JPS62191402A - Element for hydrogen separation - Google Patents

Element for hydrogen separation

Info

Publication number
JPS62191402A
JPS62191402A JP61033494A JP3349486A JPS62191402A JP S62191402 A JPS62191402 A JP S62191402A JP 61033494 A JP61033494 A JP 61033494A JP 3349486 A JP3349486 A JP 3349486A JP S62191402 A JPS62191402 A JP S62191402A
Authority
JP
Japan
Prior art keywords
hydrogen
metal
thin film
separation element
hydrogen separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61033494A
Other languages
Japanese (ja)
Inventor
Jiro Shiokawa
塩川 二朗
Kinya Adachi
吟也 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP61033494A priority Critical patent/JPS62191402A/en
Publication of JPS62191402A publication Critical patent/JPS62191402A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas Separation By Absorption (AREA)
  • Laminated Bodies (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To obtain a novel hydrogen-separating element especially suitable for the separation of hydrogen from hydrocarbon gas, by laminating thin layers of different kinds of metals consisting of a transition metal or a group IIIb metal and a hydrogen-occlusion metal and using the laminate as the objective hydrogen-separation element. CONSTITUTION:A thin film of a transition metal or a group IIIb metal of periodic table is laminated with a thin film of a hydrogen-occlusion metal or alloy by vacuum evaporation or sputtering, etc., to obtain the objective hydrogen- separation element. For example, a thin copper film having a thickness of about 0.2mu is deposited on a sintered stainless steel substrate by vacuum deposition and then an Ni film having a thickness of about 50mu is deposited on the copper film by Ni-plating. A hydrogen-separation element can be produced by forming a thin film of LaNi5 having a thickness of about 0.4mu on the Ni layer by flash evaporation method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水素分離用素子に関するものであり、詳しくは
、金属材料よりなり新規な原理に基づく水素分離用素子
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a hydrogen separation element, and more particularly to a hydrogen separation element made of a metal material and based on a novel principle.

〔従来の技術〕[Conventional technology]

水素は、天然ガスやナフサのクランキング等で多量に製
造され、有機製造工業における還元剤を初めとして種々
の用途に供されている。従って、水素を他のガス成分か
ら分離する技術は極めて重要であり、水素分離用モジュ
ール内の分離膜、分離材料と呼ばれる分離素子は、斯る
分離技術の基本となるものである。
Hydrogen is produced in large quantities by cranking natural gas or naphtha, and is used for various purposes including as a reducing agent in the organic manufacturing industry. Therefore, technology for separating hydrogen from other gas components is extremely important, and separation elements called separation membranes and separation materials in hydrogen separation modules are the basis of such separation technology.

従来、水素分離用素子としては高分子膜が知られている
。これは、水素分子が他のガス成分に比べて極めて小さ
いために高分子結晶格子間を容易かつ高速度で通過し得
るという性質を利用したものである。
Conventionally, polymer membranes have been known as hydrogen separation elements. This takes advantage of the property that hydrogen molecules are extremely small compared to other gas components and can easily pass between polymer crystal lattices at high speed.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来の水素分離用素子とは全く異なる
新規な水素分離用素子を提供することにある。
An object of the present invention is to provide a novel hydrogen separation element that is completely different from conventional hydrogen separation elements.

しかして、斯る本発明の目的は、異種金属の薄膜積層体
であって、一方の金、)4は遷移金属又はIIIb族金
属からなり、他方の金属は水素吸蔵性金属からなること
を特徴とする水素分離用素子によって達成される。
Therefore, the object of the present invention is to provide a thin film laminate of different metals, characterized in that one of the metals (gold) and (4) is made of a transition metal or a group IIIb metal, and the other metal is made of a hydrogen-absorbing metal. This is achieved by a hydrogen separation element.

〔発明の構成〕[Structure of the invention]

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

本発明の水素分離用素子は、異種金属の薄膜積層体より
なる。
The hydrogen separation element of the present invention is made of a thin film laminate of different metals.

