JP2010070818A - Pd-Cu BASED ALLOY SUPERIOR IN HYDROGEN PERMEABILITY - Google Patents

Pd-Cu BASED ALLOY SUPERIOR IN HYDROGEN PERMEABILITY Download PDF

Info

Publication number
JP2010070818A
JP2010070818A JP2008240840A JP2008240840A JP2010070818A JP 2010070818 A JP2010070818 A JP 2010070818A JP 2008240840 A JP2008240840 A JP 2008240840A JP 2008240840 A JP2008240840 A JP 2008240840A JP 2010070818 A JP2010070818 A JP 2010070818A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen
hydrogen permeability
permeability
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008240840A
Other languages
Japanese (ja)
Other versions
JP5185035B2 (en
Inventor
Kazuyasu Takada
和泰 高田
Shinji Kai
慎二 甲斐
Shinobu Hazawa
忍 羽澤
Kunihiro Shima
邦弘 嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Holdings Co Ltd
Original Assignee
Tanaka Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Holdings Co Ltd filed Critical Tanaka Holdings Co Ltd
Priority to JP2008240840A priority Critical patent/JP5185035B2/en
Publication of JP2010070818A publication Critical patent/JP2010070818A/en
Application granted granted Critical
Publication of JP5185035B2 publication Critical patent/JP5185035B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Pd-Cu alloy having hydrogen permeability which has been improved to a similar level to that of a Pd-Ag alloy. <P>SOLUTION: The Pd-Cu based alloy having the hydrogen permeability includes, by atom%, 50-66% Cu, 0.01-1.5% Mn, and the balance Pd. A hydrogen permeable film formed of the Pd-Cu alloy has twice or more hydrogen permeability than that of a hydrogen permeable film formed of a conventional Pd-Cu alloy having no Mn added, and has a performance approaching the Pd-Ag alloy that is evaluated to be superior in hydrogen permeability. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、水素透過性能に優れたPd合金に関する。詳しくは、Pd−Cu合金をベースとし、その従来有する利点を保持しつつ、水素透過性能が改善されたPd合金に関する。   The present invention relates to a Pd alloy having excellent hydrogen permeation performance. Specifically, the present invention relates to a Pd-Cu alloy that is based on a Pd-Cu alloy and has improved hydrogen permeation performance while maintaining its advantages.

水素ガスは、各種化合物の還元剤や不飽和結合への水素添加源等の各種反応に供される基礎原料として従来から利用されているが、近年においては、燃料電池用の燃料としての利用が特に注目されており、その需要が増大傾向にある。水素ガスの工業的製造方法としては、各種の方法が知られているが、いずれにおいても製造した水素ガスの精製が必要となる。例えば、燃料電池用水素ガスの製造として着目されている水蒸気改質法においては、製造される改質ガス中に主成分である水素の他、一酸化炭素、二酸化炭素等が含まれている。これらの不純物は、燃料電池電極を構成する触媒を劣化させる要因となるため、使用前に改質ガスを精製して高純度の水素とすることが必要である。   Hydrogen gas has been used as a basic raw material for various reactions such as reducing agents for various compounds and a source of hydrogen addition to unsaturated bonds, but in recent years, it has been used as a fuel for fuel cells. It is attracting particular attention and its demand is increasing. Various methods are known as industrial methods for producing hydrogen gas, and in any case, it is necessary to purify the produced hydrogen gas. For example, in a steam reforming method that has attracted attention as the production of hydrogen gas for fuel cells, the produced reformed gas contains carbon monoxide, carbon dioxide, etc. in addition to hydrogen as the main component. Since these impurities cause deterioration of the catalyst constituting the fuel cell electrode, it is necessary to purify the reformed gas to use high-purity hydrogen before use.

