JP2015190737A - heat source device - Google Patents

heat source device Download PDF

Info

Publication number
JP2015190737A
JP2015190737A JP2014070188A JP2014070188A JP2015190737A JP 2015190737 A JP2015190737 A JP 2015190737A JP 2014070188 A JP2014070188 A JP 2014070188A JP 2014070188 A JP2014070188 A JP 2014070188A JP 2015190737 A JP2015190737 A JP 2015190737A
Authority
JP
Japan
Prior art keywords
hot water
temperature
water supply
heat source
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014070188A
Other languages
Japanese (ja)
Other versions
JP6228880B2 (en
Inventor
翼 内山
Tsubasa Uchiyama
翼 内山
孝二 筒井
Koji Tsutsui
孝二 筒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gastar Co Ltd
Original Assignee
Gastar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gastar Co Ltd filed Critical Gastar Co Ltd
Priority to JP2014070188A priority Critical patent/JP6228880B2/en
Publication of JP2015190737A publication Critical patent/JP2015190737A/en
Application granted granted Critical
Publication of JP6228880B2 publication Critical patent/JP6228880B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable hot water to be supplied from a main heat source at a stable hot water supply temperature through an auxiliary heat source device.SOLUTION: The present invention provides a function of supplying hot water which is sent from a hot water storage tank to a water heater through a hot water circuit of the water heater. Upon starting of hot water supply, heating control means 47 of the water heater starts heating of a hot water supply burner. On the basis of a heating amount, capacity, and hot water temperature of a hot water heat exchanger provided at the hot water circuit. a temperature of hot water introduced in the hot water circuit is calculated by hot water temperature calculation value detecting means 72 as a hot water temperature calculation value. On the basis of a temperature increase of the hot water temperature calculation value, when, for example, the difference between the hot water temperature calculation value and a hot water temperature for control, which is obtained on the basis of the hot water temperature calculation value, reaches a reference value, hot water of the prescribed hot water temperature from the hot water storage tank is judged to reach the water heater and introduced therein, thereby stopping the heating of the hot water supply burner.

Description

本発明は、主熱源と補助熱源装置とを備えた熱源装置に関するものである。   The present invention relates to a heat source device including a main heat source and an auxiliary heat source device.

主熱源としての貯湯槽を備えた熱源装置が用いられており(例えば、特許文献1、参照)、図3には、開発中の熱源装置が模式的なシステム構成図により示されている。同図において、貯湯槽2と湯の通路9とを備えたタンクユニット4が、熱回収用通路3を介して燃料電池(FC)1と熱的に接続されている。燃料電池1は、例えば固体高分子型燃料電池(PEFC)等により形成されており、水の電気分解の逆反応で、都市ガス等の燃料から取り出された水素と空気中の酸素とを反応させて発電する発電装置である。   A heat source device including a hot water storage tank as a main heat source is used (see, for example, Patent Document 1), and FIG. 3 shows a heat source device under development by a schematic system configuration diagram. In the figure, a tank unit 4 having a hot water tank 2 and a hot water passage 9 is thermally connected to a fuel cell (FC) 1 through a heat recovery passage 3. The fuel cell 1 is formed of, for example, a polymer electrolyte fuel cell (PEFC) or the like, and reacts hydrogen extracted from fuel such as city gas with oxygen in the air by reverse reaction of water electrolysis. It is a power generation device that generates electricity.

熱回収用通路3は、燃料電池1と貯湯槽2との間で液体(ここでは湯水)を図の矢印Aおよび矢印A’に示されるように循環させる通路であり、熱回収用通路3には、熱回収用通路3内に液体を循環させる図示されていないポンプが設けられている。そして、該ポンプの駆動により、貯湯槽2内の水を図の矢印A’に示すように熱回収用通路3を通して燃料電池1に導入して冷却水とし、この水を燃料電池1の発電時に生じる廃熱によって加熱した後、図の矢印Aに示すように熱回収用通路3を通し、例えば60℃といった温度の湯として貯湯槽2に蓄積する。なお、熱回収用通路3には、三方弁6を介してバイパス通路7が設けられ、燃料電池1側から貯湯槽2側へ流れる液体を、必要に応じて貯湯槽2を通さずに燃料電池1に戻すことができるように形成されている。   The heat recovery passage 3 is a passage that circulates liquid (here, hot water) between the fuel cell 1 and the hot water tank 2 as indicated by arrows A and A ′ in the figure. Is provided with a pump (not shown) for circulating the liquid in the heat recovery passage 3. Then, by driving the pump, the water in the hot water tank 2 is introduced into the fuel cell 1 through the heat recovery passage 3 as shown by an arrow A ′ in the figure to be cooling water, and this water is used when the fuel cell 1 generates power. After being heated by the generated waste heat, it passes through the heat recovery passage 3 as indicated by an arrow A in the figure, and accumulates in the hot water tank 2 as hot water having a temperature of 60 ° C., for example. The heat recovery passage 3 is provided with a bypass passage 7 through a three-way valve 6 so that the liquid flowing from the fuel cell 1 side to the hot water tank 2 side can be passed through the fuel cell without passing through the hot water tank 2 as necessary. It is formed so that it can be returned to 1.

貯湯槽2には、貯湯槽2内または貯湯槽2の外側壁に、貯湯槽2内の湯の温度を検出する貯湯槽内湯水温検出手段5が、貯湯槽2の上下方向に互いに間隔を介して複数(図3では5個)設けられている。なお、最上位に設けられている貯湯槽内湯水温検出手段5aは、貯湯槽2の上端よりも予め定められた設定長さだけ下側の位置、つまり、例えば貯湯槽2の上端まで湯が満たされた場合よりも20リットル少ない湯量の湯が貯湯槽2内に導入された場合の湯面の位置に設けられている。   In the hot water tank 2, hot water temperature detecting means 5 in the hot water tank 2 for detecting the temperature of the hot water in the hot water tank 2 is provided in the hot water tank 2 or on the outer wall of the hot water tank 2 with a space therebetween in the vertical direction of the hot water tank 2. A plurality (five in FIG. 3) are provided. The hot water temperature detection means 5a in the hot water tank provided at the top is filled with hot water up to a position lower than the upper end of the hot water tank 2 by a predetermined set length, that is, for example, to the upper end of the hot water tank 2. The amount of hot water 20 liters less than that of the hot water is provided at the position of the hot water surface when the hot water tank 2 is introduced.

貯湯槽2の上部側に接続されている湯の通路9は、貯湯槽2で形成された湯を出湯する(送水する)通路と成しており、湯の通路9には、湯の通路9を通る湯の温度を検出する貯湯槽出湯水温検出手段11と、湯の通路9を通して送水される湯の量を可変するタンク湯水混合器12と、湯の通路9を通しての湯の送水の有無を弁の開閉により切り替えるパイロット方式のタンク側電磁弁13とが設けられている。なお、同図には示されていないが、貯湯槽2を備えた熱源装置には、貯湯槽2内の圧力が許容圧力を超えたときに該圧力を外部に逃がすための過圧逃がし弁が適宜の位置(例えば湯の通路9に接続された圧力逃がし用の通路等)に設けられている。   The hot water passage 9 connected to the upper side of the hot water tank 2 is a passage for discharging (water feeding) the hot water formed in the hot water tank 2, and the hot water passage 9 includes a hot water passage 9. A hot water tank outlet hot water temperature detecting means 11 for detecting the temperature of hot water passing through the tank, a tank hot water mixer 12 for changing the amount of hot water sent through the hot water passage 9, and whether or not hot water is supplied through the hot water passage 9. A pilot-type tank-side electromagnetic valve 13 that is switched by opening and closing the valve is provided. Although not shown in the figure, the heat source device having the hot water tank 2 has an overpressure relief valve for releasing the pressure to the outside when the pressure in the hot water tank 2 exceeds the allowable pressure. It is provided at an appropriate position (for example, a pressure relief passage connected to the hot water passage 9).

また、この熱源装置への給水通路8は給水通路8aと給水通路8bとに分岐され、一方側の給水通路8(8a)が貯湯槽2の下部側に接続されて、他方側の給水通路8(8b)は、合流部10で湯の通路9に合流するように形成されている。給水通路8bには、給水通路8bから合流部10側へ流れる水の量を可変するための水混合器14が設けられている。この熱源装置においては、前記合流部10で合流される湯と水とを混合するミキシング手段が、水混合器14と前記タンク湯水混合器12とを有して形成されており、図3はシステム構成図であるために水混合器14とタンク湯水混合器12とが離れた位置に記されているが、これらは、合流部10の付近に設けられていてもよい。また、給水通路8は上水道に接続される。   Further, the water supply passage 8 to the heat source device is branched into a water supply passage 8a and a water supply passage 8b, one water supply passage 8 (8a) is connected to the lower side of the hot water tank 2, and the other water supply passage 8 is connected. (8b) is formed so as to join the hot water passage 9 at the joining portion 10. The water supply passage 8b is provided with a water mixer 14 for changing the amount of water flowing from the water supply passage 8b to the merging portion 10 side. In this heat source device, the mixing means for mixing the hot water and water joined at the junction 10 is formed with a water mixer 14 and the tank hot water mixer 12, and FIG. Since it is a block diagram, the water mixer 14 and the tank hot-water mixer 12 are shown at positions separated from each other, but they may be provided near the junction 10. The water supply passage 8 is connected to the water supply.

なお、図3において、前記燃料電池1から貯湯槽2側に送られる湯の流路と貯湯槽2から湯の通路9を通して合流部10側に流れる湯の流路にはドットを記している。合流部10には、補助熱源装置としての給湯器16の湯水導入側が、湯水導入通路15を介して接続されており、湯水導入通路15には混合サーミスタ28(28a,28b)が設けられている。そして、図3の矢印Bに示されるように貯湯槽2から湯の通路9を通して送水される(タンクユニット4から送水される)湯は、同図の矢印B”に示されるように湯水導入通路15を介して給湯器16の給湯回路62に導入される。   In FIG. 3, dots are marked on the flow path of hot water sent from the fuel cell 1 to the hot water tank 2 side and the flow path of hot water flowing from the hot water tank 2 through the hot water passage 9 to the junction 10 side. A hot water introduction side of a water heater 16 as an auxiliary heat source device is connected to the junction 10 via a hot water introduction passage 15, and a mixed thermistor 28 (28 a, 28 b) is provided in the hot water introduction passage 15. . Then, the hot water fed from the hot water tank 2 through the hot water passage 9 as shown by the arrow B in FIG. 3 (water fed from the tank unit 4) is passed through the hot water introduction passage as shown by the arrow B ″ in FIG. 15 is introduced into the hot water supply circuit 62 of the hot water heater 16.

給湯器16の給湯回路62は、燃焼室66内に設けられている給湯バーナ61の燃焼熱により加熱される給湯熱交換器17を備えており、同図には図示されていないが、例えば給湯バーナ61をガスバーナにより形成する場合、給湯バーナ61に燃料ガスを供給するガス供給通路が設けられ、ガス供給通路にはガス供給通路を通しての給湯バーナ61への供給の有無を制御するガス開閉弁(ガス電磁弁)とその供給量を調節するためのガス比例弁とが設けられる。また、その他にも給湯バーナ61への空気の給排気を行う燃焼ファン等の適宜の構成要素(図示せず)が設けられ、その構成要素を制御することにより給湯熱交換器17の加熱制御が行われる。なお、給湯熱交換器17は潜熱回収用熱交換器を有していてもよいし有していなくてもよい。   The hot water supply circuit 62 of the hot water heater 16 includes a hot water supply heat exchanger 17 that is heated by the combustion heat of the hot water supply burner 61 provided in the combustion chamber 66. Although not shown in the figure, for example, hot water supply When the burner 61 is formed of a gas burner, a gas supply passage for supplying fuel gas to the hot water supply burner 61 is provided, and the gas supply passage has a gas on / off valve that controls whether or not the hot water supply burner 61 is supplied through the gas supply passage ( Gas solenoid valve) and a gas proportional valve for adjusting the supply amount thereof. In addition, appropriate components (not shown) such as a combustion fan for supplying and exhausting air to and from the hot water supply burner 61 are provided, and the heating control of the hot water supply heat exchanger 17 can be controlled by controlling these components. Done. The hot water supply heat exchanger 17 may or may not include a latent heat recovery heat exchanger.

給湯回路62の入口側の通路には流量検出手段42が設けられ、給湯熱交換器17の出側の通路には給湯回路62を通して給湯される湯の温度(給湯温度)を検出する給湯温度検出手段76が設けられている。給湯回路62の出側の通路18は接続手段20を介して給湯通路19に接続されており、流量検出手段42は、通路18と給湯通路19を通して給湯される給湯流量を検出する。   A flow rate detecting means 42 is provided in the passage on the inlet side of the hot water supply circuit 62, and the hot water temperature detection for detecting the temperature of the hot water supplied through the hot water supply circuit 62 (hot water temperature) in the outlet side passage of the hot water heat exchanger 17. Means 76 are provided. The passage 18 on the outlet side of the hot water supply circuit 62 is connected to the hot water supply passage 19 via the connection means 20, and the flow rate detection means 42 detects the flow rate of hot water supplied through the passage 18 and the hot water supply passage 19.

また、給湯回路62には、給湯回路62に導入される湯水を給湯熱交換器17に通さずに通路18側に導出するためのバイパス通路68が設けられ、バイパス通路68にはバイパス開閉弁としてのバイパス電磁弁69が設けられている。このバイパス電磁弁69の開閉によって、給湯回路62に導入される湯水の給湯熱交換器17側への流通割合とバイパス通路68側への流通割合とが予め定められる割合変化範囲内で制御される構成と成している。   Further, the hot water supply circuit 62 is provided with a bypass passage 68 for leading hot water introduced into the hot water supply circuit 62 to the passage 18 side without passing through the hot water supply heat exchanger 17. The bypass solenoid valve 69 is provided. By opening / closing the bypass electromagnetic valve 69, the flow rate of the hot water introduced into the hot water supply circuit 62 to the hot water supply heat exchanger 17 side and the flow rate to the bypass passage 68 side are controlled within a predetermined rate change range. Consists of composition.

例えばバイパス電磁弁69を完全に閉じると給湯回路62に導入された湯水を100%(または、ほぼ100%)給湯熱交換器17側に通すことができ、一方、パイパス電磁弁69を完全に開いた場合には、例えば給湯回路62に導入された湯水を給湯熱交換器17側とバイパス通路68側との比が1:3になるような割合で通すように形成されている。   For example, when the bypass solenoid valve 69 is completely closed, 100% (or almost 100%) of hot water introduced into the hot water supply circuit 62 can be passed to the hot water supply heat exchanger 17 side, while the bypass solenoid valve 69 is fully opened. In such a case, for example, the hot water introduced into the hot water supply circuit 62 is passed through at a ratio of 1: 3 between the hot water supply heat exchanger 17 side and the bypass passage 68 side.

この熱源装置は、湯の通路9側から給湯器16の給湯回路62に導入される湯を給湯熱交換器17で加熱(追い加熱)して給湯するする追い加熱給湯機能と、湯の通路9から給湯回路62に導入される湯を非加熱のまま給湯回路62を通して給湯先に給湯する非追い加熱給湯機能とを有している。給湯器16は、例えば追い加熱給湯機能の動作時には、バイパス弁69を閉じて給湯回路62に導入された湯を給湯熱交換器17側に通して加熱し、非追い加熱給湯機能の動作時にはバイパス弁69を開き、給湯回路62に導入された湯を主にバイパス通路68に通して給湯する。   The heat source device has a follow-up hot water supply function for heating (following heating) hot water introduced into the hot water supply circuit 62 of the hot water supply device 16 from the hot water passage 9 side and supplying hot water, and the hot water passage 9. From the hot water supply circuit 62 to the hot water supply destination through the hot water supply circuit 62 without heating. The hot water heater 16 closes the bypass valve 69 and heats the hot water introduced into the hot water supply circuit 62 through the hot water supply heat exchanger 17 side when the additional heating hot water supply function is operated, for example, and bypasses when the non-following hot water supply function is operated. The valve 69 is opened to supply hot water introduced into the hot water supply circuit 62 mainly through the bypass passage 68.

給湯器16の給湯回路62を通った湯は、前記追い加熱給湯機能により加熱されながら給湯回路62を通った湯も前記非追い加熱給湯機能により非加熱のまま給湯回路62を通った湯も、通路18と給湯通路19とを順に通って一つ以上の給湯先に給湯される。なお、同図には図示されていないが、給湯通路19の先端側には給湯栓が設けられており、この給湯栓を開くことにより、貯湯槽2に蓄えられていた湯が給水圧を受けて湯の通路9を通り、前記の如く、必要に応じて給水通路8bからの水と混合されたり、給湯器16により追い加熱されたり、あるいは水の混合や追い加熱なしにそのまま給湯される。   The hot water that has passed through the hot water supply circuit 62 of the water heater 16 is either hot water that has passed through the hot water supply circuit 62 while being heated by the follow-up heating hot water supply function, or hot water that has not been heated by the non-following heating hot water supply function. Hot water is supplied to one or more hot water supply destinations through the passage 18 and the hot water supply passage 19 in order. Although not shown in the figure, a hot water tap is provided at the distal end side of the hot water passage 19, and the hot water stored in the hot water storage tank 2 receives the hot water pressure by opening the hot water tap. As described above, the hot water passes through the hot water passage 9 and is mixed with water from the water supply passage 8b as necessary, or is heated by the hot water heater 16, or the hot water is supplied without being mixed or heated.

