JP2008063628A - Dual-phase hydrogen permeable alloy, and its production method - Google Patents

Dual-phase hydrogen permeable alloy, and its production method Download PDF

Info

Publication number
JP2008063628A
JP2008063628A JP2006244010A JP2006244010A JP2008063628A JP 2008063628 A JP2008063628 A JP 2008063628A JP 2006244010 A JP2006244010 A JP 2006244010A JP 2006244010 A JP2006244010 A JP 2006244010A JP 2008063628 A JP2008063628 A JP 2008063628A
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
phase
permeation
hydrogen permeation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006244010A
Other languages
Japanese (ja)
Other versions
JP5463557B2 (en
Inventor
Kiyoshi Aoki
清 青木
Kazuhiro Ishikawa
和宏 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitami Institute of Technology NUC
Original Assignee
Kitami Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitami Institute of Technology NUC filed Critical Kitami Institute of Technology NUC
Priority to JP2006244010A priority Critical patent/JP5463557B2/en
Publication of JP2008063628A publication Critical patent/JP2008063628A/en
Application granted granted Critical
Publication of JP5463557B2 publication Critical patent/JP5463557B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dual-phase hydrogen permeable alloy having excellent hydrogen permeability. <P>SOLUTION: In the dual-phase hydrogen permeable alloy composed of a phase having hydrogen permeability and a phase having hydrogen embrittlement resistance; the phase having hydrogen permeation elongates to a hydrogen permeating direction; the phase having hydrogen permeation is formed over the whole length of the hydrogen permeating direction; its thickness is 0.01 to 1 mm, and a Pd membrane or a Pd alloy membrane is formed on the face at the side for charging hydrogen and on the face at the side for discharging hydrogen. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、複相型水素透過合金およびその製造方法に関するものである。   The present invention relates to a multiphase hydrogen permeable alloy and a method for producing the same.

高純度水素は、半導体や光ファイバ、薬品などの製造に使用されており、その使用量は、年々増加している。また、最近では、燃料電池での燃料としても水素が注目され、将来本格的に燃料電池が使用されることになれば、高純度の水素が大量に必要とされる。したがって、高純度の水素を低コストで大量に生産可能な方法の開発が望まれている。   High-purity hydrogen is used in the manufacture of semiconductors, optical fibers, chemicals, etc., and the amount of use is increasing year by year. Recently, hydrogen has attracted attention as a fuel for fuel cells, and if fuel cells are to be used in earnest in the future, a large amount of high-purity hydrogen is required. Therefore, development of a method capable of producing high-purity hydrogen in large quantities at low cost is desired.

水素の大量生産の方法としては、(1)非化石資源を利用する水の電気分解による方法と、(2)化石資源を利用する炭化水素の改質による方法とがある。   As a method for mass production of hydrogen, there are (1) a method by electrolysis of water using non-fossil resources and (2) a method by reforming hydrocarbons using fossil resources.

(1)の電気分解法では、電力源として太陽光発電等で得た電気を用いて行う水の電気分解が研究されているが、現在の技術レベルでは経済的に実用化は困難である。したがって、当面は(2)の炭化水素の水蒸気改質で水素を製造することが現実的である。   In the electrolysis method (1), water electrolysis using electricity obtained by photovoltaic power generation or the like as a power source has been studied, but it is difficult to put it to practical use at the current technical level. Therefore, for the time being, it is realistic to produce hydrogen by (2) steam reforming of hydrocarbons.

前述したように、水素の大量生産のためには炭化水素の改質が適している。例えば、CHにHOを加えた反応系においては、大量の水素の他にCO、CO、HO、CH等の不純物ガスが発生する。水素を燃料電池への供給原料として利用するには、水素をこれら不純物から分離・精製しなければならない。特に、精製水素中のCO含量を10ppm以下にしないと、燃料電池のPt電極の損傷が発生する。すなわち、水素の燃料電池への利用のためには、精製して、高純度化することが条件となる。 As described above, hydrocarbon reforming is suitable for mass production of hydrogen. For example, in the reaction system H 2 O was added to CH 4, CO, CO 2, H 2 O, the impurity gas such as CH 4 are generated in addition to the large amount of hydrogen. In order to use hydrogen as a fuel cell feedstock, it must be separated and purified from these impurities. In particular, unless the CO content in the purified hydrogen is 10 ppm or less, the Pt electrode of the fuel cell is damaged. In other words, in order to use hydrogen in a fuel cell, it is necessary to purify and purify it.

水素の精製法にはさまざまな方式があるが、燃料電池用高純度水素を得るためには、金属膜による膜分離法が適している。金属膜による水素の精製は、分離係数と透過係数との影響が極めて大きいことが特徴である。金属膜を用いる水素の精製では、例えば、99%程度の水素を99.99999%程度に純化することが可能である。   There are various methods for purifying hydrogen, but in order to obtain high-purity hydrogen for fuel cells, a membrane separation method using a metal membrane is suitable. The purification of hydrogen using a metal membrane is characterized by extremely large influences of the separation coefficient and permeation coefficient. In the purification of hydrogen using a metal film, for example, about 99% of hydrogen can be purified to about 99.99999%.

水素透過膜に用いる水素透過性金属膜として、Pdを主体とする合金、例えばPd−Ag合金、Pd−Ti合金等が知られている(例えば、特許文献1参照)。   As a hydrogen permeable metal film used for the hydrogen permeable film, an alloy mainly composed of Pd, such as a Pd—Ag alloy, a Pd—Ti alloy, or the like is known (for example, see Patent Document 1).

ところで、水素の透過用金属膜としては、Pd−Ag合金膜が実用化されている。しかし、燃料電池の使用が本格化して大量の水素が必要となれば、それに応じて水素の透過用金属膜としてのPd−Ag合金の需要が増すことになる。そうなれば、高価で資源的にも少ないPdが制約となって、Pd−Ag合金膜では対応不可能と推測されるので、それに替わる金属膜の材料開発が急務となっている。   By the way, a Pd—Ag alloy film has been put to practical use as a hydrogen permeable metal film. However, if the use of fuel cells becomes full-scale and a large amount of hydrogen is required, the demand for Pd—Ag alloys as hydrogen permeable metal films will increase accordingly. If this is the case, Pd—Ag alloy films are considered to be incapable of dealing with expensive and resource-poor Pd. Therefore, there is an urgent need to develop a metal film that can replace them.

そのため、非パラジウム系水素透過合金の開発が活発に行われてきたが、水素脆化が顕著なため、実用に耐える合金は作製できなかった。これら合金は、単相合金なので水素透過性と耐水素脆化性の両立が困難であった。   For this reason, development of non-palladium-based hydrogen permeable alloys has been actively carried out. However, since hydrogen embrittlement is remarkable, an alloy that can withstand practical use cannot be produced. Since these alloys are single phase alloys, it is difficult to achieve both hydrogen permeability and hydrogen embrittlement resistance.

ところが最近、水素透過性と耐水素脆化性を別々の相に担わせた複相型水素透過合金が開発された。例えば、Ni−Ti−Nb系合金ではNiTi相とTiNb相(特許文献2)、Co−Ti−Nb系合金ではCoTi相とTiNb相(特許文献3)、Ni−Zr−Nb系合金ではNiZr相とZrNb相(特許文献3)など、複相化による役割分担で水素透過性と耐水素脆化性を両立し、水素中で破壊することなくパラジウムより高い水素透過性を示す。
特開平8−215551号公報(段落0006) 特開2005−232491号公報(段落0018) 特開2006−118035号公報(段落0039、0041)
Recently, however, a multi-phase hydrogen permeable alloy has been developed in which hydrogen permeability and hydrogen embrittlement resistance are assigned to different phases. For example, NiTi phase and TiNb phase in Ni-Ti-Nb alloy (Patent Document 2), CoTi phase and TiNb phase in Co-Ti-Nb alloy (Patent Document 3), and NiZr phase in Ni-Zr-Nb alloy. And ZrNb phase (Patent Document 3) and the like, both hydrogen permeability and resistance to hydrogen embrittlement are achieved by sharing roles by double phase, and higher hydrogen permeability than palladium without breaking in hydrogen.
JP-A-8-215551 (paragraph 0006) Japanese Patent Laying-Open No. 2005-232491 (paragraph 0018) JP 2006-1108035 (paragraphs 0039 and 0041)

これらの特許文献2、3に記載の複相型水素透過合金は、すべて鋳造状態での特性評価に限られている。合金を複相化した場合、これら両相の配列の仕方によって合金全体の水素透過係数が変わることが予想される。ところが、合金のミクロ組織と水素透過性の関係やその作製法についての知見は何ら得られていない。   These double-phase hydrogen permeable alloys described in Patent Documents 2 and 3 are all limited to property evaluation in a cast state. When the alloy is made into a double phase, the hydrogen permeability coefficient of the whole alloy is expected to change depending on the arrangement of both phases. However, no knowledge has been obtained about the relationship between the microstructure of the alloy and hydrogen permeability and the manufacturing method.

