズ面を非球面形状とした、樹
脂とガラスの複合型非球面レンズである。
The second lens group G2 is composed of a negative meniscus lens L21 having a convex surface facing the object side, a biconcave negative lens L22, and a biconvex positive lens L23 arranged in order from the object side along the optical axis. Become. The negative meniscus lens L21 is a composite aspherical lens made of resin and glass in which the object-side lens surface is aspherical.

第3レンズ群G3は、両凸形状の正レンズL31からなる。なお、正レンズL31は、
物体側及び像側のレンズ面を非球面形状とした、ガラスモールド非球面レンズである。
The third lens group G3 is composed of a biconvex positive lens L31. The positive lens L31 is
This is a glass mold aspherical lens in which the object-side and image-side lens surfaces are aspherical.

第4レンズ群G4は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メ
ニスカスレンズL41と両凸形状の正レンズL42との接合レンズから構成される第4A
サブレンズ群G4Aと、両凸形状の正レンズL43と物体側に凹面を向けた負メニスカス
レンズL44との接合レンズと、物体側に凸面を向けた負メニスカスレンズL45とから
構成される第4Bサブレンズ群G4Bとからなる。なお、負メニスカスレンズL44は、
像側のレンズ面を非球面形状とした、ガラスモールド非球面レンズである。
The fourth lens group G4 is composed of a cemented lens composed of a negative meniscus lens L41 having a convex surface directed toward the object side and a biconvex positive lens L42 arranged in order from the object side along the optical axis.
A 4B sub sub unit composed of a sub lens group G4A, a cemented lens of a biconvex positive lens L43 and a negative meniscus lens L44 having a concave surface directed toward the object side, and a negative meniscus lens L45 having a convex surface directed toward the object side. It consists of a lens group G4B. The negative meniscus lens L44 is
This is a glass mold aspheric lens having an aspheric lens surface on the image side.

第5レンズ群G5は、物体側に凹面を向けた正メニスカスレンズL51からなる。   The fifth lens group G5 includes a positive meniscus lens L51 having a concave surface directed toward the object side.

本実施例に係る変倍光学系ZL1では、広角端状態から望遠端状態への変倍時に、第1
レンズ群G1と第2レンズ群G2との空気間隔、第2レンズ群G2と第3レンズ群G3と
の空気間隔、第3レンズ群G3と第4レンズ群G4との空気間隔、第4レンズ群G4と第
5レンズ群G5との空気間隔がそれぞれ変化するように、第1レンズ群G1〜第4レンズ
群G4が光軸に沿って移動する。第5レンズ群G5は、像面Iに対して固定されている。
In the zoom optical system ZL1 according to the present embodiment, the first zoom is performed when zooming from the wide-angle end state to the telephoto end state.
The air gap between the lens group G1 and the second lens group G2, the air gap between the second lens group G2 and the third lens group G3, the air gap between the third lens group G3 and the fourth lens group G4, the fourth lens group The first lens group G1 to the fourth lens group G4 move along the optical axis so that the air gap between G4 and the fifth lens group G5 changes. The fifth lens group G5 is fixed with respect to the image plane I.

詳細には、第1レンズ群G1〜第4レンズ群G4は、物体側へ移動する。開口絞りSは
、第4レンズ群G4と一体的に物体側へ移動する。
Specifically, the first lens group G1 to the fourth lens group G4 move to the object side. The aperture stop S moves to the object side integrally with the fourth lens group G4.

これにより、変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が増加し、
第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レ
ンズ群G4との空気間隔が増加し、第4レンズ群G4と第5レンズ群G5との空気間隔が
増加する。また、開口絞りSと第3レンズ群G3との空気間隔は増加する。
This increases the air gap between the first lens group G1 and the second lens group G2 during zooming,
The air gap between the second lens group G2 and the third lens group G3 decreases, the air gap between the third lens group G3 and the fourth lens group G4 increases, and the fourth lens group G4 and the fifth lens group G5 Increased air spacing. Further, the air gap between the aperture stop S and the third lens group G3 increases.

合焦は、第3レンズ群G3を光軸に沿って移動させることで行う。詳細には、無限遠物
体から近距離物体への合焦時に、第3レンズ群G3を光軸に沿って像側へ移動させること
で行う。
Focusing is performed by moving the third lens group G3 along the optical axis. Specifically, when focusing from an object at infinity to a near object, the third lens group G3 is moved to the image side along the optical axis.

像ブレ発生時には、防振レンズ群として、第4Aサブレンズ群G4Aを、光軸と垂直方
向の成分を持つように移動させることにより、像面I上の像ブレ補正(防振)を行う。
When image blur occurs, the image blur correction (anti-vibration) on the image plane I is performed by moving the fourth A sub-lens group G4A as a vibration-proof lens group so as to have a component perpendicular to the optical axis.

下記の表1に、第1実施例における各諸元の値を示す。表1における面番号1〜25が
、図1に示すm1〜m25の各光学面に対応している。
Table 1 below shows the values of each item in the first example. Surface numbers 1 to 25 in Table 1 correspond to the optical surfaces m1 to m25 shown in FIG.

(表1)
[レンズ諸元]
面番号 R D nd νd
物面 ∞
1 132.7211 1.6000 1.846660 23.80
2 54.2419 4.5271 1.589130 61.22
3 -1401.4921 0.1000
4 36.9475 4.0173 1.696800 55.52
5 200.3945 D5(可変)
*6 510.0000 0.0800 1.560930 36.64
7 288.8364 1.0000 1.816000 46.59
8 8.8676 4.8531
9 -23.6529 0.9000 1.696800 55.52
10 37.1909 0.7644
11 21.6553 2.6218 1.808090 22.74
12 -149.6082 D12(可変)
*13 31.4469 1.4931 1.589130 61.15
*14 -454.8143 D14(可変)
15 ∞ 1.7118 (絞り)
16 17.8093 0.9000 1.834000 37.18
17 10.8731 2.4554 1.497820 82.57
18 -36.9740 1.5005
19 14.0517 2.3992 1.518230 58.82
20 -15.0205 1.0034 1.851350 40.13
*21 -25.0875 0.2985
22 23.6629 2.4328 1.902650 35.73
23 8.6520 D23(可変)
24 -29.8985 2.0872 1.617720 49.81
25 -17.6129 BF
像面 ∞

[非球面データ]
第6面
κ = 1.00000
A4 = 1.30134E-05
A6 = 5.20059E-08
A8 = -1.38176E-09
A10= 6.06866E-12
A12= 0.00000E+00

第13面
κ = 0.3322
A4 = 5.55970E-05
A6 = 3.96498E-07
A8 = 3.97804E-09
A10 = 0.00000E+00
A12 = 0.00000E+00

第14面
κ = 4.0000
A4 = 9.44678E-05
A6 = 5.47705E-07
A8 = 1.37698E-23
A10 = 0.00000E+00
A12 = 0.00000E+00

第21面
κ = -1.0412
A4 = 8.07840E-06
A6 = -1.60525E-07
A8 = -3.84486E-09
A10 = 0.00000E+00
A12 = 0.00000E+00

[各種データ]
変倍比 4.71
W M T
f 10.29845 32.00216 48.49978
FNO 3.60 5.06 5.79
ω 39.76047 13.63173 9.16599
Y 8.00 8.00 8.00
φ 7.80 8.30 8.30
TL 79.34243 95.80944 105.57918
BF 13.25602 13.25602 13.25602

[可変間隔データ]
W M T
f 10.29845 32.00216 48.49978
D5 1.80000 16.93666 22.35926
D12 18.49692 5.54052 1.80069
D14 3.61695 3.90524 5.82908
D23 5.42688 19.42534 25.58847

[合焦時の合焦群移動量]
W M T
物像間距離 1.00m 1.00m 1.00m
移動量 0.2652 0.7481 1.2334

[レンズ群データ]
群番号 群初面 群焦点距離
G1 1 57.25524
G2 6 -11.09964
G3 13 49.98341
G4 15 28.96589
G5 24 65.16201

