JP2015174815A - Hydrogen purification device, and hydrogen purification system using the same - Google Patents

Hydrogen purification device, and hydrogen purification system using the same Download PDF

Info

Publication number
JP2015174815A
JP2015174815A JP2014054618A JP2014054618A JP2015174815A JP 2015174815 A JP2015174815 A JP 2015174815A JP 2014054618 A JP2014054618 A JP 2014054618A JP 2014054618 A JP2014054618 A JP 2014054618A JP 2015174815 A JP2015174815 A JP 2015174815A
Authority
JP
Japan
Prior art keywords
hydrogen
cell
raw
heater
palladium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014054618A
Other languages
Japanese (ja)
Other versions
JP6355944B2 (en
Inventor
由直 小宮
Yoshinao Komiya
由直 小宮
荒川 秩
Chitsu Arakawa
秩 荒川
敏雄 秋山
Toshio Akiyama
敏雄 秋山
保雄 佐藤
Yasuo Sato
保雄 佐藤
登 武政
Noboru Takemasa
登 武政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP2014054618A priority Critical patent/JP6355944B2/en
Priority to CN201510111657.XA priority patent/CN104925756A/en
Priority to TW104108406A priority patent/TWI554469B/en
Publication of JP2015174815A publication Critical patent/JP2015174815A/en
Application granted granted Critical
Publication of JP6355944B2 publication Critical patent/JP6355944B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Abstract

PROBLEM TO BE SOLVED: To provide means for efficiently heating raw material hydrogen including impurities to be introduced to a primary side space of a cell, in a hydrogen purification device which is configured to take out pure hydrogen from a secondary side space after hydrogen including impurities is introduced from the primary side space and made transmit a palladium alloy tubule, the hydrogen purification device having a cell whose inside is partitioned into the primary side space and the secondary side space by: a palladium alloy tubule whose one end is sealed; and a tube plate for supporting an opening end of the tubule.SOLUTION: A length of a palladium alloy tubule is equal to or more than 15 times diameter of a tube plate, by making a shape of a cell slender, and an introduction tube of raw material hydrogen including impurities passes through a gap between a side wall of the cell and a heater for heating the cell.

Description

本発明は、パラジウム合金薄膜の水素ガス選択透過性を利用した水素精製装置及び水素精製システムに関し、詳細には、セルの一次側空間に導入する不純物を含む原料水素を、効率よく加熱することが可能な水素精製装置及びそれを用いた水素精製システムに関する。   The present invention relates to a hydrogen purification apparatus and a hydrogen purification system that utilize the hydrogen gas selective permeability of a palladium alloy thin film, and in particular, can efficiently heat raw material hydrogen containing impurities introduced into the primary space of a cell. The present invention relates to a possible hydrogen purification apparatus and a hydrogen purification system using the same.

従来から、半導体製造工程においては、高純度の水素ガスが雰囲気ガスとして多量に使用されている。このような水素ガスは、半導体の集積度の向上により不純物の濃度が極めて低濃度(ppbレベル以下)であることが要求される。
一方、高純度の水素を工業的に多量に製造する方法としては、メタノール、ジメチルエーテル、天然ガス、液化石油ガス等から水蒸気改質反応により得られる改質ガスを、深冷吸着法、圧力スイング法等により、水素と水素以外のガスに分離して水素を得る方法が知られている。
Conventionally, high-purity hydrogen gas has been used in a large amount as an atmospheric gas in a semiconductor manufacturing process. Such a hydrogen gas is required to have an extremely low impurity concentration (ppb level or less) due to an improvement in semiconductor integration.
On the other hand, as a method for industrially producing a large amount of high-purity hydrogen, a reformed gas obtained by a steam reforming reaction from methanol, dimethyl ether, natural gas, liquefied petroleum gas, etc. is subjected to a cryogenic adsorption method or a pressure swing method. For example, a method of obtaining hydrogen by separating it into hydrogen and a gas other than hydrogen is known.

深冷吸着法は、液化窒素を冷媒として極低温化された吸着材が充填された吸着筒に水素含有ガスを流通し、水素以外の不純物を除去する精製方法であり、圧力スイング法は、複数の吸着筒に水素含有ガスを順次流通するとともに、昇圧、不純物の吸着、不純物の脱着、及び吸着材の再生の各操作を繰返して、水素以外の不純物を除去する精製方法である。前記のような改質ガスには、水素のほか、一酸化炭素、二酸化炭素、メタン、窒素、水等が含まれるが、深冷吸着法、圧力スイング法では、これらの不純物を極めて低濃度(ppbレベル以下)になるまで除去することは困難であった。   The cryogenic adsorption method is a purification method in which a hydrogen-containing gas is circulated through an adsorption cylinder filled with an adsorbent that has been cryogenically cooled using liquefied nitrogen as a refrigerant to remove impurities other than hydrogen. This is a purification method in which a hydrogen-containing gas is sequentially circulated through the adsorption cylinder, and impurities other than hydrogen are removed by repeating the operations of pressure increase, impurity adsorption, impurity desorption, and adsorbent regeneration. The reformed gas as described above contains carbon monoxide, carbon dioxide, methane, nitrogen, water, etc. in addition to hydrogen. In the cryogenic adsorption method and the pressure swing method, these impurities are contained at a very low concentration ( It was difficult to remove until the ppb level or lower).

これに対して、極めて高純度の水素ガスを、比較的に少量で得る方法として、不純物を含む原料水素を、パラジウム合金の薄膜からなる水素分離膜に供給し、水素ガスの選択透過性を利用して水素のみを透過させて取出す方法が知られている。このような水素精製のための装置は、不純物を含む原料水素の導入口、純水素の取出口、及び該導入口と該取出口の間のガス流路中にパラジウム合金の薄膜を備えてなる水素精製装置であり、例えば特許文献1〜3に示すように、一端が封じられた複数本のパラジウム合金細管(水素分離膜)が、他の一端の開口部で管板に支持されてセル内に収納され、このパラジウム合金細管及び管板によってセル内が一次側空間(不純物を含む原料水素の供給側空間)及び二次側空間(純水素の取出し側空間)の二つの空間に仕切られた構成を有する水素精製装置である。   On the other hand, as a method for obtaining a very high-purity hydrogen gas in a relatively small amount, raw hydrogen containing impurities is supplied to a hydrogen separation membrane made of a palladium alloy thin film, and the selective permeability of hydrogen gas is used. Thus, a method is known in which only hydrogen is taken out and taken out. Such an apparatus for purifying hydrogen is provided with a raw material hydrogen inlet containing impurities, a pure hydrogen outlet, and a palladium alloy thin film in a gas flow path between the inlet and the outlet. A hydrogen refining device, for example, as shown in Patent Documents 1 to 3, a plurality of palladium alloy capillaries (hydrogen separation membranes) sealed at one end are supported by a tube plate at the opening at the other end, and inside the cell. The inside of the cell is partitioned into two spaces, a primary space (impurity source hydrogen supply space) and a secondary space (pure hydrogen extraction space) by the palladium alloy thin tube and tube sheet. A hydrogen purification apparatus having a configuration.