この水素精製法としては、水素透過性を有する金属からなる水素透過膜を使用する水素透過膜法が実用化されている。金属膜を用いた水素精製においては、例えば、純度99%の水素を99.99999%程度の高純度にまで精製することができ、燃料電池用途等の高純度の水素の精製に適している。   As this hydrogen purification method, a hydrogen permeable membrane method using a hydrogen permeable membrane made of a metal having hydrogen permeability has been put into practical use. In the hydrogen purification using a metal membrane, for example, 99% purity hydrogen can be purified to a high purity of about 99.99999%, which is suitable for the purification of high purity hydrogen for fuel cell applications and the like.

水素透過膜として使用されている金属膜としては、Pd系合金(Pd−Ag合金やPd−Cu合金又はPd−希土類金属合金等が知られている:特許文献1、2を参照)が知られており、特に、Pd−Ag合金(Ag:20〜30重量%)とPd−Cu合金(Cu:37〜45重量%)は、水素透過膜用のPd合金として研究なされている。
特開2001−262252号公報 特開2008−12495号公報
As a metal film used as a hydrogen permeable film, a Pd-based alloy (Pd—Ag alloy, Pd—Cu alloy, Pd—rare earth metal alloy, etc. are known: see Patent Documents 1 and 2). In particular, Pd—Ag alloys (Ag: 20 to 30% by weight) and Pd—Cu alloys (Cu: 37 to 45% by weight) have been studied as Pd alloys for hydrogen permeable membranes.
JP 2001-262252 A JP 2008-12495 A

これら2種のPd合金に関し、Pd−Ag合金は、水素透過性が比較的高いことから、水素透過性の観点のみから見れば水素透過膜用の材料として好適である。しかし、Pd−Ag合金においては、水素吸収による脆化(水素脆化)の問題や耐食性(耐酸化性、耐硫黄腐食性)の問題があり、種々の不純物が混合された水素を取り扱うには解決すべき課題が多すぎるといえる。   Regarding these two types of Pd alloys, the Pd-Ag alloy has a relatively high hydrogen permeability, and is therefore suitable as a material for the hydrogen permeable membrane from the viewpoint of hydrogen permeability. However, Pd-Ag alloys have problems of embrittlement due to hydrogen absorption (hydrogen embrittlement) and corrosion resistance (oxidation resistance, sulfur corrosion resistance), and how to handle hydrogen mixed with various impurities. It can be said that there are too many problems to be solved.

これに対してPd−Cu合金は、Pd−Ag合金における上記の水素脆化や耐食性の問題が少ないことから、実用化が進んでいる材料である。しかしながら、Pd−Cu合金は、Pd−Ag合金と比較して水素透過性が劣るという問題がある。これは、Pd−Cu合金における水素透過能が、その結晶構造がbccを基礎とするB2構造のβ相が存在する状態において発現する点に由来する。通常、合金の水素透過性は使用温度の上昇に伴い向上するが、Pd−Cu合金のβ相は、比較的低温(400℃付近)で存在することから、それ以上高温にすると却って水素透過性を失うこととなる。よって、Pd−Cu合金においては、使用温度の高温化により水素透過性を向上させることができず、一定の限界を有することとなる。   On the other hand, a Pd—Cu alloy is a material that has been put to practical use because there are few problems of hydrogen embrittlement and corrosion resistance in the Pd—Ag alloy. However, the Pd—Cu alloy has a problem that the hydrogen permeability is inferior to that of the Pd—Ag alloy. This is due to the fact that the hydrogen permeability in the Pd—Cu alloy is manifested in the presence of a β phase with a B2 structure based on bcc. Normally, the hydrogen permeability of the alloy improves as the operating temperature increases, but the β phase of the Pd—Cu alloy exists at a relatively low temperature (around 400 ° C.). You will lose. Therefore, in the Pd—Cu alloy, the hydrogen permeability cannot be improved by increasing the use temperature and has a certain limit.