[条件式対応値]
条件式(1)f3/ft = 1.031
条件式(2)(−f2)/fw = 1.078
条件式(3)f3/f4 = 1.726
条件式(4)ν3 = 61.15
条件式(5)(d3t−d3w)/fw = 0.215
条件式(6)f4/ft = 0.597
条件式(7)fR/fw = 6.326
(Table 1)
[Lens specifications]
Surface number R D nd νd
Object ∞
1 132.7211 1.6000 1.846660 23.80
2 54.2419 4.5271 1.589130 61.22
3 -1401.4921 0.1000
4 36.9475 4.0173 1.696800 55.52
5 200.3945 D5 (variable)
* 6 510.0000 0.0800 1.560930 36.64
7 288.8364 1.0000 1.816000 46.59
8 8.8676 4.8531
9 -23.6529 0.9000 1.696800 55.52
10 37.1909 0.7644
11 21.6553 2.6218 1.808090 22.74
12 -149.6082 D12 (variable)
* 13 31.4469 1.4931 1.589130 61.15
* 14 -454.8143 D14 (variable)
15 ∞ 1.7118 (Aperture)
16 17.8093 0.9000 1.834000 37.18
17 10.8731 2.4554 1.497820 82.57
18 -36.9740 1.5005
19 14.0517 2.3992 1.518230 58.82
20 -15.0205 1.0034 1.851350 40.13
* 21 -25.0875 0.2985
22 23.6629 2.4328 1.902650 35.73
23 8.6520 D23 (variable)
24 -29.8985 2.0872 1.617720 49.81
25 -17.6129 BF
Image plane ∞

[Aspherical data]
6th surface κ = 1.00000
A4 = 1.30134E-05
A6 = 5.20059E-08
A8 = -1.38176E-09
A10 = 6.06866E-12
A12 = 0.00000E + 00

13th surface κ = 0.3322
A4 = 5.55970E-05
A6 = 3.96498E-07
A8 = 3.97804E-09
A10 = 0.00000E + 00
A12 = 0.00000E + 00

14th surface κ = 4.0000
A4 = 9.44678E-05
A6 = 5.47705E-07
A8 = 1.37698E-23
A10 = 0.00000E + 00
A12 = 0.00000E + 00

21st surface κ = -1.0412
A4 = 8.07840E-06
A6 = -1.60525E-07
A8 = -3.84486E-09
A10 = 0.00000E + 00
A12 = 0.00000E + 00

[Various data]
Scaling ratio 4.71
W M T
f 10.29845 32.00216 48.49978
FNO 3.60 5.06 5.79
ω 39.76047 13.63173 9.16599
Y 8.00 8.00 8.00
φ 7.80 8.30 8.30
TL 79.34243 95.80944 105.57918
BF 13.25602 13.25602 13.25602

[Variable interval data]
W M T
f 10.29845 32.00216 48.49978
D5 1.80000 16.93666 22.35926
D12 18.49692 5.54052 1.80069
D14 3.61695 3.90524 5.82908
D23 5.42688 19.42534 25.58847

[Focus group movement during focusing]
W M T
Distance between objects 1.00m 1.00m 1.00m
Travel distance 0.2652 0.7481 1.2334

[Lens group data]
Group number Group first surface Group focal length G1 1 57.25524
G2 6 -11.09964
G3 13 49.98341
G4 15 28.96589
G5 24 65.16201

[Conditional expression values]
Conditional expression (1) f3 / ft = 1.031
Conditional expression (2) (-f2) / fw = 1.078
Conditional expression (3) f3 / f4 = 1.726
Conditional expression (4) ν3 = 61.15
Conditional expression (5) (d3t-d3w) /fw=0.215
Conditional expression (6) f4 / ft = 0.597
Conditional expression (7) fR / fw = 6.326

表1から、本実施例に係る変倍光学系ZL1は、条件式(1)〜(7)を満たすことが
分かる。
From Table 1, it can be seen that the variable magnification optical system ZL1 according to the present example satisfies the conditional expressions (1) to (7).

図2は、第1実施例に係る変倍光学系ZL1の無限遠合焦時における諸収差図(球面収
差図、非点収差図、歪曲収差図、コマ収差図及び倍率色収差図)であり、(a)は広角端
状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図3は、第1実
施例に係る変倍光学系ZL1の近距離物体合焦時(物像間距離1.00m)における諸収差図
(球面収差図、非点収差図、歪曲収差図、コマ収差図及び倍率色収差図)であり、(a)
は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図4は
、第1実施例に係る変倍光学系ZL1の無限遠合焦時における像ブレ補正を行った時(防
振レンズ群のシフト量=0.1mm)のメリディオナル横収差図であり、(a)は広角端状態
、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。本実施例では、防振
時の光学性能を、図4(a)〜(c)に示すように、画面中心および像高±5.6mmに対応
したメリディオナル横収差図で示す。
FIG. 2 is a diagram illustrating various aberrations (spherical aberration diagram, astigmatism diagram, distortion diagram, coma diagram, and chromatic aberration diagram of magnification) of the variable magnification optical system ZL1 according to the first example when focusing on infinity. (A) shows a wide-angle end state, (b) shows an intermediate focal length state, and (c) shows a telephoto end state. FIG. 3 is a diagram showing various aberrations (spherical aberration diagram, astigmatism diagram, distortion aberration diagram, coma aberration) when the variable magnification optical system ZL1 according to the first example is in focus at a short distance object (distance between object images is 1.00 m). And chromatic aberration diagram of magnification), (a)
Is the wide-angle end state, (b) is the intermediate focal length state, and (c) is the telephoto end state. FIG. 4 is a meridional lateral aberration diagram when image blur correction is performed at the time of focusing on infinity of the variable magnification optical system ZL1 according to the first example (shift amount of the image stabilizing lens group = 0.1 mm). a) shows the wide-angle end state, (b) shows the intermediate focal length state, and (c) shows the telephoto end state. In this example, the optical performance during image stabilization is shown by a meridional lateral aberration diagram corresponding to the center of the screen and an image height of ± 5.6 mm, as shown in FIGS.

各収差図において、FNOはFナンバー、NAは最も像側のレンズから射出する光線の
開口数、Aは光線入射角すなわち半画角(単位は「°」)、H0は物体高(単位は「mm」
)、Yは像高を示す。dはd線、gはg線における収差を示す。また、d、gの記載のな
いものは、d線における収差を示す。球面収差図において、実線は球面収差を示す。非点
収差図において、実線はサジタル像面、破線はメリディオナル像面を示す。コマ収差図に
おいて、実線はメリディオナル方向のコマ収差を示す。なお、後述する各実施例の収差図
においても、本実施例と同様の符号を用いる。
In each aberration diagram, FNO is the F number, NA is the numerical aperture of the light beam emitted from the lens on the most image side, A is the light beam incident angle, that is, the half field angle (unit is “°”), and H0 is the object height (the unit is “ mm "
), Y indicates the image height. d indicates the d-line and g indicates the aberration at the g-line. Those without d and g indicate aberrations at the d-line. In the spherical aberration diagram, the solid line indicates spherical aberration. In the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane. In the coma aberration diagram, the solid line indicates the coma aberration in the meridional direction. Note that the same reference numerals as in this embodiment are used in the aberration diagrams of each embodiment described later.

図2〜図4に示す各収差図から明らかなように、第1実施例に係る変倍光学系ZL1は
、広角端状態から望遠端状態に亘って、また無限遠合焦状態から近距離合焦状態に亘って
諸収差が良好に補正され、高い光学性能を有することが分かる。また、像ブレ補正時にお
いて、高い結像性能を有することが分かる。
As is apparent from the respective aberration diagrams shown in FIGS. 2 to 4, the variable magnification optical system ZL1 according to the first example extends from the wide-angle end state to the telephoto end state and from the infinity in-focus state to the short-distance focusing state. It can be seen that various aberrations are satisfactorily corrected over the focal state and high optical performance is achieved. Further, it can be seen that the image formation performance is high at the time of image blur correction.

(第2実施例)
第2実施例について、図5〜図8及び表2を用いて説明する。第2実施例に係る変倍光
学系ZL(ZL2)は、図5に示すように、光軸に沿って物体側から順に並んだ、正の屈
折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力
を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有
する第5レンズ群G5とからなる。第3レンズ群G3と第4レンズ群G4との間には開口
絞りSが備えられ、開口絞りSは第4レンズ群G4を構成する。第5レンズ群G5は、最
も像側のレンズ群である。
(Second embodiment)
A second embodiment will be described with reference to FIGS. As shown in FIG. 5, the variable magnification optical system ZL (ZL2) according to the second example includes a first lens group G1 having a positive refractive power and arranged in order from the object side along the optical axis. From the second lens group G2 having refractive power, the third lens group G3 having positive refractive power, the fourth lens group G4 having positive refractive power, and the fifth lens group G5 having positive refractive power Become. An aperture stop S is provided between the third lens group G3 and the fourth lens group G4, and the aperture stop S constitutes the fourth lens group G4. The fifth lens group G5 is the most image side lens group.

第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メ
ニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向
けた正メニスカスレンズL13とからなる。
The first lens group G1 is arranged in order from the object side along the optical axis, and is a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a convex surface facing the object side. And a positive meniscus lens L13.

