JPH02204302A - Method for refining gaseous hydrogen - Google Patents

Method for refining gaseous hydrogen

Info

Publication number
JPH02204302A
JPH02204302A JP1985689A JP1985689A JPH02204302A JP H02204302 A JPH02204302 A JP H02204302A JP 1985689 A JP1985689 A JP 1985689A JP 1985689 A JP1985689 A JP 1985689A JP H02204302 A JPH02204302 A JP H02204302A
Authority
JP
Japan
Prior art keywords
hydrogen
thin film
gaseous
pressure
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1985689A
Other languages
Japanese (ja)
Inventor
Sadaji Nishida
西田 定二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1985689A priority Critical patent/JPH02204302A/en
Publication of JPH02204302A publication Critical patent/JPH02204302A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To continuously separate hydrogen and to recover the valuable component in raw gaseous hydrogen by supplying the high-pressure raw gaseous hydrogen on one side of a hydrogen storage alloy thin film and obtaining a low- pressure refined gaseous hydrogen from the other side. CONSTITUTION:When the gaseous hydrogen 2 contg. gaseous impurities is supplied under pressure on one side of the hydrogen storage alloy thin film 1, gaseous hydrogen 2 is adsorbed on the thin film 1, the hydrogen diffuses through the thin film 1 as atomized hydrogen 3 and reaches the other side of the thin film 1. Hydrogen is desorbed on the other side under reduced pressure, and high-purity gaseous hydrogen 5 is obtained. At this time, although heat is generated on the occlusion side (under pressure) and absorbed on the desorption side (under reduced pressure), the heat is exchanged because of the thin film, and heat need not be supplied from the outside. Accordingly, hydrogen is continuously and easily separated. When the hydrogen separating function of the thin film 1 is provided in multiple stages, the concn. of gaseous impurities is increased, and the He, etc., in the gaseous hydrogen can be concentrated and separated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 不発明は水素ガスの精製法に関し、特に不純ガス含有水
素ガスから精製水素ガスを連続的に得る方法に関し、不
純ガスがヘリウムのよ5を有価ガスでめる場合にはその
よ5な有価ガスの回収も兼ねた精製水素ガスの製造性に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The invention relates to a method for purifying hydrogen gas, and in particular to a method for continuously obtaining purified hydrogen gas from hydrogen gas containing impure gas. In the case of using valuable gas, it relates to the productivity of purified hydrogen gas that also serves as recovery of such valuable gas.

〔従来の技術〕[Conventional technology]

水素吸蔵合金による水素の111!!!!!は1合金の
選択的かつ可逆的水素吸蔵性を利用したもので。
111 hydrogen by hydrogen storage alloy! ! ! ! ! This method takes advantage of the selective and reversible hydrogen storage properties of 1 alloy.

不純ガス成分を含む水素ガスを加圧下(または冷却下)
において合金と接触させ、水素のみを合金に吸賦し、合
金のまわりの空間部に不純ガス成分を滞留させることに
より不純ガス成分を濃縮後、先ず不純ガス成分t−減圧
して系外に取出し、続いて合金中に吸蔵している水素の
みを減圧下(ま九は加熱下)において、放出し、超高純
度の水Xを得ている。
Hydrogen gas containing impure gas components under pressure (or under cooling)
The impure gas component is brought into contact with the alloy at , and only hydrogen is absorbed into the alloy, and the impure gas component is retained in the space around the alloy to concentrate the impure gas component. First, the impure gas component is depressurized and taken out of the system. Then, only the hydrogen occluded in the alloy is released under reduced pressure (while under heating) to obtain ultra-high purity water X.

この方法の場合、合金は熱交換機能を有し次容器に収納
され、ガスの吸蔵、不純成分の分離、精製ガスの放出と
ともに合金の冷却、加熱を繰返す不連続操作となる。
In this method, the alloy is stored in a container that has a heat exchange function, and the process is a discontinuous operation in which the alloy is repeatedly cooled and heated while storing gas, separating impurity components, and releasing purified gas.