また、図3の図中、符号25は入水温度サーミスタ、符号26は燃料電池1から貯湯槽2へ導入される湯水温検出用のFC高温サーミスタ、符号27は貯湯槽2から燃料電池1側へ導出される湯水温検出用のFC低温サーミスタをそれぞれ示し、符号29は給水流量センサ、符号50は減圧弁、をそれぞれ示している。   In FIG. 3, reference numeral 25 denotes an incoming water temperature thermistor, reference numeral 26 denotes an FC high temperature thermistor for detecting hot water temperature introduced from the fuel cell 1 to the hot water tank 2, and reference numeral 27 denotes the hot water tank 2 to the fuel cell 1 side. The FC low temperature thermistors for detecting the hot and cold water temperatures are respectively shown. Reference numeral 29 denotes a feed water flow sensor, and reference numeral 50 denotes a pressure reducing valve.

図4には、図3に示したシステム構成における配管および構成要素の一部を省略または破線で示したシステム構成図が示されており、図4に示されるように、前記通路18には接続手段20を介して接続通路21の一端側が接続され、接続通路21の他端側は、熱回収用通路3において湯水を燃料電池1側から貯湯槽2側に通す通路の途中部に接続されている。また、熱回収用通路3において湯水を貯湯槽2側から燃料電池1側に通す通路の途中部と前記湯の通路9の先端側とを接続する接続通路22が設けられ、接続通路22には、湯水を循環させる循環ポンプ23と、水電磁弁24とが設けられている。   FIG. 4 shows a system configuration diagram in which some of the piping and components in the system configuration shown in FIG. 3 are omitted or shown by broken lines. As shown in FIG. One end side of the connection passage 21 is connected via the means 20, and the other end side of the connection passage 21 is connected to a middle portion of the passage through which the hot water passes from the fuel cell 1 side to the hot water tank 2 side in the heat recovery passage 3. Yes. In addition, a connection passage 22 is provided in the heat recovery passage 3 to connect a middle portion of a passage for passing hot water from the hot water storage tank 2 side to the fuel cell 1 side and a front end side of the hot water passage 9. A circulating pump 23 for circulating hot water and a water electromagnetic valve 24 are provided.

そして、通路18、接続通路21、熱回収用通路3のうちの通路3a、3b(接続通路21との接続部および接続通路22との接続部よりも貯湯槽2側の領域の一部)と、バイパス通路7、接続通路22、湯水導入通路15を有して、同図の矢印Cに示されるように湯水を循環させる湯水循環通路40が形成されている。水電磁弁24は、循環ポンプ23の駆動による湯水循環通路40への水の循環の有無を弁の開閉により切り替える電磁弁であり、水電磁弁24を開いた状態で循環ポンプ23を駆動させて湯水循環通路40を循環する湯水を、給湯器16が給湯熱交換器17により加熱する循環湯水加熱機能を有している。この循環湯水加熱機能の動作も、給湯器16の前記構成要素を制御することにより行われる。   Of the passage 18, the connection passage 21, and the heat recovery passage 3, the passages 3 a and 3 b (part of the region closer to the hot water tank 2 than the connection portion to the connection passage 21 and the connection portion to the connection passage 22) Further, a hot water circulation passage 40 that has the bypass passage 7, the connection passage 22, and the hot water introduction passage 15 and circulates the hot water as shown by an arrow C in the figure is formed. The water electromagnetic valve 24 is an electromagnetic valve that switches the presence or absence of water circulation to the hot water circulation passage 40 by driving the circulation pump 23 by opening and closing the valve. The water electromagnetic valve 24 is opened to drive the circulation pump 23. The hot water supply device 16 has a circulating hot water heating function in which the hot water supply device 16 heats the hot water circulating through the hot water circulation passage 40 by the hot water supply heat exchanger 17. The operation of the circulating hot water heating function is also performed by controlling the components of the water heater 16.

なお、図4において、加熱により温められた湯水が主に通る通路部分にはドットを記しており、湯水循環通路40においては温められた湯の温度が湯水循環通路40内を通るときに徐々に冷めていくが、湯水循環通路40のうち給湯器16の湯水導出側の通路18からバイパス通路7の入口までの領域にドットを記している。また、図4においては、貯湯槽2側から出湯される湯の通路9(合流部10に至る通路)にもドットを記している。   In FIG. 4, dots are marked in a passage portion through which hot water heated by heating mainly passes, and gradually in the hot water circulation passage 40, the temperature of the heated hot water gradually passes through the hot water circulation passage 40. Although it cools, dots are marked in the hot water circulation passage 40 in the region from the hot water outlet side passage 18 of the water heater 16 to the inlet of the bypass passage 7. In FIG. 4, dots are also marked on the hot water passage 9 (passage leading to the junction 10) discharged from the hot water tank 2 side.

また、図3、図4に示す熱源装置には、図示されていない制御装置が設けられており、制御装置には、タンク湯水混合器12を制御して湯の通路9から合流部10側に流れる湯の流量を制御すると共に、水混合器14を制御して給水通路8bから合流部10側に流れる水の流量を制御し、合流部10で適宜の温度の混合湯水が形成されるようにするミキシング流量制御手段が設けられている。   Further, the heat source device shown in FIGS. 3 and 4 is provided with a control device (not shown). The control device controls the tank hot water / water mixer 12 from the hot water passage 9 to the junction 10 side. In addition to controlling the flow rate of flowing hot water, the water mixer 14 is controlled to control the flow rate of water flowing from the water supply passage 8b to the merging portion 10 so that mixed hot water having an appropriate temperature is formed at the merging portion 10. Mixing flow rate control means is provided.

このミキシング流量制御手段は、給湯停止時には例えばタンク側電磁弁13を閉じて湯の通路9から合流部10側に流れる湯(貯湯槽2から出湯される湯)の流量がゼロとなる状態にする。そして、給湯通路19の先端側に設けられている給湯栓が開かれると水の流れが給水流量センサ29により検出されるので、ミキシング流量制御手段は、その検出信号を受けてタンク側電磁弁13を開け、タンク湯水混合器12の制御により、図3の矢印Bに示されるように湯の通路9から合流部10側に流れる湯の流量を調節すると共に、水混合器14の制御により、図3の矢印B’に示されるように給水通路8bから合流部10側に流れる水の流量を調節し、合流部10で形成される混合湯水の温度が例えば給湯設定温度と同程度に設定される混合設定温度になるようにする。   This mixing flow rate control means closes the tank side solenoid valve 13 when hot water supply is stopped, for example, so that the flow rate of hot water (hot water discharged from the hot water storage tank 2) flowing from the hot water passage 9 to the junction 10 side becomes zero. . Then, when the hot water tap provided at the front end side of the hot water supply passage 19 is opened, the flow of water is detected by the water supply flow rate sensor 29, so that the mixing flow rate control means receives the detection signal and receives the detection signal. 3, the flow rate of hot water flowing from the hot water passage 9 to the merging portion 10 side is adjusted by the control of the tank hot water mixer 12 as shown by the arrow B in FIG. 3, the flow rate of the water flowing from the water supply passage 8b to the merging portion 10 side is adjusted, and the temperature of the mixed hot water formed in the merging portion 10 is set to the same level as, for example, the hot water supply set temperature. Set to the mixed set temperature.

なお、貯湯槽2内に貯湯されている湯水には、例えば図5の模式図に示されるような温度の層Wa、Wb、Wcが形成されるものであり、貯湯槽2の上部側の層(高温層)Waには燃料電池1の発電時に生じる廃熱によって加熱された高温Ta(例えば60℃)の湯が貯湯され、貯湯槽2の下部側の層(低温層)Wcには貯湯槽2内に給水される給水温度と同じ温度Tc(例えば15℃)の水が貯水されており、その間に、温度Taから温度Tcまでの急な温度勾配を持つ層(温度中間層)Wbがある。したがって、層Waの湯が無くなると湯の代わりに冷たい水が湯の通路9から送水されることがあるが、説明の都合上、特に断らない限り、湯の通路9からは湯が出湯されて前記合流部10に合流されるという表現を用いる。   Note that the hot water stored in the hot water tank 2 is formed with layers Wa, Wb, and Wc having temperatures as shown in the schematic diagram of FIG. (High temperature layer) Wa stores hot water of high temperature Ta (for example, 60 ° C.) heated by waste heat generated during power generation of the fuel cell 1, and a lower layer (low temperature layer) Wc of the hot water tank 2 stores a hot water tank. Water having the same temperature Tc (for example, 15 ° C.) as the temperature of the water supplied in 2 is stored, and there is a layer (temperature intermediate layer) Wb having a steep temperature gradient from temperature Ta to temperature Tc. . Therefore, when there is no hot water in the layer Wa, cold water may be sent from the hot water passage 9 instead of hot water. However, for convenience of explanation, hot water is discharged from the hot water passage 9 unless otherwise specified. The expression “merge to the junction 10” is used.

例えば図5に示されるように、貯湯槽2内の湯水において、例えば層Waと層Wbとの境界が貯湯槽内湯水温検出手段5aの配設領域よりも下にあり、貯湯槽内湯水温検出手段5aの検出温度が給湯設定温度より例えば5℃高く設定される閾値より高い温度のときには、貯湯槽2から出湯される湯の温度は例えば60℃といったほぼ一定の値である。   For example, as shown in FIG. 5, in the hot water in the hot water tank 2, for example, the boundary between the layer Wa and the layer Wb is below the area where the hot water temperature detecting means 5a in the hot water tank is provided, and the hot water temperature detecting means in the hot water tank When the detected temperature 5a is higher than a threshold value set higher than the hot water supply set temperature by 5 ° C., for example, the temperature of the hot water discharged from the hot water tank 2 is a substantially constant value such as 60 ° C., for example.

そこで、前記ミキシング流量制御手段は、混合サーミスタ28(28a,28b)の検出温度と混合設定温度との差に基づいて(偏差に応じ)、混合サーミスタ28(28a,28b)の検出温度が混合設定温度になるようにタンク湯水混合器12と水混合器14を制御することによって、湯の通路9から合流部10側に流れる湯の流量と給水通路8bから合流部10側に流れる水の流量とを調節する制御を行う。なお、ミキシング流量制御手段は、ミキシング流量制御に際し、フィードフォワード制御を行わずにフィードバック制御のみを行うようにしてもよい。   Therefore, the mixing flow rate control means sets the detected temperature of the mixed thermistor 28 (28a, 28b) based on the difference between the detected temperature of the mixed thermistor 28 (28a, 28b) and the set mixing temperature (according to the deviation). By controlling the tank hot water mixer 12 and the water mixer 14 so as to reach a temperature, the flow rate of hot water flowing from the hot water passage 9 to the merge portion 10 side and the flow rate of water flowing from the water supply passage 8b to the merge portion 10 side Control to adjust. Note that the mixing flow rate control means may perform only the feedback control without performing the feedforward control in the mixing flow rate control.

そして、このようなキシング流量制御手段による制御によって、合流部10で形成される混合湯水の温度が混合設定温度(例えば給湯設定温度と同じ温度またはその近傍温度)とされると、その混合湯水は、図3の矢印B”に示されるように、合流部10から湯水導入通路15を通して給湯器16に導入されるが、このとき、給湯器16において給湯熱交換器17による加熱は行われずに(前記非加熱給湯機能の動作によって)、通路18と給湯通路19を通して給湯先に給湯される。   When the temperature of the mixed hot water formed in the merging portion 10 is set to the mixed set temperature (for example, the same temperature as the hot water supply set temperature or a temperature close thereto) by the control by the kissing flow rate control means, the mixed hot water is As shown by the arrow B ″ in FIG. 3, the hot water is introduced into the hot water heater 16 through the hot water introduction passage 15 from the junction 10, but at this time, the hot water heater 16 is not heated by the hot water heat exchanger 17 ( Hot water is supplied to the hot water supply destination through the passage 18 and the hot water supply passage 19 by the operation of the non-heating hot water supply function.

一方、貯湯槽内湯水温検出手段5aの検出温度が前記閾値以下であり、ミキシング流量制御手段による流量制御のみでは、給湯設定温度と同等の温度に設定される混合設定温度の湯を給湯することができない場合には、例えば混合設定温度を給湯設定温度より低い温度に設定する。一例として、混合設定温度を給湯設定温度から給湯器16のMIN号数(最小燃焼号数)で給湯流量の水を加熱したときに上昇する温度分を差し引いた値まで下げ、その混合湯水を給湯器16の前記追い加熱給湯機能の動作によって給湯熱交換器17により加熱することにより給湯設定温度の湯が作り出され、この湯が通路18と給湯通路19を通して給湯先に給湯される。   On the other hand, the detected temperature of the hot water temperature detecting means 5a in the hot water tank is below the threshold value, and hot water having a mixed set temperature set to a temperature equivalent to the hot water set temperature can be supplied only by the flow rate control by the mixing flow rate control means. If it is not possible, for example, the mixing set temperature is set to a temperature lower than the hot water supply set temperature. As an example, the mixing set temperature is lowered from the hot water supply setting temperature to a value obtained by subtracting the temperature that rises when water at the hot water supply flow rate is heated at the MIN number (minimum combustion number) of the water heater 16, and the mixed hot water is supplied Hot water having a hot water supply set temperature is produced by heating by the hot water supply heat exchanger 17 by the operation of the additional heating hot water supply function of the water heater 16, and this hot water is supplied to the hot water supply destination through the passage 18 and the hot water supply passage 19.

なお、従来の貯湯槽2を備えた熱源装置においては、タンクユニット4と給湯器16とが隣接配置されたタイプ(一体型)の熱源装置が用いられていたが、開発中の熱源装置は、タンクユニット4と給湯器16と燃料電池1とをそれぞれ個別に配置し、互いに配管により接続する個別配置型の熱源装置も可能とするものである。このようにすると、例えば複数種あるタンクユニット4のうち、利用者が必要な容量の貯湯槽2を備えたタンクユニット4を選択し、そのタンクユニット4と、複数種ある給湯器16のうち選択された給湯器16と、複数種ある燃料電池1のうち選択された燃料電池1とを組み合わせるといったことができ、バリエーションを増やすことができる。   In addition, in the heat source device provided with the conventional hot water storage tank 2, the type (integrated type) heat source device in which the tank unit 4 and the water heater 16 are disposed adjacent to each other is used, but the heat source device under development is The tank unit 4, the hot water heater 16, and the fuel cell 1 are individually arranged, and an individual arrangement type heat source device in which the tank unit 4, the water heater 16, and the fuel cell 1 are connected to each other by piping is also possible. If it does in this way, the tank unit 4 provided with the hot water storage tank 2 of the capacity | capacitance which a user requires among several types of tank units 4 will be selected, for example, and it will select among the tank units 4 and multiple types of water heaters The water heater 16 thus made and the fuel cell 1 selected from the plural types of fuel cells 1 can be combined, and variations can be increased.

また、前記のような個別配置型の熱源装置は、既設の給湯器16にタンクユニット4等を接続して熱源装置を形成することもできるといったメリットもある。この場合、例えば給湯器16は建物の北側に配置されてタンクユニット4は建物の東側や西側に配置されるといったように、タンクユニット4と給湯器16とが離れて配置されることも想定されるが、そのような場合には、冬場等に、湯水導入通路15および接続通路21内の水が、給湯停止中に凍結することを防止するため等に、水電磁弁24を開いて循環ポンプ23を駆動させ、図4の矢印Cに示したように、湯水循環通路40に湯水を循環させながら給湯熱交換器17により加熱する前記循環湯水加熱機能の動作が適宜行われるような構成が必要になると考えられる。   Further, the individual arrangement type heat source device as described above has an advantage that the heat source device can be formed by connecting the tank unit 4 or the like to the existing water heater 16. In this case, it is assumed that the tank unit 4 and the water heater 16 are arranged apart from each other, for example, the water heater 16 is arranged on the north side of the building and the tank unit 4 is arranged on the east side or the west side of the building. However, in such a case, the water solenoid valve 24 is opened to prevent the water in the hot water introduction passage 15 and the connection passage 21 from freezing during the hot water supply stop in winter and the like. As shown by an arrow C in FIG. 4, the circulating hot water heating function for heating the hot water supply heat exchanger 17 while circulating hot water in the hot water circulation passage 40 is appropriately performed. It is thought that it becomes.

