JP2014084250A - Hydrogen purifier - Google Patents

Hydrogen purifier Download PDF

Info

Publication number
JP2014084250A
JP2014084250A JP2012234290A JP2012234290A JP2014084250A JP 2014084250 A JP2014084250 A JP 2014084250A JP 2012234290 A JP2012234290 A JP 2012234290A JP 2012234290 A JP2012234290 A JP 2012234290A JP 2014084250 A JP2014084250 A JP 2014084250A
Authority
JP
Japan
Prior art keywords
hydrogen
metal pipe
capillaries
palladium alloy
alloy film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012234290A
Other languages
Japanese (ja)
Inventor
Hiromasa Izaki
寛正 伊崎
Takashi Shimada
孝 島田
Koichi Yada
浩一 矢田
Tatsuki Tayama
竜規 田山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP2012234290A priority Critical patent/JP2014084250A/en
Publication of JP2014084250A publication Critical patent/JP2014084250A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen purifier capable, on an occasion for purifying hydrogen by using a palladium alloy film, of unprecedentedly increasing the takeout yield of purified hydrogen per unit time without entailing apparatus enlargement and a hydrogen purifier accompanied, even if the thickness of a palladium alloy film is reduced, by scarce mechanical strength losses of hydrogen-permeable capillaries.SOLUTION: The provided hydrogen purifier is a hydrogen purifier of which the interior of a cell is compartmentalized into a primary space and a secondary space by multiple hydrogen-permeable capillaries each having one sealed terminal and a tubular plate supporting the capillaries on the open terminal side of the capillaries, in which a hydrogen gas including impurities is introduced into the primary space and permeated through the capillaries, and in which a purified hydrogen gas is retrieved from the secondary space; the capillary is a metallic pipe having one sealed terminal and possessing multiple holes on its profile plane and is laser-welded with a palladium alloy film wrapped around the profile plane.

Description

本発明は、パラジウム合金膜の水素ガス選択透過性を利用した水素透過細管を内蔵する水素精製装置に関する。   The present invention relates to a hydrogen purifier incorporating a hydrogen permeable thin tube utilizing the hydrogen gas selective permeability of a palladium alloy membrane.

従来から、半導体製造工程においては、高純度の水素ガスが雰囲気ガスとして多量に使用されている。このような水素ガスは、半導体の集積度の向上により不純物の濃度が極めて低濃度(ppbレベル以下)であることが要求される。
一方、高純度の水素を工業的に多量に製造する方法としては、メタノール、ジメチルエーテル、天然ガス、液化石油ガス等から水蒸気改質反応により得られる改質ガスを、深冷吸着法、圧力スイング法等により、水素と水素以外のガスに分離して水素を得る方法が知られている。
Conventionally, high-purity hydrogen gas has been used in a large amount as an atmospheric gas in a semiconductor manufacturing process. Such a hydrogen gas is required to have an extremely low impurity concentration (ppb level or less) due to an improvement in semiconductor integration.
On the other hand, as a method for industrially producing a large amount of high-purity hydrogen, a reformed gas obtained by a steam reforming reaction from methanol, dimethyl ether, natural gas, liquefied petroleum gas, etc. is subjected to a cryogenic adsorption method or a pressure swing method. For example, a method of obtaining hydrogen by separating it into hydrogen and a gas other than hydrogen is known.

深冷吸着法は、液化窒素を冷媒として極低温化された吸着材が充填された吸着筒に水素含有ガスを流通し、水素以外の不純物を除去する精製方法であり、圧力スイング法は、複数の吸着筒に水素含有ガスを順次流通するとともに、昇圧、不純物の吸着、不純物の脱着、及び吸着材の再生の各操作を繰返して、水素以外の不純物を除去する精製方法である。前記のような改質ガスには、水素のほか、一酸化炭素、二酸化炭素、メタン、窒素、水等が含まれるが、深冷吸着法、圧力スイング法では、これらの不純物を極めて低濃度(ppbレベル以下)になるまで除去することは困難であった。   The cryogenic adsorption method is a purification method in which a hydrogen-containing gas is circulated through an adsorption cylinder filled with an adsorbent that has been cryogenically cooled using liquefied nitrogen as a refrigerant to remove impurities other than hydrogen. This is a purification method in which a hydrogen-containing gas is sequentially circulated through the adsorption cylinder, and impurities other than hydrogen are removed by repeating the operations of pressure increase, impurity adsorption, impurity desorption, and adsorbent regeneration. The reformed gas as described above contains carbon monoxide, carbon dioxide, methane, nitrogen, water, etc. in addition to hydrogen. In the cryogenic adsorption method and the pressure swing method, these impurities are contained at a very low concentration ( It was difficult to remove until the ppb level or lower).

これに対して、極めて高純度の水素ガスを、比較的に少量で得る方法として、水素含有ガスを、パラジウム合金の薄膜からなる水素分離膜に供給し、水素ガスの選択透過性を利用して水素のみを透過させて取出す方法が知られている。
このような水素精製のための装置は、水素含有ガスの導入口、精製水素の取出口、及び該導入口と該取出口の間のガス流路中にパラジウム合金の薄膜を備えてなる水素精製装置であり、例えば図4に示すように、一端が封じられた複数本のパラジウム合金細管(水素透過細管)が、開口端部で管板に支持されてセル内に収納され、このパラジウム合金細管及び管板によってセル内が一次側空間(水素含有ガスの供給側空間)及び二次側空間(精製水素の取出し側空間)の二つの空間に仕切られた構成を有する水素精製装置である。
On the other hand, as a method for obtaining extremely high-purity hydrogen gas in a relatively small amount, a hydrogen-containing gas is supplied to a hydrogen separation membrane made of a palladium alloy thin film, and the selective permeability of hydrogen gas is utilized. A method is known in which only hydrogen is extracted by permeation.
Such an apparatus for purifying hydrogen includes a hydrogen-containing gas inlet, a purified hydrogen outlet, and a palladium alloy thin film in a gas flow path between the inlet and the outlet. For example, as shown in FIG. 4, a plurality of palladium alloy capillaries (hydrogen permeable capillaries), which are sealed at one end, are supported by a tube plate at the open end portion and accommodated in a cell. The hydrogen purifier has a configuration in which the inside of the cell is partitioned into two spaces, a primary side space (hydrogen-containing gas supply side space) and a secondary side space (purified hydrogen take-out side space) by a tube plate.