従って、従来の水素吸蔵合金による水素ガスn製装置f
は合金及び容器並びに水素ガス、不純ガス、 1fIl
l!ガス、I?却媒体、加熱媒体等の配管ラインの複数
化、さらには切換パルプの設置、切換シーケンスサイク
ルタイムなどの制御機構の設置等複雑な装置となり高価
なものとなる。
Therefore, the conventional hydrogen storage alloy device for producing hydrogen gas f
is alloy and container, hydrogen gas, impure gas, 1fIl
l! Gas, I? The system becomes complicated and expensive due to the installation of multiple piping lines for cooling medium, heating medium, etc., installation of switching pulp, and installation of control mechanisms such as switching sequence cycle time.

更に合金もこうした不連続操作のため多電に必要である
Furthermore, alloys are also required for polyelectronic operation for these discontinuous operations.

〔発明が解決しようとする線層〕[Line layer that the invention seeks to solve]

不発E!Aは上記した技術水準に鑑み、不連続操作を余
儀なくされる水素吸蔵合金による水素ガスN製装置にお
けるような不具合のない水素吸蔵合金を使用した連続的
に操作できる水素ガス精製法を提供しようとするもので
ある。また、精製水素ガスを得ると同時に、原料水素ガ
ス中の有価成分(例えばヘリウム)t−回収し得る方法
を提供しよつとするものである。
Unexploded E! In view of the above-mentioned state of the art, A aims to provide a hydrogen gas purification method that uses a hydrogen storage alloy and can be operated continuously, without the problems found in hydrogen gas N production equipment using hydrogen storage alloys that require discontinuous operation. It is something to do. Another object of the present invention is to provide a method that can obtain purified hydrogen gas and at the same time recover valuable components (for example, helium) in the raw hydrogen gas.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者は水素吸蔵合金と水素の吸蔵過程は。 The inventor of the present invention describes the hydrogen storage alloy and the hydrogen storage process.

(+1水素の合金表面への吸漕、(2ン水素の原子化。(+1 Adsorption of hydrogen onto the alloy surface, (2N hydrogen atomization.

(3)合金内部への拡散(金属格子円移動)であフ、吸
蔵時には発熱に伴なつことから、吸蔵のドライビングフ
ォースは系の加圧と冷却であり、−方、合金と水素の離
脱は吸蔵の逆過程となり、ドライビングフォースは系の
減圧と加熱であるとの知見に基づいて本発明を完成する
に至った。
(3) This is due to diffusion into the alloy (metal lattice circular movement), and since heat is generated during occlusion, the driving force of occlusion is pressurization and cooling of the system. The present invention was completed based on the knowledge that the process is the reverse of occlusion, and the driving force is the depressurization and heating of the system.

すなわち、本発明は水素吸蔵合金薄膜の一方に相対的に
高圧の原料水素ガスを供給し、他方より相対的に低圧の
yl′II製水素ガスを得ることを特徴とする水素ガス
′n!製法である。
That is, the present invention is characterized in that a relatively high-pressure raw hydrogen gas is supplied to one side of the hydrogen storage alloy thin film, and a relatively low-pressure yl'II hydrogen gas is obtained from the other side. It's the manufacturing method.

本発明は上記構成を採るものでるるか、水素吸蔵合金薄
膜としては、その厚さtl−20μ〜3■厚さにするこ
とが好ましく、水素吸蔵合金薄膜を種々の形状(管、平
板またはその他の形状)で使用する場合には、目的形状
の多孔質体材料に水素吸蔵合金を担持してもよいし、目
的形状に水素吸蔵合金自体を成形してもよい。
Although the present invention adopts the above configuration, it is preferable that the hydrogen storage alloy thin film has a thickness tl-20μ to 3μ, and the hydrogen storage alloy thin film can be formed into various shapes (tube, flat plate, etc.). shape), the hydrogen storage alloy may be supported on a porous material having the desired shape, or the hydrogen storage alloy itself may be formed into the desired shape.

