JP2012201974A - Hydrogen permeable copper alloy, hydrogen permeable film, and steam reformer - Google Patents

Hydrogen permeable copper alloy, hydrogen permeable film, and steam reformer Download PDF

Info

Publication number
JP2012201974A
JP2012201974A JP2011070556A JP2011070556A JP2012201974A JP 2012201974 A JP2012201974 A JP 2012201974A JP 2011070556 A JP2011070556 A JP 2011070556A JP 2011070556 A JP2011070556 A JP 2011070556A JP 2012201974 A JP2012201974 A JP 2012201974A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen permeable
permeable membrane
copper alloy
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011070556A
Other languages
Japanese (ja)
Inventor
Hironori Imamura
裕典 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2011070556A priority Critical patent/JP2012201974A/en
Publication of JP2012201974A publication Critical patent/JP2012201974A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a Cu-Pd alloy excellent in hydrogen permeability in high-temperature and high-pressure conditions, strength, and stress relaxation resistance.SOLUTION: The hydrogen permeable copper alloy is represented by composition formula: PdCuX(X: at least one among Al, Ga and In; a: 41-50 at%; b: 1-a-c, c: 0.2-2 at%). In the hydrogen permeable copper alloy, the ratio of β-phase at 600°C is 5% or higher.

Description

本発明は、水素透過性銅合金、水素透過膜及びこれを用いた水蒸気改質装置に関し、より詳細には、水素透過性Cu−Pd合金、水素透過膜及びこれを用いた水蒸気改質装置に関する。   The present invention relates to a hydrogen permeable copper alloy, a hydrogen permeable membrane, and a steam reformer using the same, and more particularly to a hydrogen permeable Cu-Pd alloy, a hydrogen permeable membrane, and a steam reformer using the same. .

水素の用途は広く、例えば石油精製分野では脱硫剤として、化学工業分野ではアンモニアやメタノールをはじめとする各種化学品の原料として、半導体分野では還元雰囲気ガスとして、燃料電池分野では燃料として利用されている。   Hydrogen is widely used, for example, as a desulfurization agent in the petroleum refining field, as a raw material for various chemicals including ammonia and methanol in the chemical industry field, as a reducing atmosphere gas in the semiconductor field, and as a fuel in the fuel cell field. Yes.

水素の製造技術としては、炭化水素や石炭から水素を製造する水蒸気改質法が知られており、例えば金属触媒下、700〜800℃の高温で水蒸気をメタンと反応させ、一酸化炭素と水素を得るという方法である。一酸化炭素は更にシフト反応により、二酸化炭素に変換される。水素及び副生成物を含む混合ガスから水素を分離・精製する方法としては水素透過膜を利用する方法が知られている。水素透過膜は水素のみを選択的に透過する特性を有しており、水素透過膜の一方の面(一次側)に対して混合ガスで加圧すると、水素だけが水素透過膜中に溶け込んで拡散し、反対側の面(二次側)に到達することができる。このようにして混合ガスから水素を分離することにより、水素を高純度に精製できる。   As a hydrogen production technique, a steam reforming method for producing hydrogen from hydrocarbons or coal is known. For example, steam is reacted with methane at a high temperature of 700 to 800 ° C. under a metal catalyst to produce carbon monoxide and hydrogen. It is a method of getting. Carbon monoxide is further converted to carbon dioxide by a shift reaction. As a method for separating and purifying hydrogen from a mixed gas containing hydrogen and by-products, a method using a hydrogen permeable membrane is known. The hydrogen permeable membrane has a characteristic of selectively permeating only hydrogen. When one side (primary side) of the hydrogen permeable membrane is pressurized with a mixed gas, only hydrogen is dissolved into the hydrogen permeable membrane. It can diffuse and reach the opposite surface (secondary side). By separating hydrogen from the mixed gas in this way, hydrogen can be purified with high purity.

最近では、水素透過膜と改質器とを組み合わせることで、水素の生成反応と水素の分離・精製を同時に行うメンブレンリフォーマー技術の開発が進んでいる。これは、シフト反応器や一酸化炭素の選択除去を必要としないことから新たな水素製造方法として期待されている技術であり、改質触媒を利用して550〜650℃程度の従来に比べて低温でしかも高い改質効率で改質反応を進行させることができるという利点がある。   Recently, development of a membrane reformer technology that simultaneously performs a hydrogen generation reaction and hydrogen separation and purification by combining a hydrogen permeable membrane and a reformer is in progress. This is a technology that is expected as a new hydrogen production method because it does not require a shift reactor or selective removal of carbon monoxide. Compared to the conventional technology of about 550 to 650 ° C. using a reforming catalyst. There is an advantage that the reforming reaction can proceed at a low temperature and with high reforming efficiency.

パラジウムは水素の選択透過性を有していることから、水素透過膜の材料としてパラジウムを主体とする合金が使用されており、その中でもPd−Cu合金が知られている。特開2001−262252号公報(特許文献1)では、Pdを主成分としてCuを0〜20at%添加することで水素脆化を抑制することが記載されている。特開2004−174373号公報(特許文献2)ではCuはPdを合金化して強度を向上させ、水素脆化を抑制する効果があり、水素ガスが400℃以上になり得る水素ガス精製・分離装置に適用するには、高温強度を維持できるようにPdを主成分としてCuを1〜40at%含んだ合金組成とすることが好ましいとされている。   Since palladium has hydrogen permselectivity, alloys mainly composed of palladium are used as a material for the hydrogen permeable membrane, and among these, Pd—Cu alloys are known. Japanese Patent Application Laid-Open No. 2001-262252 (Patent Document 1) describes that hydrogen embrittlement is suppressed by adding 0 to 20 at% of Cu containing Pd as a main component. In JP-A-2004-174373 (Patent Document 2), Cu has an effect of alloying Pd to improve strength and suppress hydrogen embrittlement, and a hydrogen gas purification / separation apparatus in which hydrogen gas can be 400 ° C. or higher. For example, it is preferable to use an alloy composition containing Pd as a main component and Cu in an amount of 1 to 40 at% so that high temperature strength can be maintained.