TI 、 Fe、Co、 Nl %Cu、  Pd、 
Mo、 W、 Nb。
TI, Fe, Co, Nl%Cu, Pd,
Mo, W, Nb.

Zr、AI等が挙けられるが、銅、ニッケル又はアルミ
ニウムが好ましい。
Examples include Zr, AI, etc., but copper, nickel, or aluminum is preferable.

他方の金属は、水素吸蔵性金属、換言すれは、金属水素
化物を形成し得る金属ないしは合金であり、現在までに
発見されている各種の水素吸蔵性金属が使用できるが、
特には希土知−ニツケル合金は、ランタン、セリウム、
サマリウム等の希土類とニッケルの合金であり、/ %
 50原子多程度の他の金属、例えば、Mn、Co、F
e、Cr、Cu  等を含有する合金でもよい。具体的
には、例えば、LaNi5 、 MM(Ni6.6 C
o(1,、)2(Mはミツシュメタルを表わす)、 C@ (N l(1,7、Mno、3 )4.5 、 
Sm (N 16.7 F 116.3 )6、SmC
1115等が挙げられる。中でもL a−N i系合金
、特にL aN i 5を薄膜として積層させるが、積
層方法としては、例えば、従来公知の薄膜形成法である
真空蒸着法、スパッタ法又はイオンビーム蒸着法等によ
るのが簡便である。これら方法によれば、両金属は容易
に原子的レベルの密着状態で積層される。
The other metal is a hydrogen-absorbing metal, in other words, a metal or an alloy that can form a metal hydride, and various hydrogen-absorbing metals discovered to date can be used.
In particular, rare Tochi-Nickel alloys include lanthanum, cerium,
It is an alloy of rare earth elements such as samarium and nickel, /%
Other metals with more than 50 atoms, such as Mn, Co, F
An alloy containing e, Cr, Cu, etc. may also be used. Specifically, for example, LaNi5, MM (Ni6.6C
o(1,,)2(M represents Mitsushmetal), C@(Nl(1,7,Mno,3)4.5,
Sm (N 16.7 F 116.3)6, SmC
1115 etc. are mentioned. Among them, La-Ni alloy, especially LaNi 5, is laminated as a thin film, and the lamination method may be, for example, a conventionally known thin film forming method such as vacuum evaporation, sputtering, or ion beam evaporation. is simple. According to these methods, both metals can be easily laminated in close contact at an atomic level.

上記各金属の薄膜の厚さは、通常、水素吸蔵性金属膜に
ついてはθ、/−!0μm、好ましくは、10〜30μ
m、遷移金属又はIIIb族全金属膜ついては、go 
5−tooμm、好ましくは50〜60μm とされる
The thickness of the thin film of each of the above metals is usually θ, /-! for a hydrogen-absorbing metal film. 0 μm, preferably 10-30 μm
For transition metal or group IIIb all metal films, go
5-too μm, preferably 50 to 60 μm.

本発明の水素分離f粧用累子は、実用的には、通常機械
的強度を考慮して多孔性基板上に載置して用いられ、該
多孔性基板としては特に制限はないが、通常ステンレス
焼結基板が使用される。
In practical use, the hydrogen-separating f-cosmetic bar of the present invention is usually used by being placed on a porous substrate in consideration of mechanical strength, and although there are no particular restrictions on the porous substrate, it is usually used. A stainless steel sintered substrate is used.

多孔性基板上への載置の態様は、特に制限はないが通常
は遷移金属薄膜又はIIIbb金属薄膜が多孔性基板と
接する態様とされる。斯る態様において、遷移金属又は
IIIb族金属の薄膜は、前記した薄膜形成法の他、メ
ッキ法によって形成することも可能である。なお、遷移
金属としてニッケルを採用する場合、ステンレス焼結基
板上へのニッケル電気メッキは困雅であるので予め銅H
W%を施したのちニッケルメッキを行う。
The mode of mounting on the porous substrate is not particularly limited, but usually the transition metal thin film or the IIIbb metal thin film is in contact with the porous substrate. In such an embodiment, the thin film of the transition metal or group IIIb metal can be formed by a plating method in addition to the above-described thin film forming method. Note that when using nickel as the transition metal, electroplating of nickel on a stainless steel sintered substrate is difficult, so copper
After applying W%, nickel plating is performed.

