JP2015183050A - Insulation film and semiconductor device - Google Patents

Insulation film and semiconductor device Download PDF

Info

Publication number
JP2015183050A
JP2015183050A JP2014059340A JP2014059340A JP2015183050A JP 2015183050 A JP2015183050 A JP 2015183050A JP 2014059340 A JP2014059340 A JP 2014059340A JP 2014059340 A JP2014059340 A JP 2014059340A JP 2015183050 A JP2015183050 A JP 2015183050A
Authority
JP
Japan
Prior art keywords
component
insulating film
insulating
film
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014059340A
Other languages
Japanese (ja)
Other versions
JP6423603B2 (en
Inventor
津与志 黒川
Tsuyoshi Kurokawa
津与志 黒川
寛史 高杉
Hiroshi Takasugi
寛史 高杉
順 戸島
Jun Toshima
順 戸島
一生 青木
Kazuo Aoki
一生 青木
慎 寺木
Shin Teraki
慎 寺木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namics Corp
Original Assignee
Namics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namics Corp filed Critical Namics Corp
Priority to JP2014059340A priority Critical patent/JP6423603B2/en
Priority to PCT/JP2015/058122 priority patent/WO2015141746A1/en
Priority to TW104108757A priority patent/TWI663195B/en
Publication of JP2015183050A publication Critical patent/JP2015183050A/en
Application granted granted Critical
Publication of JP6423603B2 publication Critical patent/JP6423603B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/04Epoxynovolacs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/145Organic substrates, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/02Copolymers with acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/04Epoxynovolacs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Organic Insulating Materials (AREA)
  • Insulating Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Epoxy Resins (AREA)
  • Die Bonding (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an insulation film which is excellent in film characteristics and heat resistance after hardening and has a thermal conductivity of 3.0 W/m K or higher.SOLUTION: An insulation film comprises (A) a novolak type epoxy resin, (B) a butadiene-acrylonitrile copolymer, (C) an aralkyl phenol resin, (D) a hardening catalyst and (E) an insulation filler having a thermal conductivity of 20 W/m K or higher. The content of the ingredient (B) relative to the total of the ingredients (A) to (C) of 100 pts. mass is 10-20 pts. mass, and the content of the ingredient (E) is 60-85 vol.% relative to 100 vol.% of the insulation film.

Description

本発明は、絶縁フィルム、および半導体装置に関し、特に、硬化後に耐熱性、および熱伝導性に優れる絶縁フィルム、およびこの絶縁フィルムの硬化物を含む信頼性の高い半導体装置に関する。   The present invention relates to an insulating film and a semiconductor device, and more particularly to an insulating film having excellent heat resistance and thermal conductivity after curing, and a highly reliable semiconductor device including a cured product of the insulating film.

パワーデバイス等の半導体装置の分野において、高熱伝導性絶縁材料の要求が高まってきている。一方、半導体装置の製造プロセスにおいて、はんだ付け等により、製造中の半導体装置が高温にさらされることがあり、また、半導体装置の耐熱信頼性を高めるため、半導体装置に使用される半導体用接着剤には、耐熱性が要求される。この耐熱性を改良した材料として、クレゾールノボラック型エポキシ樹脂と、フェノールアラルキル樹脂と、フェノール変性キシレン樹脂とを含む保護膜層用封止剤(特許文献1)が開示されている。   In the field of semiconductor devices such as power devices, there is an increasing demand for highly thermally conductive insulating materials. On the other hand, in the manufacturing process of a semiconductor device, the semiconductor device being manufactured may be exposed to a high temperature by soldering or the like, and the semiconductor adhesive used in the semiconductor device to improve the heat resistance reliability of the semiconductor device Requires heat resistance. As a material with improved heat resistance, a protective film layer sealant (Patent Document 1) containing a cresol novolac-type epoxy resin, a phenol aralkyl resin, and a phenol-modified xylene resin is disclosed.

一方、近年、ハンドリングの良さから、接着剤の代わりに接着フィルムが用いられることが多くなってきている。この場合、接着フィルムは、ポリエチレンテレフタレート(PET)などの基材フィルム上に塗工し、未硬化状態のままで乾燥処理した塗膜として供給することになるため、接着フィルムには、柔軟性や屈曲性等のフィルム性が必用となる。   On the other hand, in recent years, an adhesive film is often used instead of an adhesive because of good handling. In this case, the adhesive film is applied on a base film such as polyethylene terephthalate (PET) and supplied as a coating film dried in an uncured state. Film properties such as flexibility are necessary.

特開2009−91424号公報JP 2009-91424 A

しかしながら、高熱伝導用途として用いるため、上記のクレゾールノボラック型エポキシ樹脂と、フェノールアラルキル樹脂と、フェノール変性キシレン樹脂とを含む保護膜層用封止剤に、高熱伝導フィラーを高充填した場合、乾燥塗膜が硬く脆くなってしまい、フィルム化できない、という問題がある。   However, when used as a high thermal conductivity application, when a high thermal conductive filler is highly filled in a sealant for a protective film layer containing the above cresol novolac type epoxy resin, phenol aralkyl resin, and phenol-modified xylene resin, There is a problem that the film becomes hard and brittle and cannot be formed into a film.

そこで、本発明の目的は、フィルム性に優れ、かつ硬化後に、耐熱性に優れ、3.0W/m・K以上の熱伝導率を有する絶縁フィルムを提供することである。   Then, the objective of this invention is providing the insulating film which is excellent in film property, is excellent in heat resistance after hardening, and has a heat conductivity of 3.0 W / m * K or more.