合金の水素透過流量Jは膜厚Lに反比例するので、できるだけ薄い合金膜を作製する必要がある。溶解・鋳造法により得られた合金の厚さ、あるいは断面積を減ずる方法として、圧延、鍛造、プレス等の塑性加工法が工業的に用いられている。合金をこのような方法で塑性加工すると、合金はある方向には伸び、ある方向には縮むため、合金内部の組織が大きく変わる。また、通常このような方法で合金を塑性加工した場合には、合金内部に加工ひずみが蓄積されるので、熱処理により除去する必要がある。この際、合金内部では再結晶等が起こり、ミクロ組織が変化する。   Since the hydrogen permeation flow rate J of the alloy is inversely proportional to the film thickness L, it is necessary to produce an alloy film that is as thin as possible. As a method for reducing the thickness or cross-sectional area of the alloy obtained by the melting / casting method, plastic working methods such as rolling, forging, and pressing are industrially used. When an alloy is plastically processed by such a method, the alloy stretches in a certain direction and shrinks in a certain direction, so that the structure inside the alloy changes greatly. In addition, when an alloy is plastically processed by such a method, processing strain accumulates inside the alloy and must be removed by heat treatment. At this time, recrystallization occurs inside the alloy, and the microstructure changes.

以上のことから、複相型水素透過合金として適切なミクロ組織について明らかにし、組織制御により合金の水素透過性を向上させる手段について明らかにすることが強く望まれている。   From the above, it is strongly desired to clarify an appropriate microstructure as a multiphase hydrogen permeable alloy and to clarify a means for improving the hydrogen permeability of the alloy by controlling the structure.

そして、上記で説明した鋳造状態の複相型水素透過合金(特許文献2、3)は、水素透過係数が十分ではなく、更なる改善が必要である。合金中のNb濃度を高めることで合金の水素透過係数を高めることが可能であるが、水素脆化も同時に顕著となるため、許容できるNb量には上限がある。   The cast-state multiphase hydrogen-permeable alloy (Patent Documents 2 and 3) described above does not have a sufficient hydrogen permeability coefficient and needs further improvement. Although it is possible to increase the hydrogen permeability coefficient of the alloy by increasing the Nb concentration in the alloy, hydrogen embrittlement becomes conspicuous at the same time, so there is an upper limit for the allowable Nb amount.

そのため、合金組成を変えるのではなく、ミクロ組織を変えることで水素透過係数を改善する必要がある。   Therefore, it is necessary to improve the hydrogen permeability coefficient by changing the microstructure instead of changing the alloy composition.

そこで、本発明は、水素透過に適切なミクロ組織を有する複相型水素透過合金についての技術を提供することを目的とする。   Then, an object of this invention is to provide the technique about the multiphase type hydrogen permeable alloy which has a microstructure suitable for hydrogen permeation | transmission.

本発明者らは、水素透過に適切な合金のミクロ組織について検討を行った結果、水素透過の複合則を案出し、これを作製する方法を見出すことによって解決することができた。   As a result of studying the microstructure of an alloy suitable for hydrogen permeation, the present inventors have been able to solve the problem by devising a composite law of hydrogen permeation and finding a method for producing it.

すなわち、請求項1に記載の本発明の複相型水素透過合金は、水素透過性を担う相と耐水素脆化性を担う相とで構成された複相型水素透過合金であって、前記水素透過を担う相が水素透過方向に伸びていることを特徴とする。   That is, the multiphase hydrogen permeable alloy of the present invention according to claim 1 is a multiphase hydrogen permeable alloy composed of a phase responsible for hydrogen permeability and a phase responsible for hydrogen embrittlement resistance, The phase responsible for hydrogen permeation extends in the hydrogen permeation direction.

ここで、本明細書において「水素透過性を担う相」とは、専ら水素透過を行う相という意味ではなく、耐水素脆化性としての側面を有することがあるが、主として水素透過を担う機能を有する水素透過性に優れた相との意味である。同様に、「耐水素脆化性を担う相」についても、専ら耐水素脆化を行う相という意味ではなく、水素透過性としての側面を有することがあるが、主として耐水素脆化を担う機能を有する耐水素脆化性に優れた相との意味である。   Here, the term “phase responsible for hydrogen permeability” in the present specification does not mean a phase that exclusively performs hydrogen permeation, but may have an aspect of hydrogen embrittlement resistance, but a function mainly responsible for hydrogen permeation. This means a phase having excellent hydrogen permeability. Similarly, the “phase responsible for hydrogen embrittlement resistance” also does not mean a phase that performs hydrogen embrittlement resistance exclusively, but may have an aspect of hydrogen permeability, but functions mainly responsible for hydrogen embrittlement resistance This means a phase having excellent hydrogen embrittlement resistance.

複相型水素透過合金中では、耐水素脆化性を担う相と水素透過を担う相の配列の仕方によって合金全体の水素透過性に違いが生ずる。これを図1の模式図を使って説明する。   In a multiphase hydrogen permeable alloy, the hydrogen permeability of the whole alloy differs depending on the arrangement of the phase responsible for hydrogen embrittlement resistance and the phase responsible for hydrogen permeation. This will be described with reference to the schematic diagram of FIG.

耐水素脆化性を担う相(黒色のA相とする)と水素透過性を担う相(白抜きのB相とする)とが水素の透過方向に垂直、つまり直列型に配列されている場合、A相、B相の水素透過係数をΦおよびΦ、体積率をV、Vとしたとき、直列方向の水素透過係数Φは次式で示される。ただし、V+V=1、Φ<Φとする。 When the phase responsible for hydrogen embrittlement resistance (black A phase) and the phase responsible for hydrogen permeability (white B phase) are arranged perpendicular to the hydrogen permeation direction, that is, in series When the hydrogen permeation coefficients of the A phase and the B phase are Φ A and Φ B , and the volume ratios are V A and V B , the hydrogen permeation coefficient Φ S in the series direction is expressed by the following equation. However, it is assumed that V A + V B = 1 and Φ AB.

1/Φ=V/Φ+V/Φ (1) 1 / Φ S = V A / Φ A + V B / Φ B (1)

この式を、横軸にB相の体積率、縦軸に合金全体の水素透過係数としてグラフにプロットすると、ΦとΦを結んだ曲線として表すことができる。このような組織では、水素が合金中を透過するには、必ずしも水素透過性に優れないA相を必ず通過しなければならず、合金全体として水素透過に不利となる。 When this equation is plotted on a graph with the volume ratio of the B phase on the horizontal axis and the hydrogen permeation coefficient of the whole alloy on the vertical axis, it can be expressed as a curve connecting Φ A and Φ B. In such a structure, in order for hydrogen to permeate through the alloy, it must necessarily pass through the A phase that is not excellent in hydrogen permeability, and the entire alloy is disadvantageous for hydrogen permeation.

一方、A相とB相が水素透過方向に平行、つまり並列型に配列している場合は、並列方向の水素透過係数Φは次式で示される。ただし、V+V=1、Φ<Φとする。 On the other hand, when the A phase and the B phase are parallel to the hydrogen permeation direction, that is, arranged in parallel, the hydrogen permeation coefficient Φ P in the parallel direction is expressed by the following equation. However, it is assumed that V A + V B = 1 and Φ AB.

Φ=Φ+Φ (2) Φ P = Φ A V A + Φ B V B (2)

この式は、ΦとΦを結んだ直線として表すことができる。このような組織では、B相の体積率が同じであっても、水素は水素透過を担う相内を透過できる確率が高くなるため、合金全体として水素透過に有利となる。 This equation can be expressed as a straight line connecting the [Phi A and [Phi B. In such a structure, even if the volume fraction of the B phase is the same, the probability that hydrogen can permeate through the phase responsible for hydrogen permeation increases, so the whole alloy is advantageous for hydrogen permeation.

請求項2に記載の発明は、請求項1記載の発明において、水素透過を担う相は水素透過方向の全長に亘って形成されていることを特徴とする。   The invention described in claim 2 is characterized in that, in the invention described in claim 1, the phase responsible for hydrogen permeation is formed over the entire length in the hydrogen permeation direction.

水素透過に優れる相が水素透過の方向に伸びた複相型水素透過合金において、特に、水素透過を担う相の水素透過方向の長さが合金膜の膜厚より大きい場合は、水素透過を担う相が合金膜における水素透過方向の全長に亘って形成されていることになる。この場合、水素は、水素透過に有利な相のみを透過することができ、合金全体として水素透過に極めて有利となる。   In a multi-phase hydrogen permeable alloy in which a phase excellent in hydrogen permeation extends in the direction of hydrogen permeation, particularly when the length of the hydrogen permeation direction of the phase responsible for hydrogen permeation is larger than the film thickness of the alloy film The phase is formed over the entire length in the hydrogen permeation direction in the alloy film. In this case, hydrogen can permeate only a phase advantageous for hydrogen permeation, and the whole alloy is extremely advantageous for hydrogen permeation.

請求項3に記載の発明は、請求項1または2記載の発明において、複相型水素透過合金は、厚さが0.01〜1mmの合金膜であることを特徴とする。厚さが3mmを超えると、水素透過束(量)が小さくなり、水素透過効率が悪くなる。また、厚さが0.01mm未満であると、機械的強度が弱くなり、実用的でなくなる。   A third aspect of the invention is characterized in that, in the first or second aspect of the invention, the multiphase hydrogen permeable alloy is an alloy film having a thickness of 0.01 to 1 mm. When the thickness exceeds 3 mm, the hydrogen permeation flux (amount) becomes small, and the hydrogen permeation efficiency is deteriorated. On the other hand, if the thickness is less than 0.01 mm, the mechanical strength becomes weak and impractical.