特開昭62−128903号公報JP-A-62-128903 特開平1−145302号公報JP-A-1-145302 特開平1−145303号公報JP-A-1-145303

パラジウム合金の水素分離膜を利用した水素精製方法は、深冷吸着法、圧力スイング法と比較して、単位時間当たりの純水素の取出し量が少ないという短所があるが、前述のように高純度の水素ガスが得られるほか、装置を小型化、簡素化できるという長所がある。しかし、不純物を含む原料水素をパラジウム合金細管と接触させて該細管を透過させる際には、該細管及び原料水素を充分に加熱する必要があり、セルの内部を加熱するためのヒータのほか、予め原料水素を加熱するためのヒータ等の設備が必要である。   The hydrogen purification method using a palladium alloy hydrogen separation membrane has the disadvantage that the extraction amount of pure hydrogen per unit time is small compared to the cryogenic adsorption method and the pressure swing method. In addition to the hydrogen gas, the apparatus can be downsized and simplified. However, when the raw material hydrogen containing impurities is allowed to contact the palladium alloy thin tube and permeate the thin tube, it is necessary to sufficiently heat the thin tube and the raw material hydrogen, in addition to a heater for heating the inside of the cell, Equipment such as a heater for heating raw material hydrogen in advance is required.

パラジウム合金の水素分離膜を利用した水素精製において、単位時間当たりの純水素の取出し量の増加を図るため、例えば水素精製装置の大型化を行なうと、予め原料水素を加熱するためのヒータ等の設備も大型になり、また水素精製装置を増やすと、ヒータ、配管等の設備が増えて複雑になり、小型化、簡素化の長所が減少してしまうという問題があった。従って、本発明が解決しようとする課題は、セルの一次側空間に導入する不純物を含む原料水素を、効率よく加熱することが可能な水素精製装置、及び該水素精製装置を複数個用いた水素精製システムを提供することである。   In hydrogen refining using a hydrogen separation membrane of palladium alloy, in order to increase the extraction amount of pure hydrogen per unit time, for example, when the hydrogen refining apparatus is enlarged, a heater or the like for heating raw material hydrogen in advance is used. When the equipment becomes larger and the number of hydrogen purifiers is increased, the number of equipment such as heaters and piping is increased and complicated, and the advantages of downsizing and simplification are reduced. Therefore, the problem to be solved by the present invention is that a hydrogen purifier capable of efficiently heating raw hydrogen containing impurities introduced into the primary space of the cell, and a hydrogen using a plurality of the hydrogen purifiers It is to provide a purification system.

本発明者らは、これらの課題を解決すべく鋭意検討した結果、前述のような水素精製装置において、セルの一次側空間の形状を細長の形状に設定するとともに、不純物を含む原料水素の導入配管を、該セルの細長の側壁とセル内を加熱するためのヒータの間隙を通るように設ければ、該導入配管の内部を流通する原料水素が該ヒータからの熱により充分に加熱され、水素精製装置が大型の場合であっても、また水素精製装置が多数使用された場合であっても、装置を小型で簡素な形態に維持できることを見出し、本発明の水素精製装置に到達した。   As a result of diligent studies to solve these problems, the present inventors set the shape of the primary space of the cell to a slender shape in the hydrogen purifier as described above, and introduced raw material hydrogen containing impurities. If the piping is provided so as to pass through the gap between the elongated side wall of the cell and the heater for heating the inside of the cell, the raw material hydrogen flowing through the inside of the introduction piping is sufficiently heated by the heat from the heater, Even when the hydrogen purifier is large or when a large number of hydrogen purifiers are used, it has been found that the apparatus can be maintained in a small and simple form, and the hydrogen purifier of the present invention has been reached.

すなわち本発明は、一端が封じられた複数本のパラジウム合金細管と、該細管の開口端部において該細管を支持する管板によって、外周にヒータを有するセルの内部が一次側空間と二次側空間に仕切られた構成を有し、不純物を含む原料水素を一次側空間から導入し、パラジウム合金細管を透過させて二次側空間から純水素を取出す水素精製装置であって、パラジウム合金細管の長さが管板の直径の15倍以上であり、不純物を含む原料水素の導入配管が、セルの側壁とヒータの間隙を通るように設けられてなることを特徴とする水素精製装置である。
また、本発明は、前記の水素精製装置を複数個並列に設置し、複数の該水素精製装置の各々の原料水素の導入配管を、外部の1本の原料水素供給配管に接続し、複数の該水素精製装置の各々の純水素取出し配管を、外部の1本の純水素回収配管に接続してなることを特徴とする水素精製システムである。
That is, the present invention provides a plurality of palladium alloy thin tubes sealed at one end and a tube plate that supports the thin tube at the open end of the thin tube, so that the interior of the cell having the heater on the outer periphery is the primary side space and the secondary side. A hydrogen refining device having a structure partitioned into a space, introducing raw material hydrogen containing impurities from a primary side space, permeating the palladium alloy thin tube and taking out pure hydrogen from the secondary side space, The hydrogen purifier is characterized in that its length is 15 times or more of the diameter of the tube plate, and an introduction pipe for raw hydrogen containing impurities is provided so as to pass through the gap between the side wall of the cell and the heater.
In the present invention, a plurality of the hydrogen purifiers described above are installed in parallel, and the raw hydrogen introduction pipes of the hydrogen purifiers are connected to one external raw hydrogen supply pipe. The hydrogen purification system is characterized in that each pure hydrogen extraction pipe of the hydrogen purification apparatus is connected to one external pure hydrogen recovery pipe.

本発明の水素精製装置においては、セルの一次側空間が細長の形状に設定され、不純物を含む原料水素の導入配管が、該セルの細長の側壁とセル内を加熱するためのヒータの間を通るように構成されている。すなわち、本発明においては、セル内を加熱するためのヒータにより、原料水素の導入配管も充分に加熱される構成なので、原料水素を予め加熱するためのヒータ等の設備を縮小または不要とすることが可能である。特に水素精製装置が大型の場合、水素精製装置が複数個である場合、装置の小型化、簡素化を図ることができる点で効果を発揮する。   In the hydrogen purification apparatus of the present invention, the primary space of the cell is set to be an elongated shape, and the introduction pipe for the source hydrogen containing impurities is between the elongated sidewall of the cell and the heater for heating the inside of the cell. It is configured to pass. That is, in the present invention, since the raw hydrogen introduction pipe is sufficiently heated by the heater for heating the inside of the cell, facilities such as a heater for preheating the raw hydrogen are reduced or unnecessary. Is possible. In particular, when the hydrogen purifier is large, when there are a plurality of hydrogen purifiers, it is effective in that the apparatus can be reduced in size and simplified.