本発明は、以下の構成を有することによって上記問題を解決した絶縁フィルム、および半導体装置に関する。
〔1〕(A)ノボラック型エポキシ樹脂、(B)ブタジエンアクリロニトリル共重合体、(C)アラルキルフェノール樹脂、(D)硬化触媒、および(E)熱伝導率が20W/m・K以上の絶縁フィラーを含み、
(B)成分が、(A)〜(C)成分の合計100質量部に対して、10〜20質量部であり、かつ(E)成分が、絶縁フィルム100体積%に対して、60〜85体積%であることを特徴とする、絶縁フィルム。
〔2〕(D)成分が、イミダゾール系硬化触媒である、上記〔1〕記載の絶縁フィルム。
〔3〕(E)成分が、酸化アルミニウム、酸化マグネシウム、および窒化ホウ素からなる群より選択される少なくとも1種である、上記〔1〕または〔2〕記載の絶縁フィルム。
〔4〕(E)成分が、平均粒径が0.1〜0.8μmの絶縁フィラー(E1)と、平均粒径が2〜6μmの絶縁フィラー(E2)と、平均粒径が7〜30μmの絶縁フィラー(E3)とを含む、上記〔1〕〜〔3〕のいずれか記載の絶縁フィルム。
〔5〕(E3)成分の平均粒径が、15〜30μmである、上記〔4〕記載の絶縁フィルム。
〔6〕上記〔1〕〜〔5〕のいずれか記載の絶縁フィルムの硬化物を含む、半導体装置。
The present invention relates to an insulating film and a semiconductor device which have solved the above problems by having the following configuration.
[1] (A) novolac type epoxy resin, (B) butadiene acrylonitrile copolymer, (C) aralkylphenol resin, (D) curing catalyst, and (E) insulating filler having a thermal conductivity of 20 W / m · K or more Including
(B) A component is 10-20 mass parts with respect to a total of 100 mass parts of (A)-(C) component, and (E) component is 60-85 with respect to 100 volume% of insulating films. An insulating film characterized by being in volume%.
[2] The insulating film according to [1], wherein the component (D) is an imidazole curing catalyst.
[3] The insulating film according to [1] or [2], wherein the component (E) is at least one selected from the group consisting of aluminum oxide, magnesium oxide, and boron nitride.
[4] The component (E) includes an insulating filler (E1) having an average particle size of 0.1 to 0.8 μm, an insulating filler (E2) having an average particle size of 2 to 6 μm, and an average particle size of 7 to 30 μm. The insulating film according to any one of the above [1] to [3], comprising the insulating filler (E3).
[5] The insulating film according to [4], wherein the average particle size of the component (E3) is 15 to 30 μm.
[6] A semiconductor device comprising a cured product of the insulating film according to any one of [1] to [5].

本発明〔1〕によれば、フィルム性に優れ、かつ、硬化後に、耐熱性に優れ、3.0W/m・K以上の熱伝導率を有する絶縁フィルムを提供することができる。   According to the present invention [1], an insulating film having excellent film properties and excellent heat resistance after curing and having a thermal conductivity of 3.0 W / m · K or more can be provided.

本発明〔6〕によれば、耐熱性、熱伝導性に優れる絶縁フィルムの硬化体により、高信頼性の半導体装置を提供することができる。   According to the present invention [6], a highly reliable semiconductor device can be provided by a cured body of an insulating film having excellent heat resistance and thermal conductivity.

掻き取り塗布の方法を説明するための模式図である。It is a schematic diagram for demonstrating the method of scraping application | coating.

〔絶縁フィルム〕
本発明の絶縁フィルムは、(A)ノボラック型エポキシ樹脂、(B)ブタジエンアクリロニトリル共重合体、(C)アラルキルフェノール樹脂、(D)硬化触媒、および(E)熱伝導率が20W/m・K以上の絶縁フィラーを含み、
(B)成分が、(A)〜(C)成分の合計100質量部に対して、10〜20質量部であり、かつ(E)成分が、絶縁フィルム100体積%に対して、60〜85体積%であることを特徴とする。
[Insulating film]
The insulating film of the present invention comprises (A) a novolac type epoxy resin, (B) a butadiene acrylonitrile copolymer, (C) an aralkylphenol resin, (D) a curing catalyst, and (E) a thermal conductivity of 20 W / m · K. Including the above insulating filler,
(B) A component is 10-20 mass parts with respect to a total of 100 mass parts of (A)-(C) component, and (E) component is 60-85 with respect to 100 volume% of insulating films. It is characterized by volume%.

(A)成分は、絶縁フィルムに、耐熱性を付与する。(A)成分は、耐熱性の観点からクレゾールノボラック型エポキシ樹脂であると好ましく、このクレゾールノボラック型エポキシ樹脂は、具体的には、式(1):   The component (A) imparts heat resistance to the insulating film. The component (A) is preferably a cresol novolak type epoxy resin from the viewpoint of heat resistance. Specifically, the cresol novolak type epoxy resin is represented by the formula (1):

(式中、nは平均値を表し、1〜10、好ましくは1〜5である。)で示される、クレゾールノボラック型エポキシ樹脂が挙げられる。(A)成分のエポキシ当量は、絶縁フィルム用組成物の硬化後における耐熱性の観点から、150〜300g/eqが好ましい。絶縁フィルム用組成物については、後述する。(A)成分の市販品としては、DIC製クレゾールノボラック型エポキシ樹脂(品名:N−665−EXP)が挙げられる。(A)成分は、単独でも2種以上を併用してもよい。 (Wherein, n represents an average value and is 1 to 10, preferably 1 to 5.), a cresol novolak type epoxy resin. The epoxy equivalent of the component (A) is preferably 150 to 300 g / eq from the viewpoint of heat resistance after curing of the composition for an insulating film. The composition for an insulating film will be described later. (A) As a commercial item of a component, the cresol novolak-type epoxy resin (product name: N-665-EXP) made from DIC is mentioned. (A) A component may be individual or may use 2 or more types together.

(B)成分は、柔軟性等のフィルム性のために用いられ、常温で液体のものを使用することができる。(B)成分は、常温で液状の、例えば、平均分子量が比較的低い、ブタジエンアクリロニトリル共重合体が挙げられる。また、(B)成分は、末端にエポキシ基と反応する基を有するブタジエンアクリロニトリル共重合体を使用することができる。(B)成分は、特に、(A)ノボラック型エポキシ樹脂との反応性、及び(A)ノボラック型エポキシ樹脂への相溶性の点から、カルボキシル基末端ブタジエンアクリロニトリル共重合体、アミノ基末端ブタジエンアクリロニトリル共重合体、エポキシ基末端ブタジエンアクリロニトリル共重合体が好ましい。これらのブタジエンアクリロニトリル共重合体のアクリロニトリル含量は、10〜40質量%が好ましく、15〜30質量%がより好ましい。カルボキシル基末端ブタジエン・アクリロニトリル共重合体の場合は、カルボキシル基比率が1.8〜3.0%が好ましい。(B)成分は、重量平均分子量が、3,000〜5,000であるものが好ましい。重量平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)により、標準ポリスチレンによる検量線を用いた値とする。(B)成分の市販品としては、宇部興産製ブタジエンアクリロニトリルゴム(品名:HYCAR CTBN1300が挙げられる。(B)成分は、単独でも2種以上を併用してもよい。   (B) A component is used for film properties, such as a softness | flexibility, and can use a liquid thing at normal temperature. Examples of the component (B) include butadiene acrylonitrile copolymers that are liquid at room temperature, for example, having a relatively low average molecular weight. As the component (B), a butadiene acrylonitrile copolymer having a group that reacts with an epoxy group at the terminal can be used. Component (B) is, in particular, (A) reactive with a novolac type epoxy resin and (A) compatible with a novolak type epoxy resin, carboxyl group-terminated butadiene acrylonitrile copolymer, amino group-terminated butadiene acrylonitrile. A copolymer and an epoxy group-terminated butadiene acrylonitrile copolymer are preferred. 10-40 mass% is preferable and, as for the acrylonitrile content of these butadiene acrylonitrile copolymers, 15-30 mass% is more preferable. In the case of a carboxyl group-terminated butadiene / acrylonitrile copolymer, the carboxyl group ratio is preferably 1.8 to 3.0%. The component (B) preferably has a weight average molecular weight of 3,000 to 5,000. The weight average molecular weight is a value obtained by gel permeation chromatography (GPC) using a standard polystyrene calibration curve. (B) As a commercial item of a component, Ube Industries butadiene acrylonitrile rubber | gum (Product name: HYCAR CTBN1300 is mentioned. (B) A component may be individual or may use 2 or more types together.