請求項4に記載の発明は、請求項1〜3の何れか一項に記載の発明において、水素を取り込む側の面および水素を取り出す側の面にPd膜またはPd合金膜が形成され、このPd膜またはPd合金膜の厚さが50〜400nmの範囲内であることを特徴とする。このように合金膜を挟んで、被処理原料ガス側(上流、高圧側)と精製水素側(下流、低圧水素側)との両側に所定の厚さのPd膜またはPd合金膜を形成すれば、当該合金膜の酸化、窒化等を防止でき、また水素の解離と再結合が容易に行われ得る。この範囲を外れると、薄い場合にはPd膜またはPd合金膜の剥離が生じ、厚い場合には不経済になる。   The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein a Pd film or a Pd alloy film is formed on a surface that takes in hydrogen and a surface that takes out hydrogen. The Pd film or the Pd alloy film has a thickness in the range of 50 to 400 nm. If a Pd film or a Pd alloy film having a predetermined thickness is formed on both sides of the raw material gas side (upstream, high-pressure side) and the purified hydrogen side (downstream, low-pressure hydrogen side) with the alloy film interposed therebetween, In addition, oxidation, nitridation, and the like of the alloy film can be prevented, and hydrogen can be easily dissociated and recombined. Outside this range, the Pd film or Pd alloy film peels off when it is thin, and becomes uneconomical when it is thick.

請求項5に記載の本発明の複相型水素透過合金の製造方法は、請求項1〜3の何れか一項に記載の複相型水素透過合金の製造方法であって、合金の断面積を減ずる塑性加工処理によって水素透過性を担う相を水素透過方向に伸ばすことを特徴とする。   The method for producing a multi-phase hydrogen permeable alloy according to the present invention according to claim 5 is the method for producing a multi-phase hydrogen permeable alloy according to any one of claims 1 to 3, wherein the cross-sectional area of the alloy The phase responsible for hydrogen permeability is extended in the hydrogen permeation direction by a plastic working process that reduces the above.

合金の組織を一方向に伸ばす手段として一方向凝固法が知られている。ところが、一方向凝固法を用いて相を伸ばすには、温度勾配、凝固速度、撹拌速度等を細かく制御する必要があり、かつ製品の完成までに時間を要するため、実用材料の製造方法としては必ずしも好ましくない。また、大型合金の作製には適しておらず、効率的な合金作製方法とは言い難い。   A unidirectional solidification method is known as a means for extending an alloy structure in one direction. However, in order to extend the phase using the unidirectional solidification method, it is necessary to finely control the temperature gradient, solidification rate, stirring rate, etc., and it takes time to complete the product. Not necessarily preferred. Further, it is not suitable for the production of large alloys, and is not an efficient alloy production method.

そこで本発明では、水素透過に優れる相を一方向に伸ばす手段として、合金の断面積を減ずる塑性加工法を用いることとした。これらの塑性加工法として、例えば、圧延法、鍛造法、プレス法などが挙げられるが、いずれも工業的に確立した塑性加工法であり、一般実用材料の製造法として広く用いられている。また、塑性加工速度も高いので、効率的な製造が可能である。   Therefore, in the present invention, as a means for extending a phase excellent in hydrogen permeation in one direction, a plastic working method that reduces the cross-sectional area of the alloy is used. These plastic working methods include, for example, a rolling method, a forging method, a pressing method, etc., all of which are industrially established plastic working methods, and are widely used as methods for producing general practical materials. In addition, since the plastic working speed is high, efficient production is possible.

以下に、前記合金の断面積を減ずる塑性加工法により、水素透過性を担う相を伸ばす手法について図2を用いて説明する。   Hereinafter, a technique for extending the phase responsible for hydrogen permeability by a plastic working method for reducing the cross-sectional area of the alloy will be described with reference to FIG.

半径Rのインゴット中に、水素透過を担う相が半径rの球状に分散している状態を考える。この合金インゴットを幅A、高さBまで加工したとき、この球状相が板状に変形すると仮定する。このとき、合金インゴットの加工率δは次式で定義される。   Consider a state in which the phase responsible for hydrogen permeation is dispersed in a spherical shape with a radius r in an ingot with a radius R. When this alloy ingot is processed to a width A and a height B, it is assumed that the spherical phase is deformed into a plate shape. At this time, the processing rate δ of the alloy ingot is defined by the following equation.

δ=(S−S)/S (3) δ = (S 0 −S 1 ) / S 0 (3)

ただし、SおよびSは加工前後の合金の断面積であり、それぞれ次式で示される。 However, S 0 and S 1 is the cross-sectional area of the front and rear machining alloy, respectively represented by the following formula.

=πR (4) S 0 = πR 2 (4)

=AB (5) S 1 = AB (5)

このとき、加工率が大きい場合には、球状相は幅方向にA/R、高さ方向にB/Rの圧縮をされるので、変形後の板状相の幅と高さはそれぞれ、rA/R、rB/Rと近似できる。変形後も体積が変わらないとした場合、板状相の長さLは次式で計算される。   At this time, when the processing rate is large, the spherical phase is compressed A / R in the width direction and B / R in the height direction, so that the width and height of the deformed plate-like phase are rA respectively. / R and rB / R. If the volume does not change after deformation, the length L of the plate phase is calculated by the following equation.

L=4πrR/3AB (6) L = 4πrR 2 / 3AB (6)

この式より、AおよびBを小さくする、つまり、塑性加工量が大きいほど、水素透過を担う相がより長く伸びた組織が得られる。このインゴットからAB断面と平行に試料を切り出せば、水素透過を担う相が一方向に伸びた水素透過合金膜が得られる。特に、Lが水素透過合金膜の厚さより大きい場合は、水素透過を担う相が水素透過合金膜の全長に亘って形成されているようになるため、最良の効果が得られる。   From this formula, it is possible to obtain a structure in which A and B are made smaller, that is, as the plastic working amount is larger, the phase responsible for hydrogen permeation is elongated longer. If a sample is cut out from the ingot in parallel with the AB cross section, a hydrogen permeable alloy film in which the phase responsible for hydrogen permeation extends in one direction is obtained. In particular, when L is larger than the thickness of the hydrogen permeable alloy film, the phase responsible for hydrogen permeation is formed over the entire length of the hydrogen permeable alloy film, so that the best effect is obtained.

請求項6に記載の発明は、上記請求項5に記載の発明において、塑性加工処理後に熱処理を行うことを特徴とする。この熱処理には2つの異なった目的がある。第一の目的は、合金の塑性加工時に導入される欠陥を除去するためである。これらの欠陥、特に転位は合金中を拡散する水素をトラップし、拡散を妨げる。その結果、水素透過性が低下する。このような合金を高温で保持すると、合金内部の転位を除去して水素透過係数を回復することができる。   The invention described in claim 6 is characterized in that, in the invention described in claim 5, heat treatment is performed after the plastic working process. This heat treatment has two different purposes. The first purpose is to remove defects introduced during plastic processing of the alloy. These defects, particularly dislocations, trap hydrogen diffusing through the alloy and prevent diffusion. As a result, hydrogen permeability is reduced. If such an alloy is held at a high temperature, dislocations inside the alloy can be removed to restore the hydrogen permeability coefficient.

ところが、上記方法で一方向に伸ばされた相は大きな表面積を有するため、表面エネルギーを多く蓄えている。そのため、熱処理を行うと表面積を小さくするために球状に近づこうとするので、塑性加工により作製した一方向性組織が熱処理時間とともに失われ、水素透過係数の低下の原因となる。したがって、欠陥除去のための熱処理は、欠陥は除去できるが相の形状変化を伴わない条件で行う必要がある。したがって、この目的の熱処理時間には上限があり、好ましくは100時間以下である。   However, since the phase stretched in one direction by the above method has a large surface area, it stores a large amount of surface energy. For this reason, when heat treatment is performed, it tends to be spherical in order to reduce the surface area, and thus the unidirectional structure produced by plastic working is lost with the heat treatment time, which causes a decrease in the hydrogen permeability coefficient. Therefore, the heat treatment for removing the defects needs to be performed under conditions that can remove the defects but are not accompanied by a phase shape change. Therefore, the heat treatment time for this purpose has an upper limit, and is preferably 100 hours or less.

上記方法で作製した合金をAB断面と平行に切り出した合金膜は水素透過を担う相が水素透過方向に伸びたいわゆる並列型組織となり、高い水素透過係数が得られる。一方、圧延面と垂直に切り出した合金膜は水素透過を担う相が水素透過方向と略垂直な方向に伸びたいわゆる直列型組織となり、高い水素透過係数は望めない。このような水素透過に適切でない合金組織を水素透過に適切な組織に変えることが熱処理の第二の目的である。直列型組織では、水素透過を担う相は水素透過の方向には一方向につながっていない。このような場合、長時間の熱処理を行うと上述のように相の球状に近づく組織変化が起こるので、水素透過と同一方向を持った成分が増加する。このことで、水素透過係数の改善ができる。   The alloy film obtained by cutting the alloy produced by the above method in parallel with the AB cross section has a so-called parallel structure in which the phase responsible for hydrogen permeation extends in the hydrogen permeation direction, and a high hydrogen permeation coefficient is obtained. On the other hand, the alloy film cut out perpendicular to the rolling surface has a so-called series structure in which the phase responsible for hydrogen permeation extends in a direction substantially perpendicular to the hydrogen permeation direction, and a high hydrogen permeation coefficient cannot be expected. The second purpose of the heat treatment is to change the alloy structure not suitable for hydrogen permeation to a structure suitable for hydrogen permeation. In the series structure, the phase responsible for hydrogen permeation is not connected in one direction to the direction of hydrogen permeation. In such a case, when the heat treatment is performed for a long time, the structural change that approaches the spherical shape of the phase occurs as described above, so that the component having the same direction as hydrogen permeation increases. This can improve the hydrogen permeation coefficient.