特開昭62−128903号公報JP-A-62-128903 特開平1−145302号公報JP-A-1-145302 特開平1−145303号公報JP-A-1-145303 特開平6−345409号公報JP-A-6-345409

パラジウム合金の薄膜からなる水素分離膜を利用した水素精製方法は、深冷吸着法、圧力スイング法と比較して、前述のように高純度の水素ガスが得られるほか、装置を小型化、簡素化できるという長所がある。しかし、分離膜の材料が高価であるという短所、単位時間当たりの精製水素の取出し量が少ないという短所がある。
尚、水素分離膜の単位面積当りの水素透過量Qは、Q=At−1(P 1/2−P 1/2)で表される。(式中、Aは分離膜の種類、操作条件等による数値、tは膜厚、Pは一次側の水素分圧、Pは二次側の水素分圧を表す。)
Compared with the cryogenic adsorption method and the pressure swing method, the hydrogen purification method using a hydrogen separation membrane made of a palladium alloy thin film can produce high-purity hydrogen gas as described above, and the equipment can be downsized and simplified. There is an advantage that can be made. However, there are a disadvantage that the material of the separation membrane is expensive and a small amount of purified hydrogen taken out per unit time.
The hydrogen permeation amount Q per unit area of the hydrogen separation membrane is expressed by Q = At −1 (P 1 1/2 −P 2 1/2 ). (In the formula, A is a numerical value depending on the type of separation membrane, operating conditions, t is a film thickness, P 1 is a primary hydrogen partial pressure, and P 2 is a secondary hydrogen partial pressure.)

前記の水素透過量の式により、特に膜厚tを小さくすることができれば、材料費の低減、精製水素の取出し量の増加を同時に図ることが可能である。しかしながら、膜厚を小さくすると、機械的強度が低下するとともに水素分離膜に微小なピンホール(通常は直径1〜10μm)が発生しやすくなるという不都合があった。このようなピンホールが発生すると一次側の原料(水素含有ガス)が二次側に漏れやすくなるため、取出された精製水素に不純物が混入してしまうとともに、さらに水素分離膜の機械的強度が低下し、やがて水素分離膜が破壊してしまうという問題が発生した。また、このような問題点があるため、一次側の水素分圧と二次側の水素分圧の差を大きくして精製水素の取出し量の増加を図ることもできなかった。   If the film thickness t can be particularly reduced by the hydrogen permeation amount equation, it is possible to simultaneously reduce the material cost and increase the amount of purified hydrogen taken out. However, when the film thickness is reduced, the mechanical strength is lowered, and there are inconveniences that minute pinholes (usually 1 to 10 μm in diameter) are likely to be generated in the hydrogen separation membrane. When such a pinhole occurs, the primary side material (hydrogen-containing gas) easily leaks to the secondary side, so impurities are mixed into the extracted purified hydrogen, and the mechanical strength of the hydrogen separation membrane is further increased. The problem was that the hydrogen separation membrane would eventually be destroyed. In addition, due to such problems, it has been impossible to increase the amount of purified hydrogen taken out by increasing the difference between the hydrogen partial pressure on the primary side and the hydrogen partial pressure on the secondary side.

従って、本発明が解決しようとする課題は、パラジウム合金膜を利用した水素精製において、装置を大きくすることなく、単位時間当たりの精製水素の取出し量を従来よりも大きくできる水素精製装置、さらにパラジウム合金膜の厚みを薄くしても、水素透過細管の機械的強度の低下が少ない水素精製装置を提供することである。   Therefore, the problem to be solved by the present invention is to provide a hydrogen purifier capable of increasing the amount of purified hydrogen taken out per unit time in a hydrogen purification using a palladium alloy membrane without increasing the apparatus, and further palladium. An object of the present invention is to provide a hydrogen purification apparatus in which the mechanical strength of a hydrogen-permeable capillary tube is little reduced even when the thickness of the alloy film is reduced.

本発明者らは、これらの課題を解決すべく鋭意検討した結果、一端が封じられ側面に複数の孔を有する金属パイプの該側面部に、パラジウム合金膜を捲き付けて周囲をレーザ溶接すれば、金属パイプの表面に精密で歪の少ないパラジウム合金膜の溶接が可能となること、一端が封じられた複数本の水素透過細管を用いた水素精製装置において、水素透過細管として前記の細管を用いることにより、パラジウム合金膜の厚みを薄くしても、水素分圧等に対する水素透過細管の機械的強度の低下を抑制できることを見出し、本発明の水素精製装置に到達した。   As a result of intensive studies to solve these problems, the present inventors have found that a palladium alloy film is attached to the side surface portion of a metal pipe sealed at one end and having a plurality of holes on the side surface, and the periphery is laser welded. In addition, it is possible to weld a palladium alloy film that is precise and less distorted on the surface of a metal pipe, and in the hydrogen purification apparatus using a plurality of hydrogen permeable capillaries sealed at one end, the aforementioned tubules are used as hydrogen permeable capillaries. Thus, it was found that even if the thickness of the palladium alloy film was reduced, a decrease in the mechanical strength of the hydrogen permeable capillary tube against the hydrogen partial pressure or the like could be suppressed, and the hydrogen purifier of the present invention was reached.