第2レンズ群G2は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メ
ニスカスレンズL21と、物体側に凹面を向けた負メニスカスレンズL22と、両凸形状
の正レンズL23とからなる。なお、負メニスカスレンズL21は、物体側のレンズ面を
非球面形状とした、樹脂とガラスの複合型非球面レンズである。
The second lens group G2 includes a negative meniscus lens L21 having a convex surface facing the object side, a negative meniscus lens L22 having a concave surface facing the object side, and a biconvex positive lens arrayed in order from the object side along the optical axis. Lens L23. The negative meniscus lens L21 is a composite aspherical lens made of resin and glass in which the object-side lens surface is aspherical.

第3レンズ群G3は、物体側に凸面を向けた正メニスカスレンズL31からなる。なお
、正メニスカスレンズL31は、物体側のレンズ面を非球面形状とした、ガラスモールド
非球面レンズである。
The third lens group G3 is composed of a positive meniscus lens L31 having a convex surface directed toward the object side. The positive meniscus lens L31 is a glass mold aspheric lens having an aspheric lens surface on the object side.

第4レンズ群G4は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メ
ニスカスレンズL41と両凸形状の正レンズL42との接合レンズから構成される第4A
サブレンズ群G4Aと、両凸形状の正レンズL43と物体側に凹面を向けた負メニスカス
レンズL44との接合レンズと、物体側に凸面を向けた負メニスカスレンズL45と物体
側に凸面を向けた正メニスカスレンズL46との接合レンズとから構成される第4Bサブ
レンズ群G4Bとからなる。なお、負メニスカスレンズL44は、像側のレンズ面を非球
面形状とした、ガラスモールド非球面レンズである。
The fourth lens group G4 is composed of a cemented lens composed of a negative meniscus lens L41 having a convex surface directed toward the object side and a biconvex positive lens L42 arranged in order from the object side along the optical axis.
A cemented lens of the sub lens group G4A, a biconvex positive lens L43 and a negative meniscus lens L44 having a concave surface facing the object side, a negative meniscus lens L45 having a convex surface facing the object side, and a convex surface facing the object side It consists of a 4B sub lens group G4B composed of a cemented lens with a positive meniscus lens L46. The negative meniscus lens L44 is a glass mold aspheric lens having an aspheric lens surface on the image side.

第5レンズ群G5は、物体側に凹面を向けた正メニスカスレンズL51からなる。   The fifth lens group G5 includes a positive meniscus lens L51 having a concave surface directed toward the object side.

本実施例に係る変倍光学系ZL2では、変倍時に、第1レンズ群G1と第2レンズ群G
2との空気間隔、第2レンズ群G2と第3レンズ群G3との空気間隔、第3レンズ群G3
と第4レンズ群G4との空気間隔、第4レンズ群G4と第5レンズ群G5との空気間隔が
それぞれ変化するように、第1レンズ群G1〜第4レンズ群G4が光軸に沿って移動する
。第5レンズ群G5は、像面Iに対して固定されている。
In the zoom optical system ZL2 according to the present embodiment, at the time of zooming, the first lens group G1 and the second lens group G
2, the air gap between the second lens group G2 and the third lens group G3, the third lens group G3
The first lens group G1 to the fourth lens group G4 are arranged along the optical axis so that the air gap between the fourth lens group G4 and the air gap between the fourth lens group G4 and the fifth lens group G5 change. Moving. The fifth lens group G5 is fixed with respect to the image plane I.

詳細には、広角端状態から望遠端状態への変倍時に、第1レンズ群G1、第3レンズ群
G3及び第4レンズ群G4は、物体側へ移動する。第2レンズ群G2は、広角端状態から
中間焦点距離状態までは像側へ移動し、中間焦点距離状態から望遠端状態までは物体側へ
移動する。開口絞りSは、第4レンズ群G4と一体的に物体側へ移動する。
Specifically, at the time of zooming from the wide-angle end state to the telephoto end state, the first lens group G1, the third lens group G3, and the fourth lens group G4 move to the object side. The second lens group G2 moves toward the image side from the wide-angle end state to the intermediate focal length state, and moves toward the object side from the intermediate focal length state to the telephoto end state. The aperture stop S moves to the object side integrally with the fourth lens group G4.

これにより、変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が増加し、
第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レ
ンズ群G4との空気間隔は広角端状態から中間焦点距離状態まで減少し、中間焦点距離状
態から望遠端状態まで増加し、第4レンズ群G4と第5レンズ群G5との空気間隔が増加
する。また、開口絞りSと第3レンズ群G3との空気間隔は、広角端状態から中間焦点距
離状態まで減少し、中間焦点距離状態から望遠端状態まで増加する。
This increases the air gap between the first lens group G1 and the second lens group G2 during zooming,
The air gap between the second lens group G2 and the third lens group G3 decreases, the air gap between the third lens group G3 and the fourth lens group G4 decreases from the wide-angle end state to the intermediate focal length state, and the intermediate focal length From the state to the telephoto end state, the air gap between the fourth lens group G4 and the fifth lens group G5 increases. The air gap between the aperture stop S and the third lens group G3 decreases from the wide-angle end state to the intermediate focal length state, and increases from the intermediate focal length state to the telephoto end state.

合焦は、第3レンズ群G3を光軸に沿って移動させることで行う。詳細には、無限遠物
体から近距離物体への合焦時に、第3レンズ群G3を光軸に沿って像側へ移動させること
で行う。
Focusing is performed by moving the third lens group G3 along the optical axis. Specifically, when focusing from an object at infinity to a near object, the third lens group G3 is moved to the image side along the optical axis.

像ブレ発生時には、防振レンズ群として、第4Aサブレンズ群G4Aを、光軸と垂直方
向の成分を持つように移動させることにより、像面I上の像ブレ補正(防振)を行う。
When image blur occurs, the image blur correction (anti-vibration) on the image plane I is performed by moving the fourth A sub-lens group G4A as a vibration-proof lens group so as to have a component perpendicular to the optical axis.

下記の表2に、第2実施例における各諸元の値を示す。表2における面番号1〜26が
、図5に示すm1〜m26の各光学面に対応している。
Table 2 below shows the values of each item in the second embodiment. Surface numbers 1 to 26 in Table 2 correspond to the optical surfaces m1 to m26 shown in FIG.

(表2)
[レンズ諸元]
面番号 R D nd νd
物面 ∞
1 144.9435 1.6000 1.846660 23.80
2 57.9139 4.6578 1.696800 55.52
3 -430.8049 0.1000
4 49.1887 3.5211 1.696800 55.52
5 158.0589 D5(可変)
*6 504.4641 0.0800 1.560930 36.64
7 234.1101 1.0000 1.834810 42.73
8 9.4881 5.5305
9 -17.0787 0.9276 1.741000 52.76
10 -1027.3916 1.0145
11 34.5727 2.6835 1.808090 22.74
12 -53.1261 D12(可変)
*13 24.3966 1.6530 1.588870 61.13
14 296.0192 D14(可変)
15 ∞ 1.5000 (絞り)
16 17.3960 0.9000 1.883000 40.66
17 11.0000 2.8505 1.497820 82.57
18 -48.0307 1.5000
19 12.4669 2.8380 1.487490 70.32
20 -14.1721 0.9000 1.851080 40.12
*21 -35.5823 0.1000
22 19.0885 0.9000 1.883000 40.66
23 7.1245 1.8774 1.620040 36.40
24 8.9496 D24(可変)
25 -30.0000 3.6500 1.696800 55.52
26 -19.7882 BF
像面 ∞

[非球面データ]
第6面
κ = -1.9998
A4 = 2.80199E-05
A6 = -2.77907E-07
A8 = 2.24720E-09
A10 = -8.56636E-12
A12 = 0.00000E+00

第13面
κ = 1.7623
A4 = -2.39838E-05
A6 = -7.89804E-08
A8 = 2.79454E-09
A10 = 0.00000E+00
A12 = 0.00000E+00

第21面
κ = -0.1893
A4 = -9.56775E-06
A6 = -6.24519E-07
A8 = 1.01416E-08
A10 = 0.00000E+00
A12 = 0.00000E+00

[各種データ]
変倍比 6.59
W M T
f 10.29976 39.99987 67.89953
FNO 3.64 5.06 5.81
ω 39.73502 10.92213 6.56887
Y 8.00 8.00 8.00
φ 8.60 9.90 9.90
TL 89.92002 109.96784 121.58326
BF 13.25085 13.25085 13.25085

[可変間隔データ]
W M T
f 10.29976 39.99987 67.89953
D5 1.80000 24.18110 32.41506
D12 25.02141 7.23672 2.58202
D14 4.80996 3.66893 5.14775
D24 5.25391 21.84636 28.40370

[合焦時の合焦群移動量]
W M T
物像間距離 1.00m 1.00m 1.00m
移動量 0.3072 0.9550 1.8445

[レンズ群データ]
群番号 群初面 群焦点距離
G1 1 68.26199
G2 6 -12.46728
G3 13 45.04911
G4 15 40.55521
G5 25 72.75019