特許第3728265号公報Japanese Patent No. 3728265 特開平8−20113号公報Japanese Patent Laid-Open No. 8-20113

ところで、図3に示したような熱源装置において、貯湯槽2内に前記閾値以上の温度の湯が貯湯されている場合等、実質的に給湯設定温度以上(例えば湯が貯湯槽2から給湯器16を通って給湯先に給湯されるまでに冷える分以上、給湯設定温度よりも例えば0.5℃といった温度以上高い温度)の湯が貯湯されている場合には、貯湯槽2から給湯器16に送られる湯を非加熱で(給湯器16の給湯熱交換器17による追い加熱を行わずに)給湯することが可能であるが、このように貯湯槽2内の湯温が高い場合でも、熱源装置設置後の初めての給湯や、給湯停止から例えば8.5分以上といった時間が経過してからの再出湯時等のように湯水導入通路15や給湯器16内の管路が冷えている場合等は、これらの管路内の水を加熱することが必要となる。特に冬場では配管の冷えが激しいので前記給湯停止からの時間が3分以下であっても影響が大きい。   By the way, in the heat source device as shown in FIG. 3, when hot water having a temperature equal to or higher than the threshold value is stored in the hot water storage tank 2, the hot water temperature is substantially higher than the hot water supply set temperature (for example, hot water from the hot water storage tank 2 to the water heater In the case where hot water having a temperature that is higher than the hot water supply set temperature, for example, by a temperature higher than the hot water supply temperature, for example, by 0.5 ° C. or more, is stored. Although it is possible to supply hot water sent to the hot water without heating (without performing additional heating by the hot water supply heat exchanger 17 of the hot water heater 16), even when the hot water temperature in the hot water tank 2 is high in this way, The pipes in the hot water introduction passage 15 and the hot water heater 16 are cooled as in the case of the first hot water supply after the heat source device is installed, or when the hot water is stopped again after a time of, for example, 8.5 minutes or more has elapsed. In some cases, the water in these pipelines can be heated. The cornerstone. Especially in winter, the piping is very cold, so even if the time from the hot water supply stop is 3 minutes or less, the influence is great.

特に、湯水導入通路15が長い場合には、貯湯槽2から給湯器16に送られる湯が給湯器16に到達するまでの時間が長くなるため、利用者が給湯栓を開いてからなるべく早く給湯設定温度の湯を給湯するためには、給湯が開始されたときに給湯器16の給湯バーナ61を燃焼させて迅速に湯を形成して給湯することが、利用者の使い勝手を良好にするために必要となる。   In particular, when the hot water introduction passage 15 is long, it takes a long time for the hot water sent from the hot water storage tank 2 to the water heater 16 to reach the water heater 16, so the hot water is supplied as soon as possible after the user opens the hot water tap. In order to supply hot water at a set temperature, it is necessary to quickly form hot water by burning the hot water supply burner 61 of the water heater 16 when hot water supply is started, in order to improve user convenience. Is required.

一方、給湯器16に貯湯槽2から実質的に給湯設定温度の湯が到達したときには、給湯バーナ61の燃焼を停止しないと、加熱しなくてもよい湯を余分に加熱してしまうことになって給湯温度のオーバーシュートが生じてしまうため、給湯バーナ61の燃焼停止(消火)のタイミングを適切にすることも重要であると考えられる。なお、給湯時に、給湯設定温度よりも例えば8℃も高めの湯が出湯されると、利用者は不快な思いをすることになり、場合によっては軽い火傷の心配もあるため、このようなオーバーシュートの発生を防止することは重要な課題である。   On the other hand, when hot water having a hot water supply set temperature reaches the hot water heater 16 substantially from the hot water storage tank 2, unless the combustion of the hot water supply burner 61 is stopped, the hot water that does not need to be heated is excessively heated. Therefore, it is considered that it is important to make the timing of stopping (extinguishing) combustion of the hot water supply burner 61 appropriate. In addition, when hot water having a temperature higher than the hot water supply set temperature, for example, 8 ° C. is poured out, the user feels uncomfortable, and in some cases, there is a risk of light burns. Preventing the occurrence of shoots is an important issue.

しかしながら、タンクユニット4と給湯器16を個別に配置して配管により接続する個別配置型の熱源装置において、接続用の配管(例えば図3においては湯水導入通路15のうちのタンクユニット4と給湯器16との間の管路)の長さは施工毎に異なるために、熱源装置の制御装置が配管の長さを事前に把握することはできない。また、施工業者によって接続用の配管の長さを入力する構成を設けたとしても、施工業者が入力を忘れたり、正しい値を入力できなかったりすることも考えられるため、熱源装置が配管の長さを把握し、その長さに基づいて、貯湯槽2からの実質的に給湯設定温度の湯が給湯器16に到達するタイミングを適切に把握して給湯バーナ61の燃焼停止制御を行うことは困難となる。   However, in the individually arranged heat source device in which the tank unit 4 and the water heater 16 are individually arranged and connected by piping, the connecting piping (for example, the tank unit 4 and the water heater in the hot water introduction passage 15 in FIG. 3). Since the length of the pipe line (16) differs from construction to construction, the control device of the heat source device cannot grasp the length of the pipe in advance. In addition, even if the construction contractor provides a configuration that inputs the length of the pipe for connection, the contractor may forget to enter or not enter the correct value. It is understood that the combustion stop control of the hot water supply burner 61 is performed by appropriately grasping the timing at which hot water having a hot water supply set temperature from the hot water tank 2 reaches the hot water heater 16 based on the length of the hot water supply tank 16. It becomes difficult.

さらに、接続用の配管の設置場所や季節の違いや日照の有無等によって、配管内を通る湯水の温度に影響が及ぶため、たとえ接続用配管の長さを熱源装置の制御装置が正確に把握できたとしても、例えば接続用配管の長さが長い場合等に、その配管が冷えていて配管の配設空間温度に近い低温状態のときに給湯が開始された場合等には、合流部10で形成された実質的に給湯設定温度の湯が接続用配管を通過するときに熱を奪われてしまうことになり、給湯設定温度の湯が給湯器16に導入されるまでの時間は配管が温まるまでの時間も合わせた時間となるため、単純に接続用配管の長さに応じて給湯バーナ61の燃焼停止のタイミングを決定しても給湯温度を安定化できないことが考えられる。   In addition, the temperature of the hot water passing through the piping will be affected by the location of the piping for connection, the difference in season, the presence of sunlight, etc., so the control device of the heat source device accurately knows the length of the piping for connection. Even if it can be done, for example, when the length of the connecting pipe is long, or when the hot water supply is started when the pipe is cold and is in a low temperature state close to the temperature of the pipe, the junction 10 When the hot water having a hot water supply set temperature formed by the heat passes through the connection pipe, the heat is taken away, and the time until the hot water at the hot water set temperature is introduced into the water heater 16 is Since the time until warming is also combined, it is considered that the hot water supply temperature cannot be stabilized even if the combustion stop timing of the hot water supply burner 61 is simply determined according to the length of the connection pipe.

また、特許文献2に記載されているように、給湯器16に、入水温度をリアルタイムで検出せずに演算によって求める方式の給湯器を適用する場合には、入水温度(給水温度)の検出センサを省略できることからコストダウンを図れるメリットがある一方、演算により求めた入水温度に基づいて給湯器16の燃焼量を制御すると、実際の入水温度に基づく燃焼量制御方式に比べると入水温度に対応する燃焼量制御が遅れるために、その遅れを考慮した制御構成が重要となる。   In addition, as described in Patent Document 2, when a water heater having a method of calculating the incoming water temperature without detecting it in real time is applied to the hot water heater 16, a detection sensor for the incoming water temperature (feed water temperature). However, if the combustion amount of the water heater 16 is controlled based on the incoming water temperature obtained by calculation, it corresponds to the incoming water temperature as compared with the combustion amount control method based on the actual incoming water temperature. Since the combustion amount control is delayed, a control configuration considering the delay is important.

さらに、開発中の熱源装置において、タンクユニット4と給湯器16が個別に設置され、湯水導入通路15で結ばれている熱源装置においては、(ガスバーナの燃焼熱により加熱する加熱手段を持つが故に寿命が比較的短い)給湯器16が先に壊れても、給湯器16のみ交換すればシステムを維持できるという利点がある一方、新しい給湯器16を設置する業者は、例えば12年前に発売されたタンクユニット4に関する施工マニュアルを持ち合わせていない場合が多く、タンクユニット4と給湯器16が連携するような制御、すなわち、給湯器16を交換した際に、タンクユニット4側の設定を変更しなければばらないようなことは避ける必要性がある。   Furthermore, in the heat source device under development, in the heat source device in which the tank unit 4 and the water heater 16 are individually installed and connected by the hot water introduction passage 15 (because it has a heating means for heating by the combustion heat of the gas burner). Even if the hot water heater 16 breaks first, the system can be maintained if only the hot water heater 16 is replaced. On the other hand, a contractor who installs a new water heater 16 was released, for example, 12 years ago. In many cases, the construction manual for the tank unit 4 is not available, so that the tank unit 4 and the water heater 16 are linked to each other, that is, when the water heater 16 is replaced, the setting on the tank unit 4 side must be changed. There is a need to avoid things that don't go away.

さらに、給湯器16に隣接する隣家の状況に合わせて、新しい給湯器16の設置時に合わせて現在の設置場所と異なる場所に設置される場合や、新しい給湯器16を従来に比して給湯能力の高い機種(消費ガス量が大きくなるだけでなく、通水抵抗が低く最大出湯能力が高い機種)に変更されることも考慮しなければならない。つまり、このような給湯能力の高い機種は、補助熱源装置内を流れる流速が速くなるので、この速さに追従させられるように、前記給湯バーナ61の燃焼停止タイミングを制御する必要がある。   Furthermore, according to the situation of the neighbor next to the hot water heater 16, when the new hot water heater 16 is installed at a location different from the current installation location, or when the new hot water heater 16 is installed compared to the conventional hot water supply capacity. It must also be considered that the model will be changed to a model with a higher capacity (a model that not only increases the amount of gas consumed but also has a low resistance to water flow and a high maximum hot water discharge capacity). That is, in such a model having a high hot water supply capacity, the flow velocity flowing in the auxiliary heat source device becomes high, and therefore it is necessary to control the combustion stop timing of the hot water supply burner 61 so as to follow this speed.

本発明は、上記課題を解決するためになされたものであり、その目的は、主熱源の出湯先端側(下流側)に設けた補助熱源装置に実質的に給湯設定温度の湯を送って給湯する際の給湯温度の安定化を図ることができる熱源装置を提供することにあり、例えば補助熱源装置が買い換え等により変更された場合でも前記給湯温度の安定化に支障が生じないようにすることである。   The present invention has been made to solve the above-mentioned problems, and its purpose is to send hot water at a substantially hot water supply set temperature to an auxiliary heat source device provided on the hot water discharge tip side (downstream side) of the main heat source. To provide a heat source device that can stabilize the hot water supply temperature when the hot water supply is performed. For example, even when the auxiliary heat source device is changed by replacement, the stabilization of the hot water supply temperature is prevented. It is.

本発明は上記目的を達成するために、次の構成をもって課題を解決する手段としている。すなわち、第1の発明は、主熱源から出湯される湯の通路の下流側に、給湯熱交換器を備えた補助熱源装置の給湯回路の湯水導入側が接続されて前記主熱源から前記補助熱源装置に送られる湯を該補助熱源装置の前記給湯回路を通して給湯する機能を有し、前記補助熱源装置には、前記給湯熱交換器を加熱する給湯バーナと、該給湯バーナの燃焼制御を行う燃焼制御手段と、前記給湯回路を通して給湯される湯の温度を検出する給湯温度検出手段と、該給湯温度検出手段により検出される給湯温度と給湯熱交換器の容量と該給湯熱交換器の加熱量とに基づいて補助熱源装置に導入される湯水の温度を給水温度演算値として演算により求める給水温度演算値算出手段とを有し、給湯が開始されたときに前記補助熱源装置の前記燃焼制御手段が前記給湯バーナの燃焼を開始させ、前記給水温度演算値算出手段により求められる前記給水温度演算値をモニタして該給水温度演算値の温度上昇に基づき前記主熱源から前記給湯設定温度の湯が前記補助熱源装置に到達して導入されたと判断されたときに前記給湯バーナの燃焼を停止する構成をもって課題を解決するための手段としている。   In order to achieve the above object, the present invention has the following configuration as means for solving the problems. That is, according to the first aspect of the present invention, a hot water introduction side of a hot water supply circuit of an auxiliary heat source device provided with a hot water supply heat exchanger is connected to a downstream side of a hot water passage discharged from a main heat source, and the auxiliary heat source device is connected to the main heat source. A hot water supply burner for heating the hot water supply heat exchanger and a combustion control for controlling the combustion of the hot water supply burner. Means, hot water temperature detecting means for detecting the temperature of hot water supplied through the hot water supply circuit, hot water temperature detected by the hot water temperature detecting means, capacity of the hot water heat exchanger, and heating amount of the hot water heat exchanger, Water temperature calculation value calculation means for calculating the temperature of hot water introduced into the auxiliary heat source device as a water supply temperature calculation value based on the above, and the combustion control means of the auxiliary heat source device when the hot water supply is started Previous Combustion of the hot water supply burner is started, the water supply temperature calculation value obtained by the water supply temperature calculation value calculation means is monitored, and hot water at the hot water supply set temperature is supplied from the main heat source based on the temperature rise of the water supply temperature calculation value. A structure for stopping combustion of the hot water supply burner when it is determined that the heat source apparatus has been introduced after reaching the heat source device is used as means for solving the problem.

また、第2の発明は、前記第1の発明の構成に加え、前記給水温度演算値算出手段により求められる給水温度演算値と予め定められる温度変化量とに基づき燃焼制御手段による給湯バーナ燃焼制御用の制御用給水温度を求める制御用給水温度算出手段を有し、燃焼制御手段は、前記給水温度演算値から前記制御用給水温度を差し引いた温度差が予め定められる燃焼停止基準温度差に達したとき又は超えたときに主熱源から給湯設定温度の湯が補助熱源装置に導入されたと判断する構成をもって課題を解決するための手段としている。   Further, in the second invention, in addition to the configuration of the first invention, the hot water burner combustion control by the combustion control means based on the feed water temperature calculation value obtained by the feed water temperature calculation value calculation means and a predetermined temperature change amount. A control feed water temperature calculating means for obtaining a control feed water temperature for combustion, and the combustion control means reaches a predetermined combustion stop reference temperature difference by subtracting the control feed water temperature from the feed water temperature calculation value. When the temperature has been exceeded or exceeded, a configuration for determining that hot water at a hot water supply set temperature has been introduced from the main heat source into the auxiliary heat source device is used as means for solving the problem.

さらに、第3の発明は、前記第2の発明の構成に加え、前記燃焼停止基準温度差は給湯設定温度から制御用給水温度を差し引いた差を予め定められる失火係数で調整した値とした構成をもって課題を解決するための手段としている。   Further, in the third invention, in addition to the structure of the second invention, the combustion stop reference temperature difference is a value obtained by adjusting a difference obtained by subtracting the control water supply temperature from the hot water supply set temperature with a predetermined misfire coefficient. It is a means to solve the problem.

さらに、第4の発明は、前記第1または第2または第3の発明の構成に加え、前記補助熱源装置の給湯回路には該給湯回路に導入される湯水を給湯熱交換器には通さずに出湯するバイパス通路が設けられており、該バイパス通路にはバイパス開閉弁が設けられて、前記給湯回路に導入される湯水の前記給湯熱交換器側への流通割合と前記バイパス通路側への流通割合とが前記バイパス開閉弁の開閉により予め定められる割合変化範囲内で制御される構成と成し、給湯バーナを停止した以降は前記バイパス通路側への流通割合が前記割合変化範囲内で最大となるように前記バイパス開閉弁を制御するバイパス開閉弁制御手段を有することを特徴とする。   Furthermore, in the fourth aspect of the invention, in addition to the configuration of the first, second or third aspect of the invention, hot water introduced into the hot water supply circuit is not passed through the hot water supply heat exchanger in the hot water supply circuit of the auxiliary heat source device. A bypass passage for supplying hot water is provided, and a bypass opening / closing valve is provided in the bypass passage so that a distribution ratio of hot water introduced into the hot water supply circuit to the hot water heat exchanger side and to the bypass passage side are provided. The flow rate is controlled within a predetermined rate change range by opening and closing of the bypass on-off valve, and after the hot water supply burner is stopped, the flow rate to the bypass passage side is the maximum within the rate change range. It is characterized by having a bypass on-off valve control means for controlling the bypass on-off valve.

さらに、第5の発明は、前記第1乃至第4のいずれか一つに記載の発明の構成に加え、前記給湯バーナを停止した直後の給湯温度が前記給湯バーナの停止直前の給湯設定温度よりも予め定められる給湯再開基準温度以上低下したときには燃焼制御手段により前記給湯バーナの燃焼を再開させる給湯バーナ燃焼再開指令手段が設けられていることを特徴とする。   Furthermore, in addition to the structure of the invention described in any one of the first to fourth aspects, the fifth invention is such that the hot water supply temperature immediately after the hot water supply burner is stopped is higher than the hot water supply set temperature immediately before the hot water supply burner is stopped. Further, the present invention is characterized in that hot water supply burner combustion resumption command means is provided for resuming combustion of the hot water supply burner by combustion control means when the temperature falls below a predetermined hot water supply resumption reference temperature.