(C)成分としては、式(2):   As the component (C), the formula (2):

(式中、Rは、独立して、ハロゲン原子、水酸基、炭素数1〜10の直鎖、分岐若しくは環状アルキル基、炭素数1〜10のアルコキシ基、又はフェニル基を表し、rは0〜3の整数を表し、好ましくはrが0であり、mは、平均値を表し、1〜10、好ましくは1〜5、特に好ましくは1である。)で示されるアラルキルフェノール樹脂が挙げられる。(C)成分を配合することにより、硬化後の絶縁フィルムの耐熱性、耐クラック性の向上が図られる。(C)成分の市販品としては、三井化学製アラルキルフェノール樹脂(品名:XLC4L)が挙げられる。 (In the formula, R 1 independently represents a halogen atom, a hydroxyl group, a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or a phenyl group, and r is 0. An integer of ˜3, preferably r is 0, m is an average value, 1 to 10, preferably 1 to 5, and particularly preferably 1.). . By blending the component (C), the heat resistance and crack resistance of the cured insulating film can be improved. (C) As a commercial item of a component, Mitsui Chemicals aralkyl phenol resin (product name: XLC4L) is mentioned.

(D)成分は、絶縁フィルムの硬化能を有するものであればよい。(D)成分により、絶縁フィルムの硬化時間を短縮することができ、硬化工程を短縮することができる。また(D)成分により、絶縁フィルムの硬化性が向上し、硬化後の絶縁フィルムが、良好な特性になる。(D)成分としては、イミダゾール系硬化触媒、アミン系硬化触媒、カルボン酸ジヒドラジド硬化触媒等が挙げられる。絶縁フィルムの硬化性の観点から、イミダゾール系硬化触媒がより好ましい。   (D) A component should just have the hardening ability of an insulating film. With the component (D), the curing time of the insulating film can be shortened, and the curing process can be shortened. Moreover, the (D) component improves the curability of the insulating film, and the cured insulating film has good characteristics. Examples of the component (D) include imidazole-based curing catalysts, amine-based curing catalysts, carboxylic acid dihydrazide curing catalysts, and the like. From the viewpoint of curability of the insulating film, an imidazole-based curing catalyst is more preferable.

イミダゾール硬化触媒としては、2−メチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]エチル−s−トリアジン、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2,3−ジヒドロ−1H−ピロロ[1,2−a]ベンズイミダゾール等を挙げることができ、2−エチル−4−メチルイミダゾール、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]エチル−s−トリアジン等が、絶縁フィルムの硬化速度の観点から好ましい。   Examples of the imidazole curing catalyst include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2,4- Diamino-6- [2′-methylimidazolyl- (1 ′)] ethyl-s-triazine, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2, Examples include 3-dihydro-1H-pyrrolo [1,2-a] benzimidazole, and the like, such as 2-ethyl-4-methylimidazole, 2,4-diamino-6- [2′-methylimidazolyl- (1 ′). )] Ethyl-s-triazine and the like are preferable from the viewpoint of the curing rate of the insulating film.

アミン系硬化触媒としては、鎖状脂肪族アミン、環状脂肪族アミン、脂肪芳香族アミン、芳香族アミン等が挙げられ、芳香族アミンが好ましい。カルボン酸ジヒドラジド硬化触媒としては、アジピン酸ジヒドラジド、イソフタル酸ジヒドラジド、セバチン酸ジヒドラジド、ドデカン酸ジヒドラジド等が挙げられ、アジピン酸ジヒドラジドが好ましい。   Examples of the amine curing catalyst include chain aliphatic amines, cycloaliphatic amines, aliphatic aromatic amines, aromatic amines, and the like, and aromatic amines are preferable. Examples of the carboxylic acid dihydrazide curing catalyst include adipic acid dihydrazide, isophthalic acid dihydrazide, sebacic acid dihydrazide, dodecanoic acid dihydrazide, and adipic acid dihydrazide is preferable.

(D)成分の市販品としては、四国化成製2−エチル−4−メチルイミダゾール(品名:2E4MZ)、四国化成製2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン(品名:2MZ−A)、日本化薬製アミン硬化剤(品名:カヤハードA−A)、日本ファインケム製アジピン酸ジヒドラジド(品名:ADH)等が挙げられるが、(D)成分は、これら品名に限定されるものではない。(D)成分は、単独でも2種以上を併用してもよい。   As a commercial item of (D) component, Shikoku Kasei 2-ethyl-4-methylimidazole (product name: 2E4MZ), Shikoku Kasei 2,4-diamino-6- [2'-methylimidazolyl- (1 ')] -Ethyl-s-triazine (product name: 2MZ-A), Nippon Kayaku's amine curing agent (product name: Kayahard A-A), Nippon Finechem's adipic acid dihydrazide (product name: ADH), and the like. Ingredients are not limited to these product names. (D) A component may be individual or may use 2 or more types together.

(E)成分としては、酸化アルミニウム(アルミナ、Al)、酸化マグネシウム(MgO)、酸化亜鉛(ZnO)、窒化ホウ素(BN)、炭化ケイ素(SiC)、窒化アルミニウム(AlN)、窒化ケイ素(Si)、ダイヤモンド等が挙げられる。(E)成分は、熱伝導率、湿度等に対する耐久性の観点から、酸化アルミニウム、酸化マグネシウム、および窒化ホウ素からなる群より選択される少なくとも1種であると、好ましい。各材料の熱伝導率測定結果の一例としては(単位は、W/m・K)、Alは20〜40、MgOは45〜60、ZnOは54、BNは30〜80、SiCは140〜170、AlNは150〜250、Siは30〜80、ダイヤモンドは1000〜2000である。(E)成分の市販品としては、電気化学工業製球状アルミナ(Al)粉末(品名:ASFP−20、DAM−03、DAM−05、DAM−07)、昭和電工製球状アルミナ(Al)粉末(品名:CB−A20S)、堺化学工業製酸化マグネシウム粉末(品名:SMO−05)が挙げられる。 As the component (E), aluminum oxide (alumina, Al 2 O 3 ), magnesium oxide (MgO), zinc oxide (ZnO), boron nitride (BN), silicon carbide (SiC), aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), diamond and the like. The component (E) is preferably at least one selected from the group consisting of aluminum oxide, magnesium oxide, and boron nitride from the viewpoint of durability against thermal conductivity, humidity, and the like. As an example of the thermal conductivity measurement result of each material (unit is W / m · K), Al 2 O 3 is 20 to 40, MgO is 45 to 60, ZnO is 54, BN is 30 to 80, SiC is 140 to 170, AlN is 150 to 250, Si 3 N 4 is 30 to 80, and diamond is 1000 to 2000. (E) Component commercial products include spherical alumina (Al 2 O 3 ) powder (product names: ASFP-20, DAM-03, DAM-05, DAM-07) manufactured by Denki Kagaku Kogyo, and spherical alumina (Al 2 O 3 ) powder (product name: CB-A20S), and magnesium oxide powder (product name: SMO-05) manufactured by Sakai Chemical Industry.