特開2001−262252号公報JP 2001-262252 A 特開2004−174373号公報JP 2004-174373 A

水素透過膜は、上述のように水素分離に用いられるが、水素分離は圧力差を利用することで進行するため、水素の分離速度を大きくするためには水素透過膜の一方の面(一次側)の混合ガスの圧力を高くする必要がある。特に水蒸気改質反応における水素製造で、メンブレンリフォーマーとして水素透過膜を用いる場合には、1〜2MPaという圧力に設定されることがある。そのため、水素透過膜にはこのような高圧に耐え得る強度が求められるが、強度を得ようとして膜厚を大きくすると、水素透過膜の水素分離速度が低下してしまう。また、水素透過膜用の材料として有望なPd−Cu合金については、高価な貴金属であるPdを使用しているため、膜厚を大きくすることはコスト面で不利である。さらに、Pd−Cu合金は高温下における水素透過率が極端に低下するという問題がある。また、水素透過膜には、高温で応力が継続してかかるため、高温での耐応力緩和特性が良好であることが要求される。   As described above, the hydrogen permeable membrane is used for hydrogen separation. However, since hydrogen separation proceeds by using a pressure difference, one side of the hydrogen permeable membrane (primary side) is used to increase the hydrogen separation rate. ) It is necessary to increase the pressure of the mixed gas. In particular, when a hydrogen permeable membrane is used as a membrane reformer in hydrogen production in a steam reforming reaction, the pressure may be set to 1 to 2 MPa. For this reason, the hydrogen permeable membrane is required to have such strength that can withstand such high pressures. However, if the film thickness is increased in order to obtain strength, the hydrogen separation rate of the hydrogen permeable membrane decreases. Moreover, about Pd-Cu alloy which is promising as a material for a hydrogen permeable film, since expensive Pd which is a noble metal is used, increasing the film thickness is disadvantageous in terms of cost. Furthermore, the Pd—Cu alloy has a problem that the hydrogen permeability at a high temperature is extremely lowered. Further, since stress is continuously applied to the hydrogen permeable membrane at a high temperature, it is required to have a good stress relaxation resistance property at a high temperature.

そこで、本発明は、高温・高圧下での水素透過率、強度及び耐応力緩和特性に優れたCu−Pd合金を提供することを課題の一つとする。また、本発明はそのようなCu−Pd合金を材料とした水素透過膜を提供することを別の課題の一つとする。また、本発明はそのような水素透過膜を利用した水蒸気改質装置を提供することを更に別の課題の一つとする。   Therefore, an object of the present invention is to provide a Cu—Pd alloy that is excellent in hydrogen permeability, strength, and stress relaxation resistance under high temperature and high pressure. Another object of the present invention is to provide a hydrogen permeable membrane made of such a Cu—Pd alloy. Another object of the present invention is to provide a steam reforming apparatus using such a hydrogen permeable membrane.

本発明者は上記課題を解決すべく鋭意研究を重ねたところ、所定の組成をもつCu−Pd合金に対してAl、Ga及びInの少なくとも一種を所定量含有させて合金中のβ相の割合を制御することで、高温・高圧下での水素透過率、強度及び耐応力緩和特性が有意に改善することを見出した。   As a result of intensive studies to solve the above problems, the present inventor has included a predetermined amount of at least one of Al, Ga and In in a Cu-Pd alloy having a predetermined composition, and the proportion of β phase in the alloy. It was found that the hydrogen permeability, strength, and stress relaxation resistance at high temperature and high pressure were significantly improved by controlling.

上記知見を基礎として完成した本発明は一側面において、組成式:PdaCubc
(X:Al、Ga及びInの少なくとも1種、a:41〜50at%、b:1−a−c、c:0.2〜2at%)
で表され、600℃でのβ相の割合が5%以上である水素透過性銅合金である。
In one aspect, the present invention completed on the basis of the above knowledge has a composition formula: Pd a Cu b X c
(X: at least one of Al, Ga and In, a: 41-50 at%, b: 1-ac, c: 0.2-2 at%)
This is a hydrogen permeable copper alloy having a β-phase ratio of 5% or more at 600 ° C.

本発明に係る水素透過性銅合金は一実施形態において、XがAlであり、cが0.5〜2at%である。   In one embodiment, the hydrogen permeable copper alloy according to the present invention is such that X is Al and c is 0.5 to 2 at%.

本発明に係る水素透過性銅合金は別の一実施形態において、600℃でのβ相の割合が10%以上である。   In another embodiment of the hydrogen permeable copper alloy according to the present invention, the proportion of β phase at 600 ° C. is 10% or more.

本発明は別の一側面において、本発明に係る銅合金でできた水素透過膜である。   In another aspect, the present invention is a hydrogen permeable membrane made of the copper alloy according to the present invention.

本発明に係る水素透過膜は一実施形態において、厚みが1〜200μmである。   In one embodiment, the hydrogen permeable membrane according to the present invention has a thickness of 1 to 200 μm.

本発明は更に別の一側面において、本発明に係る水素透過膜を用いた水蒸気改質装置である。   In still another aspect, the present invention is a steam reformer using the hydrogen permeable membrane according to the present invention.