さらに、第6の発明は、前記第1乃至第5のいずれか一つの発明の構成に加え、前記主熱源は貯湯槽を有して該貯湯槽から出湯される湯の通路と給水通路とが合流する合流部が設けられ、該合流部で合流される前記湯の通路からの湯と前記給水通路からの水とを混合するミキシング手段と、該ミキシング手段により混合されて形成された湯を補助熱源装置に導入する湯水導入通路と、前記ミキシング手段を制御することにより前記合流部に流れる湯の流量と水の流量を制御するミキシング流量制御手段とを有することを特徴とする。   Furthermore, the sixth aspect of the invention, in addition to the configuration of any one of the first to fifth aspects of the invention, is that the main heat source has a hot water storage tank, and a hot water passage and a water supply passage discharged from the hot water storage tank are provided. A merging portion is provided to join, mixing means for mixing the hot water from the hot water passage and the water from the water supply passage to be joined at the merging portion, and assisting the hot water formed by mixing by the mixing means It has a hot water introduction passage to be introduced into the heat source device, and a mixing flow rate control means for controlling the flow rate of hot water and the flow rate of water flowing through the junction by controlling the mixing means.

本発明によれば、主熱源から出湯される湯の通路の下流側に給湯熱交換器を備えた補助熱源装置の給湯回路の湯水導入側を接続し、給湯が開始されたときに、補助熱源装置内の給湯バーナの燃焼を開始させて給湯熱交換器を加熱することにより、補助熱源装置の給湯回路内の湯水や主熱源と補助熱源装置とを接続する通路(管路)内の湯水が給湯設定温度より低い場合でも、その湯水を加熱して給湯設定温度またはその近傍温度まで高めて給湯することができる。   According to the present invention, when the hot water introduction side of the hot water supply circuit of the auxiliary heat source device provided with the hot water supply heat exchanger is connected to the downstream side of the hot water passage discharged from the main heat source and hot water supply is started, the auxiliary heat source Hot water in the hot water supply circuit of the auxiliary heat source device and hot water in the passage (pipe) connecting the main heat source and the auxiliary heat source device are heated by starting combustion of the hot water supply burner in the device and heating the hot water heat exchanger. Even when the temperature is lower than the hot water supply set temperature, the hot water can be heated to a hot water supply set temperature or a temperature close thereto to supply hot water.

また、前記補助熱源装置に設けられた給湯温度検出手段によって、給湯回路を通して給湯される湯の温度(給湯温度)を検出し、その給湯温度と給湯熱交換器の容量と該給湯熱交換器の加熱量とに基づいて、給水温度演算値算出手段が補助熱源装置に導入される湯水の温度を演算により求めて給水温度演算値(給水温度認識値)とするが、この給水温度演算値の温度上昇に基づき、主熱源から給湯設定温度の湯が前記補助熱源装置に到達して導入されたと判断して給湯バーナの燃焼を停止することにより、給湯設定温度の湯の補助熱源装置への導入タイミングを的確に判断でき、その的確なタイミングで給湯バーナの燃焼停止を行うことによって、給湯温度のオーバーシュートを防ぐことができる。   Further, the hot water temperature detecting means provided in the auxiliary heat source device detects the temperature of the hot water supplied through the hot water supply circuit (hot water temperature), the hot water temperature, the capacity of the hot water heat exchanger, and the hot water heat exchanger. Based on the amount of heating, the feed water temperature calculation value calculation means calculates the temperature of the hot water introduced into the auxiliary heat source device by calculation and uses it as the feed water temperature calculation value (feed water temperature recognition value). The temperature of this feed water temperature calculation value Based on the rise, it is determined that hot water at a hot water supply set temperature reaches the auxiliary heat source device from the main heat source and is introduced, and the combustion of the hot water burner is stopped, thereby introducing the hot water at the hot water set temperature into the auxiliary heat source device. Can be accurately determined, and the hot water supply burner is stopped at the appropriate timing, thereby preventing the hot water temperature from overshooting.

つまり、本発明においては、補助熱源装置に、たとえ該補助熱源装置に導入される湯水の入水温度(給水温度)を検出する手段を設けなくとも補助熱源装置内の給湯バーナの燃焼制御を行えるように、給水温度演算値算出手段が演算により給水温度を求める(給水温度演算値を算出する)が、この演算により求められる給水温度演算値が上昇して例えば以下に述べるように変化するタイミングを主熱源から給湯設定温度の湯が補助熱源装置に到達して導入されたタイミングであると判断することにより、主熱源から給湯設定温度の湯が補助熱源装置に到達して導入されたタイミングを的確に判断できる。なお、このことは、本発明者が実験により見いだしたものである。   In other words, in the present invention, the combustion control of the hot water burner in the auxiliary heat source device can be performed even if the auxiliary heat source device is not provided with means for detecting the incoming temperature (feed water temperature) of the hot water introduced into the auxiliary heat source device. In addition, the feed water temperature calculation value calculation means obtains the feed water temperature by calculation (calculates the feed water temperature calculation value). The timing at which the feed water temperature calculation value obtained by this calculation rises and changes as described below, for example, is mainly used. By determining that the hot water at the hot water supply set temperature reaches the auxiliary heat source device from the heat source and is introduced, the timing at which the hot water at the hot water set temperature reaches the auxiliary heat source device from the main heat source and is introduced accurately is determined. I can judge. This has been found by the inventors through experiments.

具体的には、給水温度演算値と予め定められる温度変化量とに基づき燃焼制御手段による給湯バーナ燃焼制御用の制御用給水温度を求める。この制御用給水温度は例えば予め定められる例えば200ms(0.2秒)毎というサンプリングタイム毎に検出される給水温度演算値が上昇しているときには前回求めた制御用給水温度に予め定められる温度変化量を加算していき、前記サンプリングタイム毎に検出される給水温度演算値が下降しているときには前回求めた制御用給水温度から予め定められる温度変化量を減算していって求められるものである。すなわち、給水温度演算値が大きく変化しても制御用給水温度は予め定められる温度変化量しか変化しない。   Specifically, the control feed water temperature for hot water burner combustion control by the combustion control means is obtained based on the calculated feed water temperature value and a predetermined temperature change amount. This control water temperature is, for example, a temperature change that is predetermined to the previously determined control water temperature when the calculated feed water temperature value is detected every predetermined sampling time, for example, every 200 ms (0.2 seconds). The amount is calculated, and when the feed water temperature calculation value detected at each sampling time is decreasing, it is obtained by subtracting a predetermined temperature change amount from the previously obtained control feed water temperature. . That is, even if the feed water temperature calculation value changes greatly, the control feed water temperature changes only by a predetermined temperature change amount.

そして、前記給水温度演算値から制御用給水温度を差し引いた温度差が予め定められる燃焼停止基準温度差に達したとき(給水温度演算値の微分値が所定値としての予め定められる設定値を超えた時と略同義)に主熱源から給湯設定温度の湯が補助熱源装置に導入されたと判断する。このような手法を用いて給湯設定温度の湯が補助熱源装置に導入された時の予兆(変動の初期状態)を捉えてバーナ燃焼を停止するようにすると、前記手法を用いずに温度検出手段等を用いて給湯設定温度の湯が補助熱源装置に導入されたことを給水温度の所定値上昇により確認した後に火を消した場合に発生するオーバーシュートを、防止することができる。なお、前記サンプリングタイムが1s(1秒)以上だと前記予兆を捉えることが遅れるため、前記サンプリングタイムは1s(1秒)より小さい値とするとよい。   When the temperature difference obtained by subtracting the control feed water temperature from the feed water temperature calculation value reaches a predetermined combustion stop reference temperature difference (the differential value of the feed water temperature calculation value exceeds a predetermined set value as a predetermined value) It is determined that hot water at a hot water supply set temperature has been introduced into the auxiliary heat source device from the main heat source. If such a technique is used to detect a sign (initial state of fluctuation) when hot water having a hot water supply set temperature is introduced into the auxiliary heat source device, the burner combustion is stopped. It is possible to prevent overshoot that occurs when the fire is extinguished after confirming that hot water at the hot water supply set temperature has been introduced into the auxiliary heat source device by a predetermined value increase in the water supply temperature. Note that if the sampling time is 1 s (1 second) or longer, it will be delayed to catch the sign, so the sampling time may be set to a value smaller than 1 s (1 second).

補助熱源装置に主熱源からの給湯設定温度の湯が到達して導入されたタイミングを判断する際に、前記のような予兆を捉えることは、例えば給湯器等の補助熱源装置として給湯能力の高い機種(消費ガス量が大きくなるだけでなく、通水抵抗が低く最大出湯能力が高い機種)を用いた場合に、より一層重要性を増す。その理由は、このような給湯能力の高い機種は、補助熱源装置内を流れる流速が速くなるので、この速さに追従させるためにより重要となり、この速さに追従させられるように前記予兆を捉えて給湯バーナの燃焼停止タイミングを制御する必要があるからである。   When judging the timing when hot water of the hot water supply set temperature from the main heat source arrives at the auxiliary heat source device and introduces it, it is possible to catch such a sign as described above, for example, as an auxiliary heat source device such as a water heater. It becomes even more important when using models (models that not only increase the amount of gas consumed but also have a low water flow resistance and a high maximum capacity). The reason for this is that a model with such a high hot water supply capacity has a higher flow velocity in the auxiliary heat source device, so it is more important to follow this speed. This is because it is necessary to control the combustion stop timing of the hot water supply burner.

なお、前記燃焼停止基準温度差は、給湯設定温度から制御用給水温度を差し引いた差を、予め定められる失火係数で調整した値(例えば割った値)とすることができる。つまり、燃焼停止基準温度差をTinDiffとし、給湯設定温度(本体設定温度)をTs、制御用給水温度をTc、失火係数をKとすると、燃焼停止基準温度差TinDiffは、例えば以下の式(1)により求められる。   The combustion stop reference temperature difference may be a value (for example, a value obtained by dividing a difference obtained by subtracting the control water supply temperature from the hot water supply set temperature by a predetermined misfire coefficient. That is, assuming that the combustion stop reference temperature difference is TinDiff, the hot water supply set temperature (main body set temperature) is Ts, the control feed water temperature is Tc, and the misfire coefficient is K, the combustion stop reference temperature difference TinDiff is expressed by, for example, the following equation (1) ).

TinDiff=(Ts−Tc)/K ・・・(1) TinDiff = (Ts−Tc) / K (1)

なお、失火係数は、失火タイミングを適正化するための補正値であり、例えば給湯温度にオーバーシュートやアンダーシュートが出ない、または出ても許容範囲内であるか否かといったことを、例えば給湯設定温度から制御用給水温度を引いた値(Ts−Tc)や湯水導入通路の長さ、湯水導入通路の材質(例えばポリエチレン等の樹脂製、銅、鉄等の金属製といったこと)、外気温、給湯流量等の様々なファクタを変えて予め実験等を行い(補助熱源装置の給湯能力等の他の条件もファクタとして加えて実験等を行ってもよく)、オーバーシュートやアンダーシュートが出ない、または出ても許容範囲内であるようにするための補正値として予め求められて与えられるものである。   The misfire coefficient is a correction value for optimizing misfire timing. For example, whether or not overshoot or undershoot occurs in the hot water supply temperature, or whether it is within an allowable range even if the hot water supply temperature occurs. The value obtained by subtracting the control water supply temperature from the set temperature (Ts-Tc), the length of the hot water introduction passage, the material of the hot water introduction passage (for example, resin such as polyethylene, metal such as copper or iron), outside temperature , Experiment in advance by changing various factors such as hot water flow rate (other conditions such as the hot water supply capacity of the auxiliary heat source device may be added as a factor), and overshoot and undershoot will not occur Or, it is obtained and given in advance as a correction value so as to be within the allowable range even if it comes out.

この失火係数は、例えば前記ファクタの少なくとも一つのファクタに応じて直線的に変化する値でもよいし、曲線的に変化する値でもよく、また、失火係数は、例えば前記ファクタや表等から求められる階段状の(前記ファクタの少なくとも一つのファクタに対して段階的に変化する)係数であってもかまわない。   The misfire coefficient may be, for example, a value that changes linearly according to at least one of the above factors, or may be a value that changes in a curved line, and the misfire coefficient is obtained from, for example, the above-described factor or table. It may be a stepped coefficient (which changes stepwise with respect to at least one of the factors).

なお、本発明者は以上のように、給水温度演算値から制御用給水温度を差し引いた温度差が予め定められる燃焼停止基準温度差になったときに、主熱源から補助熱源装置に給湯設定温度の湯が到達したと判断して給湯バーナの燃焼停止タイミングを決定することにより的確に給湯バーナの燃焼停止タイミングを判断できることを、様々な条件を変えて検討して確認している。   In addition, as described above, the present inventor has a hot water supply set temperature from the main heat source to the auxiliary heat source device when the temperature difference obtained by subtracting the control feed water temperature from the feed water temperature calculated value becomes a predetermined combustion stop reference temperature difference. It is confirmed by changing various conditions that it is possible to accurately determine the combustion stop timing of the hot water burner by determining that the hot water has reached and determining the combustion stop timing of the hot water burner.

また、本発明によれば、主熱源側と補助熱源装置側との間で通信を行わずに給湯設定温度の湯の補助熱源装置への導入タイミングを判断することから、主熱源と補助熱源装置とを通信させるための手段(通信線等)が不要であり、その分だけコストダウンを図ることができる。また、補助熱源装置を買い換えた際にも主熱源側の設定変更は不要であるので、たとえ補助熱源装置の施工時に、その施工業者が主熱源側の施工マニュアルを持ち合わせていなくても支障がない。   Further, according to the present invention, the main heat source and the auxiliary heat source device are determined because the introduction timing of the hot water supply set temperature to the auxiliary heat source device is determined without performing communication between the main heat source side and the auxiliary heat source device side. Means (communication line or the like) for communicating with each other is unnecessary, and the cost can be reduced accordingly. In addition, when the auxiliary heat source device is replaced, it is not necessary to change the setting on the main heat source side, so there is no problem even if the contractor does not have the construction manual on the main heat source side when constructing the auxiliary heat source device. .

また、補助熱源装置の給湯回路にバイパス開閉弁を備えたバイパス通路を設け、給湯バーナを停止した以降はバイパス通路側への流通割合が前記割合変化範囲内において最大となるようにバイパス開閉弁を制御して、主熱源からの湯を主にバイパス通路側を通して給湯することにより、給湯熱交換器の熱の影響をできるだけ受けずに給湯することができる。   In addition, a bypass passage provided with a bypass opening / closing valve is provided in the hot water supply circuit of the auxiliary heat source device, and after the hot water supply burner is stopped, the bypass opening / closing valve is set so that the flow rate to the bypass passage becomes the maximum within the ratio change range. By controlling and supplying hot water from the main heat source mainly through the bypass passage, hot water can be supplied without being affected by the heat of the hot water supply heat exchanger as much as possible.

つまり、給湯バーナの燃焼停止が行われても、燃焼停止前に加熱されていた給湯熱交換器の温度は直ぐには低下しないため、給湯熱交換器を通る湯は給湯熱交換器からの熱を吸熱して上昇するが、主熱源から補助熱源装置側に通される湯のうち給湯熱交換器側を通して給湯する湯の割合を小さくしてバイパス通路側を通して給湯する湯の割合を大きくすることにより、給湯熱交換器の熱の影響を少なくして給湯温度のオーバーシュートをより一層適切に防ぐことができる。   In other words, even if the hot water supply burner is stopped, the temperature of the hot water heat exchanger heated before the stop of combustion does not decrease immediately, so the hot water passing through the hot water heat exchanger does not receive heat from the hot water heat exchanger. Although it absorbs heat and rises, by reducing the proportion of hot water that is supplied from the main heat source to the auxiliary heat source device side through the hot water supply heat exchanger side and increasing the proportion of hot water that is supplied through the bypass passage side The influence of the heat of the hot water supply heat exchanger can be reduced and the hot water supply temperature overshoot can be prevented more appropriately.

なお、給湯バーナの燃焼中は、例えば給湯回路に導入される湯水の給湯熱交換器側への流通割合が予め定められている割合変化範囲内における最大値または最大値に近い値となるようにバイパス開閉弁を制御することにより、給湯バーナによって給湯熱交換器を加熱して給湯設定温度の湯を効率的に形成できる・   During combustion of the hot water supply burner, for example, the flow rate of hot water introduced into the hot water supply circuit to the hot water supply heat exchanger side is set to a maximum value or a value close to the maximum value within a predetermined rate change range. By controlling the bypass open / close valve, the hot water supply heat exchanger can be heated by the hot water supply burner to efficiently form hot water at the hot water supply set temperature.-

さらに、給湯バーナを停止しても、その直後の給湯温度は給湯バーナの停止直前の給湯温度よりも高くなるものであるため、給湯バーナを停止した直後の給湯温度が給湯バーナ停止直前の給湯設定温度よりも予め定められる給湯再開基準温度以上(例えば3℃以上)低下したときには主熱源から給湯設定温度の湯が補助熱源装置に到達して導入されるよりも早く給湯バーナの燃焼を停止してしまったと考えられる。そのため、給湯バーナを停止した直後の給湯温度が給湯バーナ停止直前の給湯設定温度よりも前記給湯再開基準温度以上(例えば3℃以上)低下したときには給湯バーナの燃焼を再開させることにより、誤って早めに給湯バーナの燃焼を停止した状態が長く続くことによる給湯温度のアンダーシュートを抑制でき、給湯温度をより一層安定化することができる。   Furthermore, even if the hot water burner is stopped, the hot water temperature immediately after the hot water burner is higher than the hot water temperature immediately before the hot water burner is stopped. When the temperature falls below a predetermined hot water resumption reference temperature (for example, 3 ° C. or more) lower than the temperature, combustion of the hot water burner is stopped earlier than hot water at the hot water supply set temperature reaches the auxiliary heat source device from the main heat source and is introduced. It is thought that it has stopped. Therefore, when the hot water supply temperature immediately after stopping the hot water supply burner is lower than the set hot water supply temperature immediately before stopping the hot water supply burner by more than the hot water supply restart reference temperature (for example, 3 ° C. or higher), the hot water burner is restarted by resuming combustion. In addition, it is possible to suppress the undershoot of the hot water temperature due to the state where the combustion of the hot water burner is stopped for a long time, and the hot water temperature can be further stabilized.