前記のようにして得られた本発明の水素分離用素子は、
一般に耐圧容器内にセットされ水素分離用モジュールと
して使用される。
The hydrogen separation element of the present invention obtained as described above is
Generally, it is set inside a pressure-resistant container and used as a hydrogen separation module.

モジュールとしては、任意の構造を適宜採用し得るが、
一般的には、例えば、i/図に示した構造のモジュール
とされる。
Any structure can be adopted as the module, but
Generally, it is a module having the structure shown in Figure i/, for example.

第1図に示すモジュールにおいては、ノ・ウジングfl
)及び(2)によって耐圧容器が構成されている。両ハ
ウジングは螺合によって固定され、内部には、水素分離
用素子(5)が配置されている。
In the module shown in FIG.
) and (2) constitute a pressure-resistant container. Both housings are fixed by screwing, and a hydrogen separation element (5) is arranged inside.

水素分離用素子(5)は、各コーナに設けられたユコの
O−リング(6)を介しハウジング(2)によって押圧
されて気密化されている。ノーウジング(2)にはガス
導入口(3)が、ハウジング(1)にはガス導出口(4
)が設けられている。
The hydrogen separation element (5) is made airtight by being pressed by the housing (2) through Yuko O-rings (6) provided at each corner. The nousing (2) has a gas inlet (3), and the housing (1) has a gas outlet (4).
) is provided.

しかして、本発明の水素分離用素子においては、水素吸
蔵性金属薄膜側に分離すべき混合ガスを導入することが
必要であシ、従って、第1図に示すモジュールにおいて
は、分離用素子(5)の構成は、左側から順次、希土類
−Ni合金/Nl / Cu /ステンレス焼結基板と
なっている(第1図では、これらの各要素は省略した)
Therefore, in the hydrogen separation element of the present invention, it is necessary to introduce the mixed gas to be separated into the hydrogen-absorbing metal thin film side. Therefore, in the module shown in FIG. The structure of 5) is a rare earth-Ni alloy/Nl/Cu/stainless steel sintered substrate in order from the left side (these elements are omitted in Figure 1).
.

前記水素分離用モジュールの運転においては、混合ガス
の導入は加圧下に行われるが、操作圧力は、通常t −
t Okp /cri cの範囲で十分てあリ、また、
操作温度は任意に選択し得る。
In the operation of the hydrogen separation module, the mixed gas is introduced under pressure, and the operating pressure is usually t -
It is sufficient within the range of t Okp /cri c, and
The operating temperature can be selected arbitrarily.

しかして、本発明の水素分離用素子によって分離可能な
混合ガスは特に制限されるものではなく、不活性ガス、
窒素、メタン、エタン、プロパン等の炭化水素ガス等と
水素との混合ガスが挙げられるが、特には、炭化水素ガ
スとの分離に好適である。
Therefore, the mixed gas that can be separated by the hydrogen separation element of the present invention is not particularly limited, and includes inert gas,
Examples include mixed gases of hydrogen and hydrocarbon gases such as nitrogen, methane, ethane, and propane, and are particularly suitable for separation from hydrocarbon gases.

〔作用〕[Effect]

本発明の素子による水素分離機構は必ずしも明らかでは
ないが、次のように推定される。
Although the hydrogen separation mechanism by the device of the present invention is not necessarily clear, it is estimated as follows.