本発明によれば、高温・高圧下での水素透過率及び強度に優れた水素透過膜を得ることができる。また、Pdは貴金属であり高価であるところ、本発明に係る水素透過膜の組成に占めるPdの割合が小さいことから、従来に比べて安価に製造できるようになる。   According to the present invention, a hydrogen permeable membrane excellent in hydrogen permeability and strength under high temperature and high pressure can be obtained. Further, Pd is a noble metal and is expensive, and since the ratio of Pd in the composition of the hydrogen permeable membrane according to the present invention is small, it can be manufactured at a lower cost than in the prior art.

実施例において水素透過係数を求めた測定系の概略図を示す。The schematic of the measurement system which calculated | required the hydrogen permeability coefficient in the Example is shown.

以下、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明に係る銅合金は、組成式:PdaCubc
(X:Al、Ga及びInの少なくとも1種、a:41〜50at%、b:1−a−c、c:0.2〜2at%)
で表される。
Cu及びPdで構成されたCu−Pd合金は600℃以上の高温で水素の分離速度及び強度が低下する。これに対し、本発明に係る銅合金は、上述のようにCu−Pd合金に対してAl、Ga及びInの少なくとも1種が添加されているため、高温下における水素透過率及び強度が向上するという効果がある。Al、Ga及びInの少なくとも1種が合金組成において0.2at%以上含まれているとその効果が有意に表れ出す。ただし、Al、Ga及びInの少なくとも1種の割合が合金組成において2at%を超えると、今度は水素透過率の向上効果が小さくなり、逆に悪化するケースもある。また、膜にピンホールが生じ易くなる傾向がある。そのため、本発明に係る銅合金ではAl、Ga及びInの少なくとも1種の割合は0.2〜2at%と規定されている。また、Al、Ga及びInの少なくとも1種の割合は、より好ましくは0.5〜1.2at%である。
上記X成分は、Alのみで構成されているのがより好ましく、その場合、Alの割合は0.5〜2at%であるのがより好ましい。Alは、GaやInと比べて、高温(600℃以上)での水素透過性の改善効果が高いためである。
The copper alloy according to the present invention has a composition formula: Pd a Cu b X c
(X: at least one of Al, Ga and In, a: 41-50 at%, b: 1-ac, c: 0.2-2 at%)
It is represented by
A Cu—Pd alloy composed of Cu and Pd has a reduced hydrogen separation rate and strength at a high temperature of 600 ° C. or higher. On the other hand, since the copper alloy according to the present invention has at least one of Al, Ga, and In added to the Cu—Pd alloy as described above, the hydrogen permeability and strength at high temperatures are improved. There is an effect. If at least one of Al, Ga, and In is contained in an alloy composition in an amount of 0.2 at% or more, the effect appears significantly. However, if the ratio of at least one of Al, Ga, and In exceeds 2 at% in the alloy composition, the effect of improving the hydrogen permeability is reduced this time, and in some cases, it deteriorates. Also, pinholes tend to be easily generated in the film. Therefore, in the copper alloy according to the present invention, the ratio of at least one of Al, Ga and In is defined as 0.2 to 2 at%. Further, the ratio of at least one of Al, Ga and In is more preferably 0.5 to 1.2 at%.
The X component is more preferably composed only of Al, and in that case, the proportion of Al is more preferably 0.5 to 2 at%. This is because Al has a higher effect of improving hydrogen permeability at a high temperature (600 ° C. or higher) than Ga and In.

Pdは、Al、Ga及びInの少なくとも1種が存在しない系においては、Cu+Pdに対するPdの割合を50at%以上となる濃度に設定したほうが600℃付近の高温下における水素透過率は向上する傾向にあるが、本発明者の検討結果によれば、Al、Ga及びInの少なくとも1種を含む系においては、上記の41〜50at%の範囲が600℃付近の高温下における高い水素透過率を得る観点で好ましく、50at%を超えると逆に水素透過率が低下していく傾向にある。また、Pdの割合は、より好ましくは42〜46at%である。   In a system in which at least one of Pd, Al, Ga and In does not exist, the hydrogen permeability at a high temperature near 600 ° C. tends to be improved when the ratio of Pd to Cu + Pd is set to a concentration of 50 at% or more. However, according to the examination results of the present inventors, in a system containing at least one of Al, Ga and In, the above 41 to 50 at% range obtains a high hydrogen permeability at a high temperature around 600 ° C. From the viewpoint, it is preferable, and when it exceeds 50 at%, the hydrogen permeability tends to decrease. Further, the ratio of Pd is more preferably 42 to 46 at%.

本発明に係る銅合金は、Cu、Pd、及び、Al、Ga及びInの少なくとも1種で構成されており、他の元素を積極的に含有させることはないが、製造過程で混入する不可避的不純物のように他の元素が極微量含有していても構わないため、そのような場合も本発明の範囲とする。他の元素の許容値は一概には決定できないが、600℃付近における水素透過係数に有意な悪影響を与えない程度の場合(例:水素透過係数の低下率が5%以下)、例えばCu、Pd、及び、Al、Ga及びInの少なくとも1種の合計に対してそれぞれ0.1at%以下の濃度で混入している場合には有意な悪影響はないと考えられる。他の元素としては、限定的ではないが、水素透過膜への添加元素として公知であるPt、Rh、Ir、Ru、Ni、Co、Ti、Nb、Ta、Ag、B、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuが挙げられる。   The copper alloy according to the present invention is composed of Cu, Pd, and at least one of Al, Ga, and In, and does not actively contain other elements, but is inevitably mixed in during the manufacturing process. Since other elements such as impurities may be contained in a very small amount, such a case is also included in the scope of the present invention. The allowable values of other elements cannot be determined in general, but when the hydrogen permeation coefficient is not significantly adversely affected near 600 ° C. (eg, the rate of decrease of the hydrogen permeation coefficient is 5% or less), for example, Cu, Pd , And when it is mixed at a concentration of 0.1 at% or less with respect to the total of at least one of Al, Ga and In, it is considered that there is no significant adverse effect. Other elements include, but are not limited to, Pt, Rh, Ir, Ru, Ni, Co, Ti, Nb, Ta, Ag, B, Y, La, Ce, which are known as additive elements to the hydrogen permeable film. Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.