〔作 用コ 相対的に高圧下の水素吸蔵合金薄膜の一方の表面で、前
述の吸蔵過程を行ない、他方の相対的に低圧の側で離脱
過程を行なえば、水素!fI表が連続的に行なうことが
できる。この具体的な態様を第1図によって詳述する。
[Operation: If the above-mentioned occlusion process is performed on one surface of the hydrogen-absorbing alloy thin film under relatively high pressure, and the desorption process is performed on the other relatively low-pressure side, hydrogen! The fI table can be performed continuously. This specific aspect will be explained in detail with reference to FIG.

第1図におhて、水素吸蔵合金薄膜1の一方の側に不純
ガスを含む水素ガス2を加圧下に送入すると、水素ガス
2は該薄膜2Ka:)fL、該薄膜1内部を原子化水素
3となって4で示す拡散方向に拡散し、¥Ii膜1の他
方の側に達する。
In FIG. 1h, when hydrogen gas 2 containing impurity gas is fed under pressure to one side of the hydrogen storage alloy thin film 1, the hydrogen gas 2 causes the thin film 2Ka:)fL and the inside of the thin film 1 to become atomic. It becomes hydrogen chloride 3 and diffuses in the diffusion direction shown by 4, reaching the other side of the \Ii film 1.

他方の側は減圧下で水素を離脱し、高純度水素ガス5を
得る。なお、図中、6は熱移動方向を示す矢印である。
Hydrogen is removed from the other side under reduced pressure to obtain high purity hydrogen gas 5. In addition, in the figure, 6 is an arrow indicating the direction of heat transfer.

なお、不純ガスは加圧側にて濃縮されていくことになり
、適当な方法で抜出す。
Note that the impure gas will be concentrated on the pressurizing side and will be extracted by an appropriate method.

この時吸蔵(加圧)側では発熱、離脱(減圧)側では吸
熱を伴なうが、薄膜であるため、相互に熱交換し、系外
からの熱の授受は必要ない。
At this time, heat is generated on the storage (pressure) side and heat is absorbed on the release (depressurization) side, but since they are thin films, they exchange heat with each other, and there is no need to transfer or receive heat from outside the system.

従って、本発明の原理を利用すれば逐Wc操作で。Therefore, if the principle of the present invention is used, one step at a time will be Wc operation.

シンプルな水素分離機能を有する装置を作ることができ
、また合金の童も少なくてよい。
A device with a simple hydrogen separation function can be made, and fewer alloys are required.

このような水素吸蔵合金薄膜の水素分離機能を多段に設
ければ、不純ガスの濃縮度は増し。
If the hydrogen separation function of such a hydrogen storage alloy thin film is provided in multiple stages, the concentration of impure gas will increase.

水素ガス中からの不純ガスの取出しも可能である。即ち
、水素ガス中の微量特定成分ガス(例えばヘリウム)の
濃縮分離もできる。
It is also possible to extract impure gas from hydrogen gas. That is, it is also possible to concentrate and separate a trace amount of specific component gas (for example, helium) in hydrogen gas.

〔実施例1〕 以下、本発明の一例を、第2図に示した装置によって更
に具体的に説明する。
[Example 1] Hereinafter, an example of the present invention will be explained in more detail using the apparatus shown in FIG.