さらに、湯水導入通路の一部が西日によって温まっているような場合にも、誤って早めに給湯バーナの燃焼を停止することが想定されるので、このような場合にも(例えば湯水導入通路のうち西日によって温められた水が導入された後に西日によって温められていない水が導入されたことによって給湯温度が低下したとき等には)給湯バーナの燃焼を再開させるようにしてもよい。   Further, even when a part of the hot water introduction passage is warmed by the sun, it is assumed that the combustion of the hot water burner is erroneously stopped early. Of the hot water supply burner may be resumed (for example, when the hot water temperature decreases due to the introduction of water that has not been warmed by the western day after the water warmed by the western day is introduced). .

さらに、貯湯槽を有する主熱源を設けることにより、例えば太陽熱や燃料電池等の廃熱を利用して形成される湯を貯湯槽に貯湯して効率的に利用することができる。そして、貯湯槽を有する主熱源の貯湯槽から出湯される湯の通路と給水通路とを合流部で合流し、合流部にはその合流される湯と水とを混合するミキシング手段と、該ミキシング手段により混合されて形成された湯を補助熱源装置に導入する湯水導入通路を設けて、前記ミキシング手段を制御することにより前記合流部に流れる湯の流量と水の流量を制御することにより、合流部出形成されて補助熱源装置側に送られる湯の温度を適切に制御することができ、給湯温度の安定化を図ることができる。   Furthermore, by providing a main heat source having a hot water storage tank, hot water formed using, for example, solar heat or waste heat from a fuel cell can be stored in the hot water storage tank and efficiently used. And a mixing means for combining a hot water passage and a water supply passage discharged from a hot water storage tank of a main heat source having a hot water storage tank at a joining portion, and mixing the hot water and water to be joined at the joining portion, and the mixing By providing a hot water introduction passage for introducing hot water mixed by the means into the auxiliary heat source device, and controlling the mixing means to control the flow rate of hot water and the flow rate of the water, It is possible to appropriately control the temperature of the hot water that is formed and fed to the auxiliary heat source device side, and it is possible to stabilize the hot water supply temperature.

本発明に係る熱源装置の一実施例の制御構成を示すブロック図である。It is a block diagram which shows the control structure of one Example of the heat-source apparatus which concerns on this invention. 実施例の熱源装置の給湯時における給水温度演算値と制御用給水温度と給湯温度の時間的変化例および失火タイミング例を、実験用に求めた給水温度実測値と共に示すグラフである。It is a graph which shows the water supply temperature calculation value at the time of hot water supply of the heat source apparatus of an Example, the water supply temperature for control, the temporal change of hot water supply temperature, and the example of misfire timing with the water supply temperature actual value calculated | required for experiment. 実施例および開発中の熱源装置のシステム構成例を説明するための説明図である。It is explanatory drawing for demonstrating the system configuration example of the heat source apparatus in an Example and development. 図3に示す熱源装置に設けられている湯水循環通路と貯湯槽の出湯通路とを説明するために、図3の一部構成を簡略化して示すシステム構成図である。FIG. 4 is a system configuration diagram showing a partial configuration of FIG. 3 in a simplified manner in order to explain a hot water circulation passage and a hot water discharge passage of a hot water storage tank provided in the heat source device shown in FIG. 3. 貯湯槽内の温度層の分布例を模式的に示す説明図である。It is explanatory drawing which shows typically the example of distribution of the temperature layer in a hot water storage tank. 熱源装置の給湯時における外気温の違いによる給水温度演算値と制御用給水温度の時間的変化例を示す模式的なグラフである。It is a typical graph which shows the temporal change example of the feed water temperature calculation value by the difference in the outside temperature at the time of hot water supply of a heat source device, and the feed water temperature for control.

以下、本発明の実施の形態を図面に基づき説明する。なお、本実施例の説明において、これまでの説明の例と同一構成要素には同一符号を付し、その重複説明は省略または簡略化する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the present embodiment, the same reference numerals are given to the same constituent elements as those in the above-described examples, and the duplicate description is omitted or simplified.

図1には、本発明に係る熱源装置の一実施例の要部制御構成がブロック図により示されている。本実施例は、図3に示した熱源装置と同様のシステム構成を有し、さらに、図1に示されるように、給湯器16の制御装置46に、燃焼制御手段47、給水温度演算値算出手段71、制御用給水温算出手段72、メモリ部73、バイパス開閉弁制御手段74、給湯バーナ燃焼再開指令手段75を設けており、燃焼制御手段47は、給湯設定温度設定操作手段45を備えたリモコン装置43に接続されている。リモコン装置43は、屋内において、リビングや、浴室、台所、洗面所等の適宜の場所に設置されている。   FIG. 1 is a block diagram showing a main part control configuration of an embodiment of a heat source device according to the present invention. This embodiment has the same system configuration as that of the heat source device shown in FIG. 3, and further, as shown in FIG. 1, the control device 46 of the hot water heater 16 includes a combustion control means 47, and a water supply temperature calculation value calculation. Means 71, control feed water temperature calculation means 72, memory unit 73, bypass on-off valve control means 74, hot water supply burner combustion restart command means 75 are provided, and combustion control means 47 includes hot water supply set temperature setting operation means 45. The remote control device 43 is connected. The remote control device 43 is installed indoors at an appropriate place such as a living room, a bathroom, a kitchen, or a washroom.

また、タンクユニット4内の制御装置33には、ミキシング流量制御手段35と混合設定温度設定手段36が設けられており、制御装置33はリモコン装置43とは信号接続されているので、制御装置33がリモコン装置43と送受信する情報は取得できる。   Further, the control device 33 in the tank unit 4 is provided with a mixing flow rate control means 35 and a mixing set temperature setting means 36, and the control device 33 is signal-connected to the remote control device 43. Can transmit and receive information to and from the remote control device 43.

給湯設定温度設定操作手段45は、利用者等により給湯設定温度を設定するための操作手段であり、例えばリモコン装置43の表面側に設けられている操作ボタン等により形成されている。この給湯設定温度設定操作手段45により設定された給湯設定温度の値は、タンクユニット4の制御装置33の混合設定温度設定手段36と給湯器16の制御装置46の燃焼制御手段47とに加えられる。   The hot water supply set temperature setting operation means 45 is an operation means for setting a hot water supply set temperature by a user or the like, and is formed by an operation button or the like provided on the surface side of the remote control device 43, for example. The value of the hot water set temperature set by the hot water set temperature setting operation means 45 is added to the mixture set temperature setting means 36 of the controller 33 of the tank unit 4 and the combustion control means 47 of the controller 46 of the water heater 16. .

流量検出手段42は、給湯通路18を通って給湯される給湯流量を検出する。そして、流量検出手段42は、制御装置46の燃焼制御手段47に給湯流量の検出流量(検出値)を加える。また、給水流量センサ29も給湯通路18を通って給湯される給湯流量を検出し、制御装置33のミキシング流量制御手段35に給湯流量の検出流量(検出値)を加える。   The flow rate detection means 42 detects the hot water flow rate supplied through the hot water supply passage 18. Then, the flow rate detection means 42 adds a detection flow rate (detection value) of the hot water supply flow rate to the combustion control means 47 of the control device 46. Further, the hot water supply flow sensor 29 also detects the hot water supply flow rate supplied through the hot water supply passage 18, and adds the detected flow rate (detected value) of the hot water supply flow rate to the mixing flow rate control means 35 of the control device 33.

ミキシング流量制御手段35は、合流部10側に出湯通路9から流れる湯の流量と給水通路8bから合流部10側に流れる水の流量を制御し、混合設定温度設定手段36により設定される設定混合温度の混合湯水が合流部10で形成されるようにするものである。   The mixing flow rate control means 35 controls the flow rate of hot water flowing from the outlet passage 9 to the junction 10 side and the flow rate of water flowing from the water supply passage 8b to the junction 10 side, and is set by the set mixing temperature setting means 36. The mixed hot and cold water is formed at the junction 10.

混合設定温度設定手段36は、混合湯水の設定温度(混合設定温度)を設定するものであり、例えば貯湯槽内湯水温検出手段5aの検出温度が前記閾値よりも高い温度のときには、給湯時の前記混合設定温度を給湯設定温度に対応させて、例えば給湯設定温度の値と同じ値または、それより0.5℃といった温度だけ高めに設定する。なお、混合設定温度設定手段36は、貯湯槽内湯水温検出手段5aの検出温度が前記閾値以下の時には、混合設定温度を給湯設定温度よりも低い適宜の温度に設定する。   The mixed set temperature setting means 36 sets a set temperature (mixed set temperature) of the mixed hot water. For example, when the detected temperature of the hot water temperature detecting means 5a in the hot water tank is higher than the threshold value, The mixing set temperature is set to correspond to the hot water supply set temperature, for example, the same value as the hot water supply set temperature or higher than that by 0.5 ° C. Note that the mixing set temperature setting means 36 sets the mixing set temperature to an appropriate temperature lower than the hot water supply setting temperature when the temperature detected by the hot water tank temperature detection means 5a is equal to or lower than the threshold value.

ミキシング流量制御手段35は、給水流量センサ29によって、給湯通路18を通って給湯される給湯流量が検出されたときにタンク側電磁弁13を開き、タンク湯水混合器12および水混合器14の制御による湯の流量と水の流量との制御により、合流部10で形成される混合湯水の温度が混合設定温度設定手段36により設定される混合設定温度となるように制御する。この制御によって形成された混合設定温度の湯は湯水導入通路15を通って給湯器16の給湯回路62に導入される。   The mixing flow rate control means 35 opens the tank side electromagnetic valve 13 when the hot water flow rate supplied through the hot water supply passage 18 is detected by the feed water flow rate sensor 29, and controls the tank hot water mixer 12 and the water mixer 14. By controlling the flow rate of hot water and the flow rate of water, the temperature of the mixed hot water formed in the merging portion 10 is controlled to be the mixing set temperature set by the mixing set temperature setting means 36. Hot water having a set mixing temperature formed by this control is introduced into the hot water supply circuit 62 of the hot water heater 16 through the hot water introduction passage 15.

給湯器16の制御装置46に設けられている給水温度演算値算出手段71は、給湯温度検出手段76により検出される給湯温度と、給湯熱交換器17の加熱量と、給湯熱交換器17の容量と、給湯熱交換器17とバイパス通路68とのバイパス比とに基づいて、給湯器16に導入される湯水の温度を給水温度演算値(認識値)として演算により求めるものである。この演算の仕方は特に限定されるものではないが、例えば0.5秒といった単位時間毎に移動平均を取って求められる。   The water supply temperature calculation value calculation means 71 provided in the control device 46 of the water heater 16 includes a hot water supply temperature detected by the hot water supply temperature detection means 76, a heating amount of the hot water supply heat exchanger 17, and a hot water supply heat exchanger 17. Based on the capacity and the bypass ratio between the hot water supply heat exchanger 17 and the bypass passage 68, the temperature of the hot water introduced into the hot water heater 16 is calculated as a supply water temperature calculation value (recognition value). The method of this calculation is not particularly limited, but it is obtained by taking a moving average every unit time such as 0.5 seconds.

例えばサンプリングタイムにおける給水温度演算値をTin、給湯温度をTout、給湯熱交換器17の容量をQ、給湯熱交換器17の加熱量をH、給湯熱交換器17とバイパス通路68とのバイパス比をBrとし、各サンプリングタイムにおける給水温度演算値Tinを以下の式(2)により算出する。なお、式(2)におけるバイパス比Brは、給湯器16に導入される湯水が給湯熱交換器17側とバイパス通路68側とに分かれて流れる際の、給湯熱交換器17側への分岐比(分岐率)であり(給湯熱交換器17側のバイパス比であり)、給湯熱交換器17側にほぼ100%流れる場合はBr=1となる。また、例えば給湯熱交換器17とバイパス通路68とに1:3の割合で流れる場合はBr=0.25となる。   For example, the water supply temperature calculation value at the sampling time is Tin, the hot water supply temperature is Tout, the capacity of the hot water supply heat exchanger 17 is Q, the heating amount of the hot water supply heat exchanger 17 is H, and the bypass ratio between the hot water supply heat exchanger 17 and the bypass passage 68 And Br, the water supply temperature calculation value Tin at each sampling time is calculated by the following equation (2). In addition, the bypass ratio Br in the formula (2) is a branching ratio to the hot water supply heat exchanger 17 side when hot water introduced into the water heater 16 flows separately on the hot water supply heat exchanger 17 side and the bypass passage 68 side. (Branch rate) (the bypass ratio on the hot water supply heat exchanger 17 side), and Br = 1 when flowing almost 100% to the hot water supply heat exchanger 17 side. Further, for example, when flowing in the hot water supply heat exchanger 17 and the bypass passage 68 at a ratio of 1: 3, Br = 0.25.

Tin=Tout−H/(Q・Br)・・・(2) Tin = Tout−H / (Q ・ Br) (2)

そして、初回のサンプリングタイムにおいて式(2)で求めた値と2回目のサンプリングタイムにおいて式(2)で求めた値との平均(相加平均)をとって、2回目のサンプリングタイムにおける給水温度演算値(認識値)とする。3回目のサンプリングタイム以降においては、前回のサンプリングタイムにおいて求めた給水温度演算値と今回のサンプリングタイムにおいて式(2)により算出した値との平均(相加平均)をとって、その値を今回の給水温度演算値(認識値)とするものであり、本実施例における給水温度演算値の時系列データの一例が、図2の特性線aに示されている。   And the average (arithmetic mean) of the value calculated | required by Formula (2) in the first sampling time and the value calculated | required by Formula (2) in the 2nd sampling time is taken, and the feed water temperature in the 2nd sampling time Calculated value (recognized value). After the third sampling time, take the average (arithmetic mean) of the water supply temperature calculation value obtained at the previous sampling time and the value calculated by Equation (2) at the current sampling time, and use that value as the current value. An example of the time series data of the water supply temperature calculation value in this embodiment is shown by the characteristic line a in FIG.

なお、給湯停止後の再出湯時における初回のサンプリングタイムにおける値は、式(2)により求められる値の代わりに、例えば給湯停止前の最後のサンプリングタイムで求めた給水温度演算値としてもよいし、例えば給湯停止から再出湯までの時間に応じて最後のサンプリングタイムで求めた給水温度演算値を補正した値としてもよい。   In addition, the value at the first sampling time at the time of re-watering after stopping hot water supply may be, for example, a water supply temperature calculation value obtained at the last sampling time before hot water supply stop, instead of the value obtained by Equation (2). For example, it is good also as a value which correct | amended the water supply temperature calculation value calculated | required by the last sampling time according to the time from hot water supply stop to re-watering.

給水温度演算値算出手段71により求めた給水温度演算値は、逐次、制御用給水温度算出手段72と燃焼制御手段47とに加えられる。   The feed water temperature calculation value obtained by the feed water temperature calculation value calculation means 71 is sequentially added to the control feed water temperature calculation means 72 and the combustion control means 47.

制御用給水温度算出手段72は、給水温度演算値算出手段71により求められる給水温度演算値と予め定められる温度変化量(温度上昇量や温度下降量)とに基づき、燃焼制御手段47による給湯バーナ61の燃焼制御用の制御用給水温度を求める手段である。なお、前記温度変化量の値はメモリ部73に格納されている。   The control feed water temperature calculation means 72 is based on the feed water temperature calculation value obtained by the feed water temperature calculation value calculation means 71 and a predetermined temperature change amount (temperature increase amount or temperature decrease amount), and a hot water supply burner by the combustion control means 47. 61 is a means for obtaining a control feed water temperature for 61 combustion control. Note that the value of the temperature change amount is stored in the memory unit 73.

この制御用給水温度の算出に際し、制御用給水温度算出手段72は、例えば初回のサンプリングタイムに式(2)により算出した給水温度演算値を初期値とし、その値と2回目のサンプリングタイムにおいて給水温度演算値算出手段71により求めた給水温度演算値とを比較する。そして、初回のサンプリングタイムにおける給水温度演算値よりも2回目の給水温度演算値の方が大きい場合には、予め与えられている温度上昇分(例えば0.5秒ごとに0.1℃)を初回のサンプリングタイムにおける給水温度演算値に加算して2回目のサンプリングタイムにおける制御用給水温度とし、初回のサンプリングタイムにおける給水温度演算値よりも2回目の給水温度演算値の方が小さい場合には、予め与えられている温度上昇分(例えば0.5秒ごとに0.1℃)を初回のサンプリングタイムにおける給水温度演算値から減算して2回目のサンプリングタイムにおける制御用給水温度とする。   In calculating the control water temperature, the control water temperature calculation means 72 uses, for example, a water temperature calculation value calculated by the equation (2) at the first sampling time as an initial value, and supplies water at that value and the second sampling time. The water supply temperature calculation value obtained by the temperature calculation value calculation means 71 is compared. When the second water supply temperature calculation value is larger than the water supply temperature calculation value at the first sampling time, a temperature increase given in advance (for example, 0.1 ° C. every 0.5 seconds) is calculated. When the feed water temperature calculation value at the first sampling time is added to the control feed water temperature at the second sampling time, and the second feed water temperature calculation value is smaller than the feed water temperature calculation value at the first sampling time Then, a temperature increase given in advance (for example, 0.1 ° C. every 0.5 seconds) is subtracted from the feed water temperature calculation value at the first sampling time to obtain the control feed water temperature at the second sampling time.