従って、Pd−Cu合金からなる水素透過膜の改良においては、その合金自体の水素透過性を改善する必要がある。そして、これをPd−Ag合金と同程度までに改善することができれば、水素精製装置の能力増強或いは装置サイズのコンパクト化に寄与できるといえる。   Therefore, in improving a hydrogen permeable membrane made of a Pd—Cu alloy, it is necessary to improve the hydrogen permeability of the alloy itself. And if this can be improved to the same extent as a Pd-Ag alloy, it can be said that it can contribute to the capacity | capacitance enhancement of a hydrogen purification apparatus, or size reduction of an apparatus.

そこで本発明は、水素透過性を有するPd−Cu合金に関し、その能力をPd−Ag合金と同等に改善させたものと提供することを目的とする。   Therefore, the present invention relates to a Pd—Cu alloy having hydrogen permeability, and an object thereof is to provide a Pd—Cu alloy whose ability is improved to be equal to that of a Pd—Ag alloy.

本発明者等は、Pd−Cu合金をベースとしてこれに微量の添加元素を添加することにより上記課題の解決の可否を検討した。そして、鋭意検討の結果、添加元素としてMn(マンガン)の微量添加により、従来のPd−Cu合金に対して倍以上の水素透過性を具備させることができることを見出し、本発明に想到した。   The present inventors examined whether or not the above-mentioned problem could be solved by adding a small amount of an additive element to a Pd—Cu alloy as a base. As a result of intensive studies, the inventors have found that by adding a small amount of Mn (manganese) as an additive element, the hydrogen permeability of the conventional Pd—Cu alloy can be doubled or more, and the present invention has been conceived.

即ち、本発明は、水素透過性を有するPd−Cu系合金において、Cu:50〜66原子%、Mn:0.01〜1.5原子%、残部Pdからなることを特徴とするPd−Cu系合金である。   That is, the present invention relates to a Pd—Cu-based alloy having hydrogen permeability, comprising Cu: 50 to 66 atomic%, Mn: 0.01 to 1.5 atomic%, and the balance Pd. Alloy.

Mnの微量添加によりPd−Cu合金の水素透過性が改善する理由としては、現段階においては必ずしも明らかではない。本発明者等は、本発明にかかるPd−Cu系合金製造の過程で、水素透過性を発揮するβ相の結晶構造に何らかの変化が生じたためと推察する。   The reason why the hydrogen permeability of the Pd—Cu alloy is improved by adding a small amount of Mn is not always clear at this stage. The present inventors speculate that some change occurred in the β-phase crystal structure exhibiting hydrogen permeability in the process of producing the Pd—Cu alloy according to the present invention.

ここで、本発明においては、Mnの添加量が0.01〜1.5原子%の微量添加であることが必要である。これは、まず、0.01原子%未満の添加量では水素透過性改善の効果は見られないからである。一方、Mnの添加量による水素透過性向上の程度は、リニアなものではなく0.5原子%を上限とする臨界がある。但し、0.5原子%を超えても、水素透過性改善の効果は上限よりは低いものの十分残っており、このとき500℃以上の高温領域での水素透過性が改善されることから0.5原子%を超えた添加量としても実用的な水素透過性を得ることができる。もっとも、1.5原子%を超えると水素透過性改善の効果が殆どなくなることから、これを添加量の上限としたものである。   Here, in this invention, it is necessary for the addition amount of Mn to be a trace amount addition of 0.01-1.5 atomic%. This is because the effect of improving hydrogen permeability is not observed when the addition amount is less than 0.01 atomic%. On the other hand, the degree of improvement in hydrogen permeability due to the amount of Mn added is not linear and has a critical limit of 0.5 atomic%. However, even if it exceeds 0.5 atomic%, the effect of improving hydrogen permeability is still lower than the upper limit, but remains sufficiently. At this time, hydrogen permeability in a high temperature region of 500 ° C. or higher is improved. Practical hydrogen permeability can be obtained even when the addition amount exceeds 5 atomic%. However, if it exceeds 1.5 atomic%, the effect of improving the hydrogen permeability is almost lost, so this is the upper limit of the addition amount.