銅合金のβ相はα相に比べて水素透過能が非常に高い。また、銅合金においてβ相の割合が多ければそれだけ強度が向上する。通常、600℃以上の高温下では、銅合金中のβ相は消滅するが、本発明に係るCu−Pd合金は、Al、Ga及びInの少なくとも1種を所定濃度含有しているため、600℃以上の高温であってもβ相が5%以上存在しており、良好な水素透過率及び強度を有している。β相の割合は、好ましくは10%以上であり、典型的には20〜100%である。   The β phase of the copper alloy has a very high hydrogen permeability compared to the α phase. Further, if the proportion of the β phase is large in the copper alloy, the strength is improved accordingly. Normally, the β phase in the copper alloy disappears at a high temperature of 600 ° C. or higher, but the Cu—Pd alloy according to the present invention contains at least one of Al, Ga, and In at a predetermined concentration. Even at a high temperature of ℃ or higher, the β phase is present in an amount of 5% or more, and has good hydrogen permeability and strength. The proportion of β phase is preferably 10% or more, and typically 20 to 100%.

水素透過膜には、高温で応力が継続してかかるため、高温での耐応力緩和特性が良好であることが要求される。本発明に係る銅合金は、上述のように合金中のβ相の割合が制御されており、600℃にて40MPaの応力(σ)を継続して100時間負荷した後の変形量(伸びε)が、3〜25(%)であり、従来の水素透過膜と比べて高温での耐応力緩和特性が優れている。   Since stress is continuously applied to the hydrogen permeable membrane at a high temperature, it is required to have a good stress relaxation resistance property at a high temperature. In the copper alloy according to the present invention, the proportion of β phase in the alloy is controlled as described above, and the amount of deformation (elongation ε) after a stress (σ) of 40 MPa is continuously applied at 600 ° C. for 100 hours. ) Is 3 to 25 (%), which is superior in stress relaxation resistance at high temperatures as compared with conventional hydrogen permeable membranes.

本発明に係る銅合金は、このようにAl、Ga及びInの少なくとも1種を所定量添加したCu−Pd合金であり、600℃付近における水素透過率、強度及び耐応力緩和特性がAl、Ga及びInの少なくとも1種を添加しない場合よりも有意に高い。このため、当該温度付近で、且つ、1〜2MPa等の高圧下において水素含有ガスから水素を分離することが要求される場合に用いる水素透過膜として特に好適に使用できる。   The copper alloy according to the present invention is a Cu—Pd alloy to which a predetermined amount of at least one of Al, Ga, and In is added as described above, and has a hydrogen permeability, strength, and stress relaxation resistance near 600 ° C. of Al, Ga. And at least one of In is significantly higher than when not added. For this reason, it can use especially suitably as a hydrogen permeable membrane used when it is requested | required to isolate | separate hydrogen from hydrogen containing gas in the vicinity of the said temperature and under high pressures, such as 1-2 MPa.

本発明に係る銅合金は、限定されるものではないが、所定の成分に調整したインゴットを溶解鋳造した後、適宜焼鈍及び圧延を繰り返すことで製造可能である。具体的には、800℃以上で加熱したインゴットを熱間圧延し、黒皮除去後、冷間圧延で所定厚みまで薄くする。冷間圧延時の油膜厚を小さくして圧延し、オイルピットを減らすことにより、せん断変形を少なくして、板厚が薄くしてもピンホールを発生しにくくなることを見出した。
圧延時の油膜厚は下記式(1)で表される。
h=3η(μ1+μR)/(pθ) (1)
(hは理論油膜厚(m);ηは油膜粘度[(N/m2)s];μ1は材料速度(m/s);μRはロール周速(m/s);pは材料の降伏応力(N/m2);θは噛み込み角(rad))
本発明の水素透過膜を製造する際、0.1×10-6(m)≦h≦0.5×10-6(m)を満たすようにη、μ1、μR、p、θを制御すると、せん断変形が少なくなり、ピンホールが発生しにくくなるため好ましい。
また、熱処理後は圧延時の加工度が大きい方が強度が高くなるため、98%以上の加工度で冷間圧延するのが好ましい。必要に応じて焼鈍を行う。また、湿式めっきやスパッタリングで作製することも可能である。
Although the copper alloy which concerns on this invention is not limited, after melt-casting the ingot adjusted to the predetermined component, it can manufacture by repeating annealing and rolling suitably. Specifically, an ingot heated at 800 ° C. or higher is hot-rolled, and after removing the black skin, it is thinned to a predetermined thickness by cold rolling. It has been found that by rolling down the oil film thickness during cold rolling and reducing oil pits, shear deformation is reduced and pinholes are less likely to occur even if the plate thickness is reduced.
The oil film thickness at the time of rolling is represented by the following formula (1).
h = 3η (μ1 + μR) / (pθ) (1)
(H is theoretical oil film thickness (m); η is oil film viscosity [(N / m 2 ) s]; μ1 is material speed (m / s); μR is roll peripheral speed (m / s); p is material yield Stress (N / m 2 ); θ is the biting angle (rad)
When manufacturing the hydrogen permeable membrane of the present invention, when η, μ1, μR, p, θ is controlled so as to satisfy 0.1 × 10 −6 (m) ≦ h ≦ 0.5 × 10 −6 (m) It is preferable because shear deformation is reduced and pinholes are hardly generated.
Further, after the heat treatment, the higher the degree of workability during rolling, the higher the strength. Therefore, it is preferable to cold-roll at a workability of 98% or more. Annealing is performed as necessary. It can also be produced by wet plating or sputtering.