その後、制御用給水温度算出手段72は、前記サンプリングタイム毎に、給水温度演算値算出手段71により求めた前回の給水温度演算値と今回の給水温度演算値とを比較し、前回の給水温度演算値よりも今回の給水温度演算値の方が大きい場合には、前記温度上昇分を前回の制御用給水温度に加算して今回の制御用給水温度とし、前回の給水温度演算値よりも今回の給水温度演算値の方が小さい場合には、前回の制御用給水温度から前記温度下降分を減算して今回の制御用給水温度とする。図2の特性線bには、本実施例における制御用給水温度の時系列データの一例が示されている。制御用給水温度算出手段72が求めた制御用給水温度の値は逐次、燃焼制御手段47に加えられる。   Thereafter, the control feed water temperature calculation means 72 compares the previous feed water temperature calculation value obtained by the feed water temperature calculation value calculation means 71 with the current feed water temperature calculation value at each sampling time, and calculates the previous feed water temperature calculation. If the current water supply temperature calculation value is larger than the current value, the temperature increase is added to the previous control water supply temperature to obtain the current control water temperature, which is greater than the previous water supply temperature calculation value. When the calculated feed water temperature is smaller, the temperature drop is subtracted from the previous control feed water temperature to obtain the current control feed water temperature. The characteristic line b in FIG. 2 shows an example of time-series data of the control feed water temperature in this embodiment. The value of the control feed water temperature obtained by the control feed water temperature calculation means 72 is sequentially added to the combustion control means 47.

なお、給湯停止後の再出湯時における初回のサンプリングタイムにおける値は、式(2)により求められる値の代わりに、例えば給湯停止前の最後のサンプリングタイムで求めた制御用給水温度としてもよいし、例えば給湯停止から再出湯までの時間に応じて最後のサンプリングタイムで求めた制御用給水温度を補正した値としてもよい。   Note that the value at the first sampling time at the time of re-watering after the hot water supply stop may be, for example, the control water supply temperature obtained at the last sampling time before the hot water supply stop, instead of the value obtained by the equation (2). For example, it may be a value obtained by correcting the control feed water temperature obtained at the last sampling time in accordance with the time from hot water supply stop to re-draining.

燃焼制御手段47は、流量検出手段42によって給湯バーナ61の最低作動流量が検出されたときに給湯バーナ61の燃焼を開始させ、制御用給水温度算出手段72により求められる制御用給水温度に基づいて給湯バーナ61のフィードフォワード燃焼制御を行う。このように、制御用給水温度を用いることにより的確なフィードフォワード燃焼制御を行うことができる。また、本実施例においては、給湯器16は入水温度(給水温度)の検出センサを設けないことによりコストダウンを図ることができている。   The combustion control means 47 starts combustion of the hot water supply burner 61 when the minimum flow rate of the hot water supply burner 61 is detected by the flow rate detection means 42, and is based on the control feed water temperature obtained by the control feed water temperature calculation means 72. Feed forward combustion control of the hot water supply burner 61 is performed. Thus, accurate feedforward combustion control can be performed by using the control feed water temperature. Further, in the present embodiment, the water heater 16 can reduce the cost by not providing a detection sensor for the incoming water temperature (water supply temperature).

なお、制御用給水温度と給湯設定温度との差が予め定められる燃焼不要温度範囲(例えば3℃)以下の場合には、給湯が開始されても給湯バーナ61の燃焼を行わない。また、給湯開始以降に制御用給水温度と給湯設定温度との差が前記燃焼不要温度範囲以下となった場合には、それまでの間に給湯バーナ61を燃焼していたときには給湯バーナ61の燃焼を停止する。   When the difference between the control water supply temperature and the hot water supply set temperature is equal to or lower than a predetermined combustion unnecessary temperature range (eg, 3 ° C.), the hot water supply burner 61 is not combusted even when hot water supply is started. In addition, when the difference between the control water supply temperature and the hot water supply set temperature becomes equal to or less than the combustion unnecessary temperature range after the start of hot water supply, To stop.

また、前記の如く、給水流量センサ29によって、給湯通路18を通って給湯される給湯流量が検出されたときに、タンクユニット4側の制御装置33では、ミキシング流量制御手段35がタンク側電磁弁13を開き、貯湯槽内湯水温検出手段5aの検出温度が前記閾値よりも高い温度のときには給湯設定温度(または給湯設定温度より0.5℃といった温度だけ高めの温度)の湯を形成して給湯器16側に送る。そのため、この湯を給湯器16側で追い加熱する必要はないが、この湯が給湯器16側に到達するまでには時間がかかり、その間は給湯器16の給湯回路62内の通路や湯水導入通路15内の水を給湯熱交換器17で加熱する必要があるので、前記の如く、給湯バーナ61の燃焼により給湯回路62内の通路や湯水導入通路15内の水を給湯熱交換器17で加熱する。   Further, as described above, when the flow rate of hot water supplied through the hot water supply passage 18 is detected by the water supply flow rate sensor 29, the control unit 33 on the tank unit 4 side has the mixing flow rate control means 35 provided with the tank side solenoid valve. 13, and when the temperature detected by the hot water temperature detection means 5 a in the hot water tank is higher than the threshold, hot water having a hot water supply set temperature (or a temperature higher by 0.5 ° C. than the hot water set temperature) is formed. To the side of the container 16. Therefore, it is not necessary to additionally heat the hot water on the hot water heater 16 side, but it takes time until the hot water reaches the hot water heater 16 side, and during that time, the passage in the hot water supply circuit 62 of the hot water heater 16 and the introduction of hot water are introduced. Since the water in the passage 15 needs to be heated by the hot water supply heat exchanger 17, the water in the hot water supply circuit 62 and the water in the hot water introduction passage 15 are heated by the hot water supply heat exchanger 17 by the combustion of the hot water supply burner 61 as described above. Heat.

そして、燃焼制御手段47は、給湯バーナ61の燃焼制御中に、給水温度演算値算出手段71により求められる前記給水温度演算値をモニタし、該給水温度演算値の温度上昇に基づき、主熱源である貯湯槽2から給湯設定温度の湯が給湯器16に到達して導入されたと判断されたときに、給湯バーナ61の燃焼を停止する。この給湯バーナ61の燃焼停止により、給湯設定温度の湯が給湯回路62に到達した以降に余分な追い加熱が行われることを防ぐ。   The combustion control means 47 monitors the feed water temperature calculation value obtained by the feed water temperature calculation value calculation means 71 during the combustion control of the hot water supply burner 61, and based on the temperature rise of the feed water temperature calculation value, When it is determined that hot water at a hot water supply set temperature has reached the hot water heater 16 and has been introduced from a hot water tank 2, the combustion of the hot water burner 61 is stopped. By stopping the combustion of the hot water supply burner 61, it is possible to prevent excessive additional heating from being performed after the hot water at the hot water supply set temperature reaches the hot water supply circuit 62.

具体的には、燃焼制御手段47は、給水温度演算値算出手段71により求めた前記給水温度演算値Tbから制御用給水温度算出手段72により求めた前記制御用給水温度Tcを差し引いた温度差(Tb−Tc)が、予め定められる燃焼停止基準温度差TinDiffに達したとき、または超えたときに、貯湯槽2から給湯設定温度の湯が給湯器16に導入されたと判断するものであり、本実施例において、燃焼停止基準温度差TinDiffは、前記式(1)により求められるものである。なお、失火係数は、予め実験等により求めてメモリ部73に格納されており、一例を挙げると、失火係数K=5である。   Specifically, the combustion control unit 47 subtracts the control feed water temperature Tc obtained by the control feed water temperature calculation unit 72 from the feed water temperature computation value Tb obtained by the feed water temperature computation value calculation unit 71 ( When (Tb−Tc) reaches or exceeds a predetermined combustion stop reference temperature difference TinDiff, it is determined that hot water at a hot water supply set temperature has been introduced from the hot water storage tank 2 into the water heater 16. In the embodiment, the combustion stop reference temperature difference TinDiff is obtained by the equation (1). Note that the misfire coefficient is obtained in advance through experiments or the like and stored in the memory unit 73. For example, the misfire coefficient K = 5.

例えば、図2において、給湯設定温度は40℃であり、失火係数K=5のときには、燃焼停止基準温度差TinDiffは、式(1)より、TinDiff=(40−Tc)÷5 となり、制御用給水温度であるTcが22℃のときには燃焼停止基準温度差TinDiffは3.6℃、制御用給水温度Tcが20℃のときには燃焼停止基準温度差TinDiffは4℃、制御用給水温度Tcが18℃のときには燃焼停止基準温度差TinDiffは4.4℃になり変化するが、この例では、制御用給水温度Tcが約20℃のときに、給水温度演算値から制御用給水温度を差し引いた温度差が約4℃となり、Tc=20℃のときの燃焼停止基準温度差TinDiff=4℃と一致した、又は超えたので、貯湯槽2から給湯設定温度の湯が給湯器16に導入されたと判断し、給湯バーナ61の燃焼を停止している。   For example, in FIG. 2, when the hot water supply set temperature is 40 ° C. and the misfire coefficient K = 5, the combustion stop reference temperature difference TinDiff is TinDiff = (40−Tc) ÷ 5 from the equation (1). When the feed water temperature Tc is 22 ° C, the combustion stop reference temperature difference TinDiff is 3.6 ° C. When the control feed water temperature Tc is 20 ° C, the combustion stop reference temperature difference TinDiff is 4 ° C and the control feed water temperature Tc is 18 ° C. In this example, the combustion stop reference temperature difference TinDiff changes to 4.4 ° C., but in this example, when the control feed water temperature Tc is about 20 ° C., the temperature difference obtained by subtracting the control feed water temperature from the feed water temperature calculation value. Is about 4 ° C., and it matches or exceeds the combustion stop reference temperature difference TinDiff = 4 ° C. when Tc = 20 ° C. Therefore, it is determined that hot water of the hot water set temperature is introduced from the hot water storage tank 2 into the water heater 16. The combustion of the hot water supply burner 61 is stopped.

なお、図2には、実験用に検出した給水温度実測値が特性線dに示されており、前記給湯バーナ61の燃焼停止タイミングと実際の給水温度が給湯設定温度である40℃に到達したタイミングとが一致している。つまり、前記給湯バーナ61の燃焼停止タイミングは適切であることが立証されており、また、このとき、特性線cで示されている給湯温度のオーバーシュートも2℃程度であり、利用者の利用において許容できる範囲であることが分かった。   In FIG. 2, the measured value of the feed water temperature detected for the experiment is shown in the characteristic line d, and the combustion stop timing of the hot water supply burner 61 and the actual feed water temperature have reached 40 ° C., which is the preset hot water temperature. The timing matches. That is, it is proved that the combustion stop timing of the hot water supply burner 61 is appropriate, and at this time, the overshoot of the hot water supply temperature indicated by the characteristic line c is also about 2 ° C. It was found to be an acceptable range.

また、本実施例では、貯湯槽2から給湯設定温度の湯が給湯器16に導入されたと判断するための、給湯バーナ61の燃焼停止基準となる燃焼基準温度差を前記の如く給湯設定温度に対応させて変化させることにより、以下に述べるように、給湯バーナ61の停止タイミングをより一層適切に決定することができる。   Further, in the present embodiment, the difference in the combustion reference temperature, which is the reference for stopping the combustion of the hot water supply burner 61, for determining that the hot water at the hot water supply temperature from the hot water storage tank 2 has been introduced into the hot water heater 16 is set to the hot water supply set temperature as described above. By changing correspondingly, the stop timing of the hot water supply burner 61 can be determined more appropriately as described below.

例えば給水温度演算値の上昇幅は、実際の給水温度(実際に給湯器16に導入される水の温度)と給湯設定温度との温度差に応じて異なるものであり、そのため、給水温度演算値と制御用給水温度との差は給湯設定温度によっても変動する。すなわち、例えば実際の給水温度が一定の場合に、給湯設定温度が高く設定されて給水温度と給湯設定温度との温度差が大きければ給水温度演算値の上昇幅が大きくなり、給水温度演算値と制御用給水温度との差が大きくなる。ここで燃焼停止基準温度差を小さく設定すると、給湯バーナ61の停止タイミングが早めに判断されることになり、貯湯槽2側から給湯回路62側に給湯設定温度の湯が到達する前に給湯バーナ61を停止してしまうといった誤動作が生じる可能性があるが、前記の如く、燃焼停止基準温度差を給湯設定温度に応じた値とすることにより給湯バーナ61の停止タイミングが早めに判断されることを防止できる。   For example, the increase width of the water supply temperature calculation value varies depending on the temperature difference between the actual water supply temperature (the temperature of the water actually introduced into the water heater 16) and the hot water supply set temperature. And the control feed water temperature also varies depending on the hot water supply set temperature. That is, for example, when the actual water supply temperature is constant, if the hot water supply set temperature is set high and the temperature difference between the water supply temperature and the hot water supply set temperature is large, the increase range of the water supply temperature calculation value increases, and the water supply temperature calculation value The difference from the control water temperature increases. If the combustion stop reference temperature difference is set to be small, the stop timing of the hot water supply burner 61 is determined earlier, and the hot water supply burner is reached before hot water at the hot water supply set temperature reaches the hot water supply circuit 62 side from the hot water storage tank 2 side. However, as described above, the stop timing of the hot water supply burner 61 is determined earlier by setting the combustion stop reference temperature difference to a value corresponding to the set hot water temperature. Can be prevented.

すなわち、前記式(1)から明らかなように、給湯設定温度が高いときには、燃焼停止基準温度差TinDiffが大きく設定されるために、その大きく設定される燃焼停止基準温度差以上に給水温度演算値と制御用給水温度との差が大きくならなければ貯湯槽2側から給湯回路62側に給湯設定温度(給湯設定温度の近傍温度を含む)の湯が到達したと判断されないため、この給湯設定温度の湯が到達するタイミングを適切に判断して適切なタイミングで給湯バーナ61を停止することができる。   That is, as apparent from the equation (1), when the hot water supply set temperature is high, the combustion stop reference temperature difference TinDiff is set to be large. If the difference between the hot water temperature and the control water temperature does not increase, it is not determined that the hot water at the hot water set temperature (including the temperature close to the hot water set temperature) has reached the hot water supply circuit 62 side from the hot water tank 2 side. The hot water supply burner 61 can be stopped at an appropriate timing by appropriately determining the timing at which the hot water reaches.

また、その逆に、例えば実際の給水温度が一定の場合に、給湯設定温度が低く設定されて実際の給水温度と給湯設定温度との温度差が小さければ給水温度演算値の上昇幅が小さくなり、給水温度演算値と制御用給水温度との差が小さくなる。ここで燃焼停止基準温度差を大きく設定すると給湯バーナ61の停止タイミングの判断が遅くなり、貯湯槽2側から給湯回路62側に給湯設定温度の湯が到達しても給湯バーナ61の燃焼を継続してしまうことによりオーバーシュートが大きく発生してしまう可能性があるが、前記の如く、前記式(1)から明らかなように、給湯設定温度が低いときには、燃焼停止基準温度差が小さく設定されるために、給水温度演算値と制御用給水温度との差が、その小さく設定される燃焼停止基準温度差以上になったら貯湯槽2側から給湯回路62側に給湯設定温度(給湯設定温度の近傍温度を含む)の湯が到達したと判断され、貯湯槽2側から給湯回路62側に給湯設定温度の湯が到達するタイミングを適切に判断して適切なタイミングで給湯バーナ61を停止することができる。   Conversely, for example, when the actual feed water temperature is constant, if the hot water set temperature is set low and the temperature difference between the actual feed water temperature and the hot water set temperature is small, the increase in the feed water temperature calculation value will be small. The difference between the feed water temperature calculation value and the control feed water temperature becomes small. Here, if the combustion stop reference temperature difference is set large, the judgment of the stop timing of the hot water supply burner 61 is delayed, and the hot water supply burner 61 continues to burn even when hot water at the hot water supply set temperature reaches the hot water supply circuit 62 side from the hot water storage tank 2 side. However, as described above, when the hot water supply set temperature is low, the combustion stop reference temperature difference is set to a small value as described above. Therefore, when the difference between the calculated value of the feed water temperature and the control feed water temperature becomes equal to or larger than the small combustion stop reference temperature difference, the hot water set temperature (the hot water set temperature) It is determined that the hot water at the hot water supply temperature reaches the hot water supply circuit 62 side from the hot water storage tank 2 side, and the hot water supply burner is appropriately determined. It is possible to stop the 1.