また、本発明に係る合金系において、Cu濃度については、50〜66原子%とする必要がある。これは、この範囲を外れるとB2構造を有するβ相が形成されなくなるからである。   In the alloy system according to the present invention, the Cu concentration needs to be 50 to 66 atomic%. This is because a β-phase having a B2 structure is not formed when outside this range.

本発明に係るPd−Cu系合金を水素透過膜とする場合、その膜厚は、1〜50μmとする。水素透過膜による水素精製においては、透過膜を挟んで精製前後の水素ガスに圧力差があるため、透過膜には機械的強度が要求される。但し、50μmを超える膜厚では、水素透過量が少なくなるため精製効率が低下することとなる。尚、1μm未満の合金膜は、それ自体の機械的強度は不足するものの合金膜にガス透過性の多孔質支持体を組み合わせた積層構造として機械的強度を補うことで使用が可能となる。即ち、水素透過膜としては、合金のみからなる膜でも良く、上記のように層状のものとしても良い。尚、本発明に係るPd−Cu系合金からなる水素透過膜の使用形態としては、板形状のものの他、管状のものとすることができる。   When the Pd—Cu alloy according to the present invention is used as a hydrogen permeable membrane, the film thickness is 1 to 50 μm. In hydrogen purification using a hydrogen permeable membrane, there is a pressure difference between the hydrogen gas before and after purification across the permeable membrane, so that the permeable membrane requires mechanical strength. However, when the film thickness exceeds 50 μm, the amount of hydrogen permeation decreases, so the purification efficiency decreases. An alloy film having a thickness of less than 1 μm can be used by supplementing the mechanical strength as a laminated structure in which a gas-permeable porous support is combined with the alloy film, although its mechanical strength is insufficient. That is, the hydrogen permeable membrane may be a membrane made of only an alloy, or may be a layered layer as described above. In addition, as a usage form of the hydrogen permeable film which consists of a Pd-Cu type alloy which concerns on this invention, it can be set as a tubular thing besides a plate-shaped thing.

本発明に係る水素透過性Pd−Cu系合金の製造においては、例えば、板状、箔状の合金膜とする場合には、溶解鋳造法により合金インゴットを製造し、これを加工(圧延、鍛造)して所定厚さの合金箔とすることができる。また、薄膜状の合金膜とするためには、スパッタリング法、メッキ法等の薄膜形成法により形成可能である。   In the production of a hydrogen permeable Pd—Cu alloy according to the present invention, for example, when a plate-like or foil-like alloy film is used, an alloy ingot is produced by a melt casting method and processed (rolled, forged). ) To obtain an alloy foil having a predetermined thickness. Further, in order to obtain a thin alloy film, it can be formed by a thin film forming method such as a sputtering method or a plating method.

また、上記したように、Pd−Cu系合金の水素透過能は、β相が存在する場合において発現するものであり、使用に先立ち、製造した合金(板、箔、膜)について、β相を生成させても良い。このときのβ相生成の方法としては、製造した合金を熱処理(300〜550℃)することで可能となる。   In addition, as described above, the hydrogen permeability of the Pd—Cu-based alloy is manifested in the presence of the β phase. Prior to use, the β phase of the manufactured alloy (plate, foil, film) is changed. It may be generated. In this case, the β phase can be generated by heat-treating the produced alloy (300 to 550 ° C.).

以上説明したように、本発明に係るPd−Cu系合金は、Pd−Cu合金をベースとしつつ、その水素透過性を倍以上向上させたものである。これは、これまで水素透過性が最良であったPd−Ag合金に迫るものである。そして、かかる水素透過性の向上により、水素精製装置の能力アップ又は装置サイズのコンパクト化を図ることができる。   As described above, the Pd—Cu-based alloy according to the present invention is based on a Pd—Cu alloy and has a hydrogen permeability that is improved more than twice. This is close to the Pd—Ag alloy, which has so far had the best hydrogen permeability. And by the improvement of this hydrogen permeability, the capacity | capacitance improvement of a hydrogen refiner | purifier or the size reduction of an apparatus can be achieved.