[条件式対応値]
条件式(1)f3/ft = 0.633
条件式(2)(−f2)/fw = 1.210
条件式(3)f3/f4 = 1.111
条件式(4)ν3 = 61.13
条件式(5)(d3t−d3w)/fw = 0.033
条件式(6)f4/ft = 0.597
条件式(7)fR/fw = 7.063
(Table 2)
[Lens specifications]
Surface number R D nd νd
Object ∞
1 144.9435 1.6000 1.846660 23.80
2 57.9139 4.6578 1.696800 55.52
3 -430.8049 0.1000
4 49.1887 3.5211 1.696800 55.52
5 158.0589 D5 (variable)
* 6 504.4641 0.0800 1.560930 36.64
7 234.1101 1.0000 1.834810 42.73
8 9.4881 5.5305
9 -17.0787 0.9276 1.741000 52.76
10 -1027.3916 1.0145
11 34.5727 2.6835 1.808090 22.74
12 -53.1261 D12 (variable)
* 13 24.3966 1.6530 1.588870 61.13
14 296.0192 D14 (variable)
15 ∞ 1.5000 (Aperture)
16 17.3960 0.9000 1.883000 40.66
17 11.0000 2.8505 1.497820 82.57
18 -48.0307 1.5000
19 12.4669 2.8380 1.487490 70.32
20 -14.1721 0.9000 1.851080 40.12
* 21 -35.5823 0.1000
22 19.0885 0.9000 1.883000 40.66
23 7.1245 1.8774 1.620040 36.40
24 8.9496 D24 (variable)
25 -30.0000 3.6500 1.696800 55.52
26 -19.7882 BF
Image plane ∞

[Aspherical data]
6th surface κ = -1.9998
A4 = 2.80199E-05
A6 = -2.77907E-07
A8 = 2.24720E-09
A10 = -8.56636E-12
A12 = 0.00000E + 00

13th surface κ = 1.7623
A4 = -2.39838E-05
A6 = -7.89804E-08
A8 = 2.79454E-09
A10 = 0.00000E + 00
A12 = 0.00000E + 00

21st surface κ = -0.1893
A4 = -9.56775E-06
A6 = -6.24519E-07
A8 = 1.01416E-08
A10 = 0.00000E + 00
A12 = 0.00000E + 00

[Various data]
Scaling ratio 6.59
W M T
f 10.29976 39.99987 67.89953
FNO 3.64 5.06 5.81
ω 39.73502 10.92213 6.56887
Y 8.00 8.00 8.00
φ 8.60 9.90 9.90
TL 89.92002 109.96784 121.58326
BF 13.25085 13.25085 13.25085

[Variable interval data]
W M T
f 10.29976 39.99987 67.89953
D5 1.80000 24.18110 32.41506
D12 25.02141 7.23672 2.58202
D14 4.80996 3.66893 5.14775
D24 5.25391 21.84636 28.40370

[Focus group movement during focusing]
W M T
Distance between objects 1.00m 1.00m 1.00m
Travel 0.3072 0.9550 1.8445

[Lens group data]
Group number Group first surface Group focal length G1 1 68.26199
G2 6 -12.46728
G3 13 45.04911
G4 15 40.55521
G5 25 72.75019

[Conditional expression values]
Conditional expression (1) f3 / ft = 0.633
Conditional expression (2) (− f2) /fw=1.210
Conditional expression (3) f3 / f4 = 1.111
Conditional expression (4) ν3 = 61.13
Conditional expression (5) (d3t−d3w) /fw=0.033
Conditional expression (6) f4 / ft = 0.597
Conditional expression (7) fR / fw = 7.063

表2から、本実施例に係る変倍光学系ZL2は、条件式(1)〜(7)を満たすことが
分かる。
From Table 2, it can be seen that the variable magnification optical system ZL2 according to the present example satisfies the conditional expressions (1) to (7).

図6は、第2実施例に係る変倍光学系ZL2の無限遠合焦時における諸収差図(球面収
差図、非点収差図、歪曲収差図、コマ収差図及び倍率色収差図)であり、(a)は広角端
状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図7は、第2実
施例に係る変倍光学系ZL2の近距離物体合焦時(物像間距離1.00m)における諸収差図
(球面収差図、非点収差図、歪曲収差図、コマ収差図及び倍率色収差図)であり、(a)
は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図8は
、第2実施例に係る変倍光学系ZL2の無限遠合焦時における像ブレ補正を行った時(防
振レンズ群のシフト量=0.1mm)のメリディオナル横収差図であり、(a)は広角端状態
、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。本実施例では、防振
時の光学性能を、図8(a)〜(c)に示すように、画面中心および像高±5.6mmに対応
したメリディオナル横収差図で示す。
FIG. 6 is a diagram showing various aberrations (spherical aberration diagram, astigmatism diagram, distortion diagram, coma diagram and magnification chromatic aberration diagram) at the time of focusing on infinity of the variable magnification optical system ZL2 according to the second example. (A) shows a wide-angle end state, (b) shows an intermediate focal length state, and (c) shows a telephoto end state. FIG. 7 is a diagram illustrating various aberrations (spherical aberration diagram, astigmatism diagram, distortion aberration diagram, coma aberration) when the variable magnification optical system ZL2 according to the second example is in focus at a short distance object distance (1.00 m between object images). And chromatic aberration diagram of magnification), (a)
Is the wide-angle end state, (b) is the intermediate focal length state, and (c) is the telephoto end state. FIG. 8 is a meridional lateral aberration diagram when image blur correction is performed at the time of focusing on infinity of the variable magnification optical system ZL2 according to the second example (shift amount of the image stabilizing lens group = 0.1 mm). a) shows the wide-angle end state, (b) shows the intermediate focal length state, and (c) shows the telephoto end state. In this example, as shown in FIGS. 8A to 8C, the optical performance during image stabilization is shown by a meridional lateral aberration diagram corresponding to the center of the screen and an image height of ± 5.6 mm.

図6〜図8に示す各収差図から明らかなように、第2実施例に係る変倍光学系ZL2は
、広角端状態から望遠端状態に亘って、また無限遠合焦状態から近距離合焦状態に亘って
諸収差が良好に補正され、高い光学性能を有することが分かる。また、像ブレ補正時にお
いて、高い結像性能を有することが分かる。
As is apparent from the aberration diagrams shown in FIGS. 6 to 8, the variable magnification optical system ZL2 according to the second example is in the range from the wide-angle end state to the telephoto end state, and from the infinity in-focus state to the short-distance focusing state. It can be seen that various aberrations are satisfactorily corrected over the focal state and high optical performance is achieved. Further, it can be seen that the image formation performance is high at the time of image blur correction.

(第3実施例)
第3実施例について、図9〜図12及び表3を用いて説明する。第3実施例に係る変倍
光学系ZL(ZL3)は、図9に示すように、光軸に沿って物体側から順に並んだ、正の
屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折
力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、負の屈折力を
有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6とからなる。第3レン
ズ群G3と第4レンズ群G4との間には開口絞りSが備えられ、開口絞りSは第4レンズ
群G4を構成する。第6レンズ群G6は、最も像側のレンズ群である。
(Third embodiment)
A third embodiment will be described with reference to FIGS. 9 to 12 and Table 3. FIG. As shown in FIG. 9, the variable magnification optical system ZL (ZL3) according to the third example includes a first lens group G1 having positive refractive power arranged in order from the object side along the optical axis, and a negative lens group G1. A second lens group G2 having a refractive power, a third lens group G3 having a positive refractive power, a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a negative refractive power, The sixth lens group G6 has a positive refractive power. An aperture stop S is provided between the third lens group G3 and the fourth lens group G4, and the aperture stop S constitutes the fourth lens group G4. The sixth lens group G6 is the most image side lens group.

第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メ
ニスカスレンズL11と両凸形状の正レンズL12との接合レンズと、物体側に凸面を向
けた正メニスカスレンズL13とからなる。
The first lens group G1 is arranged in order from the object side along the optical axis, and is a cemented lens of a negative meniscus lens L11 having a convex surface facing the object side and a biconvex positive lens L12, and a convex surface facing the object side. And a positive meniscus lens L13.

第2レンズ群G2は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メ
ニスカスレンズL21と、両凹形状の負レンズL22と、物体側に凸面を向けた正メニス
カスレンズL23とからなる。なお、負レンズL22は、物体側のレンズ面を非球面形状
とした、ガラスモールド非球面レンズである。
The second lens group G2 includes, in order from the object side along the optical axis, a negative meniscus lens L21 having a convex surface facing the object side, a biconcave negative lens L22, and a positive meniscus having a convex surface facing the object side. Lens L23. The negative lens L22 is a glass mold aspheric lens having an aspheric lens surface on the object side.