本発明に係る銅合金を水素透過膜として利用する場合、水素透過量は膜厚に反比例するため、膜厚が薄いほど単位面積当たりの透過量は上昇する。また、同じ面積でも膜厚が薄いと使用する材料も少なくなることから、膜厚を薄くすることは水素透過膜として使用する場合、非常に効果的である。ただし、あまり薄すぎると機械的強度が保てず、ピンホール等によって水素以外の不純物ガスが二次側に到達してしまうことから一定以上の膜厚があることが必要である。一方、膜厚があまり厚すぎると今度は二次側に到達する水素の量が少なくなり、生産性が悪くなる。そこで、膜厚は1〜200μmとするのが好ましく、5〜50μmとするのがより好ましい。膜厚は圧延時の圧下率を制御することで調節可能である。   When the copper alloy according to the present invention is used as a hydrogen permeable membrane, the hydrogen permeation amount is inversely proportional to the film thickness, so that the permeation amount per unit area increases as the film thickness decreases. Moreover, since the material to be used is reduced when the film thickness is small even in the same area, it is very effective to reduce the film thickness when used as a hydrogen permeable film. However, if it is too thin, the mechanical strength cannot be maintained, and an impurity gas other than hydrogen reaches the secondary side due to pinholes or the like, so that it is necessary to have a certain thickness or more. On the other hand, if the film thickness is too thick, the amount of hydrogen that reaches the secondary side is reduced and productivity is deteriorated. Therefore, the film thickness is preferably 1 to 200 μm, and more preferably 5 to 50 μm. The film thickness can be adjusted by controlling the rolling reduction during rolling.

本発明に係る水素透過膜を利用して水素含有ガスから水素を分離する方法は、水素含有ガスが当該水素透過膜を通過する工程を含む。一般的には、膜の一方の面(一次側)に水素を含有する混合ガスを配置し、一次側の圧力を膜の他方の面(二次側)に対して高くする方法が採用される。本発明に係る水素透過膜は特に600℃付近での水素透過率に優れていることから、水素含有ガスは550〜650℃の温度として水素透過膜を通過することが好ましく、580〜620℃の温度として水素透過膜を通過することがより好ましい。また、本発明に係る水素透過膜は良好な強度も有しており、例えば1〜2MPa等の高圧下でも支持体を適正に設置することで、ピンホール等の破壊が良好に抑制される。   The method for separating hydrogen from a hydrogen-containing gas using the hydrogen-permeable membrane according to the present invention includes a step of passing the hydrogen-containing gas through the hydrogen-permeable membrane. Generally, a method is adopted in which a mixed gas containing hydrogen is disposed on one side (primary side) of the membrane, and the pressure on the primary side is increased relative to the other side (secondary side) of the membrane. . Since the hydrogen permeable membrane according to the present invention is particularly excellent in hydrogen permeability at around 600 ° C., the hydrogen-containing gas preferably passes through the hydrogen permeable membrane at a temperature of 550 to 650 ° C. More preferably, the temperature passes through the hydrogen permeable membrane. In addition, the hydrogen permeable membrane according to the present invention also has good strength. For example, destruction of pinholes and the like can be satisfactorily suppressed by properly setting the support even under a high pressure of 1 to 2 MPa.

水素透過膜を利用して水素含有ガスから水素を分離する水蒸気改質装置の構成自体は公知であり、本発明に係る水蒸気改質装置としては、任意の公知の構成を採用することができ、特に制限はない。一例を挙げると、本発明に係る水蒸気改質装置は、本発明に係る水素透過膜を内壁面に形成した通気性多孔質アルミナセラミックス反応管内に改質触媒層を設けると共に、当該反応管を囲んで水素回収室を設けることで構成してもよい。   The structure of the steam reformer that separates hydrogen from the hydrogen-containing gas using a hydrogen permeable membrane is known per se, and any known structure can be adopted as the steam reformer according to the present invention. There is no particular limitation. For example, the steam reformer according to the present invention includes a reforming catalyst layer in a gas-permeable porous alumina ceramics reaction tube in which the hydrogen permeable membrane according to the present invention is formed on the inner wall surface, and surrounds the reaction tube. Alternatively, a hydrogen recovery chamber may be provided.

以下に本発明を実施例でさらに詳細に説明するが、本発明はこれらに限定されるものではない。   The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.