本発明は、一端が封じられたパラジウム合金細管と該細管の開口端を支持する管板によってセルの内部が一次側空間と二次側空間に仕切られ、不純物を含む水素を一次側空間から導入し、パラジウム合金細管を透過させて二次側空間から純水素を取出す方式の水素精製装置に適用される。また、本発明に適用される原料水素としては、メタノール、ジメチルエーテル、天然ガス、液化石油ガス等から水蒸気改質反応により得られる改質ガス、あるいは工業用としてボンベ等に充填されている比較的に高純度の水素等が挙げられる。本発明により得られる極めて高純度の精製水素は、例えば半導体製造工程における雰囲気ガス(キャリアガス)として使用される。   In the present invention, the inside of the cell is partitioned into a primary side space and a secondary side space by a palladium alloy thin tube sealed at one end and a tube plate supporting the open end of the thin tube, and hydrogen containing impurities is introduced from the primary side space. In addition, the present invention is applied to a hydrogen purifier of a type in which pure hydrogen is taken out from the secondary space through a palladium alloy capillary. In addition, as raw material hydrogen applied to the present invention, a reformed gas obtained by a steam reforming reaction from methanol, dimethyl ether, natural gas, liquefied petroleum gas, or the like, or relatively filled in a cylinder etc. for industrial use. Examples include high-purity hydrogen. The extremely high purity purified hydrogen obtained by the present invention is used as, for example, an atmospheric gas (carrier gas) in a semiconductor manufacturing process.

以下、本発明の水素精製装置及びそれを用いた水素精製システムを、図1〜図4に基づいて詳細に説明するが、本発明がこれらにより限定されるものではない。尚、図1、図2は、本発明の水素精製装置の一例を示す構成図、図3(1)は、図1の水素精製装置の管板の位置における断面の一例を示す構成図、図3(2)は、図1のパラジウム合金細管の位置における断面の一例を示す構成図、図4は、本発明の水素精製システムの例を示す構成図である。   Hereinafter, although the hydrogen purification apparatus of this invention and the hydrogen purification system using the same are demonstrated in detail based on FIGS. 1-4, this invention is not limited by these. 1 and 2 are block diagrams showing an example of the hydrogen purifier of the present invention, and FIG. 3 (1) is a block diagram showing an example of a cross section at the position of the tube plate of the hydrogen purifier of FIG. 3 (2) is a block diagram showing an example of a cross section at the position of the palladium alloy thin tube in FIG. 1, and FIG. 4 is a block diagram showing an example of the hydrogen purification system of the present invention.

本発明の水素精製装置は、図1、図2に示すように、一端が封じられた複数本のパラジウム合金細管1と、該細管の開口端部において該細管を支持する管板2によって、外周にヒータ3を有するセル4の内部が一次側空間4’と二次側空間4”に仕切られた構成を有し、不純物を含む原料水素を一次側空間4’の原料水素供給口9から導入し、パラジウム合金細管を透過させて二次側空間4”の純水素取出し口11から純水素を取出す水素精製装置であって、パラジウム合金細管1の長さが管板2の直径の15倍以上であり、図1〜図3に示すように、不純物を含む原料水素の導入配管5が、セル4の側壁6とヒータ3の間隙を通るように設けられてなることを特徴とする水素精製装置である。   As shown in FIGS. 1 and 2, the hydrogen purifier of the present invention comprises a plurality of palladium alloy thin tubes 1 sealed at one end, and a tube plate 2 that supports the thin tubes at the open ends of the thin tubes. The inside of the cell 4 having the heater 3 is partitioned into a primary side space 4 ′ and a secondary side space 4 ″, and source hydrogen containing impurities is introduced from the source hydrogen supply port 9 of the primary side space 4 ′. And a hydrogen purifier for extracting pure hydrogen from the pure hydrogen outlet 11 of the secondary space 4 ″ through the palladium alloy thin tube, wherein the length of the palladium alloy thin tube 1 is at least 15 times the diameter of the tube plate 2. As shown in FIGS. 1 to 3, the hydrogen purification apparatus is characterized in that an introduction pipe 5 for source hydrogen containing impurities is provided so as to pass through the gap between the side wall 6 of the cell 4 and the heater 3. It is.

以下、本発明の水素精製装置の各構成部について詳細について説明する。
本発明の水素精製装置のセルは、図1、図2に示すように、正面の外形が、Uの字の形状、コの字の形状、またはこれに類似する形状であり、断面が円形である容器の開口部に、純水素取出し口を備えた蓋を設けた形態である。本発明の水素精製装置においては、原料水素の導入配管5の内部を流通する原料水素が、原料水素供給口9に到達するまでに、ヒータ3により充分に加熱されるように、セル4(特に4’側)が細長の形状に(管板の直径が小さくなるように)設定される。また、ヒータ3は、セルの側壁のうち、少なくともパラジウム合金細管が設置されている部分の側壁の外周全体にわたり設けられる。そのため、本発明においては、パラジウム合金細管1の長さは、管板2の直径より大幅に長くなるように設定することが好ましく、通常は管板の直径の15倍以上、好ましくは20倍以上とされる。尚、セル4の二次側空間4” 側は、装置の小型化の点で小さいことが好ましいため、セルの管板より上流側の空間の体積は、相対的にセルの管板より下流側の空間の体積より大きくなり、通常はセルの管板より下流側の空間の体積の10倍以上、好ましくは15倍以上、さらに好ましくは20倍以上となるように設定される。
Hereinafter, each component of the hydrogen purifier according to the present invention will be described in detail.
As shown in FIGS. 1 and 2, the cell of the hydrogen purification apparatus of the present invention has a U-shaped outer shape, a U-shaped shape, or a similar shape, and a circular cross section. In this embodiment, a lid provided with a pure hydrogen outlet is provided at the opening of a container. In the hydrogen purifier of the present invention, the cell 4 (particularly, the raw hydrogen flowing through the raw hydrogen introduction pipe 5 is sufficiently heated by the heater 3 before reaching the raw hydrogen supply port 9. 4 ′ side) is set in an elongated shape (so that the diameter of the tube sheet is reduced). Moreover, the heater 3 is provided over the whole outer periphery of the side wall of the part in which the palladium alloy thin tube is installed among the side walls of the cell. Therefore, in the present invention, the length of the palladium alloy thin tube 1 is preferably set so as to be significantly longer than the diameter of the tube plate 2, and is usually 15 times or more, preferably 20 times or more, the diameter of the tube plate. It is said. Since the secondary space 4 ″ side of the cell 4 is preferably small in terms of downsizing of the apparatus, the volume of the space upstream of the cell tube plate is relatively downstream of the cell tube plate. It is usually set to be 10 times or more, preferably 15 times or more, more preferably 20 times or more of the volume of the space downstream of the cell tube plate.