例えば再出湯の場合に、前回給湯時の給湯設定温度が40℃であったとし、今回給湯時の給湯設定温度を60℃とする場合を考える。この場合、前回の給湯停止から再出湯までの時間が短い場合には、貯湯槽2側と給湯器16との接続配管内の湯の温度は40℃近傍の温度となっており、その40℃の湯が給湯器16の給湯回路62に導入されるが、その時点では給湯バーナ61の燃焼は行われている。   For example, in the case of re-watering, let us consider a case where the hot water supply set temperature at the previous hot water supply is 40 ° C. and the hot water supply set temperature at the current hot water supply is 60 ° C. In this case, when the time from the previous hot water supply stop to the re-heated hot water is short, the temperature of the hot water in the connecting pipe between the hot water tank 2 side and the hot water heater 16 is around 40 ° C., and 40 ° C. The hot water is introduced into the hot water supply circuit 62 of the hot water heater 16, but at that time, the hot water supply burner 61 is combusted.

そして、給湯設定温度を40℃から60℃に変更したことによって、導入される湯の温度である実際の給水温度と給湯設定温度との温度差が大きくなることから給水温度演算値の上昇幅が大きくなり、また、燃焼停止基準温度差も給湯設定温度に対応させて大きく設定されるため、給湯設定温度の変化に応じて大きくなる給水温度演算値の上昇幅と給湯設定温度の変化に応じて大きく設定される燃焼停止基準温度差との対応が図れることから、貯湯槽2側から送られてくる60℃の湯が給湯器16の給湯回路62に導入されたときに60℃の湯の到達を適切に判断でき、給湯バーナ61の停止タイミングを適切に決定することができる。   And by changing the hot water supply set temperature from 40 ° C. to 60 ° C., the temperature difference between the actual hot water temperature and the hot water set temperature, which is the temperature of the hot water to be introduced, increases. In addition, the combustion stop reference temperature difference is set to a large value corresponding to the hot water supply set temperature, so that the increase in the water supply temperature calculation value that increases according to the change in the hot water set temperature and the change in the hot water set temperature Since correspondence with a large combustion stop reference temperature difference can be achieved, when hot water of 60 ° C. sent from the hot water storage tank 2 side is introduced into the hot water supply circuit 62 of the hot water heater 16, the arrival of hot water of 60 ° C. Can be appropriately determined, and the stop timing of the hot water supply burner 61 can be appropriately determined.

また、熱源装置の初回運転時や、前回給湯後の再出湯までの時間が長い場合等、貯湯槽2側と給湯器16側とを接続する接続配管内の湯が冷えていて給湯器16に導入される給水温度が低い場合の給湯時(コールドスタート時)等、実際の給水温度(入水温度)が低い場合には、前記制御用給水温度も低い値となり、また、前記式(1)から明らかなように、燃焼停止基準温度差が大きく設定されることから、燃焼停止基準温度差が小さい場合に比べると給湯バーナ61の燃焼停止のタイミングが遅めとなる。言い換えると、給湯バーナ61の燃焼停止タイミングの判断が慎重に行われて貯湯槽2側から給湯設定温度の湯が確実に届いたときに給湯バーナ61の燃焼停止のタイミングが判断され、適切なタイミングで給湯バーナ61の燃焼停止が行われる。   In addition, when the heat source device is operated for the first time, or when the time until the re-heating of the hot water after the previous hot water supply is long, the hot water in the connecting pipe connecting the hot water storage tank 2 side and the hot water heater 16 side is cooled down, and the hot water heater 16 When the actual feed water temperature (incoming water temperature) is low, such as during hot water supply when the feed water temperature is low (during cold start), the control feed water temperature also becomes a low value, and from the equation (1) Obviously, since the combustion stop reference temperature difference is set large, the combustion stop timing of the hot water supply burner 61 is delayed as compared with the case where the combustion stop reference temperature difference is small. In other words, when the combustion stop timing of the hot water supply burner 61 is carefully determined and hot water of the hot water supply set temperature reaches from the hot water storage tank 2 side reliably, the combustion stop timing of the hot water supply burner 61 is determined and an appropriate timing is reached. Thus, the combustion of the hot water supply burner 61 is stopped.

一方、実際の給水温度(入水温度)が高い場合には、前記給水温度演算値も高い値となって制御用給水温度も高い値となり、また、前記式(1)から明らかなように、燃焼停止基準温度差が小さく設定されることから、燃焼停止基準温度差が大きい場合に比べると給湯バーナ61の燃焼停止のタイミングが早めとなる。つまり、入水温度が高い場合には給湯バーナ61の燃焼停止タイミングの判断が遅くなった場合に生じるオーバーシュートが大きくなるため、その大きなオーバーシュートが発生しないような適切なタイミングで給湯バーナ61の燃焼停止が行われる。   On the other hand, when the actual feed water temperature (inlet water temperature) is high, the feed water temperature calculation value is also high and the control feed water temperature is also high, and as is clear from the equation (1), combustion Since the stop reference temperature difference is set to be small, the combustion stop timing of the hot water supply burner 61 is earlier than in the case where the combustion stop reference temperature difference is large. That is, when the incoming water temperature is high, the overshoot that occurs when the determination of the combustion stop timing of the hot water supply burner 61 is delayed increases, so the hot water supply burner 61 is combusted at an appropriate timing so that the large overshoot does not occur. A stop is made.

さらに、熱源装置の配置されている外気温が低いと給水温度の温度変動が大きく、図6(a)の特性線aに示されるように、給水温度演算値の変動も大きい(同図のCに示す温度の落ち込みが大きい)。また、外気温が低いときには、例えば同図の特性線bに示されるように、制御用給水温度も低めとなって燃焼停止基準温度差が大きめに設定されることになり、仮に燃焼停止基準温度差を小さめとした場合のように給湯設定温度の湯が給湯器16に到達する前に給湯バーナ61の燃焼を停止してしまうことを防ぐことができ、給湯温度の大きなアンダーシュートが発生することを防止できるため、利用者が不快な思いをすることを防止する。   Further, when the outside air temperature at which the heat source device is arranged is low, the temperature fluctuation of the feed water temperature is large, and the fluctuation of the feed water temperature calculation value is also large as indicated by the characteristic line a in FIG. The drop in temperature shown in is large.) Further, when the outside air temperature is low, for example, as shown by the characteristic line b in the figure, the control feed water temperature becomes lower and the combustion stop reference temperature difference is set to be larger, so that the combustion stop reference temperature is temporarily set. It is possible to prevent the hot water supply burner 61 from being stopped before the hot water at the hot water supply set temperature reaches the water heater 16, as in the case where the difference is made small, and an undershoot with a large hot water temperature occurs. Can prevent the user from feeling uncomfortable.

一方、図6(b)に示されるように、外気温が高いときには給水温度の温度変動も小さいため、特性線aに示されるような給水温度演算値の変動も小さく(同図のCに示す温度の落ち込みが小さく)、同図の特性線bに示されるように、制御用給水温度も高めとなる。そして、この場合は燃焼停止基準温度差が小さめに設定されることから、給湯バーナ61の燃焼停止タイミングが遅めに判断されることはなく、給湯温度の大きなオーバーシュートが発生することが抑制される。なお、入水温度が高めのときには、燃焼停止基準温度差を小さくしたことによって、たとえ誤って早めに消火したとしても給湯温度が急激に下がることはない。   On the other hand, as shown in FIG. 6B, since the temperature fluctuation of the feed water temperature is small when the outside air temperature is high, the fluctuation of the feed water temperature calculation value as shown by the characteristic line a is also small (shown in C of FIG. 6). The temperature drop is small), and as shown by the characteristic line b in FIG. In this case, since the combustion stop reference temperature difference is set to be small, the combustion stop timing of the hot water supply burner 61 is not judged late, and the occurrence of a large overshoot of the hot water supply temperature is suppressed. The When the incoming water temperature is high, the hot water supply temperature does not drop rapidly even if the fire is accidentally extinguished by reducing the combustion stop reference temperature difference.

以上のように、本実施例では、給湯設定温度が高い場合でも低い場合でも、また、実際の給水温度が低い場合でも高い場合でも、外気温が低い場合でも高い場合でも、いずれの場合も、給湯設定温度の湯が給湯器16の給湯回路62に到達するタイミングを適切に判断して給湯バーナ61の燃焼停止を適切なタイミングで行うことができ、給湯温度の安定化を図ることができる。   As described above, in this embodiment, whether or not the hot water supply set temperature is high or low, whether the actual water supply temperature is low or high, whether the outside air temperature is low or high, in any case, It is possible to appropriately determine the timing at which hot water of the hot water supply set temperature reaches the hot water supply circuit 62 of the water heater 16, and to stop combustion of the hot water supply burner 61 at an appropriate timing, so that the hot water temperature can be stabilized.

なお、前記実施例では、給水流量センサ29によって給湯通路18を通って給湯される給湯流量が検出されたときに、タンクユニット4側の制御装置33のミキシング流量制御手段35がタンク側電磁弁13を開き、貯湯槽内湯水温検出手段5aの検出温度が前記閾値よりも高い温度のときには合流部10で給湯設定温度(または給湯設定温度より0.5℃といった温度だけ高めの温度)の湯を形成して給湯器16側に送るようにしたが、この際、合流部10で形成される湯の温度を徐々に高めていって給湯設定温度またはその近傍温度になるようにしてもよい。   In the embodiment, when the hot water flow rate to be supplied through the hot water supply passage 18 is detected by the water supply flow rate sensor 29, the mixing flow rate control means 35 of the controller 33 on the tank unit 4 side is used as the tank side electromagnetic valve 13. When the temperature detected by the hot water temperature detecting means 5a in the hot water tank is higher than the threshold, hot water having a hot water supply set temperature (or a temperature higher than the hot water set temperature by 0.5 ° C.) is formed in the junction 10. However, at this time, the temperature of the hot water formed in the merging portion 10 may be gradually increased so as to reach the hot water supply set temperature or the vicinity thereof.

また、本実施例において、バイパス開閉弁制御手段74は、燃焼制御手段47の制御情報を取り込み、給湯バーナ61の燃焼中はバイパス電磁弁69を閉じ、給湯熱交換器17側への流通割合が予め定められている割合変化範囲内における最大値または最大値に近い値となるように、つまり、ほぼ100%給湯熱交換器17側に通すことができるようにし、給湯バーナ61を停止した以降はバイパス通路68側への流通割合が前記割合変化範囲内で最大となるように、つまり、ここでは、パイパス電磁弁69を完全に開いて、例えば給湯回路62に導入された湯水を給湯熱交換器17側とバイパス通路68側との比が1:3になるような割合で通すようにする。このことによって、給湯バーナ61の燃焼停止以降に給湯熱交換器17の余熱等の影響を受け難くでき、より一層給湯温度の安定化を図ることができる。   Further, in this embodiment, the bypass opening / closing valve control means 74 takes in the control information of the combustion control means 47, closes the bypass electromagnetic valve 69 during combustion of the hot water supply burner 61, and the flow rate to the hot water supply heat exchanger 17 side is increased. After the hot water supply burner 61 is stopped so that the maximum value within the predetermined rate change range or a value close to the maximum value can be obtained, that is, the hot water supply heat exchanger 17 can be passed almost 100%. The distribution ratio to the bypass passage 68 side is maximized within the ratio change range, that is, here, the bypass solenoid valve 69 is completely opened, and for example, hot water introduced into the hot water supply circuit 62 is supplied to the hot water supply heat exchanger. It is made to pass at a ratio such that the ratio of the 17 side to the bypass passage 68 side is 1: 3. This makes it less likely to be affected by the residual heat of the hot water supply heat exchanger 17 after the hot water supply burner 61 stops combustion, and further stabilizes the hot water supply temperature.

また、給湯バーナ燃焼再開指令手段75は、燃焼制御手段47の制御情報と給湯温度検出手段76の検出温度とを取り込み、給湯バーナ61を停止した直後の給湯温度が給湯バーナ61の停止直前の給湯設定温度よりも予め定められる給湯再開基準温度(例えば3℃)以上低下したときには、燃焼制御手段47により給湯バーナ61の燃焼を再開させる。   The hot water supply burner combustion restart command means 75 takes in the control information of the combustion control means 47 and the detected temperature of the hot water supply temperature detection means 76, and the hot water temperature immediately after the hot water supply burner 61 is stopped is the hot water supply immediately before the hot water supply burner 61 is stopped. When the temperature is lower than the preset temperature by a predetermined hot water supply restart reference temperature (for example, 3 ° C.) or more, the combustion control means 47 restarts the combustion of the hot water supply burner 61.

つまり、給湯バーナ61を停止しても、その直後の給湯温度は給湯バーナ61の停止直前の給湯温度よりも高くなるものであるので、給湯バーナ61を停止した直後の給湯温度が給湯バーナ61の停止直前の給湯設定温度よりも前記給湯再開基準温度(例えば3℃)以上低下したときには貯湯槽2側から給湯設定温度の湯が給湯器16に到達して導入されるよりも早く給湯バーナ61の燃焼を停止してしまったと考えられるため、このようなときに給湯バーナ燃焼再開指令手段75の指令によって燃焼制御手段47が給湯バーナ61の燃焼を再開させることにより、給湯温度の安定化を図ることができる。   That is, even if the hot water supply burner 61 is stopped, the hot water supply temperature immediately after the hot water supply burner 61 is higher than the hot water supply temperature immediately before the hot water supply burner 61 is stopped. When the hot water supply resumption reference temperature (for example, 3 ° C.) is lower than the hot water supply resumption reference temperature just before the stop, the hot water supply burner 61 is turned on earlier than hot water at the hot water supply set temperature reaches the water heater 16 and is introduced from the hot water storage tank 2 side. Since it is considered that the combustion has been stopped, the combustion control means 47 restarts the combustion of the hot water supply burner 61 in response to a command from the hot water supply burner combustion restart command means 75 at this time, thereby stabilizing the hot water temperature. Can do.

なお、本発明は、前記実施例に限定されるものでなく、適宜設定されるものである。例えば燃焼制御手段47は、給湯バーナ61の燃焼制御中に、給水温度演算値算出手段71により求められる前記給水温度演算値をモニタし、該給水温度演算値の温度上昇に基づき、主熱源である貯湯槽2から給湯設定温度の湯が給湯器16に到達して導入されたと判断されたときに、給湯バーナ61の燃焼を停止するようにすればよく、この判断を前記実施例のように、給水温度演算値と制御用給水温度との差に基づいて行わずに、例えば給水温度演算値の上昇勾配が予め定められる基準勾配以上になったときに行うようにしてもよい。   In addition, this invention is not limited to the said Example, It sets suitably. For example, the combustion control means 47 monitors the feed water temperature calculation value obtained by the feed water temperature calculation value calculation means 71 during the combustion control of the hot water supply burner 61, and is a main heat source based on the temperature rise of the feed water temperature calculation value. When it is determined that hot water at a hot water supply set temperature reaches the hot water heater 16 from the hot water storage tank 2 and is introduced, the combustion of the hot water burner 61 may be stopped. For example, it may be performed when the rising gradient of the water supply temperature calculation value is equal to or higher than a predetermined reference gradient, without being performed based on the difference between the water supply temperature calculation value and the control water supply temperature.

また、前記実施例においては、前記給水温度演算値から制御用給水温度を差し引いた温度差が予め定められる燃焼停止基準温度差に達したときに、主熱源から給湯設定温度の湯が補助熱源装置に到達して導入されたと判断したが、このタイミングは、給水温度演算値の微分値が所定値(予め定められる設定値)を超えた時と略同義であり、したがって、給水温度演算値の微分値が予め定められる設定値を超えたときに主熱源から給湯設定温度の湯が補助熱源装置に到達して導入されたと判断してもよい。   Further, in the embodiment, when the temperature difference obtained by subtracting the control feed water temperature from the feed water temperature calculation value reaches a predetermined combustion stop reference temperature difference, the hot water at the hot water supply set temperature is supplied from the main heat source to the auxiliary heat source device. However, this timing is almost the same as when the differential value of the feed water temperature calculated value exceeds a predetermined value (predetermined set value). When the value exceeds a preset value, it may be determined that hot water at a hot water supply set temperature has reached the auxiliary heat source device from the main heat source and has been introduced.

さらに、前記実施例では、給湯器16は、給水流量を検出するためのセンサである給水サーミスタを用いないものについて記載したが給湯器16に給水サーミスタを設けてもよい。この場合にも、主熱源から給湯設定温度の湯が補助熱源装置に到達して導入されたと判断する判断方法として、前記実施例のような方法を適用してもよいし、給水サーミスタの検出温度の微分値に基づいて、この検出温度の微分値が予め定められる判断基準微分値に達したとき又は超えたときに、主熱源から給湯設定温度の湯が補助熱源装置に到達して導入されたと判断することもできる。   Furthermore, in the said Example, although the hot water heater 16 described what does not use the water supply thermistor which is a sensor for detecting a water supply flow volume, you may provide a water heater thermistor in the water heater 16. Also in this case, as a determination method for determining that hot water at a hot water supply set temperature has reached the auxiliary heat source device from the main heat source, the method as in the above embodiment may be applied, or the detected temperature of the water supply thermistor When the differential value of the detected temperature reaches or exceeds a predetermined criterion differential value based on the differential value, the hot water at the hot water supply set temperature reaches the auxiliary heat source device and is introduced from the main heat source. It can also be judged.