すなわち本発明は、一端が封じられた複数本の水素透過細管と、該細管の開口端部において該細管を支持する管板とによって、セル内部が一次側空間と二次側空間に仕切られ、不純物を含む水素を一次側空間から導入し、該細管を透過させて二次側空間から精製水素を取出す水素精製装置であって、該細管が、一端が封じられ側面に複数の孔を有する金属パイプの該側面部に、パラジウム合金膜を捲き付けてレーザ溶接してなるものであることを特徴とする水素精製装置である。   That is, in the present invention, the inside of the cell is partitioned into a primary space and a secondary space by a plurality of hydrogen permeable capillaries sealed at one end and a tube plate that supports the capillaries at the open end of the capillaries, A hydrogen refining apparatus for introducing hydrogen containing impurities from a primary side space, allowing the fine tube to permeate and taking out purified hydrogen from the secondary side space, wherein the thin tube is sealed at one end and has a plurality of holes on the side surface A hydrogen purifier characterized in that a palladium alloy film is applied to the side surface of a pipe and laser-welded.

本発明の水素精製装置は、機械的強度の低下を抑制できる、金属パイプの側面にパラジウム合金膜をレーザ溶接してなる水素透過細管を用いるので、従来のパラジウム合金膜より薄いパラジウム合金膜を使用することが可能となり、単位時間当たりの精製水素の取出し量を増加させることができる。   The hydrogen purification apparatus of the present invention uses a hydrogen permeable thin tube formed by laser welding a palladium alloy film on the side surface of a metal pipe, which can suppress a decrease in mechanical strength, and therefore uses a palladium alloy film thinner than a conventional palladium alloy film. And the amount of purified hydrogen taken out per unit time can be increased.

本発明の水素精製装置は、一端が封じられた水素透過細管と該細管の開口端を支持する管板によってセル内部が一次側空間と二次側空間に仕切られ、不純物を含む水素を一次側空間から導入し、水素透過細管を透過させて二次側空間から精製水素を取出す方式の水素精製装置に適用される。また、本発明の水素精製装置に適用される原料(水素含有ガス)としては、メタノール、ジメチルエーテル、天然ガス、液化石油ガス等から水蒸気改質反応により得られる改質ガス、あるいは工業用としてボンベ等に充填されている比較的に高純度の水素等が挙げられる。本発明により得られる極めて高純度の精製水素は、例えば半導体製造工程における雰囲気ガス(キャリアガス)として使用される。   The hydrogen purifying apparatus of the present invention includes a hydrogen permeable thin tube sealed at one end and a tube plate supporting the open end of the thin tube, the inside of the cell is partitioned into a primary side space and a secondary side space, and hydrogen containing impurities is separated into the primary side. The present invention is applied to a hydrogen refining apparatus that introduces purified hydrogen from a secondary side space through a hydrogen permeation capillary tube. Moreover, as a raw material (hydrogen-containing gas) applied to the hydrogen purification apparatus of the present invention, a reformed gas obtained by a steam reforming reaction from methanol, dimethyl ether, natural gas, liquefied petroleum gas or the like, or an industrial cylinder or the like Relatively high-purity hydrogen or the like filled in The extremely high purity purified hydrogen obtained by the present invention is used as, for example, an atmospheric gas (carrier gas) in a semiconductor manufacturing process.

以下、本発明の水素精製装置を、図1〜図6に基づいて詳細に説明するが、本発明がこれらにより限定されるものではない。尚、図1は本発明の水素精製装置の鉛直方向の断面の一例を示す構成図、図2は本発明の水素精製装置の管板の位置における水平方向の断面の一例を示す構成図、図3は本発明において使用される金属パイプの一例を示す構成図、図4は金属パイプにおけるレーザ溶接部の一例を示す構成図、図5は金属パイプの側面部にパラジウム合金膜を捲き付ける際の態様の一例を示す斜視図、図6は本発明において使用されるレーザ溶接装置の一例を示す構成図である。   Hereinafter, although the hydrogen purification apparatus of this invention is demonstrated in detail based on FIGS. 1-6, this invention is not limited by these. 1 is a block diagram showing an example of a vertical section of the hydrogen purifier of the present invention, and FIG. 2 is a block diagram showing an example of a horizontal section at the position of the tube plate of the hydrogen purifier of the present invention. 3 is a block diagram showing an example of a metal pipe used in the present invention, FIG. 4 is a block diagram showing an example of a laser welded portion in the metal pipe, and FIG. 5 is a diagram when a palladium alloy film is applied to the side surface of the metal pipe. FIG. 6 is a configuration diagram showing an example of a laser welding apparatus used in the present invention.

本発明の水素精製装置は、図1に示すように、一端が封じられた複数本の水素透過細管1と、該細管の開口端部6において該細管を支持する管板7とによって、セル内部が一次側空間8と二次側空間9に仕切られ、不純物を含む水素を一次側空間8から導入し、該細管1を透過させて二次側空間9から精製水素を取出す水素精製装置であって、該細管1が、図3〜図5に示すように、一端が封じられ側面に複数の孔2を有する金属パイプ3の該側面部に、パラジウム合金膜4を捲き付けてレーザ溶接してなる水素精製装置である。   As shown in FIG. 1, the hydrogen purifier of the present invention comprises a plurality of hydrogen-permeable tubules 1 sealed at one end, and a tube plate 7 that supports the tubules at the open end 6 of the tubules. Is a hydrogen purification device that is partitioned into a primary side space 8 and a secondary side space 9, introduces hydrogen containing impurities from the primary side space 8, passes through the thin tube 1 and takes out purified hydrogen from the secondary side space 9. As shown in FIGS. 3 to 5, the narrow tube 1 is laser-welded with a palladium alloy film 4 attached to the side surface of a metal pipe 3 sealed at one end and having a plurality of holes 2 on the side surface. This is a hydrogen purifier.