本発明の水素精製装置において、不純物を含む原料水素の導入配管5は、前述のように、セル4の側壁6とヒータ3の間隙を通るように設定されるが、図3に示すように、原料水素の導入配管5とセルの側壁6とヒータ3の間隙に、伝熱セメント等の固体の伝熱媒体12を充填し、ヒータ3からの熱が原料水素の導入配管5に効率よく伝わるようにすることが好ましい。伝熱媒体を介してセルの側壁とヒータの間隙を通るように設定される原料水素の導入配管(図3のような構成を有する原料水素の導入配管)の長さは、通常はセル4の側壁6の長さの50%以上、好ましくは80%以上、さらに好ましくは90%以上である。尚、前記のセル4の側壁6の長さは、図1、図2におけるセル4の側壁6の直線部分をいうものである。   In the hydrogen purification apparatus of the present invention, the raw material hydrogen introduction pipe 5 containing impurities is set so as to pass through the gap between the side wall 6 of the cell 4 and the heater 3 as described above, but as shown in FIG. The gap between the raw hydrogen introduction pipe 5 and the side wall 6 of the cell and the heater 3 is filled with a solid heat transfer medium 12 such as heat transfer cement so that the heat from the heater 3 is efficiently transferred to the raw hydrogen introduction pipe 5. It is preferable to make it. The length of the raw hydrogen introduction pipe (the raw hydrogen introduction pipe having the structure shown in FIG. 3) set so as to pass through the gap between the side wall of the cell and the heater via the heat transfer medium is normally The length of the side wall 6 is 50% or more, preferably 80% or more, and more preferably 90% or more. The length of the side wall 6 of the cell 4 refers to the straight portion of the side wall 6 of the cell 4 in FIGS.

また、本発明の水素精製装置において、原料水素の導入配管5は、通常はパラジウム合金細管と平行となるように設けられるが、螺旋状に設けてもよい。パラジウム合金細管と平行となるように設けた場合であっても、セルの側壁とヒータの間隙を通る構成の原料水素の導入配管の長さは、通常は30cm以上、好ましくは40cm以上である。また、原料水素の導入配管5の内径は、通常は6mm以下である。導入配管5の内径が6mmを超えると、導入配管5の内部を流通する原料水素を充分に加熱できなくなる虞がある。   In the hydrogen purification apparatus of the present invention, the raw material hydrogen introduction pipe 5 is usually provided in parallel with the palladium alloy thin pipe, but may be provided in a spiral shape. Even when it is provided in parallel with the palladium alloy thin tube, the length of the raw hydrogen introduction pipe configured to pass through the gap between the side wall of the cell and the heater is usually 30 cm or more, preferably 40 cm or more. The inner diameter of the raw hydrogen introduction pipe 5 is usually 6 mm or less. If the inner diameter of the introduction pipe 5 exceeds 6 mm, the raw hydrogen flowing through the introduction pipe 5 may not be heated sufficiently.

本発明の水素精製装置において使用されるパラジウム合金細管1は、図1に示すように、管板2側の一端に開口端部7を有し、反対側の一端に閉口端部8を有する管からなる。パラジウム合金細管1は、前述のように長さが管板の直径の15倍以上であり、具体的には20〜200cmである。また、外径は通常1.0〜5.0mm、厚みは通常30〜100μmである。また、パラジウム合金細管1は、1個のパラジウム合金膜ユニットに対して3〜100本使用される。これらの配置については特に制限がないが、隣接するパラジウム合金細管同士の間隔は、通常1.0〜2.5mmとなるように設定される。   As shown in FIG. 1, a palladium alloy thin tube 1 used in the hydrogen purification apparatus of the present invention has an open end 7 at one end on the tube plate 2 side and a closed end 8 at one end on the opposite side. Consists of. As described above, the palladium alloy thin tube 1 has a length that is at least 15 times the diameter of the tube plate, specifically 20 to 200 cm. Moreover, an outer diameter is 1.0-5.0 mm normally, and thickness is 30-100 micrometers normally. Further, 3 to 100 palladium alloy capillaries 1 are used for one palladium alloy membrane unit. Although there is no restriction | limiting in particular about these arrangement | positioning, The space | interval of adjacent palladium alloy thin tubes is set so that it may become 1.0-2.5 mm normally.

前述のパラジウム合金細管1の構成成分としては、パラジウムと銅を主成分とする合金、パラジウムと銀を主成分とする合金、パラジウムと銀と金を主成分とする合金を例示することができる。これらの合金を用いる場合、パラジウム50〜70wt%と銅30〜50wt%との合金、パラジウム60〜90wt%と銀10〜40wt%との合金、パラジウム60〜80wt%と銀10〜37wt%と金3〜10wt%の合金が好ましい。パラジウム合金はその他の金属を含んでいてもよいが、前記の金属は、通常は95wt%以上、好ましくは99wt%以上含有される。   Examples of the constituent components of the palladium alloy thin tube 1 include an alloy mainly composed of palladium and copper, an alloy mainly composed of palladium and silver, and an alloy mainly composed of palladium, silver and gold. When these alloys are used, an alloy of palladium 50 to 70 wt% and copper 30 to 50 wt%, an alloy of palladium 60 to 90 wt% and silver 10 to 40 wt%, palladium 60 to 80 wt%, silver 10 to 37 wt% and gold A 3-10 wt% alloy is preferred. The palladium alloy may contain other metals, but the metal is usually contained in an amount of 95 wt% or more, preferably 99 wt% or more.

本発明において使用される管板2は、通常は厚みが3〜30mmの円盤である。また、管板2の直径は、パラジウム合金細管の長さの1/15以下、好ましくは1/20以下であり、パラジウム合金細管1の径や本数等により異なるが、通常は10〜40mmである。管板2には、図3(1)に示すように、予めパラジウム合金細管1を取付ける位置に、これを挿入するための貫通孔が設けられる。パラジウム合金細管1の管板2への支持は、溶接等により行なわれる。その際、水素分離膜を透過した純水素の流路空間を確保するために、必要に応じてパラジウム合金細管1の内部にコイル状のスプリングを挿入することもできる。尚、管板2はニッケル製であることが好ましい。   The tube sheet 2 used in the present invention is usually a disk having a thickness of 3 to 30 mm. Further, the diameter of the tube plate 2 is 1/15 or less, preferably 1/20 or less of the length of the palladium alloy tubule, and is usually 10 to 40 mm, although it varies depending on the diameter and number of the palladium alloy tubule 1. . As shown in FIG. 3 (1), the tube plate 2 is provided with a through-hole for inserting the palladium alloy thin tube 1 in advance at a position where the tube plate 2 is attached. The palladium alloy thin tube 1 is supported on the tube plate 2 by welding or the like. At that time, a coil-shaped spring can be inserted into the inside of the palladium alloy thin tube 1 as necessary in order to secure a flow path space of pure hydrogen that has passed through the hydrogen separation membrane. The tube sheet 2 is preferably made of nickel.

本発明において使用されるヒータ3は、セル4の内部のパラジウム合金細管1と原料水素、及び原料水素の導入配管5の内部を流通する原料水素を、所定の温度で効率よく加熱することができれば特に限定されることはないが、例えば図1、図2に示すように、発熱線13をセル4の側壁6の外周に螺旋状に巻き、熱伝導性が優れた伝熱セメント等の伝熱媒体12を用いて発熱線13を被覆するとともに、セル4の側壁6に固定したものを使用することができる。ヒータ3は、少なくともセルの管板より上流側の側壁全体を覆って加熱するように設定することが好ましい。   The heater 3 used in the present invention can efficiently heat the raw material hydrogen flowing through the palladium alloy thin tube 1 and the raw hydrogen inside the cell 4 and the raw hydrogen introduction pipe 5 at a predetermined temperature. Although not particularly limited, for example, as shown in FIG. 1 and FIG. 2, the heat generating wire 13 is spirally wound around the outer periphery of the side wall 6 of the cell 4 to heat transfer such as heat transfer cement having excellent heat conductivity. The heating wire 13 can be covered with the medium 12 and the medium 12 can be fixed to the side wall 6 of the cell 4. It is preferable to set the heater 3 so as to cover and heat at least the entire side wall upstream of the tube plate of the cell.