すなわち、水素吸蔵性金属が触媒的に作用して水素分子
を原子状水素に解離せしめ、この水素が遷移金属又はI
IIb族金属の格子内を容易に透過して他のガス成分と
分離されるものと推定される。また、このような分離機
構においては、不安定な原子状水素が再結合する前に遷
移金属又はIIIb族金属の格子内に導入される必要が
あるが、本発明素子においては、両金属の薄膜を積層体
として両者を密着させているので、解離生成した原子状
水素は、再結合することなく遷移金属の格子内圧導入さ
れる。
That is, the hydrogen storage metal acts catalytically to dissociate hydrogen molecules into atomic hydrogen, and this hydrogen is
It is presumed that the gas easily permeates through the lattice of Group IIb metal and is separated from other gas components. In addition, in such a separation mechanism, unstable atomic hydrogen needs to be introduced into the lattice of the transition metal or Group IIIb metal before recombination, but in the device of the present invention, a thin film of both metals is used. Since both are brought into close contact with each other as a laminate, the atomic hydrogen generated by dissociation is introduced into the lattice pressure of the transition metal without recombining.

〔実施例〕〔Example〕

以下、本発明を実施例に従って更に詳細に説明する。 Hereinafter, the present invention will be explained in more detail according to examples.

実施例1 (1)水素分離用素子の作成 ステンレス焼結基板(直径5■、厚さ3情。Example 1 (1) Creation of hydrogen separation element Stainless steel sintered substrate (diameter 5 cm, thickness 3 cm.

細孔サイズθ、jIim)  に真空蒸着法(タングス
テンヒーターによる熱蒸着)により厚さ0.2μm の
銅の薄膜を形成させた。さらにこれを6Q℃に保たれた
ジュールニッケル液(硫酸ニッケル、塩化ニッケル及び
ホウ酸よ後に/ OA / dm’ 30分間に制御し
てニッケルメッキを行ない、厚さ50μm のニッケル
薄膜を形成した。このニッケル薄膜上に、特開昭!rg
−:17qり6号公報にて詳述されているフラッシュ蒸
着法によf) LaN16のθ、Q11mの薄膜を形成
させて水素分離用素子を作成した。
A thin copper film with a thickness of 0.2 μm was formed on the pore size θ, jIim) by vacuum evaporation (thermal evaporation using a tungsten heater). Further, this was nickel plated using a Joule nickel solution (nickel sulfate, nickel chloride, and boric acid) kept at 6Q°C and controlled at OA/dm' for 30 minutes to form a nickel thin film with a thickness of 50 μm. Tokukai Sho!rg on the nickel thin film
-: A hydrogen separation element was prepared by forming a thin film of LaN16 with θ and Q11m using the flash evaporation method detailed in 17QRI No. 6.

(2)水素の分離 上記の水素分離用素子を第7図の如くモジュールとした
。該モジュールを95℃に保ち、水素とプロパンの混合
ガス(水素ガス濃度god”)を約9 kp / cI
Itの圧力で導入し、IO時間後素子を通過したガスを
質]着分析計で測定したところ水素ガス濃度はgq、i
%であった。
(2) Separation of Hydrogen The above hydrogen separation element was made into a module as shown in FIG. The module was maintained at 95°C, and a mixed gas of hydrogen and propane (hydrogen gas concentration ``god'') was heated at approximately 9 kp/cI.
When the hydrogen gas concentration was measured using a quality analyzer, the hydrogen gas concentration was gq, i.
%Met.

実施例コ (1)水素分離用素子の作成 ステンレス焼結基板(直径5間、厚さ3rm、細孔サイ
ズ0.5μm)上でアルミニウムを溶融させることによ
シ厚さ30μm の膜を形成させた。このアルミニウム
膜上に実施例1と同様のフラッシュ蒸着法により、L 
a N i 6の019μm の薄膜を形成させて水素
分離用素子を形成した。
Example (1) Creation of hydrogen separation element A film with a thickness of 30 μm was formed by melting aluminum on a stainless steel sintered substrate (diameter 5 cm, thickness 3 rm, pore size 0.5 μm). Ta. On this aluminum film, L
A hydrogen separation element was formed by forming a 019 μm thin film of aN i 6.