第3レンズ群G3は、両凸形状の正レンズL31からなる。なお、正レンズL31は、
物体側のレンズ面を非球面形状とした、ガラスモールド非球面レンズである。
The third lens group G3 is composed of a biconvex positive lens L31. The positive lens L31 is
This is a glass mold aspherical lens in which the object side lens surface is aspherical.

第4レンズ群G4は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メ
ニスカスレンズL41と両凸形状の正レンズL42との接合レンズから構成される第4A
サブレンズ群G4Aと、両凸形状の正レンズL43と物体側に凹面を向けた負メニスカス
レンズL44との接合レンズとから構成される第4Bサブレンズ群G4Bとからなる。な
お、負メニスカスレンズL44は、像側のレンズ面を非球面形状とした、ガラスモールド
非球面レンズである。
The fourth lens group G4 is composed of a cemented lens composed of a negative meniscus lens L41 having a convex surface directed toward the object side and a biconvex positive lens L42 arranged in order from the object side along the optical axis.
The sub lens group G4A includes a fourth convex sub lens group G4B constituted by a cemented lens of a biconvex positive lens L43 and a negative meniscus lens L44 having a concave surface facing the object side. The negative meniscus lens L44 is a glass mold aspheric lens having an aspheric lens surface on the image side.

第5レンズ群G5は、物体側に凸面を向けた負メニスカスレンズL51からなる。   The fifth lens group G5 includes a negative meniscus lens L51 having a convex surface directed toward the object side.

第6レンズ群G6は、物体側に凹面を向けた正メニスカスレンズL61からなる。   The sixth lens group G6 includes a positive meniscus lens L61 having a concave surface directed toward the object side.

本実施例に係る変倍光学系ZL3では、変倍時に、第1レンズ群G1と第2レンズ群G
2との空気間隔、第2レンズ群G2と第3レンズ群G3との空気間隔、第3レンズ群G3
と第4レンズ群G4との空気間隔、第4レンズ群G4と第5レンズ群G5との空気間隔、
第5レンズ群G5と第6レンズ群G6との空気間隔がそれぞれ変化するように、第1レン
ズ群G1〜第5レンズ群G5が光軸に沿って移動する。第6レンズ群G6は、像面Iに対
して固定されている。
In the zoom optical system ZL3 according to the present embodiment, at the time of zooming, the first lens group G1 and the second lens group G
2, the air gap between the second lens group G2 and the third lens group G3, the third lens group G3
And the air gap between the fourth lens group G4, the air gap between the fourth lens group G4 and the fifth lens group G5,
The first lens group G1 to the fifth lens group G5 move along the optical axis so that the air gap between the fifth lens group G5 and the sixth lens group G6 changes. The sixth lens group G6 is fixed with respect to the image plane I.

詳細には、広角端状態から望遠端状態への変倍時に、第1レンズ群G1、第3レンズ群
G3、第4レンズ群G4、及び第5レンズ群G5は、物体側へ移動する。第2レンズ群G
2は、広角端状態から中間焦点距離状態までは像側へ移動し、中間焦点距離状態から望遠
端状態までは物体側へ移動する。開口絞りSは、第4レンズ群G4と一体的に物体側へ移
動する。
Specifically, at the time of zooming from the wide-angle end state to the telephoto end state, the first lens group G1, the third lens group G3, the fourth lens group G4, and the fifth lens group G5 move to the object side. Second lens group G
2 moves to the image side from the wide-angle end state to the intermediate focal length state, and moves to the object side from the intermediate focal length state to the telephoto end state. The aperture stop S moves to the object side integrally with the fourth lens group G4.

これにより、変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔が増加し、
第2レンズ群G2と第3レンズ群G3との空気間隔が減少し、第3レンズ群G3と第4レ
ンズ群G4との空気間隔は広角端状態から中間焦点距離状態まで減少し、中間焦点距離状
態から望遠端状態まで増加し、第4レンズ群G4と第5レンズ群G5との空気間隔が増加
し、第5レンズ群G5と第6レンズ群G6との空気間隔が増加する。また、開口絞りSと
第3レンズ群G3との空気間隔は、広角端状態から中間焦点距離状態まで減少し、中間焦
点距離状態から望遠端状態まで増加する。
This increases the air gap between the first lens group G1 and the second lens group G2 during zooming,
The air gap between the second lens group G2 and the third lens group G3 decreases, the air gap between the third lens group G3 and the fourth lens group G4 decreases from the wide-angle end state to the intermediate focal length state, and the intermediate focal length From the state to the telephoto end state, the air gap between the fourth lens group G4 and the fifth lens group G5 increases, and the air gap between the fifth lens group G5 and the sixth lens group G6 increases. The air gap between the aperture stop S and the third lens group G3 decreases from the wide-angle end state to the intermediate focal length state, and increases from the intermediate focal length state to the telephoto end state.

合焦は、第3レンズ群G3を光軸に沿って移動させることで行う。詳細には、無限遠物
体から近距離物体への合焦時に、第3レンズ群G3を光軸に沿って像側へ移動させること
で行う。
Focusing is performed by moving the third lens group G3 along the optical axis. Specifically, when focusing from an object at infinity to a near object, the third lens group G3 is moved to the image side along the optical axis.

像ブレ発生時には、防振レンズ群として、第4Aサブレンズ群G4Aを、光軸と垂直方
向の成分を持つように移動させることにより、像面I上の像ブレ補正(防振)を行う。
When image blur occurs, the image blur correction (anti-vibration) on the image plane I is performed by moving the fourth A sub-lens group G4A as a vibration-proof lens group so as to have a component perpendicular to the optical axis.

下記の表3に、第3実施例における各諸元の値を示す。表3における面番号1〜24が
、図9に示すm1〜m24の各光学面に対応している。
Table 3 below shows values of various specifications in the third example. Surface numbers 1 to 24 in Table 3 correspond to the optical surfaces m1 to m24 shown in FIG.

(表3)
[レンズ諸元]
面番号 R D nd νd
物面 ∞
1 270.7698 1.6000 1.84666 23.80
2 63.2289 4.7857 1.58913 61.22
3 -180.7756 0.1000
4 38.2772 3.3872 1.69680 55.52
5 162.5542 D5(可変)
6 222.4687 0.9000 1.72916 54.61
7 8.6817 5.3065
*8 -19.5238 0.9000 1.69680 55.52
9 33.5766 0.1038
10 19.7682 2.5354 1.84666 23.80
11 434.3570 D11(可変)
*12 26.1871 1.7281 1.58887 61.13
13 -76.6701 D13(可変)
14 ∞ 1.7051 (絞り)
15 16.6153 0.9002 1.83400 37.18
16 9.9827 2.6157 1.49782 82.57
17 -36.7432 1.5000
18 16.2913 2.2592 1.51823 58.82
19 -17.2434 0.9000 1.85108 40.12
*20 -31.3248 D20(可変)
21 28.0868 0.9000 1.90265 35.72
22 9.2493 D22(可変)
23 -37.3758 2.2000 1.61772 49.81
24 -18.1325 BF
像面 ∞

[非球面データ]
第8面
κ = 1.0000
A4 = 2.09316E-05
A6 = -8.10797E-07
A8 = 2.75349E-08
A10 = -4.70299E-10
A12 = 2.62880E-12

第12面
κ = 1.0000
A4 = -4.37334E-05
A6 = 3.04727E-07
A8 = -6.38106E-09
A10 = 0.00000E+00
A12 = 0.00000E+00

第20面
κ = 1.0000
A4 = 2.28740E-05
A6 = -3.19205E-07
A8 = -1.46715E-10
A10 = 0.00000E+00
A12 = 0.00000E+00

[各種データ]
変倍比 4.71
W M T
f 10.30000 32.00000 48.51858
FNO 3.53 5.00 5.72
ω 39.75617 13.57625 9.11928
Y 8.00 8.00 8.00
φ 8.20 8.80 8.80
TL 80.36557 92.30690 103.19342
BF 13.30097 13.30097 13.30097

[可変間隔データ]
W M T
f 10.30000 32.00000 48.51858
D5 1.80638 15.63570 22.37678
D11 18.74841 4.51318 2.11693
D13 5.83635 4.73970 5.51292
D20 1.50000 3.72584 3.97118
D22 4.84649 16.06454 21.58766

[合焦時の合焦群移動量]
W M T
物像間距離 1.00m 1.00m 1.00m
移動量 0.1896 0.4064 0.6618

[レンズ群データ]
群番号 群初面 群焦点距離
G1 1 60.91787
G2 6 -9.90833
G3 12 33.35587
G4 14 15.48045
G5 21 -15.63253
G6 23 54.62879