(E)成分は、平均粒径が0.1〜0.8μmの絶縁フィラー(E1)と、平均粒径が2〜6μmの絶縁フィラー(E1)と、平均粒径が7〜30μmの絶縁フィラー(E3)とを含むと好ましい。これらの粒径のフィラーを組み合わせて使用することにより、絶縁フィラーが絶縁フィルム中に、より緻密に分布するため、同じ絶縁フィラー量であっても、硬化後の絶縁フィルムの熱伝導率をより高くすることができる。ここで、(E)成分の平均粒径は、レーザー解析式粒度分析計により測定する。(E)成分は、単独でも2種以上を併用してもよい。 The component (E) includes an insulating filler (E1) having an average particle size of 0.1 to 0.8 μm, an insulating filler (E1) having an average particle size of 2 to 6 μm, and an insulating filler having an average particle size of 7 to 30 μm. (E3) is preferably included. By using fillers of these particle sizes in combination, the insulating filler is more densely distributed in the insulating film, so that the thermal conductivity of the insulating film after curing is higher even with the same amount of insulating filler. can do. Here, the average particle size of the component (E) is measured by a laser analysis type particle size analyzer. (E) A component may be individual or may use 2 or more types together.

(E3)成分の平均粒径が、15〜30μmであると、熱伝導率の観点からより好ましい。粒径の粗いフィラーを(E)成分に含有させることにより、硬化後の絶縁フィルムに、より高い熱伝導率を与えることができる。ただし、平均粒径が30μmを超える絶縁フィラーを含有させると、粗粒子によって、絶縁フィルム組成物の塗膜表面がざらつき、塗膜外観を損ねたり、絶縁フィルム組成物の塗工時に筋が発生したり、硬化後の絶縁フィルムの絶縁性を損ねるなどの不具合が生じ易くなるため、膜厚の薄い絶縁フィルムが得られにくくなる。   (E3) It is more preferable from a viewpoint of thermal conductivity that the average particle diameter of a component is 15-30 micrometers. By containing a filler having a coarse particle size in the component (E), higher thermal conductivity can be given to the insulating film after curing. However, when an insulating filler having an average particle size exceeding 30 μm is contained, the coating film surface of the insulating film composition becomes rough due to the coarse particles, and the appearance of the coating film is impaired, or streaks are generated when the insulating film composition is applied. In addition, problems such as damage to the insulating properties of the cured insulating film are likely to occur, so that it is difficult to obtain a thin insulating film.

(A)成分は、(A)〜(C)成分の合計100質量部に対して、30〜50質量部であると好ましい。   (A) A component is preferable in it being 30-50 mass parts with respect to a total of 100 mass parts of (A)-(C) component.

(B)成分は、(A)〜(C)成分の合計100質量部に対して、10〜20質量部であり、10質量部未満の場合は、絶縁フィルムが硬くなり、割れ等の不具合が生じやすくなり、フィルム性が得られない。一方、(B)成分が20質量部を超える場合には、樹脂成分が柔らかくなり過ぎ、(E)成分の絶縁フィラーの接触が弱まるため熱伝導率が低下してしまう。   (B) component is 10-20 mass parts with respect to a total of 100 mass parts of (A)-(C) component, and when it is less than 10 mass parts, an insulating film becomes hard and defects, such as a crack, exist. It tends to occur and film properties cannot be obtained. On the other hand, when the component (B) exceeds 20 parts by mass, the resin component becomes too soft, and the contact with the insulating filler of the component (E) is weakened, so that the thermal conductivity is lowered.

(C)成分のフェノール当量は、(A)成分のエポキシ当量の1.0〜1.6倍であると好ましく、1.2〜1.4倍であるとさらに好ましい。1.0倍未満では、充分な耐熱性が得られない。一方、(C)成分のフェノール当量が1.6倍を超えると、硬化物が硬く脆くなり、割れやすくなる。   The phenol equivalent of component (C) is preferably 1.0 to 1.6 times, more preferably 1.2 to 1.4 times the epoxy equivalent of component (A). If it is less than 1.0 times, sufficient heat resistance cannot be obtained. On the other hand, when the phenol equivalent of (C) component exceeds 1.6 times, hardened | cured material will become hard and weak and it will become easy to crack.

(D)成分は、絶縁フィルムの保存安定性、硬化性の観点から、(A)〜(D)成分の合計:100質量部に対して、0.1〜5質量部であると好ましい。   The component (D) is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the total of the components (A) to (D) from the viewpoint of storage stability and curability of the insulating film.

(E)成分は、絶縁フィルム100体積%に対して、60〜85体積%であり、60体積%未満では、要求される熱伝導率が得られず、85体積%を超えると、絶縁フィルム用組成物のフィルム性が悪くなったり、絶縁フィルムが脆くなったり、硬化後の絶縁フィルムの接着強度が低下したりしてしまう。また、絶縁フィラー全質量に対し、(E1)を5〜15質量%、(E2)を5〜55質量%、(E3)を35〜85質量%含むと好ましい。熱伝導率の観点から、(E3)は、平均粒子径15〜30μmであることが好ましく、この場合の(E3)は、絶縁フィラー全質量に対し、30〜50質量%含まれることが好ましい。   (E) A component is 60-85 volume% with respect to 100 volume% of insulating films, and if it is less than 60 volume%, the required thermal conductivity will not be obtained, and when it exceeds 85 volume%, it is for insulating films. The film properties of the composition are deteriorated, the insulating film becomes brittle, or the adhesive strength of the insulating film after curing is lowered. Moreover, it is preferable when 5-15 mass% of (E1), 5-55 mass% of (E2), and 35-85 mass% of (E3) are included with respect to the insulating filler total mass. From the viewpoint of thermal conductivity, (E3) preferably has an average particle size of 15 to 30 μm, and (E3) in this case is preferably contained in an amount of 30 to 50% by mass with respect to the total mass of the insulating filler.