Q、02〜3冑(こ\ではα05鱈)のランタンニッケ
ル系合金よりなる水素吸蔵合金薄膜を、径5〜20鵡(
こ\では8鵡)、肉厚α1〜3■(こ\では1.5 m
 )の円筒状磁性管の外面に形成した水素吸蔵合金iv
膜If6によって、多管式水素分離容器f!:製作し九
。この容器は例えば、多管式熱交換器のよりに胴1I1
2と管i14!11の室が、管6によって仕切られてい
る。
Q. A hydrogen storage alloy thin film made of a lanthanum-nickel alloy of 02-3 (in this case, α05) was coated with a thin film of 5-20 mm in diameter.
8 parrots in this case), wall thickness α1~3■ (1.5 m in this case)
) Hydrogen storage alloy formed on the outer surface of the cylindrical magnetic tube iv
Multi-tubular hydrogen separation vessel f! by membrane If6. : Manufactured by nine. This container can be used, for example, in a shell 1I1 of a shell-and-tube heat exchanger.
2 and tube i14!11 are separated by tube 6.

Vll#を端3よシネ純ガスを含む水素を圧入すると、
管6を通過する間に水素は胴側2に移り、超高純度水素
として4より取出され、管6内で濃縮された不純物は、
管側の他端5より取出される。
When hydrogen containing pure cine gas is injected into Vll# at end 3,
While passing through the tube 6, hydrogen moves to the shell side 2 and is taken out from 4 as ultra-high purity hydrogen, and impurities concentrated in the tube 6 are
It is taken out from the other end 5 on the tube side.

例えば、水素貯蔵合金薄膜1 m”当り、原料ガスとし
て、純度99.99 %の工業用水素(酸素:(LOO
2%、窒素:(LQCI61−酸化炭素αOOf l 
メタン:aootチ、残;水素ンを、圧力8 kg/c
at” G 、温度20℃で28 m、’/hで供給す
ると、超高純度99.99999%の製品水素ガスが圧
力2 kg / an” G 、温度20℃の状態で取
出される。
For example, 99.99% pure industrial hydrogen (oxygen: (LOO
2%, nitrogen: (LQCI61-carbon oxide αOOf l
Methane: aoot, remainder; hydrogen, pressure 8 kg/c
When the gas is supplied at a rate of 28 m/h at a temperature of 20°C, a product hydrogen gas of ultra-high purity of 99.99999% is taken out at a pressure of 2 kg/an'G and a temperature of 20°C.

この際の、回収t 2 ’ m”/ hs回収率86チ
である。
At this time, the recovery rate t2'm''/hs was 86ch.

〔実施例2〕 次に、原料水素ガスからヘリウムを回収する方法の一実
施例を説明する。
[Example 2] Next, an example of a method for recovering helium from raw material hydrogen gas will be described.

第2図に示し九装置を多段に設置し、原料ガスとして、
水素99.5%、ヘリウムCL5%を含有する天然ガス
を圧力8に97an”G、温度20℃で供給したところ
、各段の装置から製品ヘリウムガスとして下記の純度の
ものが得られた。
The nine devices shown in Figure 2 are installed in multiple stages, and as a raw material gas,
When natural gas containing 99.5% hydrogen and 5% helium Cl was supplied at a pressure of 8, 97 an''G, and a temperature of 20°C, product helium gas with the following purity was obtained from each stage of equipment.

1段目五6チ、2段目2S7To、5段目71.0チ、
4段目913% そして、全体としてヘリウム回収率は100チであった
1st stage 56 inches, 2nd stage 2S7To, 5th stage 71.0 inches,
The helium recovery rate was 913% in the fourth stage, and the overall helium recovery rate was 100%.

〔発明の効果〕〔Effect of the invention〕

(1)  本発明により従来バッチ式で複雑な装置であ
った水素吸蔵合金による水素分離操作が連続化でき、加
熱、冷却媒体も不要となるため、極めてシンプルな水素
分離方法が提供できる。
(1) According to the present invention, the hydrogen separation operation using a hydrogen storage alloy, which was conventionally a batch-type and complicated device, can be made continuous, and heating and cooling media are not required, so an extremely simple hydrogen separation method can be provided.