(2)水素の分離 上記の水素分離用素子を第1図の如くモジ水素とプロパ
ンの混合ガス(水素ガス濃度gθ%)を約9kp/dの
圧力で導入し、ユ60時間後素子を通過したガスを質量
分析計で測定したところ、水素ガスJ!に度は9 g、
3%であった。
(2) Hydrogen separation A mixed gas of hydrogen and propane (hydrogen gas concentration gθ%) was introduced into the above hydrogen separation element at a pressure of about 9kp/d as shown in Figure 1, and after 60 hours passed through the element. When the gas was measured using a mass spectrometer, hydrogen gas J! The degree is 9 g,
It was 3%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る水素分離用素子のモジュールの1
例を示す説明図でちゃ、図中、(3)はガス導入口、(
4)はガス導出口、(5)は水素発鈴素子である。 出願人  三愛化成工業株式会社 代理人  弁理士 長谷用  − (ほか1名)
FIG. 1 shows one of the modules of the hydrogen separation element according to the present invention.
This is an explanatory diagram showing an example. In the diagram, (3) is the gas inlet port, (
4) is a gas outlet, and (5) is a hydrogen bell generating element. Applicant San-ai Kasei Kogyo Co., Ltd. Agent Patent Attorney Hase Yo - (1 other person)

Claims (3)

【特許請求の範囲】[Claims] (1)異種金属の薄膜積層体であつて、一方の金属は遷
移金属又はIIIb族金属からなり他方の金属は水素吸蔵
性金属からなることを特徴とする水素分離用素子。
(1) A hydrogen separation element characterized in that it is a thin film laminate of different metals, one metal being a transition metal or a group IIIb metal and the other metal being a hydrogen storage metal.
(2)薄膜積層体が真空蒸着法、スパッタ法又はイオン
ビーム蒸着法によつて得られたものであることを特徴と
する特許請求の範囲第1項記載の水素分離用素子。
(2) The hydrogen separation element according to claim 1, wherein the thin film laminate is obtained by vacuum evaporation, sputtering, or ion beam evaporation.
(3)遷移金属又はIIIb族金属が銅、ニッケル又はア
ルミニウムであり、水素吸蔵性金属が希土類−ニッケル
系合金であることを特徴とする特許請求の範囲第1項又
は第2項記載の水素分離用素子。
(3) Hydrogen separation according to claim 1 or 2, wherein the transition metal or Group IIIb metal is copper, nickel, or aluminum, and the hydrogen storage metal is a rare earth-nickel alloy. Element for use.
JP61033494A 1986-02-18 1986-02-18 Element for hydrogen separation Pending JPS62191402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61033494A JPS62191402A (en) 1986-02-18 1986-02-18 Element for hydrogen separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61033494A JPS62191402A (en) 1986-02-18 1986-02-18 Element for hydrogen separation

Publications (1)

Publication Number Publication Date
JPS62191402A true JPS62191402A (en) 1987-08-21

Family

ID=12388105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61033494A Pending JPS62191402A (en) 1986-02-18 1986-02-18 Element for hydrogen separation

Country Status (1)

Country Link
JP (1) JPS62191402A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02204302A (en) * 1989-01-31 1990-08-14 Mitsubishi Heavy Ind Ltd Method for refining gaseous hydrogen
WO1998058524A1 (en) * 1997-06-17 1998-12-23 Delta Theta Limited Heating elements
WO2000077266A1 (en) * 1999-06-11 2000-12-21 Sumitomo Electric Industries, Ltd. Hydrogen-occluding layered material
US6329076B1 (en) 1999-07-16 2001-12-11 Sumitomo Electric Industries, Ltd. Hydrogen storage material and manufacturing method of the same
JP2010070818A (en) * 2008-09-19 2010-04-02 Tanaka Holdings Kk Pd-Cu BASED ALLOY SUPERIOR IN HYDROGEN PERMEABILITY