〔絶縁フィルム用組成物〕
絶縁フィルムを形成するための絶縁フィルム用組成物(以下、組成物ともいう)は、上述の(A)〜(E)成分を含む。なお、絶縁フィルム用組成物は、本発明の効果を損なわない範囲で、シランカップリング剤、粘着性付与剤、消泡剤、流動調整剤、成膜補助剤、分散剤等の添加剤や、有機溶剤を含むことができる。
[Insulating film composition]
An insulating film composition (hereinafter also referred to as a composition) for forming an insulating film contains the above-described components (A) to (E). In addition, the composition for an insulating film is an additive such as a silane coupling agent, a tackifier, an antifoaming agent, a flow regulator, a film forming auxiliary agent, a dispersing agent, etc., as long as the effects of the present invention are not impaired. Organic solvents can be included.

有機溶剤としては、芳香族系溶剤、例えばトルエン、キシレン等、ケトン系溶剤、例えばメチルエチルケトン(MEK)、メチルイソブチルケトン等が挙げられる。有機溶剤は、単独でも、2種以上を組み合わせて用いてもよい。また、有機溶剤の使用量は、特に限定されないが、固形分が20〜50質量%となるように使用することが好ましい。作業性の点から、絶縁フィルム用組成物は、200〜3000mPa・sの粘度の範囲であることが好ましい。粘度は、E型粘度計を用いて、回転数10rpm、25℃で測定した値とする。   Examples of the organic solvent include aromatic solvents such as toluene and xylene, and ketone solvents such as methyl ethyl ketone (MEK) and methyl isobutyl ketone. The organic solvents may be used alone or in combination of two or more. Moreover, the usage-amount of an organic solvent is although it does not specifically limit, It is preferable to use so that solid content may be 20-50 mass%. From the viewpoint of workability, the insulating film composition preferably has a viscosity range of 200 to 3000 mPa · s. The viscosity is a value measured using an E-type viscometer at a rotation speed of 10 rpm and 25 ° C.

この組成物は、有機溶剤に溶解した(A)〜(D)成分を含む液状原料に、(E)成分を分散させることにより得ることができる。これらの原料の溶解又は分散等の装置としては、特に限定されるものではないが、ディゾルバー、プラネタリーミキサー、ライカイ機、3本ロールミル、ボールミル、ビーズミル等を使用することができる。これらの装置は加熱装置を備えていても良い。これら装置を適宜組み合わせて使用してもよい。     This composition can be obtained by dispersing the component (E) in a liquid raw material containing the components (A) to (D) dissolved in an organic solvent. The apparatus for dissolving or dispersing these raw materials is not particularly limited, and a dissolver, a planetary mixer, a likai machine, a three-roll mill, a ball mill, a bead mill and the like can be used. These devices may include a heating device. You may use combining these apparatuses suitably.

絶縁フィルムは、上述の組成物を、所望の支持体に塗布した後、乾燥することにより得られる。支持体は、特に限定されず、銅、アルミニウム等の金属箔、ポリエステル樹脂、ポリエチレン樹脂、ポリエチレンテレフタレート樹脂等の有機フィルム等が挙げられる。支持体はシリコーン系化合物等で離型処理されていてもよい。   The insulating film can be obtained by applying the above-described composition to a desired support and then drying. The support is not particularly limited, and examples thereof include metal foils such as copper and aluminum, organic films such as polyester resins, polyethylene resins, and polyethylene terephthalate resins. The support may be release-treated with a silicone compound or the like.

組成物を支持体に塗布する方法は、特に限定されないが、薄膜化・膜厚制御の点からはマイクログラビア法、スロットダイ法、ドクターブレード法が好ましい。スロットダイ法により、熱硬化後の厚さが10〜300μmになる絶縁フィルムを得ることができる。   The method for applying the composition to the support is not particularly limited, but the microgravure method, the slot die method, and the doctor blade method are preferable from the viewpoint of film thickness reduction and film thickness control. By the slot die method, an insulating film having a thickness after thermosetting of 10 to 300 μm can be obtained.

乾燥条件は、組成物に使用される有機溶剤の種類や量、塗布の厚み等に応じて、適宜、設定することができ、例えば、50〜120℃で、1〜30分程度とすることができる。このようにして得られた絶縁フィルムは、良好な保存安定性を有する。なお、絶縁フィルムは、所望のタイミングで、支持体から剥離することができる。   The drying conditions can be set as appropriate according to the type and amount of the organic solvent used in the composition, the thickness of the coating, and the like, for example, at 50 to 120 ° C. and about 1 to 30 minutes. it can. The insulating film thus obtained has good storage stability. In addition, an insulating film can be peeled from a support body at a desired timing.

絶縁フィルムは、例えば、130〜220℃で、30〜180分間、熱硬化させて、被接着物を接着することができる。発熱体である被接着物と、受熱体である被接着物とを接着する場合、硬化した絶縁フィルムは、発熱体である被接着物からの熱を受熱体である被接着物側へ逃がし、受熱体である被接着物側で放熱させる伝熱の役割を果たす。さらに、硬化した絶縁フィルムは、発熱体である被接着物と受熱体である被接着物との間の熱膨張率の差に起因する応力を緩和する役割を果たす。   For example, the insulating film can be thermally cured at 130 to 220 ° C. for 30 to 180 minutes to adhere the adherend. When bonding the adherend that is a heating element and the adherend that is a heat receiving body, the cured insulating film releases heat from the adherend that is the heating element to the adherend side that is the heat receiving body, It plays the role of heat transfer to dissipate heat on the adherend side which is a heat receiver. Furthermore, the cured insulating film plays a role of relieving stress caused by a difference in coefficient of thermal expansion between the adherend that is a heating element and the adherend that is a heat receiving body.

絶縁フィルムの厚さは、好ましくは10μm以上300μm以下、より好ましくは20μm以上150μm以下である。10μm未満では所望する絶縁性を得られなくなるおそれがある。300μmを超えると、発熱する被接着物の放熱を十分にできなくなるおそれがある。   The thickness of the insulating film is preferably 10 μm or more and 300 μm or less, more preferably 20 μm or more and 150 μm or less. If it is less than 10 μm, the desired insulating property may not be obtained. When it exceeds 300 μm, there is a possibility that heat dissipation of the adherend that generates heat cannot be sufficiently performed.