本発明において使用される金属パイプの外径は、通常は1.5〜20mm、好ましくは1.5〜10mmである。また、金属パイプの長さは、通常は50〜2000mm、好ましくは100〜1000mmである。金属パイプの構成材料としては、パラジウム合金との溶接が可能であれば特に限定されることはないが、例えば、炭素鋼、マンガン鋼、クロム鋼、モリブデン鋼、ステンレス鋼、ニッケル鋼、及びニッケル(純度99wt%以上)が挙げられ、これらの中ではパラジウム合金との溶接性が良好な点でニッケル鋼(95〜99wt%のニッケルを含む)またはニッケルが好ましい。   The outer diameter of the metal pipe used in the present invention is usually 1.5 to 20 mm, preferably 1.5 to 10 mm. Moreover, the length of a metal pipe is 50-2000 mm normally, Preferably it is 100-1000 mm. The constituent material of the metal pipe is not particularly limited as long as welding with a palladium alloy is possible. For example, carbon steel, manganese steel, chromium steel, molybdenum steel, stainless steel, nickel steel, and nickel ( Among them, nickel steel (including 95 to 99 wt% nickel) or nickel is preferable in terms of good weldability with a palladium alloy.

金属パイプの孔の形状は、通常は、正方形、長方形、円形、楕円形、またはこれらに類似する形状である。金属パイプの孔の大きさは、孔の形状が正方形または長方形の場合は、通常は一辺が0.05〜3mm、好ましくは一辺が0.1〜1mmであり、孔の形状が円形または楕円形の場合は、通常は径が0.05〜3mm、好ましくは径が0.1〜1mmである。金属パイプの孔の大きさが前記の下限値未満の場合は水素精製の際に圧力損失が大きくなる虞があり、孔の大きさが前記の上限値を越える場合は水素精製の際にパラジウム合金膜に歪みが発生し機械的強度が低下する虞がある。尚、前記の条件を満たす場合は、焼結金属製のパイプを使用することができる。本発明においては、金属パイプの側面全体に対する通気面の面積割合が、通常は50〜80%程度となるように、孔の数、大きさ、及び孔の間隔が設定される。通気面の面積割合が50%未満の場合は水素透過流量が減少し、通気面の面積割合が80%越える場合は水素透過細管の機械的強度が低下する。   The shape of the hole in the metal pipe is usually a square, a rectangle, a circle, an ellipse, or a similar shape. When the shape of the hole of the metal pipe is square or rectangular, one side is usually 0.05 to 3 mm, preferably one side is 0.1 to 1 mm, and the shape of the hole is circular or elliptical. In this case, the diameter is usually 0.05 to 3 mm, preferably 0.1 to 1 mm. When the hole size of the metal pipe is less than the above lower limit value, there is a risk of pressure loss during hydrogen purification, and when the hole size exceeds the above upper limit value, a palladium alloy may be used during hydrogen purification. There is a possibility that the film is distorted and the mechanical strength is lowered. In addition, when satisfy | filling the said conditions, a pipe made from a sintered metal can be used. In the present invention, the number of holes, the size, and the interval between the holes are set so that the area ratio of the ventilation surface to the entire side surface of the metal pipe is usually about 50 to 80%. When the area ratio of the ventilation surface is less than 50%, the hydrogen permeation flow rate decreases, and when the area ratio of the ventilation surface exceeds 80%, the mechanical strength of the hydrogen permeable capillary tube decreases.

また、本発明において使用されるパラジウム合金膜の膜厚は、通常は10〜50μm、好ましくは12〜30μmである。パラジウム合金膜の合金の構成成分としては、パラジウムと銅を主成分とする合金、パラジウムと銀を主成分とする合金、パラジウムと銀と金を主成分とする合金を例示することができる。これらの合金を用いる場合、パラジウム50〜70wt%と銅30〜50wt%との合金、パラジウム60〜90wt%と銀10〜40wt%との合金、パラジウム60〜80wt%と銀10〜37wt%と金3〜10wt%の合金が好ましい。パラジウム合金はその他の金属を含んでいてもよいが、前記の金属は、通常は95wt%以上、好ましくは99wt%以上含有される。   Moreover, the film thickness of the palladium alloy film used in the present invention is usually 10 to 50 μm, preferably 12 to 30 μm. Examples of the constituent component of the alloy of the palladium alloy film include an alloy mainly composed of palladium and copper, an alloy mainly composed of palladium and silver, and an alloy mainly composed of palladium, silver and gold. When these alloys are used, an alloy of palladium 50 to 70 wt% and copper 30 to 50 wt%, an alloy of palladium 60 to 90 wt% and silver 10 to 40 wt%, palladium 60 to 80 wt%, silver 10 to 37 wt% and gold A 3-10 wt% alloy is preferred. The palladium alloy may contain other metals, but the metal is usually contained in an amount of 95 wt% or more, preferably 99 wt% or more.