[条件式対応値]
条件式(1)f3/ft = 0.687
条件式(2)(−f2)/fw = 0.962
条件式(3)f3/f4 = 2.155
条件式(4)ν3 = 61.13
条件式(5)(d3t−d3w)/fw = 0.031
条件式(6)f4/ft = 0.597
条件式(7)fR/fw = 5.304
(Table 3)
[Lens specifications]
Surface number R D nd νd
Object ∞
1 270.7698 1.6000 1.84666 23.80
2 63.2289 4.7857 1.58913 61.22
3 -180.7756 0.1000
4 38.2772 3.3872 1.69680 55.52
5 162.5542 D5 (variable)
6 222.4687 0.9000 1.72916 54.61
7 8.6817 5.3065
* 8 -19.5238 0.9000 1.69680 55.52
9 33.5766 0.1038
10 19.7682 2.5354 1.84666 23.80
11 434.3570 D11 (variable)
* 12 26.1871 1.7281 1.58887 61.13
13 -76.6701 D13 (variable)
14 ∞ 1.7051 (Aperture)
15 16.6153 0.9002 1.83400 37.18
16 9.9827 2.6157 1.49782 82.57
17 -36.7432 1.5000
18 16.2913 2.2592 1.51823 58.82
19 -17.2434 0.9000 1.85108 40.12
* 20 -31.3248 D20 (variable)
21 28.0868 0.9000 1.90265 35.72
22 9.2493 D22 (variable)
23 -37.3758 2.2000 1.61772 49.81
24 -18.1325 BF
Image plane ∞

[Aspherical data]
8th surface κ = 1.0000
A4 = 2.09316E-05
A6 = -8.10797E-07
A8 = 2.75349E-08
A10 = -4.70299E-10
A12 = 2.62880E-12

12th surface κ = 1.0000
A4 = -4.37334E-05
A6 = 3.04727E-07
A8 = -6.38106E-09
A10 = 0.00000E + 00
A12 = 0.00000E + 00

20th surface κ = 1.0000
A4 = 2.28740E-05
A6 = -3.19205E-07
A8 = -1.46715E-10
A10 = 0.00000E + 00
A12 = 0.00000E + 00

[Various data]
Scaling ratio 4.71
W M T
f 10.30000 32.00000 48.51858
FNO 3.53 5.00 5.72
ω 39.75617 13.57625 9.11928
Y 8.00 8.00 8.00
φ 8.20 8.80 8.80
TL 80.36557 92.30690 103.19342
BF 13.30097 13.30097 13.30097

[Variable interval data]
W M T
f 10.30000 32.00000 48.51858
D5 1.80638 15.63570 22.37678
D11 18.74841 4.51318 2.11693
D13 5.83635 4.73970 5.51292
D20 1.50000 3.72584 3.97118
D22 4.84649 16.06454 21.58766

[Focus group movement during focusing]
W M T
Distance between objects 1.00m 1.00m 1.00m
Travel 0.1896 0.4064 0.6618

[Lens group data]
Group number Group first surface Group focal length G1 1 60.91787
G2 6 -9.90833
G3 12 33.35587
G4 14 15.48045
G5 21 -15.63253
G6 23 54.62879

[Conditional expression values]
Conditional expression (1) f3 / ft = 0.687
Conditional expression (2) (-f2) / fw = 0.962
Conditional expression (3) f3 / f4 = 2.155
Conditional expression (4) ν3 = 61.13
Conditional expression (5) (d3t−d3w) /fw=0.031
Conditional expression (6) f4 / ft = 0.597
Conditional expression (7) fR / fw = 5.304

表3から、本実施例に係る変倍光学系ZL3は、条件式(1)〜(7)を満たすことが
分かる。
From Table 3, it can be seen that the variable magnification optical system ZL3 according to the present example satisfies the conditional expressions (1) to (7).

図10は、第3実施例に係る変倍光学系ZL3の無限遠合焦時における諸収差図(球面
収差図、非点収差図、歪曲収差図、コマ収差図及び倍率色収差図)であり、(a)は広角
端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図11は、第
3実施例に係る変倍光学系ZL3の近距離物体合焦時(物像間距離1.00m)における諸収
差図(球面収差図、非点収差図、歪曲収差図、コマ収差図及び倍率色収差図)であり、(
a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図
12は、第3実施例に係る変倍光学系ZL3の無限遠合焦時における像ブレ補正を行った
時(防振レンズ群のシフト量=0.1mm)のメリディオナル横収差図であり、(a)は広角
端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。本実施例では
、防振時の光学性能を、図12(a)〜(c)に示すように、画面中心および像高±5.6m
mに対応したメリディオナル横収差図で示す。
FIG. 10 is a diagram illustrating various aberrations (spherical aberration diagram, astigmatism diagram, distortion diagram, coma diagram, and chromatic aberration diagram of magnification) of the zoom optical system ZL3 according to the third example when focusing on infinity. (A) shows a wide-angle end state, (b) shows an intermediate focal length state, and (c) shows a telephoto end state. FIG. 11 is a diagram illustrating various aberrations (spherical aberration diagram, astigmatism diagram, distortion aberration diagram, coma aberration) when the variable magnification optical system ZL3 according to the third example is in focus at a short distance object (distance between object images is 1.00 m). And chromatic aberration diagram of magnification),
a) shows the wide-angle end state, (b) shows the intermediate focal length state, and (c) shows the telephoto end state. FIG. 12 is a meridional lateral aberration diagram when image blur correction is performed at the time of focusing on infinity of the variable magnification optical system ZL3 according to Example 3 (shift amount of the image stabilizing lens group = 0.1 mm). a) shows the wide-angle end state, (b) shows the intermediate focal length state, and (c) shows the telephoto end state. In this example, the optical performance during image stabilization is shown in FIGS. 12A to 12C, with the screen center and image height ± 5.6 m.
A meridional transverse aberration diagram corresponding to m is shown.

図10〜図12に示す各収差図から明らかなように、第3実施例に係る変倍光学系ZL
3は、広角端状態から望遠端状態に亘って、また無限遠合焦状態から近距離合焦状態に亘
って諸収差が良好に補正され、高い光学性能を有することが分かる。また、像ブレ補正時
において、高い結像性能を有することが分かる。
As is apparent from the aberration diagrams shown in FIGS. 10 to 12, the variable magnification optical system ZL according to the third example.
3 shows that various aberrations are well corrected from the wide-angle end state to the telephoto end state, and from the infinite focus state to the short-distance focus state, and it has high optical performance. Further, it can be seen that the image formation performance is high at the time of image blur correction.

以上の各実施例によれば、合焦レンズ群が小型で、変倍時と、合焦時に、高い光学性能
を有する変倍光学系を実現することができる。
According to each of the embodiments described above, it is possible to realize a variable power optical system having a small focusing lens group and high optical performance at the time of zooming and at the time of focusing.

ここまで本発明を分かりやすくするために、実施形態の構成要件を付して説明したが、
本発明がこれに限定されるものではないことは言うまでもない。以下の内容は、本願の変
倍光学系の光学性能を損なわない範囲で適宜採用することが可能である。
In order to make the present invention easy to understand so far, the configuration requirements of the embodiment have been described.
It goes without saying that the present invention is not limited to this. The following contents can be adopted as appropriate as long as the optical performance of the variable magnification optical system of the present application is not impaired.

本実施形態に係る変倍光学系ZLの数値実施例として、5群、6群構成のものを示した
が、これに限定されず、他の群構成(例えば、7群等)にも適用可能である。具体的には
、最も物体側にレンズまたはレンズ群を追加した構成や、最も像側にレンズまたはレンズ
群を追加した構成でも構わない。なお、レンズ群とは、変倍時に変化する空気間隔で分離
された、少なくとも1枚のレンズを有する部分を示す。
As numerical examples of the variable magnification optical system ZL according to the present embodiment, the five-group and six-group configurations are shown, but the present invention is not limited to this, and can be applied to other group configurations (for example, seven groups). It is. Specifically, a configuration in which a lens or a lens group is added closest to the object side or a configuration in which a lens or a lens group is added closest to the image side may be used. The lens group refers to a portion having at least one lens separated by an air interval that changes during zooming.