請求項7に記載の発明は、上記請求項5または6に記載の発明において、塑性加工処理後または熱処理後に、水素を取り込む側の面および水素を取り出す側の面にPd膜またはPd合金膜を形成することを特徴とする。水素透過合金を挟んで、被処理原料ガス側(上流、高圧側)と精製水素側(下流、低圧水素側)との両側に所定の厚さのPd膜またはPd合金膜を形成すれば、当該合金膜の酸化、窒化等を防止でき、また水素の解離と再結合が容易に行われ得る。   The invention according to claim 7 is the invention according to claim 5 or 6, wherein a Pd film or a Pd alloy film is formed on the surface from which hydrogen is taken in and the surface from which hydrogen is taken out after plastic working or heat treatment. It is characterized by forming. If a Pd film or a Pd alloy film having a predetermined thickness is formed on both sides of the raw material gas side (upstream, high pressure side) and the purified hydrogen side (downstream, low pressure hydrogen side) with the hydrogen permeable alloy interposed therebetween, Oxidation and nitridation of the alloy film can be prevented, and hydrogen can be easily dissociated and recombined.

本発明によれば、水素透過性を担う相と耐水素脆化性を担う相とで構成された複相型水素透過合金において、水素透過に最適なミクロ組織、つまり水素透過を担う相が水素透過方向に伸びている組織、さらにこれが水素透過方向の全長に亘って形成されている組織となっているので、水素原子は水素透過を担う相内を優先的に拡散するので、合金全体として優れた水素透過性能が得られる。   According to the present invention, in a multi-phase type hydrogen permeable alloy composed of a phase responsible for hydrogen permeability and a phase responsible for hydrogen embrittlement resistance, the optimum microstructure for hydrogen permeation, that is, the phase responsible for hydrogen permeation is hydrogen. Since the structure that extends in the permeation direction, and this is the structure that is formed over the entire length of the hydrogen permeation direction, hydrogen atoms preferentially diffuse in the phase that is responsible for hydrogen permeation. Hydrogen permeation performance is obtained.

また、このような複相型水素透過合金が、合金の断面積を減ずる塑性加工によって作製することができるので、優れた水素透過性能を備えた複相型水素透過合金を容易且つ効率的に得ることができる。   Further, since such a multi-phase hydrogen permeable alloy can be produced by plastic working that reduces the cross-sectional area of the alloy, a multi-phase hydrogen permeable alloy having excellent hydrogen permeation performance can be obtained easily and efficiently. be able to.

さらに、合金の断面積を減ずる塑性加工の後に熱処理を行うことにより、加工時に導入された転位等が除去され、水素透過性を担う組織に変化するので、合金全体として優れた水素透過性能が得られる。   Furthermore, by performing heat treatment after plastic working to reduce the cross-sectional area of the alloy, dislocations introduced during processing are removed, and the structure changes to bear hydrogen permeability, so that excellent hydrogen permeation performance as a whole alloy is obtained. It is done.

以下、本発明を実施するための最良の形態を、図面を参照しつつさらに具体的に説明する。重複した説明は省略されている。なお、ここでの説明は本発明が実施される最良の形態であることから、本発明は当該形態に限定されるものではない。   Hereinafter, the best mode for carrying out the present invention will be described more specifically with reference to the drawings. Duplicate explanations are omitted. In addition, since description here is the best form by which this invention is implemented, this invention is not limited to the said form.

本発明の合金材の作製方法は特に限定されないが、原料金属を所定の組成になるように配合後、Ar等の不活性ガス雰囲気中のアーク溶解、Ar等の不活性ガス雰囲気中若しくは真空中の高周波誘導加熱溶解、Ar等の不活性ガス雰囲気中若しくは真空中の電気炉中溶解、真空中の電子ビーム溶解、またはレーザ加熱溶解等の溶解法等により作製される。   The method for producing the alloy material of the present invention is not particularly limited, but after blending the raw metal so as to have a predetermined composition, arc melting in an inert gas atmosphere such as Ar, or in an inert gas atmosphere such as Ar or in vacuum These are prepared by melting methods such as high-frequency induction heating melting, melting in an inert gas atmosphere such as Ar or in an electric furnace in vacuum, electron beam melting in vacuum, or laser heating melting.

作製した合金インゴットは、水素透過を担う相が初晶として、耐水素脆化性を担う相が共晶として生成している。水素透過を担う相はほぼ球状であり、共晶相に囲まれた構造を有している。このような組織では、水素透過は可能であっても、高い水素透過性能は得られない。   In the produced alloy ingot, the phase responsible for hydrogen permeation is generated as the primary crystal and the phase responsible for hydrogen embrittlement resistance is formed as the eutectic. The phase responsible for hydrogen permeation is almost spherical and has a structure surrounded by a eutectic phase. In such a structure, even though hydrogen permeation is possible, high hydrogen permeation performance cannot be obtained.

このように作製された合金インゴットに対し、合金の断面積を減ずる塑性加工を行う。この塑性加工法は特に限定されないが、圧延加工、鍛造加工、プレス加工、押出加工等により加工される。加工時の温度は、室温、高温のいずれでもよい。また、加工雰囲気は大気中、Ar等の不活性ガス中、真空中のいずれでもよい。   The alloy ingot thus manufactured is subjected to plastic working that reduces the cross-sectional area of the alloy. Although this plastic working method is not particularly limited, it is processed by rolling, forging, pressing, extrusion, or the like. The processing temperature may be either room temperature or high temperature. Further, the processing atmosphere may be in the air, in an inert gas such as Ar, or in vacuum.

このように作製された合金試料中では、水素透過を担う相が加工方向に伸びた組織を形成している。組織の方向と同一方向に水素透過をさせれば、水素は水素透過を担う相を長距離拡散できるので、高い水素透過係数が期待できる。特に、膜厚を相の長さより小さくすれば、水素透過を担う相が水素透過方向の全長に亘って形成されていることになり、最良の結果が得られる。   In the alloy sample thus produced, the phase responsible for hydrogen permeation forms a structure extending in the processing direction. If hydrogen permeation is performed in the same direction as the direction of the tissue, hydrogen can diffuse the phase responsible for hydrogen permeation over a long distance, so that a high hydrogen permeation coefficient can be expected. In particular, when the film thickness is made smaller than the phase length, the phase responsible for hydrogen permeation is formed over the entire length in the hydrogen permeation direction, and the best result is obtained.

加工直後でも水素透過合金として使用可能であるが、加工時に導入された格子欠陥を除去するために熱処理を行うのがよい。熱処理雰囲気は真空中、不活性ガス中のいずれでもよい。熱処理温度は、格子欠陥の消滅、金属原子の長距離拡散が必要なため、800℃以上が望ましい。   Although it can be used as a hydrogen permeable alloy immediately after processing, heat treatment is preferably performed in order to remove lattice defects introduced during processing. The heat treatment atmosphere may be either a vacuum or an inert gas. The heat treatment temperature is desirably 800 ° C. or higher because lattice defects must be eliminated and long-distance diffusion of metal atoms is required.

このようにして作製された水素透過用金属膜は、厚さが薄いほど水素透過束(量)が大きくなり、水素透過効率が良くなる。しかし、金属膜の厚さが薄くなれば横械的強度が弱くなる。そのためこれら合金系の場合、合金膜の厚さは0.01〜1mmであることが好ましい。   As the thickness of the metal membrane for hydrogen permeation produced in this way is smaller, the hydrogen permeation flux (amount) increases and the hydrogen permeation efficiency is improved. However, as the thickness of the metal film is reduced, the mechanical strength is reduced. Therefore, in the case of these alloy systems, the thickness of the alloy film is preferably 0.01 to 1 mm.

さて、作製された合金材には、塑性加工処理後または熱処理後に、その合金材を挟んで、原料ガス側(上流、高圧水素側)である水素を取り込む側の面と精製水素側(下流、低圧水素側)である水素と取り出す側の面との両面に、水素の解離と再結合のために、さらにPd膜またはPd合金膜を形成することが必要である。その厚さは、一般に50〜400nm、好ましくは100〜200nmである。   Now, after the plastic working process or after the heat treatment, the produced alloy material is sandwiched between the alloy material, the raw material gas side (upstream, high-pressure hydrogen side) and the purified hydrogen side (downstream, In order to dissociate and recombine hydrogen, it is necessary to further form a Pd film or a Pd alloy film on both the hydrogen which is the low-pressure hydrogen side and the surface on the extraction side. The thickness is generally 50 to 400 nm, preferably 100 to 200 nm.

水素の解離と再結合のために、これら合金膜の両側にPdまたはPd合金膜を形成する方法は特に制限されず、例えば、真空蒸着、スパックリング、イオンプレーティング、電解めっき、無電解めっき等のいずれで行ってもよい。   The method of forming Pd or Pd alloy film on both sides of these alloy films for hydrogen dissociation and recombination is not particularly limited. For example, vacuum deposition, spuck ring, ion plating, electrolytic plating, electroless plating, etc. Any of these may be used.

以下、本発明の実施例および比較例を説明する。   Examples of the present invention and comparative examples will be described below.