以下、本発明の実施の形態を実施例及び比較例を用いて具体的に説明する。   Hereinafter, embodiments of the present invention will be specifically described with reference to Examples and Comparative Examples.

実施例1:ここでは、Pd−52.46at%Cu−0.30at%Mn合金を製造した。真空溶解炉にて、上記組成で溶解し、鋳造したインゴットを鍛造して圧延を繰返し、寸法(100μm(T)×20mm(W)×200mm(L))のテープ状の合金箔を製造した。そして、この合金箔について水素雰囲気にて360℃で熱処理した(熱処理時間:1時間)。 Example 1 Here, a Pd-52.46 at% Cu-0.30 at% Mn alloy was produced. A tape-shaped alloy foil having dimensions (100 μm (T) × 20 mm (W) × 200 mm (L)) was manufactured by forging a cast ingot melted in the above composition in a vacuum melting furnace and repeating rolling. And this alloy foil was heat-processed at 360 degreeC in the hydrogen atmosphere (heat processing time: 1 hour).

実施例2〜4:実施例1と同様の方法にて、Mn濃度の異なるPd−Cu−Mn合金(実施例2:Pd−52.71at%Cu−0.05at%Mn、実施例3:Pd−52.49at%Cu−0.50at%Mn、実施例4:Pd−52.24at%Cu−0.99at%Mn)を製造した。 Examples 2 to 4 : Pd-Cu-Mn alloys having different Mn concentrations in the same manner as in Example 1 (Example 2: Pd-52.71 at% Cu-0.05 at% Mn, Example 3: Pd -52.49 at% Cu-0.50 at% Mn, Example 4: Pd-52.24 at% Cu-0.99 at% Mn).

比較例1:従来の水素透過性Pd−Cu合金として、Pd−40wt%Cu合金を、実施例1と同様に溶解鋳造、加工し、合金箔を水素雰囲気下で360℃で熱処理した(熱処理時間:1時間)。 Comparative Example 1 : As a conventional hydrogen-permeable Pd—Cu alloy, a Pd-40 wt% Cu alloy was melt cast and processed in the same manner as in Example 1, and the alloy foil was heat treated at 360 ° C. in a hydrogen atmosphere (heat treatment time) : 1 hour).

比較例2:Mn濃度が範囲外となるPd−Cu−Mn合金として、Pd−51.73at%Cu−1.99at%Mnの合金を製造した。製造工程は実施例1と同様とした。 Comparative Example 2 An alloy of Pd-5.73 at% Cu-1.99 at% Mn was manufactured as a Pd—Cu—Mn alloy having an Mn concentration outside the range. The manufacturing process was the same as in Example 1.

水素透過性の評価
次に、以上製造した各種Pd合金箔を水素透過膜として水素透過性を評価した。この評価試験では、水素透過膜をステンレス製のホルダーで固定し、これを反応管に漏れが生じないように設置し、水素透過膜の両側(1次側及び2次側)をロータリーポンプにより排気して1.0×10−1Pa以下の真空にした後、試験温度(150℃、200℃、300℃、400℃、450℃、500℃、550℃)に加熱・所定時間保持した。その後、水素ガス(純度99.99%)を1次側に2.5MPa導入し、1次側の圧力P1、及び2次側の圧力P2を測定した。そして、測定された圧力の単位時間変化から水素透過束J、水素透過係数φを算出し、これにより各水素透過膜の水素透過性を評価した。
Evaluation of hydrogen permeability Next, hydrogen permeability was evaluated using the various Pd alloy foils produced as described above as a hydrogen permeable membrane. In this evaluation test, the hydrogen permeable membrane is fixed with a stainless steel holder, installed so that no leakage occurs in the reaction tube, and both sides (primary side and secondary side) of the hydrogen permeable membrane are exhausted by a rotary pump. Then, after making a vacuum of 1.0 × 10 −1 Pa or less, it was heated to a test temperature (150 ° C., 200 ° C., 300 ° C., 400 ° C., 450 ° C., 500 ° C., 550 ° C.) and held for a predetermined time. Thereafter, hydrogen gas (purity 99.99%) was introduced to the primary side at 2.5 MPa, and the primary side pressure P1 and the secondary side pressure P2 were measured. Then, the hydrogen permeation flux J and the hydrogen permeation coefficient φ were calculated from the unit time change of the measured pressure, thereby evaluating the hydrogen permeability of each hydrogen permeable membrane.