本実施形態に係る変倍光学系ZLにおいて、無限遠物体から近距離物体への合焦を行う
ために、レンズ群の一部、1つのレンズ群全体、或いは複数のレンズ群を合焦レンズ群と
して、光軸方向へ移動させる構成としてもよい。本実施の形態において、第3レンズ群G
3を合焦レンズ群とした例を挙げたが、第2レンズ群G2の少なくとも一部、第3レンズ
群G3の少なくとも一部、第4レンズ群G4の少なくとも一部、第5レンズ群G5の少な
くとも一部のいずれかを合焦レンズ群とすることもできる。また、斯かる合焦レンズ群は
、オートフォーカスに適用することも可能であり、オートフォーカス用のモータ(例えば
、超音波モータ等)による駆動にも適している。
In the variable magnification optical system ZL according to the present embodiment, in order to perform focusing from an object at infinity to an object at a short distance, a part of the lens group, the entire lens group, or a plurality of lens groups are in focus. Alternatively, it may be configured to move in the optical axis direction. In the present embodiment, the third lens group G
3 is used as the focusing lens group, but at least part of the second lens group G2, at least part of the third lens group G3, at least part of the fourth lens group G4, and the fifth lens group G5. At least one of them can be used as a focusing lens group. Further, such a focusing lens group can be applied to autofocus, and is also suitable for driving by an autofocus motor (for example, an ultrasonic motor).

本実施形態に係る変倍光学系ZLにおいて、いずれかのレンズ群全体または部分レンズ
群を防振レンズ群として、光軸に垂直な方向の成分を持つように移動させるか、或いは光
軸を含む面内方向に回転移動(揺動)させて、手ブレ等によって生じる像ブレを補正する
構成の例として、第4Aサブレンズ群G4Aを挙げたが、これに限られず、例えば、第3
レンズ群G3の少なくとも一部、第4レンズ群G4の少なくとも一部、第5レンズ群G5
の少なくとも一部を防振レンズ群とすることもできる。
In the variable magnification optical system ZL according to the present embodiment, any lens group or a partial lens group is moved as a vibration-proof lens group so as to have a component in a direction perpendicular to the optical axis, or includes the optical axis. The fourth A sub-lens group G4A has been described as an example of a configuration that corrects image blur caused by camera shake or the like by rotating and moving (swinging) in the in-plane direction.
At least part of the lens group G3, at least part of the fourth lens group G4, and the fifth lens group G5
At least a part of the image stabilization lens group may be used.

本実施形態に係る変倍光学系ZLにおいて、レンズ面は、球面または平面で形成されて
も、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工およ
び組立調整が容易になり、加工および組立調整の誤差による光学性能の劣化を防げるので
好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。レンズ面
が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成した
ガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいず
れの非球面でも構わない。また、レンズ面は回折面としてもよく、レンズを屈折率分布型
レンズ(GRINレンズ)あるいはプラスチックレンズとしてもよい。
In the variable magnification optical system ZL according to the present embodiment, the lens surface may be formed as a spherical surface, a flat surface, or an aspheric surface. When the lens surface is a spherical surface or a flat surface, lens processing and assembly adjustment are facilitated, and optical performance deterioration due to errors in processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance. When the lens surface is an aspheric surface, the aspheric surface is an aspheric surface by grinding, a glass mold aspheric surface made of glass with an aspheric shape, or a composite aspheric surface made of resin with an aspheric shape on the glass surface. Any aspherical surface may be used. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

本実施形態に係る変倍光学系ZLにおいて、開口絞りSは、第4レンズ群G4内、又は
その近傍に配置されるのが好ましい。なお、開口絞りとしての部材を設けずに、レンズの
枠でその役割を代用してもよい。
In the variable magnification optical system ZL according to the present embodiment, it is preferable that the aperture stop S is disposed in the fourth lens group G4 or in the vicinity thereof. The role of the lens may be substituted by a lens frame without providing a member as an aperture stop.

本実施形態に係る変倍光学系ZLにおいて、各レンズ面には、フレアやゴーストを軽減
し高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反
射防止膜を施してもよい。
In the variable magnification optical system ZL according to the present embodiment, each lens surface is provided with an antireflection film having high transmittance in a wide wavelength region in order to reduce flare and ghost and achieve high contrast and high optical performance. May be.

ZL(ZL1〜ZL3) 変倍光学系
G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
G4A 第4Aサブレンズ群
G4B 第4Bサブレンズ群
G5 第5レンズ群
G6 第6レンズ群
S 開口絞り
I 像面
1 カメラ(光学機器)
ZL (ZL1 to ZL3) Variable magnification optical system G1 First lens group G2 Second lens group G3 Third lens group G4 Fourth lens group G4A Fourth A sublens group G4B Fourth B sublens group G5 Fifth lens group G6 Sixth Lens group S Aperture stop I Image surface 1 Camera (optical equipment)

Claims (20)