パラジウム合金膜は、図5に示すように、金属パイプの側面部にパラジウム合金膜を捲き付けて、例えば数箇所を接着剤等により仮固定した後、図6に示すようなレーザ出射ユニット16を有するレーザ溶接装置により溶接される。このレーザ溶接装置は、パラジウム合金膜を捲き付けた金属パイプ15を、中心軸方向に移動可能な細管保持具17により固定することができ,また回転用モータ18により金属パイプを回転させることができる装置である。このような装置により、金属パイプの側面上の中心軸と平行な線上部と、金属パイプの側面の円周線上部において容易にレーザ溶接することができる。前記の溶接部は線状であるが、多数の溶接部を設けた場合は、互いに隣接する溶接部は平行かつ等間隔であることが好ましい。尚、レーザ溶接箇所は孔のない部分であれば特に限定されることはないが、図4に示すように、少なくとも金属パイプの側面の中心軸と平行な線上部に設けられた溶接部5と、金属パイプの両端の側面の円周線上部5’においてレーザ溶接される。その際、パラジウム合金膜の重ね合せ部の範囲内に溶接部5が設けられることが好ましい。このようにして製作された水素透過細管は、図1、図2に示すような形態で管板に取付けられる。   As shown in FIG. 5, the palladium alloy film is formed by attaching a palladium alloy film to the side surface of a metal pipe and temporarily fixing it with an adhesive or the like, for example, and then attaching a laser emitting unit 16 as shown in FIG. It welds with the laser welding apparatus which has. In this laser welding apparatus, the metal pipe 15 to which the palladium alloy film is attached can be fixed by the thin tube holder 17 movable in the central axis direction, and the metal pipe can be rotated by the rotation motor 18. Device. With such an apparatus, laser welding can be easily performed on the upper part of the line parallel to the central axis on the side surface of the metal pipe and the upper part of the circumferential line on the side surface of the metal pipe. The welds are linear, but when a large number of welds are provided, the welds adjacent to each other are preferably parallel and equally spaced. The laser welding location is not particularly limited as long as it is a portion without a hole, but as shown in FIG. 4, at least a welded portion 5 provided on the upper portion of the line parallel to the central axis of the side surface of the metal pipe, Then, laser welding is performed on the circumferential line upper part 5 'on the side surfaces of both ends of the metal pipe. In that case, it is preferable that the welding part 5 is provided in the range of the overlapping part of a palladium alloy film. The hydrogen-permeable tubule thus manufactured is attached to the tube plate in the form as shown in FIGS.

本発明に用いられるレーザとしては、炭酸ガスレーザ、YAG(イットリウム・アルミニウム・ガーネット)レーザ等が挙げられ、YAGレーザが用いられることが好ましい。また、レーザ溶接中に溶接部が高温になることを避けるために、パルス発振レーザであることが好ましい。尚、レーザ溶接中における水素透過細管への溶接入熱量は、通常は0.05〜0.5J(ジュール)/パルス、好ましくは0.1〜0.3J/パルスであるが、このような溶接入熱量に限定されることはない。また、単位溶接線当りに対する溶接入熱量は、通常は0.5〜20J/mm、好ましくは1〜10J/mmであるが、このような溶接入熱量に限定されることはない。さらに、レーザ溶接の照射スポットの形状は、円形、四角形等であり、大きさは通常は0.1〜1mm程度である。パルス発振レーザを使用する場合は、通常は10〜200パルス/秒である。   Examples of the laser used in the present invention include a carbon dioxide gas laser and a YAG (yttrium / aluminum / garnet) laser, and a YAG laser is preferably used. Moreover, in order to avoid that a welding part becomes high temperature during laser welding, it is preferable that it is a pulsed laser. The welding heat input to the hydrogen permeable thin tube during laser welding is usually 0.05 to 0.5 J (joule) / pulse, preferably 0.1 to 0.3 J / pulse. The amount of heat input is not limited. The welding heat input per unit weld line is usually 0.5 to 20 J / mm, preferably 1 to 10 J / mm, but is not limited to such welding heat input. Furthermore, the shape of the laser welding irradiation spot is a circle, a quadrangle, etc., and the size is usually about 0.1 to 1 mm. When a pulsed laser is used, it is usually 10 to 200 pulses / second.

本発明の水素精製装置を用いて水素の精製を行なう際には、原料ガス(水素含有ガス)が導入口10からヒータ14により加熱されたセルの一次側に供給される。原料ガスは水素透過細管1のパラジウム合金膜と接触し、水素のみがセルの二次側に透過され、精製水素の取出口11から回収される。また、水素透過細管のパラジウム合金膜を透過しないガスは水素以外のガスの取出口12から回収される。セル一次側とセル二次側の水素分圧の差が大きいほど単位時間当たりの水素透過量が大きくなる。そのため、本発明においては、原料ガス(水素含有ガス)を大気圧より大きな圧力で供給し、セル二次側の圧力を大気圧より小さな圧力とすることが好ましい。   When purifying hydrogen using the hydrogen purifier of the present invention, a source gas (hydrogen-containing gas) is supplied from the inlet 10 to the primary side of the cell heated by the heater 14. The source gas comes into contact with the palladium alloy membrane of the hydrogen permeable capillary tube 1, and only hydrogen is permeated to the secondary side of the cell and recovered from the purified hydrogen outlet 11. Further, the gas that does not permeate the palladium alloy membrane of the hydrogen permeable thin tube is recovered from the gas outlet 12 other than hydrogen. The larger the difference in hydrogen partial pressure between the cell primary side and the cell secondary side, the larger the hydrogen permeation amount per unit time. Therefore, in the present invention, it is preferable to supply the source gas (hydrogen-containing gas) at a pressure higher than atmospheric pressure, and to set the pressure on the cell secondary side to a pressure lower than atmospheric pressure.