各合金膜について、各試験温度における水素透過係数φを示すのが図1である。図1においては、上記実施例、比較例の他、純Pd及びPd−30wt%Ag合金の水素透過係数φの文献値を示している。図1から、まず、実施例1、2のMn濃度が低いPd−Cu−Mn合金膜(Mn:0.30原子%、0.05原子%)は、Mn添加のない比較例1に対して、水素透過係数φの最大値が2倍弱となっており、水素透過性の著しい向上が確認された。また、これら実施例の水素透過性は、純Pdを超え、更に、Pd−Ag合金(文献値)にも迫る程に改善されていることがわかる。この結果から、Pd−Cu合金に対するMnの微量添加の効果が確認できた。   FIG. 1 shows the hydrogen permeability coefficient φ at each test temperature for each alloy film. In FIG. 1, the literature value of the hydrogen permeation coefficient φ of pure Pd and Pd-30 wt% Ag alloy is shown in addition to the above examples and comparative examples. From FIG. 1, first, the Pd—Cu—Mn alloy films (Mn: 0.30 atomic%, 0.05 atomic%) of Examples 1 and 2 having a low Mn concentration are compared with Comparative Example 1 in which Mn is not added. The maximum value of the hydrogen permeability coefficient φ was a little less than twice, confirming a marked improvement in hydrogen permeability. Moreover, it turns out that the hydrogen permeability of these Examples is improved so that it may approach Pd-Ag alloy (document value) more than pure Pd. From this result, the effect of adding a small amount of Mn to the Pd—Cu alloy was confirmed.

また、実施例3、4のMn濃度が比較的高いPd−Cu−Mn合金膜(Mn:0.50原子%、0.99原子%)についてみると、これらは水素透過係数φの最大値は、実施例1、2よりも低い。しかし、実施例1、2(及び比較例1)の水素透過係数φが、500℃以上で急激に低下しているのに対し、実施例3、4はこの落ち込み少ない。即ち、Mn濃度を比較的高くすることで、合金の高温下での水素透過性を確保することができることがわかった。そして、実施例3、4の合金膜も、純Pd及びMn添加のないPd−Cu合金よりも水素透過性に優れている。このことから、Mn添加量を調整することで、水素透過膜の使用条件(温度条件)に応じて装置設計が可能であることが確認できる。但し、Mn濃度が高い比較例2(Mn:1.99原子%)については、水素透過係数が全体的に低くなっており、実用上の観点からは好ましくないことがわかる。   In addition, when the Pd—Cu—Mn alloy films (Mn: 0.50 atomic%, 0.99 atomic%) of Examples 3 and 4 having a relatively high Mn concentration are observed, the maximum value of the hydrogen permeability coefficient φ is Lower than Examples 1 and 2. However, the hydrogen permeation coefficient φ of Examples 1 and 2 (and Comparative Example 1) is drastically decreased at 500 ° C. or higher, while Examples 3 and 4 have a small drop. That is, it was found that hydrogen permeability at a high temperature of the alloy can be ensured by relatively increasing the Mn concentration. The alloy films of Examples 3 and 4 are also more excellent in hydrogen permeability than Pd—Cu alloys without addition of pure Pd and Mn. From this, it can be confirmed that the device design is possible according to the use conditions (temperature conditions) of the hydrogen permeable membrane by adjusting the Mn addition amount. However, it can be seen that Comparative Example 2 (Mn: 1.99 atomic%) having a high Mn concentration has a low hydrogen permeability coefficient as a whole, which is not preferable from a practical viewpoint.