本発明の水素精製装置においては、パラジウム合金細管1を透過しないガスを回収するため、セルの一次側空間に不純物含有ガス取出し口10が設けられる。原料水素供給口9と不純物含有ガス取出し口10の位置は、管板2の位置より上流側であれば特に制限されることはないが、これらは互いに離れた位置に設定されることが好ましい。例えば、図1に示すように、原料水素供給口9を管板2から離れた位置に設けた場合、不純物含有ガス取出し口10は管板2に近い位置に設けられ、図2に示すように、原料水素供給口9を管板2に近い位置に設けた場合、不純物含有ガス取出し口10は管板2から離れた位置に設けられる。また、パラジウム合金細管1を透過した水素を回収するため、セルの二次側空間に純水素取出し口11が設けられ、さらに純水素取出し口11に到達した純水素を回収するための純水素取出し配管16が設けられる。   In the hydrogen purifier of the present invention, an impurity-containing gas outlet 10 is provided in the primary space of the cell in order to recover the gas that does not permeate the palladium alloy thin tube 1. The positions of the source hydrogen supply port 9 and the impurity-containing gas extraction port 10 are not particularly limited as long as they are upstream of the position of the tube plate 2, but they are preferably set at positions separated from each other. For example, as shown in FIG. 1, when the raw material hydrogen supply port 9 is provided at a position away from the tube plate 2, the impurity-containing gas outlet 10 is provided at a position close to the tube plate 2, as shown in FIG. When the raw material hydrogen supply port 9 is provided at a position close to the tube plate 2, the impurity-containing gas outlet 10 is provided at a position away from the tube plate 2. Further, in order to recover the hydrogen that has permeated through the palladium alloy thin tube 1, a pure hydrogen outlet 11 is provided in the secondary space of the cell, and a pure hydrogen outlet for recovering the pure hydrogen that has reached the pure hydrogen outlet 11 is also provided. A pipe 16 is provided.

次に、本発明の水素精製システムについて説明する。
本発明の水素システムは、前述のような本発明の水素精製装置を、図4に示すように複数個並列に設置し、複数の該水素精製装置の各々の原料水素の導入配管5を、外部の1本の原料水素供給配管14に接続し、複数の該水素精製装置の各々の純水素取出し配管16を、外部の1本の純水素回収配管17に接続してなる水素精製システムである。また、本発明の水素システムにおいては、複数の水素精製装置の不純物含有ガス取出し口10から回収された不純物を含む水素が、外部の不純物含有ガス回収配管15に回収されるように配管が接続される。
Next, the hydrogen purification system of the present invention will be described.
In the hydrogen system of the present invention, a plurality of the hydrogen purifiers of the present invention as described above are installed in parallel as shown in FIG. 4, and the raw hydrogen introduction pipes 5 of the plurality of hydrogen purifiers are connected to the outside. The hydrogen purification system is connected to one raw hydrogen supply pipe 14 and each of the plurality of hydrogen purifiers is connected to one pure hydrogen recovery pipe 17. In the hydrogen system of the present invention, the pipe is connected so that hydrogen containing impurities recovered from the impurity-containing gas outlets 10 of the plurality of hydrogen purifiers is recovered to the external impurity-containing gas recovery pipe 15. The

本発明により水素精製を行なう際は、1個の本発明の水素精製装置、または図4に示すように配置された複数の本発明の水素精製装置を、外部の各配管に接続した後、原料水素の導入配管5の内部及びセル4の内部をヒータ3により加熱するとともに、原料水素供給配管から原料水素を供給することにより水素の精製が行なわれる。水素精製の際のパラジウム合金細管1の温度は、通常は250〜500℃、好ましくは300〜450℃である。原料水素は加熱されたパラジウム合金細管1と接触し、水素のみがパラジウム合金細管1を透過し、純水素取出し口11、純水素の取出し配管16、純水素回収配管17を経由して回収される。   When performing hydrogen purification according to the present invention, after connecting one hydrogen purification apparatus of the present invention or a plurality of hydrogen purification apparatuses of the present invention arranged as shown in FIG. The inside of the hydrogen introduction pipe 5 and the inside of the cell 4 are heated by the heater 3, and hydrogen is purified by supplying the raw hydrogen from the raw hydrogen supply pipe. The temperature of the palladium alloy thin tube 1 during the hydrogen purification is usually 250 to 500 ° C, preferably 300 to 450 ° C. The raw material hydrogen contacts with the heated palladium alloy capillary tube 1, and only hydrogen passes through the palladium alloy capillary tube 1 and is recovered via the pure hydrogen outlet 11, the pure hydrogen outlet pipe 16, and the pure hydrogen recovery pipe 17. .

次に、本発明を実施例により具体的に説明するが、本発明がこれらにより限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these.

[実施例1]
(水素精製装置の製作)
直径20mm、厚さ5mmの円盤状のニッケル製管板2に、パラジウム、銀、及び金を主成分とする合金からなるパラジウム合金細管1(外径1.8mm、厚さ70μm、長さ600mm)19本を、複数の同心円上に溶接した。次に、図1に示すような位置に、原料水素供給口9、不純物含有ガス取出し口10、及び純水素取出し口11を有する、内径20mm、長さ700mmのSUS316L製セル4に、前記の管板2及びパラジウム合金細管1を収納した。尚、セルの管板2より上流側の空間の体積は、セルの管板2より下流側の空間の体積の約35倍であった。
[Example 1]
(Production of hydrogen purification equipment)
Palladium alloy thin tube 1 (outer diameter 1.8 mm, thickness 70 μm, length 600 mm) made of an alloy containing palladium, silver, and gold as main components on a disk-shaped nickel tube plate 2 having a diameter of 20 mm and a thickness of 5 mm Nineteen were welded onto a plurality of concentric circles. Next, the SUS316L cell 4 having an inner diameter of 20 mm and a length of 700 mm having the raw material hydrogen supply port 9, the impurity-containing gas extraction port 10, and the pure hydrogen extraction port 11 at the position shown in FIG. The plate 2 and the palladium alloy thin tube 1 were accommodated. Note that the volume of the space upstream of the cell tube plate 2 was about 35 times the volume of the space downstream of the cell tube plate 2.