また、本発明において、水素精製の際の水素分離膜は、温度が高いほど単位時間当たりの水素透過量が大きくなるが、耐熱温度の点で制約される。温度が低い場合は水素分離膜が水素を多量に吸収し、膨張変形によって装置の破損を生じる虞がある。そのため、水素精製の際のパラジウム合金膜の温度は、通常は250〜500℃、好ましくは300〜450℃である。尚、予め予熱器等により原料ガス(水素含有ガス)を前記の温度程度に加熱してから、本発明の水素精製装置に導入することが好ましい。   In the present invention, the hydrogen separation membrane during hydrogen purification has a higher hydrogen permeation amount per unit time as the temperature is higher, but is limited in terms of heat-resistant temperature. When the temperature is low, the hydrogen separation membrane absorbs a large amount of hydrogen, which may cause damage to the device due to expansion and deformation. Therefore, the temperature of the palladium alloy membrane during the hydrogen purification is usually 250 to 500 ° C, preferably 300 to 450 ° C. In addition, it is preferable to heat the raw material gas (hydrogen-containing gas) to the above temperature in advance by a preheater or the like and then introduce it into the hydrogen purifier of the present invention.

次に、本発明を実施例により具体的に説明するが、本発明がこれらにより限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these.

(実施例1)
(水素透過細管の製作)
一端が封じられ側面に一辺が1.0mmの正方形の孔を複数有するニッケル製(純度99%以上)の格子状パイプ(外径3.0mm、長さ245mm、厚さ0.1mm)の該側面に、図5に示すように膜厚20μmのパラジウム合金膜(パラジウム、銀、及び金の三元合金製)を捲き付けた後、図6に示すようなレーザ溶接装置を用いて、金属パイプの側面上の中心軸と平行な線上部5と、金属パイプの側面の円周線上部5’において、YAGレーザを出射することにより溶接を行ない、金属パイプの側面全体に対する通気面の面積割合が約70%である水素透過細管を製作した。溶接は孔のある箇所を避け、円周線上部5’への溶接はパラジウム合金膜の重ね合せ部に行なった。得られた水素透過細管を目視により点検したところ、傷、凹み、ピンホール等の欠陥は確認されず、溶接による焼け等の異常も確認されなかった。また、機械的強度も充分であった。
Example 1
(Production of hydrogen permeation tubules)
The side surface of a grid-like pipe (outer diameter: 3.0 mm, length: 245 mm, thickness: 0.1 mm) made of nickel (purity 99% or more) having one end sealed and a plurality of square holes of 1.0 mm on one side Next, after plating a 20 μm-thick palladium alloy film (made of a ternary alloy of palladium, silver, and gold) as shown in FIG. 5, a laser welding apparatus as shown in FIG. Welding is performed by emitting a YAG laser at a line upper portion 5 parallel to the central axis on the side surface and a circumferential line upper portion 5 'on the side surface of the metal pipe, and the area ratio of the ventilation surface to the entire side surface of the metal pipe is approximately A 70% hydrogen permeation tubule was produced. Welding was avoided at locations with holes, and welding to the upper part 5 'of the circumferential line was performed on the overlapping portion of the palladium alloy film. When the obtained hydrogen permeation thin tube was visually inspected, defects such as scratches, dents and pinholes were not confirmed, and abnormalities such as burning due to welding were not confirmed. Further, the mechanical strength was sufficient.

(水素精製装置の製作)
次に、直径50mm、厚さ5mmの円盤状で、周縁部を除く平板部分に直径3.1mmの貫通孔35個を互いに等間隔となるように複数の同心円上に設けたニッケル製の管板に、前記のようにして製作した水素透過細管35本を溶接した後、原料ガスの導入口、精製水素の取出口、水素以外のガスの取出口、及びヒータを備え、内径50mm、高さ400mmであるSUS316L製セルに収納して、図1、図2に示すような形態の水素精製装置を製作した。
(Production of hydrogen purification equipment)
Next, a nickel tube plate having a disc shape with a diameter of 50 mm and a thickness of 5 mm, and having 35 through-holes with a diameter of 3.1 mm provided on a flat plate portion excluding the peripheral portion on a plurality of concentric circles at equal intervals. In addition, after welding the 35 hydrogen-permeable tubules manufactured as described above, a raw material gas inlet, a purified hydrogen outlet, a gas outlet other than hydrogen, and a heater are provided, and the inner diameter is 50 mm and the height is 400 mm. In a cell made of SUS316L, a hydrogen purifier having a configuration as shown in FIGS. 1 and 2 was manufactured.

(水素精製試験)
セル内の温度を600℃に昇温するとともに水素を導入して、10時間加熱処理を行なった。続いて420℃まで温度を低下させ、一次側空間の圧力を0.6MPaG、二次側空間の圧力を0.2MPaGとなるように制御しながら、不純物(窒素、酸素、二酸化炭素等)を約500ppm含む水素を一次側空間から導入し、水素の精製を行なった結果、0.85Nm/hrの精製水素が得られた。この間、精製水素の取出口から水素をサンプリングして不純物の測定を行なったが、いずれの不純物も検出されなかった。
(Hydrogen purification test)
The temperature in the cell was raised to 600 ° C. and hydrogen was introduced, and heat treatment was performed for 10 hours. Subsequently, the temperature is lowered to 420 ° C., and impurities (nitrogen, oxygen, carbon dioxide, etc.) are reduced while controlling the pressure in the primary space to 0.6 MPaG and the pressure in the secondary space to 0.2 MPaG. As a result of introducing hydrogen containing 500 ppm from the primary side space and purifying the hydrogen, 0.85 Nm 3 / hr of purified hydrogen was obtained. During this time, impurities were measured by sampling hydrogen from the purified hydrogen outlet, but no impurities were detected.