合金材の組成がNi30Ti30Nb40(原子%)になるように、電解Ni(純度99.9重量%)、スポンジTi(純度99.5重量%)およびNbショット(純度99.9重量%)を配合し坩堝内に装填した。この坩堝を高周波誘導溶解炉内に設置し、油回転ポンプを用いて真空引きを行った。炉内の真空度が0.1Paに達した後、純アルゴンガスを導入した。その後、真空引きとアルゴンガス導入を3回繰り返した。次に、合金原料を加熱・溶解し、合金元素の溶け残り防止と均一性確保のため、溶融状態で15分保持した後、坩堝を傾けて溶湯を鋳型に流し込み、直径130mm、高さ150mmの円柱状インゴットを作製した。 Electrolytic Ni (purity 99.9 wt%), sponge Ti (purity 99.5 wt%) and Nb shot (purity 99.9 wt%) so that the composition of the alloy material is Ni 30 Ti 30 Nb 40 (atomic%). %) Was mixed and loaded into a crucible. This crucible was placed in a high-frequency induction melting furnace and evacuated using an oil rotary pump. After the degree of vacuum in the furnace reached 0.1 Pa, pure argon gas was introduced. Thereafter, evacuation and introduction of argon gas were repeated three times. Next, the alloy raw material is heated and melted, and in order to prevent the alloy elements from remaining undissolved and to ensure uniformity, the melted state is maintained for 15 minutes, and then the crucible is tilted to pour the molten metal into the mold, and the diameter is 130 mm and the height is 150 mm. A cylindrical ingot was produced.

合金インゴットを大気中で900℃に加熱した後に熱間鍛造および熱間圧延により所定の寸法に加工した。このようにして得られた合金インゴットから、放電加工により直径12mmで所定の厚さの円盤を切り出し、測定試料とした。   The alloy ingot was heated to 900 ° C. in the air and then processed into a predetermined size by hot forging and hot rolling. A disc having a diameter of 12 mm and a predetermined thickness was cut out from the alloy ingot thus obtained by electric discharge machining to obtain a measurement sample.

試料の両側を紙ヤスリ、バフ、次いで、直径0.5μmのαアルミナで研磨した後、走査型電子顕微鏡(SEM)を用いた微小構造観察を行った。   Both sides of the sample were polished with a paper file, a buff, and then α-alumina having a diameter of 0.5 μm, and then a microstructure was observed using a scanning electron microscope (SEM).

上記αアルミナで研磨した試料をアセトンで洗浄後、高周波マグネトロンスパッタ装置内にセットした。油回転ポンプ、クライオポンプを用いて、3×10−5Torrまで真空引きを行った。その後、試料表面に付着した酸化皮膜等を除去するため、RF電源を用いて10分間の逆スパッタを行った。次いで、試料をスパッタ装置内で350℃に加熱し、DC電源を用いて5分間Pdのスパッタを行った。この条件で被覆されるPd膜の厚さは190nmである。 The sample polished with α-alumina was washed with acetone and then set in a high-frequency magnetron sputtering apparatus. Using an oil rotary pump and a cryopump, vacuuming was performed up to 3 × 10 −5 Torr. Thereafter, reverse sputtering was performed for 10 minutes using an RF power source in order to remove the oxide film and the like adhering to the sample surface. Next, the sample was heated to 350 ° C. in the sputtering apparatus, and Pd sputtering was performed using a DC power source for 5 minutes. The thickness of the Pd film coated under these conditions is 190 nm.

水素透過測定は次のような流量法により実施した。まず、Pd被覆した円盤試料をCuガスケットでシールした。次いで、円盤の両側を油拡散ポンプにより排気して3×10−3Pa以下の圧力にし、その後円盤を加熱して673Kにし、そのまま保持した。それから水素ガス(純度99.99999%)を下流側および上流側に、それぞれ0.1および0.2MPa導入し、その後水素透過測定を行った。上流側の水素圧力を0.2MPaから0.65MPaまで段階的に増大させ、また、温度は段階的に673Kから553Kまで40K間隔で下げた。一定温度に30分保持してから水素透過試験を開始した。水素透過束J(molH−2−1)はマスフローメータを用いて測定した。 Hydrogen permeation measurement was carried out by the following flow rate method. First, the Pd-coated disc sample was sealed with a Cu gasket. Next, both sides of the disk were evacuated with an oil diffusion pump to a pressure of 3 × 10 −3 Pa or less, and then the disk was heated to 673 K and held as it was. Then, hydrogen gas (purity: 99.99999%) was introduced into the downstream and upstream sides, respectively, at 0.1 and 0.2 MPa, and then hydrogen permeation measurement was performed. The upstream hydrogen pressure was gradually increased from 0.2 MPa to 0.65 MPa, and the temperature was gradually decreased from 673 K to 553 K at 40 K intervals. After maintaining at a constant temperature for 30 minutes, the hydrogen permeation test was started. The hydrogen permeation flux J (molH 2 m −2 s −1 ) was measured using a mass flow meter.

様々な条件下(加工率、熱処理条件、膜厚、水素透過方向)で測定した合金の673Kでの水素透過係数を表1および表2に示す。
Tables 1 and 2 show the hydrogen permeation coefficients at 673 K of the alloys measured under various conditions (processing rate, heat treatment condition, film thickness, hydrogen permeation direction).

図3(a)に合金インゴットから切り出した加工前の合金材、図3(b)に幅25mm、高さ12mmまで加工した(加工率は98%である)直後の合金材のSEM写真を示す。なお、加工後の組織は、圧延方向に対して横方向から観察したものである。   FIG. 3A shows an SEM photograph of the alloy material before processing cut out from the alloy ingot, and FIG. 3B shows an SEM photograph of the alloy material immediately after processing to a width of 25 mm and a height of 12 mm (processing rate is 98%). . In addition, the structure | tissue after a process is observed from the horizontal direction with respect to the rolling direction.

鋳造状態では、水素透過を担う白色のTiNb相が15μm程度に球状に生成している。そしてこの相はNiTi相とTiNb相の細かい共晶組織に囲まれている。加工後には、このTiNb相は圧延方向に500μm〜800μm程度まで伸びていることが分かる。式(6)から見積もられるTiNb相の長さは800μm程度であり、両者はほぼ一致している。   In the cast state, a white TiNb phase responsible for hydrogen permeation is formed in a spherical shape of about 15 μm. This phase is surrounded by a fine eutectic structure of NiTi phase and TiNb phase. It can be seen that after the processing, the TiNb phase extends to about 500 μm to 800 μm in the rolling direction. The length of the TiNb phase estimated from the equation (6) is about 800 μm, and they are almost the same.

幅50mm、高さ25mmまで加工を行った合金(加工率は91%である)についても組織観察を行った結果、98%まで加工した合金と同様にTiNb相が圧延方向に伸びた組織を形成していた。しかし、TiNb相の長さは上記合金より小さく、200〜300μmであった。なお、式(6)から見積もられるTiNb相の長さは200μmである。   As a result of observing the structure of an alloy processed to a width of 50 mm and a height of 25 mm (processing rate is 91%), a structure in which the TiNb phase extends in the rolling direction is formed as in the case of an alloy processed to 98%. Was. However, the length of the TiNb phase was 200 to 300 μm, which was smaller than the above alloy. Note that the length of the TiNb phase estimated from the equation (6) is 200 μm.

このような組織を有する合金に対し、組織の伸びと平行な方向(紙面に対して左右方向)に水素を透過させた場合は並列方向の水素透過になる。この場合、水素は水素透過を担うTiNb相中を長距離拡散できるので、合金として高い水素透過性が得られると予想される。一方、組織の伸びと垂直な方向(紙面に対して上下方向)に水素を透過させた場合は直列方向の水素透過になる。この場合は、水素はTiNb相中を長距離拡散できず、水素透過性の低いNiTi相内も拡散しなければならないので、合金全体の水素透過性は低くなると考えられる。なお、本明細書において平行・垂直とは、幾何学的に厳密な意味で平行・垂直を意味するのではなく、平行あるいは垂直に近いものも含む概念である。   When an alloy having such a structure is permeated with hydrogen in a direction parallel to the stretch of the structure (left and right direction with respect to the paper surface), hydrogen permeation in the parallel direction occurs. In this case, hydrogen can be diffused in the TiNb phase responsible for hydrogen permeation over a long distance, so that it is expected that high hydrogen permeability can be obtained as an alloy. On the other hand, when hydrogen is allowed to permeate in a direction perpendicular to the tissue elongation (vertical direction with respect to the paper surface), hydrogen permeation in the series direction is obtained. In this case, hydrogen cannot be diffused for a long distance in the TiNb phase, and must be diffused in the NiTi phase having low hydrogen permeability, so that the hydrogen permeability of the entire alloy is considered to be low. In this specification, “parallel / perpendicular” does not mean parallel / perpendicular in a strict geometric sense, but includes a concept including parallel or near-vertical.

図4に、鋳造状態(△印、比較例1)、98%まで加工した合金の並列方向(◆印、実施例1)、同合金の直列方向(◇印、比較例2)、91%まで加工した合金の並列方向(○印、実施例2)、同合金の直列方向(●印、比較例3)における水素透過係数の温度依存性をアレニウスプロットの形式で示す。   FIG. 4 shows the cast state (Δ mark, Comparative Example 1), the parallel direction of the alloy processed to 98% (♦ mark, Example 1), the serial direction of the alloy (◇ mark, Comparative Example 2), up to 91%. The temperature dependence of the hydrogen permeability coefficient in the parallel direction of the processed alloy (circle mark, Example 2) and the serial direction of the alloy (circle mark, Comparative Example 3) is shown in the form of an Arrhenius plot.