内径4.3mm、長さ800mmの直線配管部を有するSUS316L製の原料水素の導入配管5を、該直線配管部がセルの側壁6と接触するように設けるとともに、セル4の原料水素供給口9に接続した。また、電熱線13をセルの側壁6の外周及び導入配管5の直線配管部の外周に螺旋状に巻き、これらの間隙を図3に示すような構成となるように伝熱セメントで満たして、図1に示すような形態の水素精製装置を製作した。尚、伝熱セメントを介してセルの側壁6とヒータ3の間隙を通るように設定した原料水素の導入配管5の長さは、セルの側壁6の長さの95%であった。さらに、純水素取出し配管16等を接続した。   A raw material hydrogen introduction pipe 5 made of SUS316L having a straight pipe section with an inner diameter of 4.3 mm and a length of 800 mm is provided so that the straight pipe section is in contact with the side wall 6 of the cell, and the raw hydrogen supply port 9 of the cell 4 is provided. Connected to. Further, the heating wire 13 is spirally wound around the outer periphery of the side wall 6 of the cell and the outer periphery of the straight piping portion of the introduction piping 5, and these gaps are filled with heat transfer cement so as to have a configuration as shown in FIG. A hydrogen purifier having a configuration as shown in FIG. 1 was produced. The length of the raw hydrogen introduction pipe 5 set so as to pass through the gap between the side wall 6 of the cell and the heater 3 through the heat transfer cement was 95% of the length of the side wall 6 of the cell. Further, a pure hydrogen extraction pipe 16 and the like were connected.

(水素精製試験)
水素精製装置のセルの一次側の空間4’の内部の温度を600℃に昇温するとともに水素を導入して、10時間加熱処理を行なった。続いて水素精製装置のセルの一次側の空間4’の内部の温度を420℃まで低下させ、セルの一次側の空間4’とセルの二次側の空間4”の差圧が1.0MPaとなるように制御しながら、不純物(窒素、酸素、二酸化炭素等)を合計で約400ppm含む原料水素を原料水素の導入配管5から導入し、水素の精製を行なった。その際、原料水素供給口9の原料水素の温度は約400℃であった。1時間の処理を行なった結果、純水素取出し配管から900Lの純水素が得られた。
(Hydrogen purification test)
The temperature inside the space 4 ′ on the primary side of the cell of the hydrogen purifier was raised to 600 ° C., hydrogen was introduced, and heat treatment was performed for 10 hours. Subsequently, the temperature inside the primary space 4 ′ of the cell of the hydrogen purifier is lowered to 420 ° C., and the differential pressure between the primary space 4 ′ of the cell and the secondary space 4 ″ of the cell is 1.0 MPa. The raw material hydrogen containing about 400 ppm of impurities (nitrogen, oxygen, carbon dioxide, etc.) in total was introduced from the raw hydrogen introduction pipe 5 to purify the hydrogen, while supplying the raw hydrogen. The temperature of the raw material hydrogen at the port 9 was about 400 ° C. As a result of performing the treatment for 1 hour, 900 L of pure hydrogen was obtained from the pure hydrogen extraction pipe.

[実施例2]
実施例1における水素精製装置の製作において、原料水素供給口9と不純物含有ガス取出し口10の位置が交換されたセルを用いたほかは実施例1と同様にして、図2に示すような形態の水素精製装置を製作した。尚、伝熱セメントを介してセル4の側壁6とヒータ3の間隙を通るように設定した原料水素の導入配管5の長さは、セル4の側壁6の長さの85%であった。
前記の水素精製装置を用いたほかは実施例1と同様にして水素精製試験を行なった。その結果、原料水素供給口9の原料水素の温度は約390℃であった。また、1時間の処理で、純水素取出し配管から900Lの純水素が得られた。
[Example 2]
In the production of the hydrogen purification apparatus in Example 1, the configuration as shown in FIG. A hydrogen refining device was manufactured. The length of the raw hydrogen introduction pipe 5 set so as to pass through the gap between the side wall 6 of the cell 4 and the heater 3 through the heat transfer cement was 85% of the length of the side wall 6 of the cell 4.
A hydrogen purification test was conducted in the same manner as in Example 1 except that the hydrogen purification apparatus was used. As a result, the temperature of the source hydrogen at the source hydrogen supply port 9 was about 390 ° C. In addition, 900 L of pure hydrogen was obtained from the pure hydrogen take-out piping after 1 hour of treatment.

[実施例3]
(水素精製システムの製作)
実施例1と同様の水素精製装置を3個作成し、水素精製装置を複数個並列に設置した。これらの水素精製装置の各々の原料水素の導入配管5を、外部の1本の原料水素供給配管14に接続し、これらの水素精製装置の各々の純水素取出し配管16を、外部の1本の純水素回収配管17に接続し、さらに不純物含有ガス取出し口10と外部の1本の不純物含有ガス回収配管15を途中の配管を介して接続して、図4に示すような水素精製システムを製作した。
[Example 3]
(Production of hydrogen purification system)
Three hydrogen purifiers similar to those in Example 1 were prepared, and a plurality of hydrogen purifiers were installed in parallel. The raw hydrogen introduction pipes 5 of each of these hydrogen purifiers are connected to one external raw hydrogen supply pipe 14, and each of the pure hydrogen extraction pipes 16 of these hydrogen purifiers is connected to one external hydrogen supply pipe 14. A hydrogen purification system as shown in FIG. 4 is manufactured by connecting to the pure hydrogen recovery pipe 17 and further connecting the impurity-containing gas outlet 10 and one external impurity-containing gas recovery pipe 15 through an intermediate pipe. did.

(水素精製試験)
各々の水素精製装置のセルの一次側の空間4’の内部の温度を600℃に昇温するとともに水素を導入して、10時間加熱処理を行なった。続いて各々の水素精製装置のセルの一次側の空間4’の内部の温度を420℃まで低下させ、セルの一次側の空間4’とセルの二次側の空間4”の差圧が1.0MPaとなるように制御しながら、不純物(窒素、酸素、二酸化炭素等)を合計で約400ppm含む原料水素を原料水素供給配管14から導入し、水素の精製を行なった。1時間の処理を行なった結果、純水素回収配管17から合計で2600Lの純水素が得られた。
(Hydrogen purification test)
The temperature inside the space 4 ′ on the primary side of each hydrogen purifier cell was raised to 600 ° C. and hydrogen was introduced, followed by heat treatment for 10 hours. Subsequently, the temperature inside the primary space 4 ′ of each cell of the hydrogen purifier is lowered to 420 ° C., and the differential pressure between the primary space 4 ′ of the cell and the secondary space 4 ″ of the cell is 1 While controlling to 0.0 MPa, raw hydrogen containing impurities (nitrogen, oxygen, carbon dioxide, etc.) in total of about 400 ppm was introduced from the raw hydrogen supply pipe 14 to purify the hydrogen. As a result, a total of 2600 L of pure hydrogen was obtained from the pure hydrogen recovery pipe 17.

以上のように、本発明の水素精製装置及び水素精製システムは、実施例に示すように、原料水素を予め加熱するためのヒータが不要とすることが可能である。そのため、装置及びシステムの小型化、簡素化を図ることができる。   As described above, the hydrogen purification apparatus and the hydrogen purification system of the present invention can eliminate the need for a heater for preheating raw material hydrogen, as shown in the examples. Therefore, the apparatus and system can be reduced in size and simplified.