(実施例2)
実施例1の水素透過細管の製作において、金属パイプとして直径が0.5mmの円形の孔を複数有するステンレス製のパイプ(外径3.0mm、長さ245mm、厚さ0.1mm)を用いたほかは実施例1と同様の水素透過細管を製作した。この金属パイプの側面全体に対する通気面の面積割合は約50%であった。この水素透過細管35本を用いたほかは実施例1と同様にして水素精製装置を製作し、実施例1と同様にして水素精製試験を行なった結果、0.66Nm/hrの精製水素が得られた。
(Example 2)
In the production of the hydrogen permeable thin tube of Example 1, a stainless steel pipe (outer diameter 3.0 mm, length 245 mm, thickness 0.1 mm) having a plurality of circular holes with a diameter of 0.5 mm was used as a metal pipe. Other than that, a hydrogen permeation capillary similar to that of Example 1 was manufactured. The area ratio of the ventilation surface to the entire side surface of the metal pipe was about 50%. A hydrogen purification apparatus was manufactured in the same manner as in Example 1 except that 35 hydrogen permeable capillaries were used, and a hydrogen purification test was conducted in the same manner as in Example 1. As a result, 0.66 Nm 3 / hr of purified hydrogen was obtained. Obtained.

(比較例1)
外径3.0mm、長さ245mmで先端を溶封処理した膜厚70μmの水素透過細管(実施例1と同様の組成のパラジウム合金膜からなる細管)を製作した。この水素透過細管35本を用いたほかは実施例1と同様にして水素精製装置を製作し、実施例1と同様にして水素精製試験を行なった結果、0.41Nm/hrの精製水素が得られた。
(Comparative Example 1)
A hydrogen permeable thin tube (thick tube made of a palladium alloy film having the same composition as in Example 1) having an outer diameter of 3.0 mm and a length of 245 mm and having a film thickness sealed at 70 μm was manufactured. A hydrogen purification apparatus was manufactured in the same manner as in Example 1 except that 35 hydrogen permeable capillaries were used, and a hydrogen purification test was conducted in the same manner as in Example 1. As a result, 0.41 Nm 3 / hr of purified hydrogen was obtained. Obtained.

以上のように、本発明の実施例の水素精製装置は、比較例の水素精製装置より、単位時間当たりの精製水素の取出し量を大きくすることができる。   As described above, the hydrogen purifier of the example of the present invention can increase the amount of purified hydrogen taken out per unit time as compared with the hydrogen purifier of the comparative example.

本発明の水素精製装置の鉛直方向の断面の一例を示す構成図The block diagram which shows an example of the cross section of the perpendicular direction of the hydrogen purification apparatus of this invention 本発明の水素精製装置の管板の位置における水平方向の断面の一例を示す構成図The block diagram which shows an example of the cross section of the horizontal direction in the position of the tube sheet of the hydrogen purification apparatus of this invention 本発明において使用される金属パイプの一例を示す構成図The block diagram which shows an example of the metal pipe used in this invention 金属パイプにおけるレーザ溶接部の一例を示す構成図Configuration diagram showing an example of a laser weld in a metal pipe 金属パイプの側面部にパラジウム合金膜を捲き付ける際の態様の一例を示す斜視図The perspective view which shows an example of the aspect at the time of soldering a palladium alloy film on the side part of a metal pipe 本発明において使用されるレーザ溶接装置の一例を示す構成図Configuration diagram showing an example of a laser welding apparatus used in the present invention

1 水素透過細管
2 孔
3 金属パイプ
4 パラジウム合金膜
5 金属パイプの側面の中心軸と平行な線上部に設けられた溶接部
5’金属パイプの側面の円周線上部に設けられた溶接部
6 開口端部
7 管板
8 一次側空間
9 二次側空間
10 原料ガスの導入口
11 精製水素の取出口
12 水素以外のガスの取出口
13 セルの側面壁
14 ヒータ
15 パラジウム合金膜を捲き付けた金属パイプ
16 レーザ出射ユニット
17 細管保持具
18 回転用モータ
19 軸受部
DESCRIPTION OF SYMBOLS 1 Hydrogen permeation thin tube 2 Hole 3 Metal pipe 4 Palladium alloy film 5 Welding part provided in the upper part of the line parallel to the central axis of the side surface of metal pipe 5 'Welding part provided in the upper part of the circumferential line of the side surface of metal pipe 6 Open end 7 Tube plate 8 Primary side space 9 Secondary side space 10 Source gas inlet 11 Purified hydrogen outlet 12 Gas outlet other than hydrogen 13 Cell side wall 14 Heater 15 Palladium alloy film was plated Metal pipe 16 Laser emission unit 17 Narrow tube holder 18 Motor for rotation 19 Bearing part

Claims (7)

一端が封じられた複数本の水素透過細管と、該細管の開口端部において該細管を支持する管板とによって、セル内部が一次側空間と二次側空間に仕切られ、不純物を含む水素を一次側空間から導入し、該細管を透過させて二次側空間から精製水素を取出す水素精製装置であって、該細管が、一端が封じられ側面に複数の孔を有する金属パイプの該側面部に、パラジウム合金膜を捲き付けてレーザ溶接してなるものであることを特徴とする水素精製装置。   The inside of the cell is partitioned into a primary side space and a secondary side space by a plurality of hydrogen permeable capillaries sealed at one end and a tube plate that supports the capillaries at the open end of the capillaries, so that hydrogen containing impurities can be separated. A hydrogen purification apparatus that is introduced from a primary side space, passes through the thin tube and takes out purified hydrogen from the secondary side space, wherein the thin tube is sealed at one end and has a plurality of holes on the side surface. Further, a hydrogen purification apparatus characterized in that a palladium alloy film is applied and laser-welded. 金属パイプの材質がニッケルである請求項1に記載の水素精製装置。   The hydrogen purifier according to claim 1, wherein the metal pipe is made of nickel. 金属パイプの孔が、一辺が0.05〜3mmの正方形または長方形である請求項1に記載の水素精製装置。   The hydrogen purifier according to claim 1, wherein the hole of the metal pipe is a square or a rectangle having a side of 0.05 to 3 mm. 金属パイプの孔が、径が0.05〜3mmの円形または楕円形である請求項1に記載の水素精製装置。   The hydrogen purifier according to claim 1, wherein the hole of the metal pipe has a circular or elliptical shape having a diameter of 0.05 to 3 mm. 金属パイプの側面上の中心軸と平行な線上部と、金属パイプの側面の円周線上部においてレーザ溶接する請求項1に記載の水素精製装置。   The hydrogen purifier according to claim 1, wherein laser welding is performed on an upper portion of the line parallel to the central axis on the side surface of the metal pipe and an upper portion of the circumferential line on the side surface of the metal pipe. 金属パイプの側面の中心軸と平行な線上部に設けられたレーザ溶接部が、パラジウム合金膜の重ね合せ部である請求項5に記載の水素精製装置。   The hydrogen purifier according to claim 5, wherein the laser welded portion provided on the upper part of the line parallel to the central axis of the side surface of the metal pipe is an overlapping portion of palladium alloy films. パラジウム合金膜の膜厚が、10〜50μmである請求項1に記載の水素精製装置。   The hydrogen purifier according to claim 1, wherein the palladium alloy film has a thickness of 10 to 50 μm.
JP2012234290A 2012-10-24 2012-10-24 Hydrogen purifier Pending JP2014084250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012234290A JP2014084250A (en) 2012-10-24 2012-10-24 Hydrogen purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012234290A JP2014084250A (en) 2012-10-24 2012-10-24 Hydrogen purifier