(実施例)
Cu、Pd、及び、Al、Ga及びInの少なくとも1種で構成され、表1に記載の原子比を満足する組成となるように成分調整したCu−Pd合金をそれぞれ溶解鋳造後、800℃以上に加熱したインゴットを熱間圧延し、黒皮除去後、所定の膜厚の膜に冷間圧延した。ここで、圧延加工度については、1.5mmtから20、25、150μmtまで90%以上を確保した。
膜厚はマイクロメータで測定した5箇所の平均値を指す。
合金のβ相の割合は以下のように測定した。最初に、圧延試料を脱脂・洗浄した後、Ar雰囲気下600℃で100h熱処理後、室温に急冷(水冷)して構造を維持させた測定用試料を作製した。次に、各試料についてEBSPによって結晶方位を測定して求めた。具体的には日本電子(株)製JXA8500F、加速電圧20kV、WD23、電流5×10-8Aで、クリーンアップ後の試料に対し、試料傾斜角度70°から、範囲50μm×20μmをステップ幅0.2μmで計5箇所測定し、それぞれの体心立方構造(BCC)の比を求め、その平均をβ相の割合とした。
(Example)
Cu-Pd alloy composed of at least one of Cu, Pd, and Al, Ga, and In and adjusted to have a composition satisfying the atomic ratio shown in Table 1 after melting and casting, respectively, 800 ° C. or higher The ingot heated to 1 was hot-rolled, and after removing the black skin, it was cold-rolled into a film having a predetermined thickness. Here, about the rolling work degree, 90% or more was ensured from 1.5 mmt to 20, 25, and 150 μmt.
The film thickness refers to the average value of five locations measured with a micrometer.
The proportion of the β phase of the alloy was measured as follows. First, after degreasing and washing the rolled sample, it was heat-treated at 600 ° C. for 100 h in an Ar atmosphere, and then rapidly cooled to room temperature (water-cooled) to prepare a measurement sample that maintained the structure. Next, the crystal orientation of each sample was determined by EBSP. Specifically, JXA8500F manufactured by JEOL Ltd., acceleration voltage of 20 kV, WD23, current of 5 × 10 −8 A, step width of 50 μm × 20 μm from sample tilt angle of 70 ° to sample after cleanup. Measurement was made at a total of 5 locations at 2 μm, the ratio of each body-centered cubic structure (BCC) was determined, and the average was taken as the proportion of β phase.

このようにして得られたそれぞれの膜に対して、以下の要領で水素透過係数を測定した。
水素のガスボンベ(図示せず)、加熱炉11、一次側水素配管12、二次側水素配管13、管状炉内に配置され、一次側水素配管及び二次側水素配管を連結する1/2VCR(登録商標)継手内にフィルター付ガスケットと共に固定された水素透過膜14(水素透過部の直径11.2mm)、二次側の水素配管に連結した水素測定器(水素用マスフローコントローラ(山武、MQV9050))を備えた測定系を構築した(図1参照)。水素のガスボンベから配管を通じて供給される水素はVCR継手の一次側に入り、水素透過膜を通過して、VCR継手の二次側から出てくる。水素透過膜を固定したVCR継手が入っている管状炉は所定の温度に加熱可能となっており、水素固定部のVCR継手部分の温度を熱電対で測定している。測定試験は、一次側圧を0.3MPaG、二次側圧を0MPaGとし、一次側の水素供給量を50sccmとして600℃に水素を加熱しながら24時間供給し続けたときの水素透過量を測定し、以下の式により水素透過係数qを測定した。
q=fM・d・S-1・(P1/2−p1/2-1
q:水素透過係数(mol・m-1・sec-1・Pa-1/2
M:二次側水素流量(mol・sec-1
d:膜厚(m)
S:膜面積(m2
P:一次側圧力(Pa)
p:二次側圧力(Pa)
水素透過試験中に透過量が急激に増加した場合は、1次側をHeで置換し、2次側にリークするか調べた。原理上Heを透過させない水素透過膜の2次側にHeがリークすることは、透過膜にピンホールがあると考えられるため、ピンホールNG(×)と判断した。
The hydrogen permeation coefficient was measured for each of the membranes thus obtained in the following manner.
A hydrogen gas cylinder (not shown), a heating furnace 11, a primary-side hydrogen pipe 12, a secondary-side hydrogen pipe 13, and a 1/2 VCR that is arranged in a tubular furnace and connects the primary-side hydrogen pipe and the secondary-side hydrogen pipe ( (Registered trademark) Hydrogen permeable membrane 14 (hydrogen permeable part diameter 11.2 mm) fixed with a gasket with a filter in the joint, a hydrogen measuring device (hydrogen mass flow controller (Yamatake, MQV9050)) connected to the secondary hydrogen pipe ) Was constructed (see FIG. 1). Hydrogen supplied through a pipe from a hydrogen gas cylinder enters the primary side of the VCR joint, passes through the hydrogen permeable membrane, and exits from the secondary side of the VCR joint. The tubular furnace containing the VCR joint to which the hydrogen permeable membrane is fixed can be heated to a predetermined temperature, and the temperature of the VCR joint portion of the hydrogen fixing portion is measured with a thermocouple. In the measurement test, the primary side pressure was set to 0.3 MPaG, the secondary side pressure was set to 0 MPaG, the hydrogen supply amount on the primary side was set to 50 sccm, and the hydrogen permeation amount was measured while supplying hydrogen at 600 ° C. for 24 hours, The hydrogen permeation coefficient q was measured by the following formula.
q = f M · d · S -1 · (P 1/2 -p 1/2) -1
q: Hydrogen permeation coefficient (mol · m -1 · sec -1 · Pa -1/2 )
f M : secondary hydrogen flow rate (mol · sec −1 )
d: Film thickness (m)
S: membrane area (m 2 )
P: Primary pressure (Pa)
p: Secondary pressure (Pa)
When the amount of permeation increased rapidly during the hydrogen permeation test, the primary side was replaced with He, and it was examined whether leakage occurred on the secondary side. In principle, it is considered that a leak of He on the secondary side of the hydrogen permeable membrane that does not allow the permeation of He has a pinhole in the permeable membrane.

さらに、耐応力緩和特性の評価として、実施例1、4、7、12、15については、600℃にて40MPaの応力(σ)を継続して100時間負荷した後の変形量(伸びε)を測定した。   Furthermore, as an evaluation of the stress relaxation resistance, for Examples 1, 4, 7, 12, and 15, the amount of deformation (elongation ε) after continuously applying a stress (σ) of 40 MPa at 600 ° C. for 100 hours. Was measured.