本発明の水素精製装置の一例を示す構成図The block diagram which shows an example of the hydrogen purification apparatus of this invention 本発明の図1以外の水素精製装置の一例を示す構成図The block diagram which shows an example of hydrogen purification apparatuses other than FIG. 1 of this invention (1)図1の水素精製装置の管板の位置における断面の一例を示す構成図 (2)図1の水素精製装置のパラジウム合金細管の位置における断面の一例を示す構成図(1) Configuration diagram showing an example of a cross section at the position of the tube plate of the hydrogen purification apparatus of FIG. 1 (2) Configuration diagram showing an example of a cross section at the position of the palladium alloy thin tube of the hydrogen purification apparatus of FIG. 本発明の水素精製システムの例を示す構成図Configuration diagram showing an example of the hydrogen purification system of the present invention

1 パラジウム合金細管
2 管板
3 ヒータ
4 セル
4’セルの一次側空間
4”セルの二次側空間
5 原料水素の導入配管
6 セルの側壁
7 開口端部
8 閉口端部
9 原料水素供給口
10 不純物含有ガス取出し口
11 純水素取出し口
12 伝熱媒体
13 発熱線
14 原料水素供給配管
15 不純物含有ガス回収配管
16 純水素取出し配管
17 純水素回収配管
DESCRIPTION OF SYMBOLS 1 Palladium alloy thin tube 2 Tube plate 3 Heater 4 Cell 4 'cell primary side space 4 "cell secondary side space 5 Raw material hydrogen introduction piping 6 Cell side wall 7 Open end 8 Closed end 9 Raw material hydrogen supply port 10 Impurity-containing gas outlet 11 Pure hydrogen outlet 12 Heat transfer medium 13 Heating wire 14 Raw material hydrogen supply piping 15 Impurity-containing gas recovery piping 16 Pure hydrogen extraction piping 17 Pure hydrogen recovery piping

Claims (8)

一端が封じられた複数本のパラジウム合金細管と、該細管の開口端部において該細管を支持する管板によって、外周にヒータを有するセルの内部が一次側空間と二次側空間に仕切られた構成を有し、不純物を含む原料水素を一次側空間から導入し、パラジウム合金細管を透過させて二次側空間から純水素を取出す水素精製装置であって、パラジウム合金細管の長さが管板の直径の15倍以上であり、不純物を含む原料水素の導入配管が、セルの側壁とヒータの間隙を通るように設けられてなることを特徴とする水素精製装置。   The inside of the cell having the heater on the outer periphery is partitioned into a primary space and a secondary space by a plurality of palladium alloy thin tubes sealed at one end and a tube plate that supports the thin tube at the open end of the thin tube. A hydrogen refining apparatus having a configuration, introducing raw material hydrogen containing impurities from a primary side space, permeating through a palladium alloy thin tube and taking out pure hydrogen from the secondary side space, the length of the palladium alloy thin tube being a tube plate A hydrogen refining apparatus characterized in that an introduction pipe for raw material hydrogen containing impurities is provided so as to pass through the gap between the side wall of the cell and the heater. 原料水素の導入配管とパラジウム合金細管が、互いに平行である請求項1に記載の水素精製装置。   The hydrogen purifier according to claim 1, wherein the raw hydrogen introduction pipe and the palladium alloy thin pipe are parallel to each other. 原料水素の導入配管とセルの側壁とヒータの間隙に、固体の伝熱媒体が充填されている請求項1に記載の水素精製装置。   2. The hydrogen purifier according to claim 1, wherein a solid heat transfer medium is filled in a gap between the raw hydrogen introduction pipe, the cell side wall, and the heater. セルの管板より上流側の空間の体積が、セルの管板より下流側の空間の体積の10倍以上である請求項1に記載の水素精製装置。   2. The hydrogen purifier according to claim 1, wherein the volume of the space upstream of the cell tube plate is 10 times or more the volume of the space downstream of the cell tube plate. セルの側壁とヒータの間隙を通る原料水素の導入配管の長さが、30cm以上である請求項1に記載の水素精製装置。   The hydrogen purifier according to claim 1, wherein the length of the raw hydrogen introduction pipe passing through the gap between the side wall of the cell and the heater is 30 cm or more. セルの側壁とヒータの間隙を通る原料水素の導入配管の内径が、6mm以下である請求項1に記載の水素精製装置。   2. The hydrogen purifier according to claim 1, wherein an inner diameter of the raw hydrogen introduction pipe passing through a gap between the side wall of the cell and the heater is 6 mm or less. ヒータが、電熱線を螺旋状にセルの側壁の外周に巻いたものである請求項1に記載の水素精製装置。   The hydrogen purifier according to claim 1, wherein the heater is a heating wire spirally wound around the outer periphery of the side wall of the cell. 請求項1に記載の水素精製装置を複数個並列に設置し、複数の該水素精製装置の各々の原料水素の導入配管を、外部の1本の原料水素供給配管に接続し、複数の該水素精製装置の各々の純水素取出し配管を、外部の1本の純水素回収配管に接続してなることを特徴とする水素精製システム。   A plurality of hydrogen purifiers according to claim 1 are installed in parallel, and the raw hydrogen introduction pipes of each of the plurality of hydrogen purifiers are connected to one external raw hydrogen supply pipe. A hydrogen purification system, wherein each pure hydrogen take-out pipe of the purifier is connected to one external pure hydrogen recovery pipe.
JP2014054618A 2014-03-18 2014-03-18 Hydrogen purification apparatus and hydrogen purification system using the same Active JP6355944B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014054618A JP6355944B2 (en) 2014-03-18 2014-03-18 Hydrogen purification apparatus and hydrogen purification system using the same
CN201510111657.XA CN104925756A (en) 2014-03-18 2015-03-13 Hydrogen purifying device and hydrogen purifying system employing the same
TW104108406A TWI554469B (en) 2014-03-18 2015-03-17 A hydrogen purifying apparatus and a hydrogen purifying system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014054618A JP6355944B2 (en) 2014-03-18 2014-03-18 Hydrogen purification apparatus and hydrogen purification system using the same

Publications (2)

Publication Number Publication Date
JP2015174815A true JP2015174815A (en) 2015-10-05
JP6355944B2 JP6355944B2 (en) 2018-07-11

Family

ID=54113230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014054618A Active JP6355944B2 (en) 2014-03-18 2014-03-18 Hydrogen purification apparatus and hydrogen purification system using the same

Country Status (3)

Country Link
JP (1) JP6355944B2 (en)
CN (1) CN104925756A (en)
TW (1) TWI554469B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021142488A (en) * 2020-03-12 2021-09-24 株式会社東芝 Hydrogen permeable membrane