各実施例及び各比較例の水素透過係数を示す図。The figure which shows the hydrogen permeability coefficient of each Example and each comparative example.

Claims (2)

水素透過性を有するPd−Cu系合金において、Cu:50〜66原子%、Mn:0.01〜1.5原子%、残部Pdからなることを特徴とするPd−Cu系合金。 A Pd—Cu alloy having hydrogen permeability, comprising Cu: 50 to 66 atom%, Mn: 0.01 to 1.5 atom%, and the balance Pd. 請求項1記載のPd−Cu系合金からなる水素透過膜。 A hydrogen permeable membrane comprising the Pd-Cu alloy according to claim 1.
JP2008240840A 2008-09-19 2008-09-19 Pd-Cu alloy with excellent hydrogen permeation performance Active JP5185035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008240840A JP5185035B2 (en) 2008-09-19 2008-09-19 Pd-Cu alloy with excellent hydrogen permeation performance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008240840A JP5185035B2 (en) 2008-09-19 2008-09-19 Pd-Cu alloy with excellent hydrogen permeation performance

Publications (2)

Publication Number Publication Date
JP2010070818A true JP2010070818A (en) 2010-04-02
JP5185035B2 JP5185035B2 (en) 2013-04-17

Family

ID=42202878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008240840A Active JP5185035B2 (en) 2008-09-19 2008-09-19 Pd-Cu alloy with excellent hydrogen permeation performance

Country Status (1)

Country Link
JP (1) JP5185035B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202258A (en) * 2010-03-26 2011-10-13 Jx Nippon Mining & Metals Corp Hydrogen permeable alloy and hydrogen permeation membrane utilizing the same
JP2012201974A (en) * 2011-03-28 2012-10-22 Jx Nippon Mining & Metals Corp Hydrogen permeable copper alloy, hydrogen permeable film, and steam reformer
JP2012200716A (en) * 2011-03-28 2012-10-22 Jx Nippon Mining & Metals Corp Hydrogen permeable module and hydrogen separation method using the same
US8669020B2 (en) 2010-10-12 2014-03-11 Samsung Electronics Co., Ltd. Membrane electrode assembly comprising a hydrogen permeable thin film, solid oxide fuel cell comprising the same and method of preparing the membrane electrode assembly
WO2015019906A1 (en) * 2013-08-06 2015-02-12 日東電工株式会社 Hydrogen discharge film
CN112239823A (en) * 2020-09-30 2021-01-19 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) Palladium alloy for hydrogen purification and preparation method thereof
WO2023037851A1 (en) * 2021-09-09 2023-03-16 田中貴金属工業株式会社 HYDROGEN PERMEABLE MEMBRANE FORMED OF PdCu ALLOY, AND HYDROGEN PURIFICATION METHOD BY MEANS OF HYDROGEN PERMEABLE MEMBRANE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62191402A (en) * 1986-02-18 1987-08-21 Mitsubishi Chem Ind Ltd Element for hydrogen separation
JPH09248416A (en) * 1996-01-11 1997-09-22 Bend Res Inc Composite hydrogen-separating element and module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62191402A (en) * 1986-02-18 1987-08-21 Mitsubishi Chem Ind Ltd Element for hydrogen separation
JPH09248416A (en) * 1996-01-11 1997-09-22 Bend Res Inc Composite hydrogen-separating element and module