(比較例)
Cu-Pd合金、又は、Cu、Pd、及び、Al、Ga及びInの少なくとも1種で構成された銅合金を、表1に記載の原子比を満足する組成となるように成分調整したCu−Pd合金に対し、実施例と同様の方法により、それぞれ溶解鋳造後、800℃以上に加熱したインゴットを熱間圧延し、黒皮除去後、所定の膜厚の膜に冷間圧延した。
膜厚はマイクロメータで測定した5箇所の平均値を指す。
合金のβ相の割合は、EBSPを用いて測定した。
(Comparative example)
Cu—Pd alloy, or Cu— that is a copper alloy composed of Cu, Pd, and at least one of Al, Ga, and In, whose components are adjusted to have a composition that satisfies the atomic ratios shown in Table 1. For the Pd alloy, ingots heated to 800 ° C. or higher were hot-rolled after melting and casting, respectively, and after the black skin was removed, the Pd alloy was cold-rolled into a film having a predetermined thickness.
The film thickness refers to the average value of five locations measured with a micrometer.
The proportion of the β phase of the alloy was measured using EBSP.

このようにして得られたそれぞれの膜に対して、実施例と同様に図1に示す測定系を用いて、水素透過係数qを測定した。
ピンホールの有無についても同様に判断した(ピンホール無し:○、ピンホール有り:×)。
比較例1及び2については、耐応力緩和特性についても同様に評価した。
For each of the films thus obtained, the hydrogen permeation coefficient q was measured using the measurement system shown in FIG.
The presence / absence of a pinhole was also judged in the same manner (without pinhole: ○, with pinhole: ×).
For Comparative Examples 1 and 2, the stress relaxation resistance was similarly evaluated.

試験結果を表1に示す。   The test results are shown in Table 1.

Figure 2012201974
Figure 2012201974

(評価結果)
実施例1〜19は、いずれも水素透過係数が良好(水素透過率が良好)で、且つ、ピンホールも発生していなかった。
さらに、実施例1、4、7、12、15については、600℃にて40MPaの応力(σ)を継続して100時間負荷した後の変形量(伸びε)が小さく、耐応力緩和特性が良好であることがわかった。
比較例1、5、6は、膜中にAl、Ga及びInのいずれも含まれておらず、600℃でのβ相の割合が5%未満であり、水素透過率及び強度のいずれも不良であった。さらに、比較例1については、40MPaの応力(σ)を継続して100時間負荷した後の変形量(伸びε)が大きく、耐応力緩和特性が不良であることがわかった。
比較例2、3、4、11、12は、Al、Ga及びInの濃度が大きかったため、強度が不良であった。
比較例7、9は、膜中のPdの濃度が41at%未満であったため、水素透過率が不良であった。
比較例8、10は、膜中のPdの濃度が50at%超であったため、水素透過率が不良であった。
(Evaluation results)
Examples 1 to 19 all had a good hydrogen permeability coefficient (good hydrogen permeability), and no pinholes were generated.
Further, in Examples 1, 4, 7, 12, and 15, the amount of deformation (elongation ε) after applying a stress (σ) of 40 MPa at 600 ° C. for 100 hours is small, and the stress relaxation resistance is low. It was found to be good.
Comparative Examples 1, 5, and 6 do not contain any of Al, Ga, and In in the film, the ratio of β phase at 600 ° C. is less than 5%, and both the hydrogen permeability and strength are poor. Met. Further, in Comparative Example 1, it was found that the amount of deformation (elongation ε) after the stress (σ) of 40 MPa was continuously applied for 100 hours was large, and the stress relaxation resistance was poor.
Comparative Examples 2, 3, 4, 11, and 12 had poor strength because the concentrations of Al, Ga, and In were high.
In Comparative Examples 7 and 9, the hydrogen permeability was poor because the concentration of Pd in the film was less than 41 at%.
In Comparative Examples 8 and 10, the hydrogen permeability was poor because the Pd concentration in the film was more than 50 at%.

11 加熱炉
12 一次側水素配管
13 二次側水素配管
14 水素透過膜
11 Heating furnace 12 Primary side hydrogen piping 13 Secondary side hydrogen piping 14 Hydrogen permeable membrane

Claims (6)

組成式:PdaCubc
(X:Al、Ga及びInの少なくとも1種、a:41〜50at%、b:1−a−c、c:0.2〜2at%)
で表され、
600℃でのβ相の割合が5%以上である水素透過性銅合金。
Composition formula: Pd a Cu b X c
(X: at least one of Al, Ga and In, a: 41-50 at%, b: 1-ac, c: 0.2-2 at%)
Represented by
A hydrogen-permeable copper alloy having a β-phase ratio of 5% or more at 600 ° C.
前記XがAlであり、前記cが0.5〜2at%である請求項1に記載の水素透過性銅合金。   The hydrogen permeable copper alloy according to claim 1, wherein X is Al and c is 0.5 to 2 at%. 600℃での前記β相の割合が10%以上である水素透過性銅合金。   A hydrogen-permeable copper alloy in which the proportion of the β phase at 600 ° C. is 10% or more. 請求項1〜3のいずれかに記載の銅合金でできた水素透過膜。   A hydrogen permeable membrane made of the copper alloy according to claim 1. 厚みが1〜200μmである請求項4に記載の水素透過膜。   The hydrogen permeable membrane according to claim 4, having a thickness of 1 to 200 μm. 請求項4又は5に記載の水素透過膜を用いた水蒸気改質装置。   A steam reformer using the hydrogen permeable membrane according to claim 4 or 5.
JP2011070556A 2011-03-28 2011-03-28 Hydrogen permeable copper alloy, hydrogen permeable film, and steam reformer Pending JP2012201974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011070556A JP2012201974A (en) 2011-03-28 2011-03-28 Hydrogen permeable copper alloy, hydrogen permeable film, and steam reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011070556A JP2012201974A (en) 2011-03-28 2011-03-28 Hydrogen permeable copper alloy, hydrogen permeable film, and steam reformer