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017094293A (en) * 2015-11-26 2017-06-01 日本パイオニクス株式会社 Electrical unit
CN108771944B (en) * 2018-08-01 2024-03-19 北京无线电计量测试研究所 Nickel purifier and hydrogen atom frequency scale
CN111111463B (en) * 2018-11-01 2021-09-28 中国科学院大连化学物理研究所 Finger-type palladium-based composite membrane with gap structure and preparation and application thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62128903A (en) * 1985-11-27 1987-06-11 Tadahiro Omi Ultrahigh-purity hydrogen permeable cell
JPS63252906A (en) * 1987-04-10 1988-10-20 Japan Atom Energy Res Inst Inner pipe pressurizing type device for purifying hydrogen
JPS6434424A (en) * 1987-07-31 1989-02-03 Nok Corp Module for separating gases
JPH02197372A (en) * 1989-01-23 1990-08-03 Tanaka Kikinzoku Kogyo Kk Method for brazing pd alloy pipe of gaseous hydrogen refining device
JP2004527717A (en) * 2001-02-28 2004-09-09 デーウー・エレクトロニクス・コーポレイション Air conditioner that can supply oxygen-enriched air
JP2005329091A (en) * 2004-05-21 2005-12-02 Nippon Tmi Co Ltd APPARATUS AND METHOD FOR PCB/POPs TREATMENT
JP2005336003A (en) * 2004-05-26 2005-12-08 Mitsubishi Kakoki Kaisha Ltd High purity hydrogen producing device
US20080210088A1 (en) * 2006-10-23 2008-09-04 Idatech, Llc Hydrogen purification membranes, components and fuel processing systems containing the same
JP2011245459A (en) * 2010-05-31 2011-12-08 Japan Pionics Co Ltd Hydrogen purification apparatus
JP2013163641A (en) * 2013-05-10 2013-08-22 Nissan Motor Co Ltd Hydrogen generator
CN203379783U (en) * 2013-05-23 2014-01-08 中国科学院大连化学物理研究所 Multichannel palladium composite membrane hydrogen separating device integrating preheating and heat exchange functions

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3273641B2 (en) * 1992-12-14 2002-04-08 日本パイオニクス株式会社 Hydrogen gas purification equipment
JP2004501759A (en) * 2000-06-29 2004-01-22 エイチ2ジーイーエヌ・イノベーションズ・インコーポレイテッド System for improved hydrogen generation by steam reforming of hydrocarbons and integrated chemical reactor for producing hydrogen from hydrocarbons
KR100924950B1 (en) * 2007-09-18 2009-11-06 한국에너지기술연구원 Microtubule carbon materials and method for producing microtubule carbon materials obtained by heat treatment of cellulose fiber, and Microtubule reactor module and method for fabricating a microtubule reactor module using this carbon materials, and Micro catalytic reactor installed by a microtubule reactor module
CN101642684B (en) * 2008-08-07 2011-11-16 大连华海制氢设备有限公司 Multi-channel metal palladium or palladium alloy composite membrane hydrogen separator
CN201400568Y (en) * 2009-03-25 2010-02-10 华南理工大学 Palladium membrane hydrogen separation device based on high-temperature preheating
CN201605164U (en) * 2009-09-29 2010-10-13 上海昕通半导体设备有限公司 Palladium tube hydrogen purifier with function of automatic blowing
JP2012106210A (en) * 2010-11-19 2012-06-07 Japan Pionics Co Ltd Manufacturing method of palladium-alloy seamless capillary

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62128903A (en) * 1985-11-27 1987-06-11 Tadahiro Omi Ultrahigh-purity hydrogen permeable cell
JPS63252906A (en) * 1987-04-10 1988-10-20 Japan Atom Energy Res Inst Inner pipe pressurizing type device for purifying hydrogen
JPS6434424A (en) * 1987-07-31 1989-02-03 Nok Corp Module for separating gases
JPH02197372A (en) * 1989-01-23 1990-08-03 Tanaka Kikinzoku Kogyo Kk Method for brazing pd alloy pipe of gaseous hydrogen refining device
JP2004527717A (en) * 2001-02-28 2004-09-09 デーウー・エレクトロニクス・コーポレイション Air conditioner that can supply oxygen-enriched air
JP2005329091A (en) * 2004-05-21 2005-12-02 Nippon Tmi Co Ltd APPARATUS AND METHOD FOR PCB/POPs TREATMENT
JP2005336003A (en) * 2004-05-26 2005-12-08 Mitsubishi Kakoki Kaisha Ltd High purity hydrogen producing device
US20080210088A1 (en) * 2006-10-23 2008-09-04 Idatech, Llc Hydrogen purification membranes, components and fuel processing systems containing the same
JP2011245459A (en) * 2010-05-31 2011-12-08 Japan Pionics Co Ltd Hydrogen purification apparatus
JP2013163641A (en) * 2013-05-10 2013-08-22 Nissan Motor Co Ltd Hydrogen generator
CN203379783U (en) * 2013-05-23 2014-01-08 中国科学院大连化学物理研究所 Multichannel palladium composite membrane hydrogen separating device integrating preheating and heat exchange functions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021142488A (en) * 2020-03-12 2021-09-24 株式会社東芝 Hydrogen permeable membrane
JP7263281B2 (en) 2020-03-12 2023-04-24 株式会社東芝 Hydrogen permeable membrane

Also Published As

Publication number Publication date
JP6355944B2 (en) 2018-07-11
TWI554469B (en) 2016-10-21
TW201544451A (en) 2015-12-01
CN104925756A (en) 2015-09-23

Similar Documents

Publication Publication Date Title
JP6181673B2 (en) Palladium alloy membrane unit, storage structure thereof, and hydrogen purification method using the same
JP6355944B2 (en) Hydrogen purification apparatus and hydrogen purification system using the same
US8518151B2 (en) Porous hollow fiber supported dense membrane for hydrogen production, separation, or purification
JP6078674B2 (en) Hydrogen separation membrane module and hydrogen separation method using the same
CN105858606B (en) A kind of full temperature journey pressure varying adsorption of purified method of ultra-pure hydrogen
CA2865285C (en) Synthesis gas separation and reforming process
JP5690165B2 (en) PSA high purity hydrogen production method
JP2007246333A (en) Permselective membrane-type reactor and hydrogen-producing method using the same
JP2011245459A (en) Hydrogen purification apparatus
JP2012106210A (en) Manufacturing method of palladium-alloy seamless capillary
JP6413167B2 (en) Helium gas purification apparatus and helium gas purification method
TWI572557B (en) Hydrogen purification method
JP2016084252A (en) Method for purifying hydrogen
JP2016097320A (en) Hydrogen purification method
JP2014084250A (en) Hydrogen purifier
JP4429674B2 (en) Hydrogen production apparatus and high-purity hydrogen production method using the apparatus
JP5745662B2 (en) Two-stage hydrogen separation reformer
JP2002308605A (en) Method for refining gaseous hydrogen
JP5284293B2 (en) Hydrogen separation system using 5A group metal hydrogen separation membrane
JP2011144088A (en) Two-stage hydrogen separation type reformer
JPH07223802A (en) Device for purifying hydrogen gas
JP2007131471A (en) Hydrogen-refining module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170220

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180613

R150 Certificate of patent or registration of utility model

Ref document number: 6355944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250