4図面の簡単なit$21JA 第1図は本発明における水素吸蔵合金薄膜における水素
の移動メカニズムを示す説明図、第2図は本発明方法を
実施する装置の一例を示す説明図でるる。
4 Simple Drawings It$21JA FIG. 1 is an explanatory diagram showing the hydrogen movement mechanism in the hydrogen storage alloy thin film according to the present invention, and FIG. 2 is an explanatory diagram showing an example of an apparatus for carrying out the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 水素吸蔵合金薄膜の一方に相対的に高圧の原料水素ガス
を供給し、他方より相対的に低圧の精製水素ガスを得る
ことを特徴とする水素ガス精製法。
A hydrogen gas purification method characterized by supplying raw hydrogen gas at a relatively high pressure to one side of a hydrogen storage alloy thin film and obtaining purified hydrogen gas at a relatively low pressure from the other side.
JP1985689A 1989-01-31 1989-01-31 Method for refining gaseous hydrogen Pending JPH02204302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985689A JPH02204302A (en) 1989-01-31 1989-01-31 Method for refining gaseous hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985689A JPH02204302A (en) 1989-01-31 1989-01-31 Method for refining gaseous hydrogen

Publications (1)

Publication Number Publication Date
JPH02204302A true JPH02204302A (en) 1990-08-14

Family

ID=12010874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985689A Pending JPH02204302A (en) 1989-01-31 1989-01-31 Method for refining gaseous hydrogen

Country Status (1)

Country Link
JP (1) JPH02204302A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0840701A (en) * 1994-08-04 1996-02-13 Nec Corp Active hydrogen generator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143801A (en) * 1985-12-18 1987-06-27 Agency Of Ind Science & Technol Purification of hydrogen gas with hydrogen occlusion alloy
JPS62191402A (en) * 1986-02-18 1987-08-21 Mitsubishi Chem Ind Ltd Element for hydrogen separation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143801A (en) * 1985-12-18 1987-06-27 Agency Of Ind Science & Technol Purification of hydrogen gas with hydrogen occlusion alloy
JPS62191402A (en) * 1986-02-18 1987-08-21 Mitsubishi Chem Ind Ltd Element for hydrogen separation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0840701A (en) * 1994-08-04 1996-02-13 Nec Corp Active hydrogen generator

Similar Documents

Publication Publication Date Title
US4704267A (en) Production of hydrogen from ammonia
US5096470A (en) Hydrogen and carbon monoxide production by hydrocarbon steam reforming and pressure swing adsorption purification
JPH01313301A (en) Continuous production of hydrogen and carbon dioxide
JPH04222381A (en) Manufacture of high-purity argon
CN113460982B (en) Method for purifying and preparing high-purity helium from liquefied natural gas tail gas
SU1507206A3 (en) Method and apparatus for separating hydrogen isotope
JPH10259002A (en) Operation of membrane reactor and membrane reactor used therefor
JPH02204302A (en) Method for refining gaseous hydrogen
WO2014099848A2 (en) Purification of inert gases to remove trace impurities
CN214456868U (en) Air separation oxygen generation device based on pressure swing adsorption nitrogen generation and chemical chain coordination
JPH01126203A (en) Production of high-purity gaseous hydrogen
JP3325805B2 (en) Air separation method and air separation device
JPH0531331A (en) Separation of hydrogen isotope
JPS6129768B2 (en)
JPH049723B2 (en)
JPH02307506A (en) Purifying method for air
JPS5953202B2 (en) Hydrogen gas purification equipment
KR102065974B1 (en) Process for hydrogen separation using metal hydride
JPS61163107A (en) Device for producing argon
JPS60239303A (en) Purifying vessel for gaseous hydrogen
JPH02272288A (en) Recovering method for argon
JPS63282103A (en) Purification of hydrogen
CN112723324A (en) Method and device for producing oxygen by air separation based on pressure swing adsorption nitrogen production and chemical chain
JPS6086006A (en) Hydrogen gas purification
JPS60246203A (en) Method of purification of hydrogen gas