Publications (1)

Publication Number Publication Date
JP2012201974A true JP2012201974A (en) 2012-10-22

Family

ID=47183280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011070556A Pending JP2012201974A (en) 2011-03-28 2011-03-28 Hydrogen permeable copper alloy, hydrogen permeable film, and steam reformer

Country Status (1)

Country Link
JP (1) JP2012201974A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016175016A (en) * 2015-03-20 2016-10-06 国立研究開発法人産業技術総合研究所 Hydrogen separation membrane, manufacturing method of the same, and hydrogen separation method
CN109715276A (en) * 2016-11-04 2019-05-03 旭化成医疗株式会社 The manufacturing method of perforated membrane and perforated membrane
WO2019225641A1 (en) * 2018-05-22 2019-11-28 国立大学法人東京工業大学 Hydrogen permeable membrane and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04147934A (en) * 1990-10-09 1992-05-21 Sumitomo Metal Mining Co Ltd Copper alloy composition
US20070240566A1 (en) * 2005-12-23 2007-10-18 Benn Raymond C Duarable Pd-based alloy and hydrogen generation membrane thereof
JP2010070818A (en) * 2008-09-19 2010-04-02 Tanaka Holdings Kk Pd-Cu BASED ALLOY SUPERIOR IN HYDROGEN PERMEABILITY
JP2010261077A (en) * 2009-05-08 2010-11-18 Ntn Corp Sintered machine component
JP2011202258A (en) * 2010-03-26 2011-10-13 Jx Nippon Mining & Metals Corp Hydrogen permeable alloy and hydrogen permeation membrane utilizing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04147934A (en) * 1990-10-09 1992-05-21 Sumitomo Metal Mining Co Ltd Copper alloy composition
US20070240566A1 (en) * 2005-12-23 2007-10-18 Benn Raymond C Duarable Pd-based alloy and hydrogen generation membrane thereof
JP2010070818A (en) * 2008-09-19 2010-04-02 Tanaka Holdings Kk Pd-Cu BASED ALLOY SUPERIOR IN HYDROGEN PERMEABILITY
JP2010261077A (en) * 2009-05-08 2010-11-18 Ntn Corp Sintered machine component
JP2011202258A (en) * 2010-03-26 2011-10-13 Jx Nippon Mining & Metals Corp Hydrogen permeable alloy and hydrogen permeation membrane utilizing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016175016A (en) * 2015-03-20 2016-10-06 国立研究開発法人産業技術総合研究所 Hydrogen separation membrane, manufacturing method of the same, and hydrogen separation method
CN109715276A (en) * 2016-11-04 2019-05-03 旭化成医疗株式会社 The manufacturing method of perforated membrane and perforated membrane
WO2019225641A1 (en) * 2018-05-22 2019-11-28 国立大学法人東京工業大学 Hydrogen permeable membrane and method for producing same

Similar Documents

Publication Publication Date Title
JP5998022B2 (en) Separation membrane, hydrogen separation membrane provided with the same, and hydrogen separation apparatus provided with the hydrogen separation membrane
US7514036B2 (en) Hydrogen permeable alloy and method for producing the same
JP2019005684A (en) Hydrogen separation device and hydrogen separation system
JP5185035B2 (en) Pd-Cu alloy with excellent hydrogen permeation performance
US10590516B2 (en) Alloy for catalytic membrane reactors
JP2012201974A (en) Hydrogen permeable copper alloy, hydrogen permeable film, and steam reformer
JP5562698B2 (en) Hydrogen permeable alloy and hydrogen permeable membrane using the same
Li et al. Development of dual-phase V90Fe5Al5/Cu alloys for enhanced malleability and sustainable hydrogen permeability
US7708809B2 (en) Hydrogen permeable membrane
JP4953278B2 (en) Hydrogen permeation separation thin film with excellent hydrogen permeation separation performance
EP2746219A1 (en) Hydrogen separation device and method for operating same
JP2013209729A (en) Hydrogen permeable copper alloy, hydrogen permeation membrane and steam reformer
JP2014198883A (en) Hydrogen permeable copper alloy, hydrogen permeation membrane and steam reformer
JP2012106210A (en) Manufacturing method of palladium-alloy seamless capillary
JP5199760B2 (en) Hydrogen permeation separation thin film with excellent hydrogen permeation separation performance
JP5823807B2 (en) Hydrogen permeable membrane and hydrogen separation method using the same
JP5723650B2 (en) Hydrogen permeation module and hydrogen separation method using the same
KR20130094259A (en) Separation membrane, hydrogen separation membrane including separation membrane and device including hydrogen separation membrane
JP4953279B2 (en) Hydrogen permeation separation thin film with excellent hydrogen permeation separation performance
JP2008063628A (en) Dual-phase hydrogen permeable alloy, and its production method
JP4250684B2 (en) Hydrogen separation and permeable membrane with excellent hydrogen separation and permeation function and high temperature amorphous stability
JP4608657B2 (en) Hydrogen separation and permeation membrane that exhibits excellent hydrogen separation and permeation function over a long period of time by high pressure operation of high purity hydrogen purifier
JP2021031733A (en) Hydrogen separation alloy
JP4250680B2 (en) Hydrogen separation and permeable membrane with excellent high temperature amorphous stability
US10189084B2 (en) Method and system for fabrication of hydrogen-permeable membranes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150210