鋳造合金の水素透過係数は純Pdと同等程度であるが、並列方向に水素透過させた場合、水素透過係数は数倍に増加した。一方、直列方向に水素を透過させた場合は、水素透過係数が1/8程度まで減少した。並列方向と直列方向の水素透過係数の差は数十倍にもなることが分かる。なお、鋳造合金は方向性組織を形成していないため、どの方向の水素透過係数もほぼ同じ値であった。   The hydrogen permeability coefficient of the cast alloy is about the same as that of pure Pd. However, when hydrogen was permeated in the parallel direction, the hydrogen permeability coefficient increased several times. On the other hand, when hydrogen was permeated in the series direction, the hydrogen permeation coefficient decreased to about 1/8. It can be seen that the difference in hydrogen permeation coefficient between the parallel direction and the serial direction is several tens of times. Since the cast alloy did not form a directional structure, the hydrogen permeation coefficient in any direction was almost the same value.

また、並列方向の水素透過では加工率が大きいほど水素透過係数が高く、逆に直列方向の水素透過では、加工率が高いほど水素透過係数は小さくなることが分かる。加工率が高いほど、TiNb相の長さが長くなるため、並列方向に長距離TiNb相内を水素が拡散できるが、直列方向にはTiNb相の長さは短くなるため、水素が拡散できる距離が小さくなるためであると考えられる。   It can also be seen that the hydrogen permeation coefficient in the parallel direction is higher as the processing rate is higher, and conversely in the hydrogen permeation in the series direction, the hydrogen permeation coefficient is lower as the processing rate is higher. The higher the processing rate, the longer the TiNb phase, so that hydrogen can diffuse in the long-distance TiNb phase in the parallel direction, but the length of the TiNb phase becomes shorter in the series direction, so the distance that hydrogen can diffuse. This is considered to be because of the decrease.

また、この合金の水素透過係数の対数は絶対温度(K)の逆数に対して直線的に変化する。これはこの合金における水素透過が水素の拡散によって律速されていることを示す。また、この直線の傾きは水素透過の活性化エネルギーであり、水素原子が拡散するときのエネルギー障壁の大小を示す。各合金の活性化エネルギーを比較すると、並列型<鋳造状態<直列型の関係が見られる。つまり、並列方向に水素が透過する場合には、水素原子が容易に拡散できることを示している。   Also, the logarithm of the hydrogen permeability coefficient of this alloy varies linearly with respect to the reciprocal of absolute temperature (K). This indicates that the hydrogen permeation in this alloy is limited by the diffusion of hydrogen. The slope of this straight line is the activation energy for hydrogen permeation, and indicates the magnitude of the energy barrier when hydrogen atoms diffuse. When the activation energies of the respective alloys are compared, a relationship of parallel type <cast state <series type is seen. That is, when hydrogen permeates in the parallel direction, hydrogen atoms can be easily diffused.

以上より、圧延法を用いて水素透過を主に担うTiNb相を一方向に伸びた組織を作製できることが明らかとなり、水素透過と組織の伸びた方向を同一とすることで、鋳造状態と比較して高い水素透過係数が得られる。   From the above, it becomes clear that a structure in which the TiNb phase mainly responsible for hydrogen permeation can be produced in one direction using a rolling method can be produced. High hydrogen permeability coefficient.

98%加工材(実施例1)および91%加工材(実施例2)の水素透過係数は膜厚500μmで測定を行った。これら合金中で加工後のTiNb相の長さはそれぞれ500〜800μm、200〜300μmであるため、前者ではTiNb相が水素透過方向の全長に亘って形成されている構造、一方後者ではTiNb相が水素透過方向の全長に亘って形成されていない構造になっている。   The hydrogen permeation coefficient of 98% processed material (Example 1) and 91% processed material (Example 2) was measured at a film thickness of 500 μm. In these alloys, the length of the TiNb phase after processing is 500 to 800 μm and 200 to 300 μm, respectively. Therefore, in the former, the TiNb phase is formed over the entire length in the hydrogen permeation direction, whereas in the latter, the TiNb phase is The structure is not formed over the entire length in the hydrogen permeation direction.

本来、水素透過係数は膜厚に依存しない物理量である。しかし、TiNb相が水素透過方向の全長に亘って形成されている状態では、水素はTiNb相のみを主に拡散することができるため、水素透過係数の増大が予想される。そこで、水素透過係数に及ぼすTiNb相が水素透過方向の全長に亘って形成されていることの影響を調べるため、91%加工材の膜厚と水素透過係数の関係を調べた。   Originally, the hydrogen permeation coefficient is a physical quantity independent of the film thickness. However, in a state where the TiNb phase is formed over the entire length in the hydrogen permeation direction, hydrogen can mainly diffuse only in the TiNb phase, so that an increase in the hydrogen permeation coefficient is expected. Therefore, in order to examine the influence of the TiNb phase formed over the entire length in the hydrogen permeation direction on the hydrogen permeation coefficient, the relationship between the film thickness of the 91% processed material and the hydrogen permeation coefficient was examined.

図5にこの合金の膜厚と673Kにおける水素透過係数の関係を示す。膜厚が500μm以上では、TiNb相は合金膜の水素透過方向の全長に亘って形成されていないと考えられる。このとき、水素透過係数は4.0×10−8(molH−1−1Pa−0.5)程度であり膜厚依存性は見られなかった(○印、実施例2〜4)。ところが、膜厚を小さくすると、水素透過係数が急激に増加した。これは、膜厚の減少により水素透過方向の全長に亘って形成されたTiNb相の量が増大するためと考えられる。膜厚が300μm以下になると、ほぼすべてのTiNb相が水素透過方向の全長に亘って形成されるようになり、水素透過係数は7.5×10−8(molH−1−1Pa−0.5)程度になった(○印、実施例5、6)。この値は、TiNb相が水素透過方向の全長に亘って形成されていると考えられる98%加工材(実施例1)の水素透過係数とほぼ同じである。 FIG. 5 shows the relationship between the film thickness of this alloy and the hydrogen permeability coefficient at 673K. When the film thickness is 500 μm or more, it is considered that the TiNb phase is not formed over the entire length of the alloy film in the hydrogen permeation direction. At this time, the hydrogen permeation coefficient was about 4.0 × 10 −8 (molH 2 m −1 s −1 Pa −0.5 ), and no film thickness dependency was observed (circle mark, Examples 2 to 4). ). However, as the film thickness was reduced, the hydrogen permeability coefficient increased rapidly. This is presumably because the amount of TiNb phase formed over the entire length in the hydrogen permeation direction increases due to the decrease in film thickness. When the film thickness is 300 μm or less, almost all of the TiNb phase is formed over the entire length in the hydrogen permeation direction, and the hydrogen permeation coefficient is 7.5 × 10 −8 (molH 2 m −1 s −1 Pa). -0.5 ) (○ mark, Examples 5 and 6). This value is almost the same as the hydrogen permeation coefficient of the 98% processed material (Example 1) in which the TiNb phase is considered to be formed over the entire length in the hydrogen permeation direction.

参考のため鋳造合金でも同様の測定を行ったが、鋳造合金の水素透過係数は膜厚に依存せず1.7×10−8(molH−1−1Pa−0.5)程度であった(◇印、比較例1、4〜6)。図3(a)に示したように、鋳造合金中のTiNb相は15μm程度と膜厚に対して小さく、水素透過方向の全長に亘って形成されていないためと考えられる。 The same measurement was performed for the cast alloy for reference, but the hydrogen permeability coefficient of the cast alloy did not depend on the film thickness, and was about 1.7 × 10 −8 (molH 2 m −1 s −1 Pa −0.5 ). (◇ mark, Comparative Examples 1, 4 to 6). As shown to Fig.3 (a), it is thought that the TiNb phase in a casting alloy is about 15 micrometers and is small with respect to a film thickness, and is not formed over the full length of a hydrogen permeable direction.

以上のように、一方向に伸びた組織を作製して組織の方向と水素透過の方向を揃えることで高い水素透過係数を得られるが、TiNb相が水素透過方向の全長に亘って形成されている状態では極めて高い水素透過係数が得られるといえる。通常、水素透過合金は厚くとも50μm程度で用いられる。そのため、TiNb相の長さが50μm程度にするには、50%以上の加工率が必要である。   As described above, a high hydrogen permeability coefficient can be obtained by preparing a structure extending in one direction and aligning the direction of the structure and the direction of hydrogen permeation, but the TiNb phase is formed over the entire length of the hydrogen permeation direction. It can be said that a very high hydrogen permeation coefficient can be obtained in the state where the Usually, the hydrogen permeable alloy is used at a thickness of about 50 μm. Therefore, a processing rate of 50% or more is required to make the length of the TiNb phase about 50 μm.

ここで、加工後の金属材料には、合金内部に転位等の格子欠陥が生成し、水素の拡散を妨害するため、熱処理により除去する必要がある。その際、ミクロ組織が変化して水素透過性が変化する可能性がある。そこで、鍛造・圧延により作製した合金試料を熱処理し、ミクロ組織および水素透過係数の変化について調べた。   Here, in the metal material after processing, lattice defects such as dislocations are generated inside the alloy and hinder diffusion of hydrogen, so it is necessary to remove by heat treatment. At that time, the microstructure may change and the hydrogen permeability may change. Therefore, an alloy sample produced by forging and rolling was heat-treated, and changes in the microstructure and hydrogen permeability coefficient were examined.