また、硬化した絶縁フィルムは、熱伝導率が3W/m・K以上であるとより好ましい。また、硬化した絶縁フィルムの熱伝導率が3W/m・K未満の場合には、発熱体からの受熱器への伝熱が不十分となるおそれがある。硬化した絶縁フィルムの熱伝導率は、(E)成分の種類と含有量によって、制御することができる。   The cured insulating film preferably has a thermal conductivity of 3 W / m · K or more. Further, when the thermal conductivity of the cured insulating film is less than 3 W / m · K, heat transfer from the heating element to the heat receiver may be insufficient. The thermal conductivity of the cured insulating film can be controlled by the type and content of component (E).

硬化した絶縁フィルムは、体積抵抗率が1×1010Ω・cm以上であると、好ましい。高熱伝導層は、体積抵抗率が1×1012Ω・cm以上であるとより好ましく、1×1013Ω・cm以上であると更に好ましい。硬化した絶縁フィルムの体積抵抗率が1×1010Ω・cm未満の場合には、半導体装置に要求される絶縁性を満足できないおそれがある。 The cured insulating film preferably has a volume resistivity of 1 × 10 10 Ω · cm or more. The high thermal conductivity layer preferably has a volume resistivity of 1 × 10 12 Ω · cm or more, and more preferably 1 × 10 13 Ω · cm or more. When the volume resistivity of the cured insulating film is less than 1 × 10 10 Ω · cm, the insulation required for the semiconductor device may not be satisfied.

〔半導体装置〕
本発明の半導体装置は、上述の絶縁フィルムの硬化体を含む。耐熱性、熱伝導性に優れた絶縁フィルムの硬化体により、高信頼性の半導体装置を提供することができる。半導体装置としては、モジュールや電子部品などの発熱体と、基板などの受熱体とを、絶縁フィルムの硬化物で接着したものや、発熱体からの熱を受熱した基板の熱と、この基板から更に受熱する放熱板などとを絶縁フィルムの硬化物で接着したものが、挙げられる。
[Semiconductor device]
The semiconductor device of the present invention includes a cured body of the above-described insulating film. A highly reliable semiconductor device can be provided by a cured body of an insulating film having excellent heat resistance and thermal conductivity. As a semiconductor device, a heating element such as a module or an electronic component and a heat receiving body such as a substrate are bonded with a cured product of an insulating film, or the heat of a substrate that receives heat from the heating element, Furthermore, what adhered the heat sink etc. which receive heat with the hardened | cured material of an insulating film is mentioned.

本発明について、実施例により説明するが、本発明はこれらに限定されるものではない。なお、以下の実施例において、部、%はことわりのない限り、質量部、質量%を示す。   The present invention will be described with reference to examples, but the present invention is not limited thereto. In the following examples, parts and% indicate parts by mass and mass% unless otherwise specified.

〔実施例1〜9、比較例1〜7〕
まず、(A)成分、(B)成分、(C)成分を、MEKで、それぞれNV(不揮発分、すなわち(A)〜(C)成分)=30質量%となるように溶解希釈した。次に、(A)〜(C)成分及び(D)成分、添加剤、(E)成分の順に、各原材料の所定量を容器に計り取り、自転・公転式の攪拌機(マゼルスター)で5分間攪拌混合し、その後、プラネタリーミキサーを使用して分散を行い、MEKで、粘度を1000〜5000mPa.sにして、絶縁フィルム用組成物を調整した。
[Examples 1-9, Comparative Examples 1-7]
First, the (A) component, the (B) component, and the (C) component were dissolved and diluted with MEK so that NV (nonvolatile content, that is, the (A) to (C) components) was 30% by mass. Next, in order of the components (A) to (C) and (D), the additive, and the component (E), a predetermined amount of each raw material is weighed in a container, and is stirred for 5 minutes with a rotating / revolving stirrer (Mazerustar). After stirring and mixing, dispersion is performed using a planetary mixer, and the viscosity is 1000 to 5000 mPa.s with MEK. The composition for insulating films was adjusted to s.

〔評価方法〕
1.熱伝導率の測定
得られた絶縁フィルム用組成物を、離型剤を施した50μm厚のPETフィルム上に、乾燥後の膜厚が200〜500μmになるように掻き取り塗布した。図1に、掻き取り塗布の方法を説明するための模式図を示す。まず、離型剤付きPETフィルム上に、適切な厚さとなるように、2列にスペーサーを重ねた後、粘着テープで貼付する(図1(A))。離型剤付きPETフィルム上に、絶縁フィルム用組成物を適量注ぐ(図1(B))。スライドグラスをスペーサー上に置き、絶縁フィルム用組成物を掻き取って塗布する(図1(C)〜(E))。次に、塗布した絶縁フィルム用組成物を、十分乾燥した後、得られた絶縁フィルムを、PETフィルムからはがし、真空プレス機を用いて、200℃×60分、0.1MPaの条件で硬化させた。硬化させた絶縁フィルムを、10×10mmに裁断し、熱伝導率測定用試験片を作製した。作製した熱伝導率測定用試験片の熱伝導率を、NETSCH社製熱伝導率計(型番:LFF447Nanoflash)で測定した。表1と表2に、熱伝導率の測定結果を示す。
〔Evaluation method〕
1. Measurement of Thermal Conductivity The obtained composition for an insulating film was scraped and applied on a 50 μm-thick PET film to which a release agent was applied so that the film thickness after drying was 200 to 500 μm. In FIG. 1, the schematic diagram for demonstrating the method of scraping application | coating is shown. First, spacers are stacked in two rows on a PET film with a release agent so as to have an appropriate thickness, and then attached with an adhesive tape (FIG. 1 (A)). An appropriate amount of the composition for an insulating film is poured onto a PET film with a release agent (FIG. 1B). A slide glass is placed on a spacer, and the composition for an insulating film is scraped off and applied (FIGS. 1C to 1E). Next, after sufficiently drying the applied composition for insulating film, the obtained insulating film is peeled off from the PET film and cured under the conditions of 200 ° C. × 60 minutes and 0.1 MPa using a vacuum press. It was. The cured insulating film was cut into 10 × 10 mm to prepare a test piece for measuring thermal conductivity. The thermal conductivity of the manufactured test piece for measuring thermal conductivity was measured with a thermal conductivity meter (model number: LFF447 Nanoflash) manufactured by NETSCH. Tables 1 and 2 show the measurement results of thermal conductivity.