光軸に沿って物体側より順に並んだ、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、第5レンズ群とを有し、
変倍時に、隣り合う各レンズ群の間隔が変化し、
変倍時に、最も像側のレンズ群は、像面に対して固定され、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群は物体側へ移動し、
合焦時に、前記第3レンズ群は光軸に沿って移動し、
以下の条件式を満足することを特徴とする変倍光学系。
0.480 < f3/ft < 4.000
但し、
ft:望遠端状態における前記変倍光学系の焦点距離、
f3:前記第3レンズ群の焦点距離。
A first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, arranged in order from the object side along the optical axis; A fourth lens group having refractive power and a fifth lens group;
During zooming, the distance between adjacent lens groups changes,
At the time of zooming, the lens group closest to the image side is fixed with respect to the image plane ,
When zooming from the wide-angle end state to the telephoto end state, the first lens group moves toward the object side,
During focusing, the third lens group moves along the optical axis,
A zoom optical system characterized by satisfying the following conditional expression:
0.480 <f3 / ft <4.0000
However,
ft: focal length of the variable magnification optical system in the telephoto end state,
f3: focal length of the third lens group.
光軸に沿って物体側より順に並んだ、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、第5レンズ群とを有し、
変倍時に、隣り合う各レンズ群の間隔が変化し、
変倍時に、最も像側のレンズ群は、像面に対して固定され、
合焦時に、前記第3レンズ群は光軸に沿って移動し、
以下の条件式を満足することを特徴とする変倍光学系。
0.480 < f3/ft < 4.000
3.000 < fR/fw < 9.500
但し、
ft:望遠端状態における前記変倍光学系の焦点距離、
f3:前記第3レンズ群の焦点距離、
fw:広角端状態における前記変倍光学系の焦点距離、
fR:前記最も像側のレンズ群の焦点距離
A first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, arranged in order from the object side along the optical axis; A fourth lens group having refractive power and a fifth lens group;
During zooming, the distance between adjacent lens groups changes,
At the time of zooming, the lens group closest to the image side is fixed with respect to the image plane,
During focusing, the third lens group moves along the optical axis,
A zoom optical system characterized by satisfying the following conditional expression:
0.480 <f3 / ft <4.0000
3.000 <fR / fw <9.500
However,
ft: focal length of the variable magnification optical system in the telephoto end state,
f3: focal length of the third lens group,
fw: focal length of the zoom optical system in the wide-angle end state,
fR: focal length of the lens group closest to the image side .
広角端状態から望遠端状態への変倍時に、前記第1レンズ群は物体側へ移動することを特徴とする請求項2に記載の変倍光学系。3. The zoom optical system according to claim 2, wherein the first lens unit moves toward the object side during zooming from the wide-angle end state to the telephoto end state. 以下の条件式を満足することを特徴とする請求項1〜3のいずれか一項に記載の変倍光学系。
0.900 < (−f2)/fw < 1.800
但し、
fw:広角端状態における前記変倍光学系の焦点距離、
f2:前記第2レンズ群の焦点距離。
The zoom lens system according to any one of claims 1 to 3, wherein the following conditional expression is satisfied.
0.900 <(− f2) / fw <1.800
However,
fw: focal length of the zoom optical system in the wide-angle end state,
f2: focal length of the second lens group.
以下の条件式を満足することを特徴とする請求項1〜4のいずれか一項に記載の変倍光学系。
0.600 < f3/f4 < 4.000
但し、
f4:前記第4レンズ群の焦点距離。
The zoom lens system according to any one of claims 1 to 4, wherein the following conditional expression is satisfied.
0.600 <f3 / f4 <4.0000
However,
f4: focal length of the fourth lens group.
合焦時に、前記第3レンズ群のみが光軸に沿って移動することを特徴とする請求項1〜5のいずれか一項に記載の変倍光学系。 6. The variable magnification optical system according to claim 1 , wherein only the third lens group moves along the optical axis during focusing. 前記第3レンズ群は、1つのレンズ成分により構成されることを特徴とする請求項1〜6のいずれか一項に記載の変倍光学系。 The variable power optical system according to claim 1 , wherein the third lens group includes one lens component. 前記第3レンズ群は、1枚の単レンズにより構成されることを特徴とする請求項1〜7のいずれか一項に記載の変倍光学系。 The variable power optical system according to any one of claims 1 to 7 , wherein the third lens group includes one single lens. 前記第3レンズ群は、以下の条件式を満足する光学材料を用いたレンズを有することを特徴とする請求項1〜8のいずれか一項に記載の変倍光学系。
48.00 < ν3
但し、
ν3:前記第3レンズ群を構成するレンズに用いた光学材料のd線を基準とするアッベ数。
The variable magnification optical system according to claim 1 , wherein the third lens group includes a lens using an optical material that satisfies the following conditional expression.
48.00 <ν3
However,
ν3: Abbe number based on the d-line of the optical material used for the lens constituting the third lens group.
前記第3レンズ群は、少なくとも1面が非球面形状であることを特徴とする請求項1〜9のいずれか一項に記載の変倍光学系。 10. The variable magnification optical system according to claim 1, wherein at least one surface of the third lens group has an aspherical shape. 開口絞りは、前記第3レンズ群と前記第4レンズ群との間に配置されていることを特徴とする請求項1〜10のいずれか一項に記載の変倍光学系。   The variable aperture optical system according to any one of claims 1 to 10, wherein an aperture stop is disposed between the third lens group and the fourth lens group. 以下の条件式を満足することを特徴とする請求項1〜11のいずれか一項に記載の変倍光学系。
0.470 < f4/ft < 0.900
但し、
f4:前記第4レンズ群の焦点距離。
The zoom lens system according to any one of claims 1 to 11, wherein the following conditional expression is satisfied.
0.470 <f4 / ft <0.900
However,
f4: focal length of the fourth lens group.
前記最も像側のレンズ群は、正の屈折力を有することを特徴とする請求項1〜12のいずれか一項に記載の変倍光学系。   The variable power optical system according to claim 1, wherein the lens group closest to the image side has a positive refractive power. 前記最も像側のレンズ群は、第5レンズ群であることを特徴とする請求項1〜13のいずれか一項に記載の変倍光学系。 The variable power optical system according to claim 1 , wherein the most image side lens group is a fifth lens group. 前記最も像側のレンズ群は、第6レンズ群であることを特徴とする請求項1〜13のいずれか一項に記載の変倍光学系。 The variable power optical system according to claim 1 , wherein the most image side lens group is a sixth lens group. 無限遠物体から近距離物体への合焦時に、前記第3レンズ群は像側へ移動することを特徴とする請求項1〜15のいずれか一項に記載の変倍光学系。 The variable power optical system according to any one of claims 1 to 15 , wherein the third lens group moves toward the image side when focusing from an object at infinity to an object at a short distance. 広角端状態から望遠端状態への変倍時に、前記第1レンズ群と前記第2レンズ群との間隔が増加することを特徴とする請求項1〜16のいずれか一項に記載の変倍光学系。 The zooming according to any one of claims 1 to 16 , wherein an interval between the first lens group and the second lens group increases when zooming from the wide-angle end state to the telephoto end state. Optical system. 広角端状態から望遠端状態への変倍時に、前記第2レンズ群と前記第3レンズ群との間隔が減少することを特徴とする請求項1〜17のいずれか一項に記載の変倍光学系。 The zooming according to any one of claims 1 to 17 , wherein an interval between the second lens group and the third lens group is reduced when zooming from the wide-angle end state to the telephoto end state. Optical system. 請求項1〜18のいずれか一項に記載の変倍光学系を搭載することを特徴とする光学機器。 An optical apparatus comprising the variable magnification optical system according to any one of claims 1 to 18 . 光軸に沿って物体側から順に、正屈折力の第1レンズ群と、負屈折力の第2レンズ群と、正屈折力の第3レンズ群と、正屈折力の第4レンズ群と、第5レンズ群とを有する変倍光学系の製造方法であって、
変倍時に、隣り合う各レンズ群の間隔が変化し、
変倍時に、最も像側のレンズ群は、像面に対して固定され、
広角端状態から望遠端状態への変倍時に、前記第1レンズ群は物体側へ移動し、
合焦時に、前記第3レンズ群は光軸に沿って移動し、
以下の条件式を満足するように、レンズ鏡筒内に各レンズを配置することを特徴とする変倍光学系の製造方法。
0.480 < f3/ft < 4.000
但し、
ft:望遠端状態における前記変倍光学系の焦点距離、
f3:前記第3レンズ群の焦点距離。
In order from the object side along the optical axis, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens group having a positive refractive power; A variable magnification optical system manufacturing method having a fifth lens group,
During zooming, the distance between adjacent lens groups changes,
At the time of zooming, the lens group closest to the image side is fixed with respect to the image plane ,
When zooming from the wide-angle end state to the telephoto end state, the first lens group moves toward the object side,
During focusing, the third lens group moves along the optical axis,
A variable magnification optical system manufacturing method, wherein each lens is arranged in a lens barrel so as to satisfy the following conditional expression:
0.480 <f3 / ft <4.0000
However,
ft: focal length of the variable magnification optical system in the telephoto end state,
f3: focal length of the third lens group.
JP2014087085A 2014-04-21 2014-04-21 Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method Active JP6265022B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2014087085A JP6265022B2 (en) 2014-04-21 2014-04-21 Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
CN201910171013.8A CN110058391B (en) 2014-04-21 2015-04-16 Variable magnification optical system and optical apparatus
PCT/JP2015/002101 WO2015162883A1 (en) 2014-04-21 2015-04-16 Variable power optical system, optical device, and method for manufacturing variable power optical system
CN201580030859.XA CN106461921B (en) 2014-04-21 2015-04-16 Variable-power optical system and optical device
US15/299,451 US10451858B2 (en) 2014-04-21 2016-10-20 Zoom optical system, optical device and method for manufacturing the zoom optical system
US16/563,814 US11385446B2 (en) 2014-04-21 2019-09-06 Zoom optical system, optical device and method for manufacturing the zoom optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014087085A JP6265022B2 (en) 2014-04-21 2014-04-21 Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method

Publications (2)

Publication Number Publication Date
JP2015206890A JP2015206890A (en) 2015-11-19
JP6265022B2 true JP6265022B2 (en) 2018-01-24

Family

ID=54603729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014087085A Active JP6265022B2 (en) 2014-04-21 2014-04-21 Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method

Country Status (1)

Country Link
JP (1) JP6265022B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7179594B2 (en) * 2018-11-29 2022-11-29 キヤノン株式会社 Zoom lens and imaging device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527172A (en) * 1991-07-19 1993-02-05 Konica Corp Zoom lens
JP3376143B2 (en) * 1994-12-21 2003-02-10 キヤノン株式会社 Zoom lens
JP5115834B2 (en) * 2007-03-05 2013-01-09 株式会社ニコン Zoom lens, optical apparatus, and imaging method
JP5565649B2 (en) * 2009-02-20 2014-08-06 株式会社ニコン Variable magnification optical system and optical apparatus equipped with the variable magnification optical system
KR101720770B1 (en) * 2009-12-15 2017-03-28 삼성전자주식회사 Lens Optical System and Digital Camera Module Comprising the Same
KR101739375B1 (en) * 2010-03-12 2017-05-24 삼성전자주식회사 Compact zoom lens
JP6128855B2 (en) * 2012-04-27 2017-05-17 オリンパス株式会社 Zoom lens and imaging apparatus using the same

Also Published As

Publication number Publication date
JP2015206890A (en) 2015-11-19

Similar Documents

Publication Publication Date Title
WO2015162883A1 (en) Variable power optical system, optical device, and method for manufacturing variable power optical system
JP5344291B2 (en) Zoom lens, optical device, and method of manufacturing zoom lens
JP5919840B2 (en) Zoom lens and optical device
JP5906759B2 (en) Zoom lens, optical device, and method of manufacturing zoom lens
JP2017068116A (en) Zoom lens, optical device, and method for manufacturing the zoom lens
JP6446820B2 (en) Magnification optical system and optical equipment
JP6627915B2 (en) Variable power optical system and optical equipment
WO2015079679A1 (en) Zoom lens, optical device, and production method for zoom lens
JP6265022B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP6446821B2 (en) Magnification optical system and optical equipment
JP2010091836A (en) Zoom lens and optical equipment mounted with the same, and manufacturing method
JP5333903B2 (en) Zoom lens and optical equipment
JP6635180B2 (en) Variable power optical system and optical equipment
JP6620400B2 (en) Zoom lens and optical device
JP6451074B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6337565B2 (en) Variable magnification optical system and imaging apparatus
JPWO2016194811A1 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
WO2020136745A1 (en) Variable power optical system, optical device, and method for manufacturing variable power optical system
WO2020136746A1 (en) Variable power optical system, optical device, and method for manufacturing variable power optical system
WO2020136744A1 (en) Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
JP2016156902A (en) Zoom lens, optical device, and method for manufacturing zoom lens
JP2016156903A (en) Zoom lens, optical device, and method for manufacturing zoom lens
JP6311433B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6364930B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6398292B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171211

R150 Certificate of patent or registration of utility model

Ref document number: 6265022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250