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130801A (en) * 1979-02-15 1980-10-11 Hill Eugene Farrell Separation of hydrogen which use coating titaniummzirconium alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55130801A (en) * 1979-02-15 1980-10-11 Hill Eugene Farrell Separation of hydrogen which use coating titaniummzirconium alloy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02204302A (en) * 1989-01-31 1990-08-14 Mitsubishi Heavy Ind Ltd Method for refining gaseous hydrogen
WO1998058524A1 (en) * 1997-06-17 1998-12-23 Delta Theta Limited Heating elements
WO2000077266A1 (en) * 1999-06-11 2000-12-21 Sumitomo Electric Industries, Ltd. Hydrogen-occluding layered material
US6337146B1 (en) 1999-06-11 2002-01-08 Sumitomo Electric Industries, Ltd. Hydrogen-occluding layered material
US6329076B1 (en) 1999-07-16 2001-12-11 Sumitomo Electric Industries, Ltd. Hydrogen storage material and manufacturing method of the same
JP2010070818A (en) * 2008-09-19 2010-04-02 Tanaka Holdings Kk Pd-Cu BASED ALLOY SUPERIOR IN HYDROGEN PERMEABILITY

Similar Documents

Publication Publication Date Title
Ozaki et al. Preparation of palladium-coated V and V–15Ni membranes for hydrogen purification by electroless plating technique
Dolan et al. Composition and operation of hydrogen-selective amorphous alloy membranes
Roa et al. Influence of alloy composition and membrane fabrication on the pressure dependence of the hydrogen flux of palladium− copper membranes
US7468093B2 (en) Multiple phase alloys and metal membranes for hydrogen separation-purification and method for preparing the alloys and the metal membranes
US6214090B1 (en) Thermally tolerant multilayer metal membrane
US8366805B2 (en) Composite structures with porous anodic oxide layers and methods of fabrication
Gade et al. The effects of fabrication and annealing on the structure and hydrogen permeation of Pd–Au binary alloy membranes
JPS62191402A (en) Element for hydrogen separation
JP3749952B1 (en) Crystalline double-phase hydrogen permeable alloy membrane and crystalline double-phase hydrogen permeable alloy membrane
Sides et al. Electrodeposition of ferromagnetic FeCo and FeCoMn alloy from choline chloride based deep eutectic solvent
JP3749953B1 (en) Double phase hydrogen permeable alloy and hydrogen permeable alloy membrane
JPH0382734A (en) Rare earth metal-series hydrogen storage alloy
Kolen et al. Combinatorial Screening of Bimetallic Electrocatalysts for Nitrogen Reduction to Ammonia Using a High-Throughput Gas Diffusion Electrode Cell Design
Endo et al. One-step electroplating of palladium–copper alloy layers on a vanadium membrane for hydrogen separation: Quick, easy, and low-cost preparation
US20130171442A1 (en) Method for modifying porous substrate and modified porous substrate
Iaquaniello et al. Hydrogen palladium selective membranes: an economic perspective
Islam et al. Thermal stability study of Pd-composite membrane fabricated by surfactant induced electroless plating (SIEP)
JP3079225B1 (en) Amorphous ZrNi alloy-based hydrogen separation / dissociation membrane, method for producing the same, and method for activating the same
Esteves et al. Electrodepositon of CoNiMo magnetic thin films from a chloride bath in the presence of citrate or glycine
JPH04326931A (en) Production of hydrogen separation membrane
US9233361B2 (en) Hydrogen separation membrane and device including hydrogen separation membrane
Balčiūnaitė et al. Employment of fiber-shaped Co modified with Au nanoparticles as anode in direct NaBH4-H2O2 and N2H4-H2O2 fuel cells
JP3066529B1 (en) Amorphous HfNi alloy-based hydrogen separation / dissociation membrane, method for producing the same, and method for activating the same
Pişkin Nanoporous surface modification of 316L support materials by electrochemical dealloying
JP2008272605A (en) Hydrogen permeable membrane and its manufacturing method