2.フィルム性
得られた絶縁フィルム用組成物を、離型剤を施した50μm厚のPETフィルム上に、20cmの幅で、乾燥後の膜厚が50〜100μmになるように、塗布機を用いて塗布した。塗布した絶縁フィルム用組成物を、80℃で20分間乾燥し、絶縁フィルムを得た。得られた絶縁フィルムを、50mmφ、40cm幅のリールに巻き取り、目視でフィルム性を評価した。十分な柔軟性があるため、割れが生じない場合を「○」、割れが生じた場合を「×」とした。表1と表2に、フィルム性の結果を示す。
3.はんだ耐熱性
得られた絶縁フィルム用組成物を、離型剤を施した50μm厚のPETフィルム上に、20cmの幅で、乾燥後の膜厚が50〜100μmになるように、塗布機を用いて塗布した。塗布した絶縁フィルム用組成物を、80℃で20分間乾燥し、PETフィルム付き絶縁フィルムを得た。得られたPETフィルム付き絶縁フィルムからPETフィルムをはがし、2枚の50mm×100mm×30μmの銅箔ではさみ、真空プレス機を用いて、200℃×60分、0.1MPaの条件で硬化させた。硬化させたサンプルを、30×30mmに切り出し、290℃のはんだ浴中に2分間浸漬し、目視で評価した。ここで、はんだ浴のはんだには、日本スペリア性鉛フリーはんだ(品名:SN96Cl(010)、錫:銀:銅:フラックス=91.7:4:1.3:3(質量%)を用いた。硬化させたサンプルに剥離やふくれがない場合を「○」、硬化させたサンプルに剥離および/または膨れがある場合を「×」とした。表1と表2に、はんだ耐熱性の結果を示す。
2. Film properties Using a coating machine, the obtained composition for an insulating film is placed on a PET film having a thickness of 20 μm on a 50 μm-thick PET film to which a release agent has been applied so that the film thickness after drying becomes 50 to 100 μm. Applied. The applied composition for an insulating film was dried at 80 ° C. for 20 minutes to obtain an insulating film. The obtained insulating film was wound up on a reel with a width of 50 mmφ and a width of 40 cm, and the film property was visually evaluated. Since there was sufficient flexibility, a case where no crack was generated was indicated as “◯”, and a case where a crack was generated was indicated as “X”. Tables 1 and 2 show the film properties.
3. Solder heat resistance Using a coating machine, the obtained composition for an insulating film is placed on a 50 μm-thick PET film to which a release agent is applied so that the film thickness after drying is 50 to 100 μm. And applied. The applied composition for an insulating film was dried at 80 ° C. for 20 minutes to obtain an insulating film with a PET film. The PET film was peeled off from the obtained insulating film with PET film, sandwiched between two 50 mm × 100 mm × 30 μm copper foils, and cured using a vacuum press at 200 ° C. for 60 minutes at 0.1 MPa. . The cured sample was cut into 30 × 30 mm, immersed in a solder bath at 290 ° C. for 2 minutes, and visually evaluated. Here, as the solder in the solder bath, Japanese superior lead-free solder (product name: SN96Cl (010), tin: silver: copper: flux = 91.7: 4: 1.3: 3 (mass%)) was used. The case where the cured sample has no peeling or blistering is indicated as “◯”, and the case where the cured sample has peeling and / or swelling is indicated as “X.” Tables 1 and 2 show the results of solder heat resistance. Show.

表1、2からわかるように、実施例1〜9のすべてにおいて、熱伝導率、フィルム性、はんだ耐熱性のすべての結果が良好であった。これに対して、(E)成分が多すぎる比較例1は、フィルム性が悪かった。(E)成分が少なすぎる比較例2は、熱伝導率が低かった。(B)成分が多すぎる比較例3も、熱伝導率が低かった。(B)成分が少なすぎる比較例4は、フィルム性が悪かった。(C)成分の代わりにフェノール変性キシレンを使用した比較例5も、フィルム性が悪かった。(C)成分の代わりに酸無水物系を使用した比較例6も、フィルム性が悪かった。(A)成分、(C)成分の代わりにビスフェノールA型エポキシ樹脂を使用した比較例7は、はんだ耐熱性が悪かった。   As can be seen from Tables 1 and 2, in all of Examples 1 to 9, all results of thermal conductivity, film properties, and solder heat resistance were good. On the other hand, Comparative Example 1 having too much component (E) had poor film properties. (E) The comparative example 2 with too few components had low heat conductivity. (B) The comparative example 3 which has too many components also had low heat conductivity. (B) The comparative example 4 with too few components had bad film property. Comparative Example 5 using phenol-modified xylene instead of the component (C) also had poor film properties. Comparative Example 6 using an acid anhydride system instead of the component (C) also had poor film properties. Comparative Example 7 using bisphenol A type epoxy resin instead of the (A) component and the (C) component had poor solder heat resistance.

上記のように、本発明の絶縁フィルムは、フィルム性に優れ、かつ、硬化後に、耐熱性に優れ、3.0W/m・K以上の熱伝導率を有し、この硬化物は、信頼性の高い半導体装置を提供することができる。   As described above, the insulating film of the present invention has excellent film properties and excellent heat resistance after curing, and has a thermal conductivity of 3.0 W / m · K or more. A semiconductor device with a high level can be provided.

Claims (6)

(A)ノボラック型エポキシ樹脂、(B)ブタジエンアクリロニトリル共重合体、(C)アラルキルフェノール樹脂、(D)硬化触媒、および(E)熱伝導率が20W/m・K以上の絶縁フィラーを含み、
(B)成分が、(A)〜(C)成分の合計100質量部に対して、10〜20質量部であり、かつ(E)成分が、絶縁フィルム100体積%に対して、60〜85体積%であることを特徴とする、絶縁フィルム。
(A) a novolac type epoxy resin, (B) a butadiene acrylonitrile copolymer, (C) an aralkylphenol resin, (D) a curing catalyst, and (E) an insulating filler having a thermal conductivity of 20 W / m · K or more,
(B) A component is 10-20 mass parts with respect to a total of 100 mass parts of (A)-(C) component, and (E) component is 60-85 with respect to 100 volume% of insulating films. An insulating film characterized by being in volume%.
(D)成分が、イミダゾール系硬化触媒である、請求項1記載の絶縁フィルム。   The insulating film according to claim 1, wherein the component (D) is an imidazole curing catalyst. (E)成分が、酸化アルミニウム、酸化マグネシウム、および窒化ホウ素からなる群より選択される少なくとも1種である、請求項1または2記載の絶縁フィルム。   The insulating film according to claim 1 or 2, wherein the component (E) is at least one selected from the group consisting of aluminum oxide, magnesium oxide, and boron nitride. (E)成分が、平均粒径が0.1〜0.8μmの絶縁フィラー(E1)と、平均粒径が2〜6μmの絶縁フィラー(E2)と、平均粒径が7〜30μmの絶縁フィラー(E3)とを含む、請求項1〜3のいずれか1項記載の絶縁フィルム。   The component (E) is an insulating filler (E1) having an average particle size of 0.1 to 0.8 μm, an insulating filler (E2) having an average particle size of 2 to 6 μm, and an insulating filler having an average particle size of 7 to 30 μm. The insulating film of any one of Claims 1-3 containing (E3). (E3)成分の平均粒径が、15〜30μmである、請求項4記載の絶縁フィルム。   (E3) The insulating film of Claim 4 whose average particle diameter of a component is 15-30 micrometers. 請求項1〜5のいずれか1項記載の絶縁フィルムの硬化物を含む、半導体装置。   The semiconductor device containing the hardened | cured material of the insulating film of any one of Claims 1-5.
JP2014059340A 2014-03-21 2014-03-21 Insulating film and semiconductor device Active JP6423603B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014059340A JP6423603B2 (en) 2014-03-21 2014-03-21 Insulating film and semiconductor device
PCT/JP2015/058122 WO2015141746A1 (en) 2014-03-21 2015-03-18 Insulating film and semiconductor device
TW104108757A TWI663195B (en) 2014-03-21 2015-03-19 Insulating film and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014059340A JP6423603B2 (en) 2014-03-21 2014-03-21 Insulating film and semiconductor device