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012037853; J.A.COWENら: 'SPIN-GLASS BEHAVIOR IN CuM Mn ALLOYS' Journal of Magnetism and Magnetic Materials Vol.31-34, 1983, P.1357-1358 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202258A (en) * 2010-03-26 2011-10-13 Jx Nippon Mining & Metals Corp Hydrogen permeable alloy and hydrogen permeation membrane utilizing the same
US8669020B2 (en) 2010-10-12 2014-03-11 Samsung Electronics Co., Ltd. Membrane electrode assembly comprising a hydrogen permeable thin film, solid oxide fuel cell comprising the same and method of preparing the membrane electrode assembly
JP2012201974A (en) * 2011-03-28 2012-10-22 Jx Nippon Mining & Metals Corp Hydrogen permeable copper alloy, hydrogen permeable film, and steam reformer
JP2012200716A (en) * 2011-03-28 2012-10-22 Jx Nippon Mining & Metals Corp Hydrogen permeable module and hydrogen separation method using the same
WO2015019906A1 (en) * 2013-08-06 2015-02-12 日東電工株式会社 Hydrogen discharge film
CN112239823A (en) * 2020-09-30 2021-01-19 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) Palladium alloy for hydrogen purification and preparation method thereof
WO2023037851A1 (en) * 2021-09-09 2023-03-16 田中貴金属工業株式会社 HYDROGEN PERMEABLE MEMBRANE FORMED OF PdCu ALLOY, AND HYDROGEN PURIFICATION METHOD BY MEANS OF HYDROGEN PERMEABLE MEMBRANE

Also Published As

Publication number Publication date
JP5185035B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
JP5185035B2 (en) Pd-Cu alloy with excellent hydrogen permeation performance
JP4756450B2 (en) Double phase alloy for hydrogen separation and purification
JP4363633B2 (en) Double phase alloy for hydrogen separation / purification and production method thereof, metal membrane for hydrogen separation / purification and production method thereof
JP5152433B2 (en) Hydrogen separation alloy and manufacturing method thereof
JP5000115B2 (en) Hydrogen permeable alloy
JP3749952B1 (en) Crystalline double-phase hydrogen permeable alloy membrane and crystalline double-phase hydrogen permeable alloy membrane
Li et al. Changes in microstructure, ductility and hydrogen permeability of Nb–(Ti, Hf) Ni alloy membranes by the substitution of Ti by Hf
JP4860969B2 (en) Hydrogen permeable alloy and method for producing the same
JP3749953B1 (en) Double phase hydrogen permeable alloy and hydrogen permeable alloy membrane
Li et al. Development of dual-phase V90Fe5Al5/Cu alloys for enhanced malleability and sustainable hydrogen permeability
JP4953337B2 (en) Double phase alloy for hydrogen separation and purification
KR20140065641A (en) Vanadium-based hydrogen permeation alloy used for a membrane, method for manufacturing the same and method for using the membrane
JP5310541B2 (en) Hydrogen permeable alloy and method for producing the same
JP6011538B2 (en) Hydrogen separator and method for operating the same
JP4577775B2 (en) Method for producing double phase alloy for hydrogen separation and purification
JP4953278B2 (en) Hydrogen permeation separation thin film with excellent hydrogen permeation separation performance
JP5199760B2 (en) Hydrogen permeation separation thin film with excellent hydrogen permeation separation performance
JP4860961B2 (en) Hydrogen permeable alloy
JP5039968B2 (en) Crystalline double phase hydrogen permeable alloy and hydrogen permeable alloy membrane
JP5549205B2 (en) Hydrogen separation alloy, hydrogen separation alloy rolling forming material, method for producing hydrogen separation alloy, and hydrogen separation apparatus
JP3882089B1 (en) Crystalline double phase hydrogen permeable alloy and hydrogen permeable alloy membrane
JP2009291742A (en) Hydrogen permeation member and hydrogen generating reactor using the same
JP4608657B2 (en) Hydrogen separation and permeation membrane that exhibits excellent hydrogen separation and permeation function over a long period of time by high pressure operation of high purity hydrogen purifier
JP2008229431A (en) Hydrogen permeable alloy membrane, and method for producing the same
JP2008194629A (en) Hydrogen-permeable alloy membrane

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100318

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130117

R150 Certificate of patent or registration of utility model

Ref document number: 5185035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250