図6に加工率98%の合金材を1173Kで熱処理したときの673Kにおける水素透過係数の変化を示す。前述のように、熱処理前は並列方向と直列方向で水素透過係数に大きな差が生じている。○印で示した並列方向の水素透過の場合、熱処理時間とともに水素透過係数が増加し、100時間で最大となった。これは、水素原子をトラップする転位等の格子欠陥が消滅していくことで、水素の拡散が容易になり、水素透過係数が増加したと考えられる。しかし、100時間以上の熱処理により水素透過係数は低下した。   FIG. 6 shows changes in the hydrogen permeation coefficient at 673 K when an alloy material with a processing rate of 98% is heat-treated at 1173 K. As described above, there is a large difference in the hydrogen permeability coefficient between the parallel direction and the serial direction before the heat treatment. In the case of hydrogen permeation in the parallel direction indicated by ○, the hydrogen permeation coefficient increased with the heat treatment time and reached the maximum at 100 hours. This is thought to be due to the fact that lattice defects such as dislocations trapping hydrogen atoms disappear, hydrogen diffusion becomes easier, and the hydrogen permeability coefficient increases. However, the hydrogen permeation coefficient was lowered by the heat treatment for 100 hours or more.

図7に上記合金を1373Kで168時間熱処理した際のSEM写真を示す。熱処理前の組織と比較すると(図3(b))、白色のTiNb相の長さが短くなり、幅が大きくなっていることが分かる。加工直後はTiNb相が薄く長く延びているため、合金内には大きな界面エネルギーが蓄えられている。そのため、熱処理中に界面エネルギーを低下させるために、TiNb相が途中で断絶して幅が大きくなる。その結果、TiNb相内を水素が拡散できる距離が短くなり、水素透過係数が低下したと考えられる。したがって、並列方向に水素を透過させる場合には、このような組織変化が生じないようにするため、熱処理時間は100時間以下に限定される。   FIG. 7 shows an SEM photograph when the above alloy is heat treated at 1373 K for 168 hours. Compared with the structure before the heat treatment (FIG. 3B), it can be seen that the length of the white TiNb phase is shortened and the width is increased. Immediately after the processing, the TiNb phase is thin and long, so that large interfacial energy is stored in the alloy. Therefore, in order to reduce the interfacial energy during the heat treatment, the TiNb phase is interrupted and the width is increased. As a result, it is considered that the distance that hydrogen can diffuse in the TiNb phase is shortened and the hydrogen permeability coefficient is lowered. Therefore, when hydrogen is permeated in the parallel direction, the heat treatment time is limited to 100 hours or less in order to prevent such a structural change from occurring.

一方、◇印で示した直列方向の水素透過係数は、熱処理時間と共に増加し、100時間以上の熱処理により鋳造材の水素透過係数と同程度まで回復していることが分かる。熱処理時間が短い場合は、転位等の格子欠陥の消滅により水素透過係数が増加したと考えられる。ところが、直列方向の場合は、100時間以上の熱処理でも水素透過係数は増加した。上述のように、168時間の熱処理でTiNb相が断絶し幅が大きくなり、並列方向の水素透過には不利になるが、直列方向の水素透過には有利になる。TiNb相の幅が大きくなることは、直列方向で水素がTiNb相中を拡散できる距離が大きくなるからである。   On the other hand, it can be seen that the hydrogen permeability coefficient in the series direction indicated by ◇ increases with the heat treatment time and recovered to the same level as the hydrogen permeability coefficient of the cast material by the heat treatment for 100 hours or more. When the heat treatment time is short, it is considered that the hydrogen permeability coefficient increased due to the disappearance of lattice defects such as dislocations. However, in the case of the series direction, the hydrogen permeation coefficient increased even after heat treatment for 100 hours or more. As described above, the heat treatment for 168 hours breaks the TiNb phase and increases the width, which is disadvantageous for hydrogen permeation in the parallel direction, but is advantageous for hydrogen permeation in the series direction. The reason why the width of the TiNb phase is increased is that the distance that hydrogen can diffuse in the TiNb phase in the series direction is increased.

以上のように、加工後の試料に熱処理を行うと、水素の拡散を妨げる格子欠陥の除去により水素透過係数を向上させることができる。また、直列方向の水素透過では、水素の拡散方向にTiNb相の幅を増加させる効果もあり、水素透過係数の向上に寄与する。   As described above, when the processed sample is heat-treated, the hydrogen permeation coefficient can be improved by removing lattice defects that hinder hydrogen diffusion. Further, the hydrogen permeation in the series direction also has an effect of increasing the width of the TiNb phase in the hydrogen diffusion direction, which contributes to the improvement of the hydrogen permeation coefficient.

直列方向の水素透過係数が熱処理により鋳造状態と同程度のレベルに回復することは、実用上特に大きな意味を持つ。大面積の水素透過合金膜を製造する場合には、圧延により薄膜化した後に、圧延面と垂直な方向に水素を透過させることが求められる。しかし、この場合は必然的に直列方向の水素透過になり、水素透過係数が著しく低下するので、このままでは水素透過合金膜として使用することはできない。ところが、30〜50時間程度の熱処理により、実用レベルまで水素透過係数を回復させることができる。   The fact that the hydrogen permeation coefficient in the series direction is restored to the same level as in the cast state by heat treatment is particularly significant in practice. When producing a hydrogen permeable alloy film having a large area, it is required to allow hydrogen to permeate in a direction perpendicular to the rolling surface after being thinned by rolling. However, in this case, the hydrogen permeation in the series direction is inevitably performed, and the hydrogen permeation coefficient is remarkably lowered. Therefore, the hydrogen permeation alloy film cannot be used as it is. However, the hydrogen permeation coefficient can be recovered to a practical level by heat treatment for about 30 to 50 hours.

水素透過合金中を透過する水素の流束は、合金の水素透過係数に比例し、膜厚に反比例する。本発明の圧延・熱処理法は、単なる膜厚を減少させるための手段だけではなく、組織制御により水素透過係数も向上させることができる。その結果、これらの相乗効果によって極めて高い水素透過流束を得ることが可能である。   The hydrogen flux permeating through the hydrogen permeable alloy is proportional to the hydrogen permeability coefficient of the alloy and inversely proportional to the film thickness. The rolling / heat treatment method of the present invention can improve not only the means for reducing the film thickness but also the hydrogen permeation coefficient by controlling the structure. As a result, it is possible to obtain a very high hydrogen permeation flux by these synergistic effects.

本発明によれば、水素透過性を担う相と耐水素脆化性を担う相との複合合金を圧延・熱処理を用いて組織を制御することにより、高い水素透過係数を有する薄膜を容易に作製することができる。そのため、極めて高い効率で水素の透過を行うことができので、得られた高純度水素を、燃料電池用の供給燃料や、半導体、光ファイバ、薬品等の製造分野に適用可能である。   According to the present invention, a thin film having a high hydrogen permeability coefficient can be easily produced by controlling the structure of a composite alloy of a phase responsible for hydrogen permeability and a phase responsible for hydrogen embrittlement resistance by rolling and heat treatment. can do. Therefore, since hydrogen can be permeated with extremely high efficiency, the obtained high-purity hydrogen can be applied to the manufacturing fields of fuel for fuel cells, semiconductors, optical fibers, chemicals, and the like.

水素透過複合則から計算した並列方向および直列方向の水素透過係数を示すグラフである。It is a graph which shows the hydrogen permeation coefficient of the parallel direction and the serial direction computed from the hydrogen permeation | transmission composite law. 円柱状インゴット中の球状相の加工による形状変化を示した模式図である。It is the schematic diagram which showed the shape change by the process of the spherical phase in a cylindrical ingot. Ni30Ti30Nb40合金のSEM写真である。(a)は鋳造状態、(b)は98%まで加工した合金の圧延横方向から観察したものである。It is a SEM photograph of a Ni 30 Ti 30 Nb 40 alloy. (A) is a cast state, (b) is observed from the rolling lateral direction of the alloy processed to 98%. Ni30Ti30Nb40合金の水素透過係数の温度依存性を示す図である。◆印は98%加工材の並列方向、○印は91%加工材の並列方向、△印は鋳造状態、●印は91%加工材の直列方向、◇印は98%加工材の直列方向の水素透過係数をそれぞれ示す。It is a diagram showing temperature dependence of the hydrogen permeability coefficient of Ni 30 Ti 30 Nb 40 alloy. ◆ indicates 98% workpiece parallel direction, ○ indicates 91% workpiece parallel direction, △ indicates cast state, ● indicates 91% workpiece in-line direction, ◇ indicates 98% workpiece in-line direction The hydrogen permeation coefficient is shown respectively. Ni30Ti30Nb40合金の膜厚と673Kにおける水素透過係数の関係を示す図である。○印は91%加工材の並列方向、◇印は鋳造状態の水素透過係数を示す。It is a diagram showing the Ni 30 Ti 30 Nb 40 relationship of the hydrogen permeability at a film thickness and 673K of the alloy. The circles indicate the direction of 91% workpiece parallel, and the circles indicate the hydrogen permeability coefficient in the cast state. Ni30Ti30Nb40合金の熱処理時間と水素透過係数の変化を示す図である。○印は98%加工材の並列方向、◇印は98%加工材の直列方向の水素透過係数を示す。Is a graph showing changes in heat treatment time and the hydrogen permeability coefficient of Ni 30 Ti 30 Nb 40 alloy. ○ indicates the hydrogen permeation coefficient in the parallel direction of 98% processed material, and ◇ indicates the hydrogen permeation coefficient in the serial direction of 98% processed material. 98%加工後に168時間熱処理したNi30Ti30Nb40合金を圧延横方向から観察したSEM写真である。The 98% Ni 30 was heat treated for 168 hours after processing Ti 30 Nb 40 alloy is a SEM photograph showing a rolled laterally.