また、本発明の熱源装置の詳細なシステム構成は適宜設定されるものであり、例えば前記実施例では、タンク湯水混合器12と水混合器14も共に2方弁として、これらの混合器12,14で2カ所で混合比を調整したが、例えば2方弁を用いる代わりに、1カ所に3方弁を設けて混合比を調整するようにしてもよい。   Further, the detailed system configuration of the heat source device of the present invention is appropriately set. For example, in the above embodiment, the tank hot water mixer 12 and the water mixer 14 are both two-way valves, and these mixers 12, However, instead of using a two-way valve, for example, a three-way valve may be provided at one place to adjust the mixing ratio.

また、前記実施例では、給水流量センサ29と流量検出手段42を別々のものとして両方を熱源装置に設けたが、どちらか1つで兼用してもよい。例えば流量検出手段42のみ設ける場合には、流量検出手段42の検出信号を、流量割合検出手段38とミキシング流量制御手段35にも加えるようにする。なお、給水流量センサ29と流量検出手段42の両方を設ける場合にも、流量検出手段42の検出信号をミキシング流量制御手段35等に加えてもよいが、ミキシング流量制御手段35等には給水流量センサ29の検出信号を加えるようにする方が、給湯器16等の補助熱源装置とタンクユニット4間の情報融通を行わずにすみ、制御構成を簡略化できる。   Moreover, in the said Example, although the water supply flow rate sensor 29 and the flow rate detection means 42 were provided separately, and both were provided in the heat-source apparatus, you may share in any one. For example, when only the flow rate detection means 42 is provided, the detection signal of the flow rate detection means 42 is also applied to the flow rate ratio detection means 38 and the mixing flow rate control means 35. Even when both the water supply flow rate sensor 29 and the flow rate detection unit 42 are provided, the detection signal of the flow rate detection unit 42 may be applied to the mixing flow rate control unit 35 and the like. Adding the detection signal from the sensor 29 eliminates the need for information interchange between the auxiliary heat source device such as the water heater 16 and the tank unit 4, and can simplify the control configuration.

さらに、給湯器16は、給湯熱交換器17を例えば石油燃焼式のバーナ装置により加熱するタイプの給湯器としてもよい。   Furthermore, the hot water heater 16 may be a hot water heater of a type that heats the hot water supply heat exchanger 17 by, for example, an oil combustion type burner device.

さらに、図3、図4において、接続通路21,22を省略したシステム(循環ポンプ23、電磁弁24もなし)においても本発明は有効である。   Furthermore, the present invention is also effective in a system (without the circulation pump 23 and the electromagnetic valve 24) in which the connection passages 21 and 22 are omitted in FIGS.

さらに、図3の破線で示されるようなバイパス路79とバイパス電磁弁80を設けて熱源装置を形成してもよい。このような構成においては、バイパス路79と通路28との合流部で合流した後の温度が給湯設定温度となるように、必要に応じてバイパス電磁弁80の開閉制御やミキシング流量制御手段35等による温度制御、燃焼制御手段47による燃焼制御等が適宜行われる。   Furthermore, a heat source device may be formed by providing a bypass path 79 and a bypass electromagnetic valve 80 as shown by a broken line in FIG. In such a configuration, the opening / closing control of the bypass solenoid valve 80, the mixing flow rate control means 35, and the like are performed as necessary so that the temperature after joining at the joining portion of the bypass passage 79 and the passage 28 becomes the hot water supply set temperature. The temperature control by the combustion control, the combustion control by the combustion control means 47, etc. are appropriately performed.

なお、給湯通路62側とバイパス路79側との分岐比(バイパス比)は例えば8:2としたり5:5としたり適宜設定されるものであるが、例えば湯水導入通路15が冷えている状態で給湯が開始されたときは、給湯器16の給湯バーナ61の燃焼中はバイパス路79側には湯水を通さずに給湯バーナ61の燃焼停止時に(つまり、給湯設定温度の湯が給湯器16に導入される頃に)バイパス路79側にも湯水を通すようにすることができる。   Note that the branching ratio (bypass ratio) between the hot water supply passage 62 side and the bypass passage 79 side is set as appropriate, for example, 8: 2 or 5: 5. For example, the hot water introduction passage 15 is cooled. When hot water supply is started in the hot water supply burner 61 of the hot water heater 16, hot water does not pass through the bypass passage 79 side and combustion of the hot water supply burner 61 is stopped (that is, hot water at the hot water supply set temperature is supplied). It is possible to pass hot water through the bypass passage 79 side as well.

さらに、前記実施例では、貯湯槽2は燃料電池1に熱的に接続されていたが、燃料電池1の代わりに、太陽熱の集熱機やヒートポンプ等を接続してもよい。   Furthermore, in the said Example, although the hot water tank 2 was thermally connected to the fuel cell 1, you may connect a solar heat collector, a heat pump, etc. instead of the fuel cell 1. FIG.

本発明の熱源装置は、たとえ主熱源と補助熱源装置との通信を行わなくても給湯温度の安定化を図ることができ、コストダウンを図ることもできるので、使い勝手が良好であり、例えば家庭用の熱源装置として利用できる。   The heat source device of the present invention can stabilize the hot water supply temperature even without performing communication between the main heat source and the auxiliary heat source device, and can reduce the cost. It can be used as a heat source device.

1 燃料電池
2 貯湯槽
3 熱回収用通路
4 タンクユニット
5 貯湯槽内湯水温検出手段
8,8a,8b 給水通路
9 出湯通路
10 合流部
11 貯湯槽出湯水温検出手段
12 タンク湯水混合器
13 タンク側電磁弁
14 水混合器
15 湯水導入通路
16 給湯器
17 給湯熱交換器
23 循環ポンプ
24 電磁弁
28 混合サーミスタ
29 給水流量センサ
33 制御装置
35 ミキシング流量制御手段
36 混合設定温度設定手段
42 流量検出手段
45 給湯設定温度設定操作手段
47 燃焼制御手段
61 給湯バーナ
62 給湯回路
66 燃焼室
67 給湯熱交出側温度検出手段
68 バイパス通路
69 バイパス電磁弁
71 給水温度演算値算出手段
72 制御用給水温算出手段
73 メモリ部
74 バイパス開閉弁制御手段
75 給湯バーナ燃焼再開指令手段
76 給湯温度検出手段
DESCRIPTION OF SYMBOLS 1 Fuel cell 2 Hot water storage tank 3 Heat recovery passage 4 Tank unit 5 Hot water temperature detection means 8 in hot water storage tank 8, 8a, 8b Water supply passage 9 Hot water supply passage 10 Junction part 11 Hot water storage hot water temperature detection means 12 Tank hot water mixer 13 Tank side electromagnetic Valve 14 Water mixer 15 Hot water introduction passage 16 Water heater 17 Hot water heat exchanger 23 Circulation pump 24 Solenoid valve 28 Mixing thermistor 29 Feed water flow sensor 33 Controller 35 Mixing flow control means 36 Mixing set temperature setting means 42 Flow detection means 45 Hot water supply Set temperature setting operation means 47 Combustion control means 61 Hot water supply burner 62 Hot water supply circuit 66 Combustion chamber 67 Hot water supply heat outlet side temperature detection means 68 Bypass passage 69 Bypass solenoid valve 71 Supply water temperature calculation value calculation means 72 Control supply water temperature calculation means 73 Memory 74 Bypass valve control means 75 Hot water burner combustion Opening command means 76 hot water supply temperature detecting means

Claims (6)

主熱源から出湯される湯の通路の下流側に、給湯熱交換器を備えた補助熱源装置の給湯回路の湯水導入側が接続されて前記主熱源から前記補助熱源装置に送られる湯を該補助熱源装置の前記給湯回路を通して給湯する機能を有し、前記補助熱源装置には、前記給湯熱交換器を加熱する給湯バーナと、該給湯バーナの燃焼制御を行う燃焼制御手段と、前記給湯回路を通して給湯される湯の温度を検出する給湯温度検出手段と、該給湯温度検出手段により検出される給湯温度と給湯熱交換器の容量と該給湯熱交換器の加熱量とに基づいて補助熱源装置に導入される湯水の温度を給水温度演算値として演算により求める給水温度演算値算出手段とを有し、給湯が開始されたときに前記補助熱源装置の前記燃焼制御手段が前記給湯バーナの燃焼を開始させて、前記給水温度演算値算出手段により求められる前記給水温度演算値をモニタして該給水温度演算値の温度上昇に基づき前記主熱源から前記給湯設定温度の湯が前記補助熱源装置に到達して導入されたと判断されたときに前記給湯バーナの燃焼を停止することを特徴とする熱源装置。   Hot water sent from the main heat source to the auxiliary heat source device is connected to the hot water supply side of the hot water supply circuit of the auxiliary heat source device provided with the hot water heat exchanger downstream of the passage of hot water discharged from the main heat source. A hot water supply burner for heating the hot water supply heat exchanger, combustion control means for controlling combustion of the hot water supply burner, and hot water supply through the hot water supply circuit. Hot water temperature detecting means for detecting the temperature of the hot water to be introduced, the hot water temperature detected by the hot water temperature detecting means, the capacity of the hot water heat exchanger, and the heating amount of the hot water heat exchanger are introduced into the auxiliary heat source device Water temperature calculation value calculation means for calculating the temperature of the hot water to be calculated as a water supply temperature calculation value, and when the hot water supply is started, the combustion control means of the auxiliary heat source device starts combustion of the hot water burner The hot water at the hot water set temperature reaches the auxiliary heat source device from the main heat source based on the temperature rise of the hot water temperature calculated value by monitoring the hot water temperature calculated value obtained by the hot water temperature calculated value calculating means. A heat source device that stops combustion of the hot water burner when it is determined that the hot water burner has been introduced. 給水温度演算値算出手段により求められる給水温度演算値と予め定められる温度変化量とに基づき燃焼制御手段による給湯バーナ燃焼制御用の制御用給水温度を求める制御用給水温度算出手段を有し、燃焼制御手段は、前記給水温度演算値から前記制御用給水温度を差し引いた温度差が予め定められる燃焼停止基準温度差に達したとき又は超えたときに主熱源から給湯設定温度の湯が補助熱源装置に導入されたと判断することを特徴とする請求項1記載の熱源装置。   There is a control water temperature calculation means for determining a control water temperature for hot water burner combustion control by the combustion control means based on a feed water temperature calculation value obtained by the feed water temperature calculation value calculation means and a predetermined temperature change amount, and combustion When the temperature difference obtained by subtracting the control feed water temperature from the feed water temperature calculation value reaches or exceeds a predetermined combustion stop reference temperature difference, the control means supplies hot water at a set hot water temperature from the main heat source to the auxiliary heat source device. The heat source device according to claim 1, wherein the heat source device is determined to have been introduced into the heat source device. 燃焼停止基準温度差は給湯設定温度から制御用給水温度を差し引いた差を予め定められる失火係数で調整した値としたことを特徴とする請求項2記載の熱源装置。   The heat source apparatus according to claim 2, wherein the combustion stop reference temperature difference is a value obtained by adjusting a difference obtained by subtracting the control water supply temperature from the hot water supply set temperature with a predetermined misfire coefficient. 補助熱源装置の給湯回路には該給湯回路に導入される湯水を給湯熱交換器には通さずに出湯するバイパス通路が設けられており、該バイパス通路にはバイパス開閉弁が設けられて、前記給湯回路に導入される湯水の前記給湯熱交換器側への流通割合と前記バイパス通路側への流通割合とが前記バイパス開閉弁の開閉により予め定められる割合変化範囲内で制御される構成と成し、給湯バーナを停止した以降は前記バイパス通路側への流通割合が前記割合変化範囲内で最大となるように前記バイパス開閉弁を制御するバイパス開閉弁制御手段を有することを特徴とする請求項1乃至請求項4のいずれか一つに記載の熱源装置。   The hot water supply circuit of the auxiliary heat source device is provided with a bypass passage for discharging hot water introduced into the hot water supply circuit without passing through the hot water heat exchanger, and the bypass passage is provided with a bypass on-off valve, The flow rate of the hot water introduced into the hot water supply circuit to the hot water heat exchanger side and the flow rate to the bypass passage side are controlled within a rate change range determined in advance by opening and closing of the bypass on-off valve. And a bypass on / off valve control means for controlling the bypass on / off valve so that a flow rate to the bypass passage side becomes maximum within the rate change range after the hot water supply burner is stopped. The heat source device according to any one of claims 1 to 4. 給湯バーナを停止した直後の給湯温度が前記給湯バーナの停止直前の給湯設定温度よりも予め定められる給湯再開基準温度以上低下したときには燃焼制御手段により前記給湯バーナの燃焼を再開させる給湯バーナ燃焼再開指令手段が設けられていることを特徴とする請求項1乃至請求項4のいずれか一つに記載の熱源装置。   Hot water supply burner combustion resumption command for resuming combustion of the hot water supply burner by combustion control means when the hot water supply temperature immediately after stopping the hot water supply burner is lower than a predetermined hot water supply restart temperature than the hot water supply set temperature immediately before stopping the hot water supply burner The heat source device according to any one of claims 1 to 4, wherein means are provided. 主熱源は貯湯槽を有して該貯湯槽から出湯される湯の通路と給水通路とが合流する合流部が設けられ、該合流部で合流される前記湯の通路からの湯と前記給水通路からの水とを混合するミキシング手段と、該ミキシング手段により混合されて形成された湯を補助熱源装置に導入する湯水導入通路と、前記ミキシング手段を制御することにより前記合流部に流れる湯の流量と水の流量を制御するミキシング流量制御手段とを有することを特徴とする請求項1乃至請求項5のいずれか一つに記載の熱源装置。   The main heat source has a hot water storage tank, and is provided with a joining portion where a hot water passage and a water supply passage discharged from the hot water storage bath are joined, and the hot water from the hot water passage joined at the joining portion and the water supply passage A mixing means for mixing the water from the water, a hot water introduction passage for introducing hot water mixed by the mixing means into the auxiliary heat source device, and a flow rate of the hot water flowing through the junction by controlling the mixing means And a mixing flow rate control means for controlling the flow rate of water.
JP2014070188A 2014-03-28 2014-03-28 Heat source equipment Active JP6228880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014070188A JP6228880B2 (en) 2014-03-28 2014-03-28 Heat source equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014070188A JP6228880B2 (en) 2014-03-28 2014-03-28 Heat source equipment

Publications (2)

Publication Number Publication Date
JP2015190737A true JP2015190737A (en) 2015-11-02
JP6228880B2 JP6228880B2 (en) 2017-11-08

Family

ID=54425363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014070188A Active JP6228880B2 (en) 2014-03-28 2014-03-28 Heat source equipment

Country Status (1)

Country Link
JP (1) JP6228880B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433465A (en) * 1987-07-28 1989-02-03 Harman Co Ltd Hot water supplier
JPH06257852A (en) * 1993-03-08 1994-09-16 Rinnai Corp Hot-water supplier
JP2002349956A (en) * 2001-05-31 2002-12-04 Hitachi Chem Co Ltd Method for controlling fed-out hot water temperature of hot-water feeding apparatus utilizing solar heat
JP2005249340A (en) * 2004-03-05 2005-09-15 Rinnai Corp Hot-water supply system
JP2011185564A (en) * 2010-03-10 2011-09-22 Rinnai Corp Hot water supply system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433465A (en) * 1987-07-28 1989-02-03 Harman Co Ltd Hot water supplier
JPH06257852A (en) * 1993-03-08 1994-09-16 Rinnai Corp Hot-water supplier
JP2002349956A (en) * 2001-05-31 2002-12-04 Hitachi Chem Co Ltd Method for controlling fed-out hot water temperature of hot-water feeding apparatus utilizing solar heat
JP2005249340A (en) * 2004-03-05 2005-09-15 Rinnai Corp Hot-water supply system
JP2011185564A (en) * 2010-03-10 2011-09-22 Rinnai Corp Hot water supply system

Also Published As

Publication number Publication date
JP6228880B2 (en) 2017-11-08

Similar Documents

Publication Publication Date Title
JP2010210182A (en) Hot water supply system
JP5295985B2 (en) Hot water system
JP6858621B2 (en) Heat source device
JP6055356B2 (en) Heat source equipment
JP6228881B2 (en) Heat source equipment
JP6209117B2 (en) Heat source equipment
JP5641304B2 (en) Combustion device
JP6607375B2 (en) Auxiliary heat source machine
JP6228880B2 (en) Heat source equipment
CN104676728A (en) Complementary gas and electric water heating system and control method for same
JP2011247487A (en) Water heater
JP6147541B2 (en) Heat source equipment
JP6320118B2 (en) Heat source equipment
JP6800795B2 (en) Heat source device
JP2017072345A (en) Heating device
JP6125877B2 (en) Heat source equipment
JP6133661B2 (en) Heat source equipment
JP6635858B2 (en) Instant hot water system
JP6320117B2 (en) Heat source equipment
JP6088889B2 (en) Heat source equipment
JP6843679B2 (en) Heat source device
JP2005249340A (en) Hot-water supply system
KR101588538B1 (en) Storage type hot water supply device
JP6062787B2 (en) Heat source equipment
JP2017122535A (en) Bath water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171016

R150 Certificate of patent or registration of utility model

Ref document number: 6228880

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250