Publications (1)

Publication Number Publication Date
JP2014084250A true JP2014084250A (en) 2014-05-12

Family

ID=50787663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012234290A Pending JP2014084250A (en) 2012-10-24 2012-10-24 Hydrogen purifier

Country Status (1)

Country Link
JP (1) JP2014084250A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105169896A (en) * 2015-09-06 2015-12-23 中国船舶重工集团公司第七一二研究所 Tube bundle palladium or palladium alloy membrane purifier and making method thereof
CN112368529A (en) * 2019-05-15 2021-02-12 开利公司 Separator
CN116966751A (en) * 2023-09-22 2023-10-31 淄博晟元新材料科技有限责任公司 Palladium alloy pipe purifier assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122837U (en) * 1986-01-23 1987-08-04
JPH09255306A (en) * 1996-03-18 1997-09-30 Mitsubishi Heavy Ind Ltd Hydrogen separating membrane
JPH11276867A (en) * 1998-03-31 1999-10-12 Tokyo Gas Co Ltd Joining of hydrogen-permeable membrane
JP2002012410A (en) * 2000-06-27 2002-01-15 Nisshin Steel Co Ltd Cylinder type hydrogen recovery apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62122837U (en) * 1986-01-23 1987-08-04
JPH09255306A (en) * 1996-03-18 1997-09-30 Mitsubishi Heavy Ind Ltd Hydrogen separating membrane
JPH11276867A (en) * 1998-03-31 1999-10-12 Tokyo Gas Co Ltd Joining of hydrogen-permeable membrane
JP2002012410A (en) * 2000-06-27 2002-01-15 Nisshin Steel Co Ltd Cylinder type hydrogen recovery apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105169896A (en) * 2015-09-06 2015-12-23 中国船舶重工集团公司第七一二研究所 Tube bundle palladium or palladium alloy membrane purifier and making method thereof
CN112368529A (en) * 2019-05-15 2021-02-12 开利公司 Separator
CN116966751A (en) * 2023-09-22 2023-10-31 淄博晟元新材料科技有限责任公司 Palladium alloy pipe purifier assembly
CN116966751B (en) * 2023-09-22 2024-01-05 淄博晟元新材料科技有限责任公司 Palladium alloy pipe purifier assembly

Similar Documents

Publication Publication Date Title
US8226751B2 (en) Composite membrane material for hydrogen separation and element for hydrogen separation using the same
JP6181673B2 (en) Palladium alloy membrane unit, storage structure thereof, and hydrogen purification method using the same
US8992669B2 (en) Hydrogen separation membrane module and hydrogen separation method using same
US7022165B2 (en) Tubular hydrogen permeable metal foil membrane and method of fabrication
JP2014084250A (en) Hydrogen purifier
Tosti et al. Characterization of thin wall Pd–Ag rolled membranes
Atsonios et al. Introduction to palladium membrane technology
JP2011245459A (en) Hydrogen purification apparatus
JP6355944B2 (en) Hydrogen purification apparatus and hydrogen purification system using the same
JP2012106210A (en) Manufacturing method of palladium-alloy seamless capillary
JP2014097443A (en) Hydrogen separation membrane, hydrogen separator, and organic hydride system
JP2012201974A (en) Hydrogen permeable copper alloy, hydrogen permeable film, and steam reformer
KR102012010B1 (en) Separation membrane, hydrogen separation membrane including separation membrane and device including hydrogen separation membrane
Ryi et al. Low temperature diffusion bonding of Pd-based composite membranes with metallic module for hydrogen separation
US9809454B2 (en) Method for refining hydrogen
KR101281576B1 (en) A hydrogen permeation alloy with dual phase and manufacturing method of hydrogen separation membrane using the same
CA2945286C (en) Method and system for fabrication of hydrogen-permeable membranes
JP2009226331A (en) Hydrogen permeation module and method of application thereof
JP2002308605A (en) Method for refining gaseous hydrogen
JP5823807B2 (en) Hydrogen permeable membrane and hydrogen separation method using the same
JP2013209729A (en) Hydrogen permeable copper alloy, hydrogen permeation membrane and steam reformer
JP5745662B2 (en) Two-stage hydrogen separation reformer
KR101904212B1 (en) Separation membrane, hydrogen separation membrane including separation membrane and device including hydrogen separation membrane
JP2016097320A (en) Hydrogen purification method
JP5723650B2 (en) Hydrogen permeation module and hydrogen separation method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161115