Claims (7)

水素透過性を担う相と耐水素脆化性を担う相とで構成された複相型水素透過合金であって、
前記水素透過を担う相が水素透過方向に伸びていることを特徴とする複相型水素透過合金。
A multi-phase hydrogen permeable alloy composed of a phase responsible for hydrogen permeability and a phase responsible for hydrogen embrittlement resistance,
A multi-phase hydrogen permeable alloy, wherein the phase responsible for hydrogen permeation extends in the hydrogen permeation direction.
前記水素透過を担う相は水素透過方向の全長に亘って形成されていることを特徴とする請求項1記載の複相型水素透過合金。   2. The multiphase hydrogen permeable alloy according to claim 1, wherein the phase responsible for hydrogen permeation is formed over the entire length in the hydrogen permeation direction. 前記複相型水素透過合金は、厚さが0.01〜1mmの合金膜であることを特徴とする請求項1または2記載の複相型水素透過合金。   The multi-phase hydrogen permeable alloy according to claim 1 or 2, wherein the multi-phase hydrogen permeable alloy is an alloy film having a thickness of 0.01 to 1 mm. 水素を取り込む側の面および水素を取り出す側の面にPd膜またはPd合金膜が形成され、
当該Pd膜またはPd合金膜の厚さが50〜400nmの範囲内であることを特徴とする請求項1〜3の何れか一項に記載の複相型水素透過合金。
A Pd film or a Pd alloy film is formed on the surface that takes in hydrogen and the surface that takes out hydrogen,
The multiphase hydrogen-permeable alloy according to any one of claims 1 to 3, wherein the Pd film or the Pd alloy film has a thickness in the range of 50 to 400 nm.
請求項1〜3の何れか一項に記載の複相型水素透過合金の製造方法であって、
合金の断面積を減ずる塑性加工処理によって前記水素透過性を担う相を水素透過方向に伸ばすことを特徴とする複相型水素透過合金の製造方法。
It is a manufacturing method of the double phase type hydrogen permeable alloy according to any one of claims 1 to 3,
A method for producing a multi-phase hydrogen permeable alloy, characterized in that the phase responsible for hydrogen permeability is extended in the hydrogen permeation direction by a plastic working process that reduces the cross-sectional area of the alloy.
前記塑性加工処理後に熱処理を行うことを特徴とする請求項5記載の複相型水素透過合金の製造方法。   6. The method for producing a multiphase hydrogen permeable alloy according to claim 5, wherein heat treatment is performed after the plastic working treatment. 前記塑性加工処理後または前記熱処理後に、水素を取り込む側の面および水素を取り出す側の面にPd膜またはPd合金膜を形成することを特徴とする請求項5または6記載の複相型水素透過合金の製造方法。   7. The multiphase hydrogen permeation according to claim 5 or 6, wherein a Pd film or a Pd alloy film is formed on a surface that takes in hydrogen and a surface that takes out hydrogen after the plastic working treatment or after the heat treatment. Alloy manufacturing method.
JP2006244010A 2006-09-08 2006-09-08 Dual-phase hydrogen permeable alloy and method for producing the same Active JP5463557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006244010A JP5463557B2 (en) 2006-09-08 2006-09-08 Dual-phase hydrogen permeable alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006244010A JP5463557B2 (en) 2006-09-08 2006-09-08 Dual-phase hydrogen permeable alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008063628A true JP2008063628A (en) 2008-03-21
JP5463557B2 JP5463557B2 (en) 2014-04-09

Family

ID=39286587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006244010A Active JP5463557B2 (en) 2006-09-08 2006-09-08 Dual-phase hydrogen permeable alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP5463557B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111516A1 (en) * 2007-03-09 2008-09-18 Hitachi Metals, Ltd. Hydrogen-permeable alloy, hydrogen-permeable membrane, and method for production thereof
WO2011152369A1 (en) * 2010-05-31 2011-12-08 日立金属株式会社 Hydrogen separation alloy and method for producing same
JP2013215717A (en) * 2012-03-12 2013-10-24 Tokyo Gas Co Ltd Hydrogen separation membrane and hydrogen separation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005232491A (en) * 2004-02-17 2005-09-02 Ulvac Japan Ltd Dual-phase alloy for hydrogen separation and purification and its manufacturing method, and metal film for hydrogen separation and purification and its manufacturing method
JP2006118035A (en) * 2004-09-22 2006-05-11 Kitami Institute Of Technology Crystalline dual-phase hydrogen permeable alloy and crystalline dual-phase hydrogen permeable alloy film
JP2007083198A (en) * 2005-09-26 2007-04-05 Japan Steel Works Ltd:The Hydrogen-permeable alloy and its producing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005232491A (en) * 2004-02-17 2005-09-02 Ulvac Japan Ltd Dual-phase alloy for hydrogen separation and purification and its manufacturing method, and metal film for hydrogen separation and purification and its manufacturing method
JP2006118035A (en) * 2004-09-22 2006-05-11 Kitami Institute Of Technology Crystalline dual-phase hydrogen permeable alloy and crystalline dual-phase hydrogen permeable alloy film
JP2007083198A (en) * 2005-09-26 2007-04-05 Japan Steel Works Ltd:The Hydrogen-permeable alloy and its producing method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012032987; 佐々木剛、外4名: '"一方向凝固させたNb-Ti-Co系合金の組織と水素透過性能の関連性"' 日本金属学会講演概要(第137回) , 20050928, p.203, 社団法人 日本金属学会 *
JPN6012032990; 徳井翔、外2名: '"Nb-Ti-Co合金の水素透過係数と加工性に及ぼす熱処理の効果"' 日本金属学会講演概要(第137回) , 20050928, p.202, 社団法人 日本金属学会 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111516A1 (en) * 2007-03-09 2008-09-18 Hitachi Metals, Ltd. Hydrogen-permeable alloy, hydrogen-permeable membrane, and method for production thereof
JP5310541B2 (en) * 2007-03-09 2013-10-09 日立金属株式会社 Hydrogen permeable alloy and method for producing the same
WO2011152369A1 (en) * 2010-05-31 2011-12-08 日立金属株式会社 Hydrogen separation alloy and method for producing same
CN102471839A (en) * 2010-05-31 2012-05-23 日立金属株式会社 Hydrogen separation alloy and method for producing same
JP5152433B2 (en) * 2010-05-31 2013-02-27 日立金属株式会社 Hydrogen separation alloy and manufacturing method thereof
KR101391500B1 (en) 2010-05-31 2014-05-07 히타치 긴조쿠 가부시키가이샤 Hydrogen separation alloy and method for producing same
US9266071B2 (en) 2010-05-31 2016-02-23 Hitachi Metals, Ltd. Hydrogen separation alloy and method for producing same
JP2013215717A (en) * 2012-03-12 2013-10-24 Tokyo Gas Co Ltd Hydrogen separation membrane and hydrogen separation method

Also Published As

Publication number Publication date
JP5463557B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
KR101290942B1 (en) Multiple phase alloys for hydrogen separation-purification and method for preparing the alloys, and metal membranes for hydrogen separation-purification and method for preparing the metal membranes
JP5152433B2 (en) Hydrogen separation alloy and manufacturing method thereof
JP3749952B1 (en) Crystalline double-phase hydrogen permeable alloy membrane and crystalline double-phase hydrogen permeable alloy membrane
JP3749953B1 (en) Double phase hydrogen permeable alloy and hydrogen permeable alloy membrane
JP5463557B2 (en) Dual-phase hydrogen permeable alloy and method for producing the same
US7514036B2 (en) Hydrogen permeable alloy and method for producing the same
JP2007083198A (en) Hydrogen-permeable alloy and its producing method
JP4742269B2 (en) Method for producing double-phase hydrogen permeable alloy and double-phase hydrogen permeable alloy
JP4953337B2 (en) Double phase alloy for hydrogen separation and purification
KR20140065641A (en) Vanadium-based hydrogen permeation alloy used for a membrane, method for manufacturing the same and method for using the membrane
EP1992401B1 (en) Hydrogen-permeable separation thin membranes
JP4953278B2 (en) Hydrogen permeation separation thin film with excellent hydrogen permeation separation performance
WO2013039092A1 (en) Hydrogen separation device and method for operating same
KR102130069B1 (en) Separation membrane, hydrogen separation membrane including the separation membrane, and method manufacturing the separation membrane
JP5199760B2 (en) Hydrogen permeation separation thin film with excellent hydrogen permeation separation performance
JP5039968B2 (en) Crystalline double phase hydrogen permeable alloy and hydrogen permeable alloy membrane
JP3882089B1 (en) Crystalline double phase hydrogen permeable alloy and hydrogen permeable alloy membrane
JP4953279B2 (en) Hydrogen permeation separation thin film with excellent hydrogen permeation separation performance
JP4178143B2 (en) Hydrogen separation membrane and method for producing the same
JP5549205B2 (en) Hydrogen separation alloy, hydrogen separation alloy rolling forming material, method for producing hydrogen separation alloy, and hydrogen separation apparatus
Sipatov et al. Structure and properties study of V-based membrane alloys for ultra-high purity hydrogen production
JP7388627B2 (en) Hydrogen permeation device and method for manufacturing hydrogen permeation device
JP2008194629A (en) Hydrogen-permeable alloy membrane
JP2014198883A (en) Hydrogen permeable copper alloy, hydrogen permeation membrane and steam reformer
JP2007054788A (en) Hydrogen-permeable alloy membrane and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130131

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130207

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131028

R150 Certificate of patent or registration of utility model

Ref document number: 5463557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350