Publications (2)

Publication Number Publication Date
JP2015183050A true JP2015183050A (en) 2015-10-22
JP6423603B2 JP6423603B2 (en) 2018-11-14

Family

ID=54144710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014059340A Active JP6423603B2 (en) 2014-03-21 2014-03-21 Insulating film and semiconductor device

Country Status (3)

Country Link
JP (1) JP6423603B2 (en)
TW (1) TWI663195B (en)
WO (1) WO2015141746A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018058959A (en) * 2016-10-03 2018-04-12 味の素株式会社 Resin composition
JP2021013034A (en) * 2020-10-06 2021-02-04 味の素株式会社 Resin composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004231932A (en) * 2002-12-02 2004-08-19 Nitto Denko Corp Adhesive composition, adhesive film, and semiconductor device using this
JP2004352871A (en) * 2003-05-29 2004-12-16 Nitto Denko Corp Adhesive composition, adhesive film, and semiconductor device using the same
JP2011219511A (en) * 2010-04-02 2011-11-04 Somar Corp Thermally conductive pressure-sensitive adhesive sheet
JP2012021124A (en) * 2010-07-16 2012-02-02 Somar Corp Pressure-sensitive adhesive and pressure-sensitive adhesive sheet using the same
JP2012193278A (en) * 2011-03-16 2012-10-11 Somar Corp Pressure-sensitive adhesive composition and pressure-sensitive adhesive sheet made using the same
WO2013051721A1 (en) * 2011-10-06 2013-04-11 電気化学工業株式会社 Thermally conductive composition for low outgassing

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199894A (en) * 2005-01-24 2006-08-03 Sekisui Chem Co Ltd Adhesive sheet and semiconductor device
JP2007001291A (en) * 2005-05-27 2007-01-11 Hitachi Chem Co Ltd Metallic foil with adhesion adjuvant, printed-wiring board using the same, and manufacturing method for printed-wiring board
JP5691244B2 (en) * 2010-05-26 2015-04-01 日立化成株式会社 Film adhesive, adhesive sheet and semiconductor device
JP4987161B1 (en) * 2011-11-24 2012-07-25 積水化学工業株式会社 Insulation material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004231932A (en) * 2002-12-02 2004-08-19 Nitto Denko Corp Adhesive composition, adhesive film, and semiconductor device using this
JP2004352871A (en) * 2003-05-29 2004-12-16 Nitto Denko Corp Adhesive composition, adhesive film, and semiconductor device using the same
JP2011219511A (en) * 2010-04-02 2011-11-04 Somar Corp Thermally conductive pressure-sensitive adhesive sheet
JP2012021124A (en) * 2010-07-16 2012-02-02 Somar Corp Pressure-sensitive adhesive and pressure-sensitive adhesive sheet using the same
JP2012193278A (en) * 2011-03-16 2012-10-11 Somar Corp Pressure-sensitive adhesive composition and pressure-sensitive adhesive sheet made using the same
WO2013051721A1 (en) * 2011-10-06 2013-04-11 電気化学工業株式会社 Thermally conductive composition for low outgassing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018058959A (en) * 2016-10-03 2018-04-12 味の素株式会社 Resin composition
JP7211693B2 (en) 2016-10-03 2023-01-24 味の素株式会社 resin composition
JP2021013034A (en) * 2020-10-06 2021-02-04 味の素株式会社 Resin composition
JP7067594B2 (en) 2020-10-06 2022-05-16 味の素株式会社 Resin composition

Also Published As

Publication number Publication date
TWI663195B (en) 2019-06-21
JP6423603B2 (en) 2018-11-14
TW201546132A (en) 2015-12-16
WO2015141746A1 (en) 2015-09-24

Similar Documents

Publication Publication Date Title
JP5761639B2 (en) Adhesive resin composition, cured product thereof, and adhesive film
JP5853704B2 (en) Adhesive composition, adhesive sheet, and semiconductor device using the same
KR100962936B1 (en) Bonding film composition for semiconductor assembly and bonding film therefrom
KR101523144B1 (en) Epoxy composites with improved heat dissipation, and their applications for thermal conductive and dissipative products
TW201710382A (en) Resin composition, conductive resin composition, adhesive, conductive adhesive, electrode forming paste, semiconductor device
KR20150140125A (en) Aluminum powder and graphite composite including a thermally conductive resin composition and dissipative products
TWI694126B (en) Resin composition, adhesive film and semiconductor device
TW201706349A (en) Resin composition, conductive resin composition, adhesive, conductive adhesive, electrode forming paste, semiconductor device
KR101703558B1 (en) Alumina and graphite composite including a thermally conductive resin composition and dissipative products
JP6106405B2 (en) Semiconductor device
TWI628229B (en) Film forming resin composition, insulating film and semiconductor device
JP6423603B2 (en) Insulating film and semiconductor device
JP2012077123A (en) Adhesive resin composition, cured product of the same, and adhesive film
KR101749459B1 (en) Aluminum powder and graphite composite including a thermally conductive resin composition and dissipative products
JP2009235402A (en) Adhesive film
JP2003193021A (en) Adhesive film with high heat conductivity
JP2016117869A (en) Resin composition for semiconductor adhesion and semiconductor device
JP5768023B2 (en) Thermosetting resin sheet for encapsulating electronic parts, resin-encapsulated semiconductor device, and method for producing resin-encapsulated semiconductor device
JP6579886B2 (en) Printed wiring board and semiconductor device
JP6912030B2 (en) Resin compositions, adhesive films, and semiconductor devices
JP7478241B2 (en) Thermally conductive adhesive sheet and semiconductor device
JP5635748B2 (en) Adhesive for semiconductor chip bonding
JP2010219162A (en) Adhesive agent for bonding semiconductor chips

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181019

R150 Certificate of patent or registration of utility model

Ref document number: 6423603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250