JP2011202258A - Hydrogen permeable alloy and hydrogen permeation membrane utilizing the same - Google Patents

Hydrogen permeable alloy and hydrogen permeation membrane utilizing the same Download PDF

Info

Publication number
JP2011202258A
JP2011202258A JP2010072926A JP2010072926A JP2011202258A JP 2011202258 A JP2011202258 A JP 2011202258A JP 2010072926 A JP2010072926 A JP 2010072926A JP 2010072926 A JP2010072926 A JP 2010072926A JP 2011202258 A JP2011202258 A JP 2011202258A
Authority
JP
Japan
Prior art keywords
hydrogen
ratio
permeable membrane
present
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010072926A
Other languages
Japanese (ja)
Other versions
JP5562698B2 (en
Inventor
Kenji Sato
賢次 佐藤
Hironori Imamura
裕典 今村
Norio Yuki
典夫 結城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2010072926A priority Critical patent/JP5562698B2/en
Publication of JP2011202258A publication Critical patent/JP2011202258A/en
Application granted granted Critical
Publication of JP5562698B2 publication Critical patent/JP5562698B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a Cu-Pd alloy having excellent hydrogen permeability at high temperature.SOLUTION: The hydrogen permeable copper alloy is composed of Cu, Pd and Al, and, provided that the atomic concentrations (atom%) of Cu, Pd and Al are denoted as [Cu], [Pd] and [Al], respectively, [Pd]/([Cu]+[Pd])=41 to 50% and [Al]/([Cu]+[Pd])=0.05 to 4.0% are satisfied, and the relation in inequality: [Al]/([Cu]+[Pd])≤(2/9)×[Pd]/([Cu]+[Pd])-(0.64/9) is satisfied.

Description

本発明は、水素透過性合金及びこれを利用した水素透過膜に関し、より詳細には水素透過性Cu−Pd合金及びこれを利用した水素透過膜に関する。   The present invention relates to a hydrogen permeable alloy and a hydrogen permeable membrane using the same, and more particularly to a hydrogen permeable Cu-Pd alloy and a hydrogen permeable membrane using the same.

水素の用途は広く、例えば石油精製分野では脱硫剤として、化学工業分野ではアンモニアやメタノールをはじめとする各種化学品の原料として、半導体分野では還元雰囲気ガスとして、燃料電池分野では燃料として利用されている。   Hydrogen is widely used, for example, as a desulfurization agent in the petroleum refining field, as a raw material for various chemicals including ammonia and methanol in the chemical industry field, as a reducing atmosphere gas in the semiconductor field, and as a fuel in the fuel cell field. Yes.

水素の製造技術としては、炭化水素や石炭から水素を製造する水蒸気改質法が知られており、例えば金属触媒下、700〜800℃の高温で水蒸気をメタンと反応させ、一酸化炭素と水素を得るという方法である。一酸化炭素は更にシフト反応により、二酸化炭素に変換される。水素及び副生成物を含む混合ガスから水素を分離・精製する方法としては水素透過膜を利用する方法が知られている。水素透過膜は水素のみを選択的に透過する特性を有しており、水素透過膜の一方の面(一次側)に対して混合ガスで加圧すると、水素だけが水素透過膜中に溶け込んで拡散し、反対側の面(二次側)に到達することができる。このようにして混合ガスから水素を分離することにより、水素を高純度に精製できる。   As a hydrogen production technique, a steam reforming method for producing hydrogen from hydrocarbons or coal is known. For example, steam is reacted with methane at a high temperature of 700 to 800 ° C. under a metal catalyst to produce carbon monoxide and hydrogen. It is a method of getting. Carbon monoxide is further converted to carbon dioxide by a shift reaction. As a method for separating and purifying hydrogen from a mixed gas containing hydrogen and by-products, a method using a hydrogen permeable membrane is known. The hydrogen permeable membrane has a characteristic of selectively permeating only hydrogen. When one side (primary side) of the hydrogen permeable membrane is pressurized with a mixed gas, only hydrogen is dissolved into the hydrogen permeable membrane. It can diffuse and reach the opposite surface (secondary side). By separating hydrogen from the mixed gas in this way, hydrogen can be purified with high purity.

最近では、水素透過膜と改質器を組み合わせることで、水素の生成反応と水素の分離・精製を同時に行うメンブレンリフォーマー技術の開発が進んでいる。これは、シフト反応器や一酸化炭素の選択除去を必要としないことから新たな水素製造方法として期待されている技術であり、改質触媒を利用して550〜650℃程度の従来に比べて低温でしかも高い改質効率で改質反応を進行させることができるという利点がある。   Recently, development of membrane reformer technology that simultaneously performs hydrogen generation reaction and hydrogen separation and purification by combining a hydrogen permeable membrane and a reformer has been progressing. This is a technology that is expected as a new hydrogen production method because it does not require a shift reactor or selective removal of carbon monoxide. Compared to the conventional technology of about 550 to 650 ° C. using a reforming catalyst. There is an advantage that the reforming reaction can proceed at a low temperature and with high reforming efficiency.

パラジウムは水素の選択透過性を有していることから、水素透過膜の材料としてパラジウムを主体とする合金が使用されており、その中でもPd−Cu合金というのが知られている。特表2002−539918号公報(特許文献1)では60重量%のパラジウムと40重量%の銅の合金を水素透過膜として使用したことが記載されている。特開2001−262252号公報(特許文献2)では、Pdを主成分としてCuを0〜20at%添加することで水素脆化を抑制することが記載されている。特開2004−174373号公報(特許文献3)ではCuはPdを合金化して強度を向上させ、水素脆化を抑制する効果があり、水素ガスが400℃以上になりうる水素ガス精製・分離装置に適用するには、高温強度を維持できるようにPdを主成分としてCuを1〜40at%含んだ合金組成とすることが好ましいとされている。   Since palladium has hydrogen permselectivity, an alloy mainly composed of palladium is used as a material for the hydrogen permeable membrane, and among these, a Pd—Cu alloy is known. JP-T-2002-539918 (Patent Document 1) describes that an alloy of 60% by weight of palladium and 40% by weight of copper was used as a hydrogen permeable membrane. Japanese Patent Application Laid-Open No. 2001-262252 (Patent Document 2) describes that hydrogen embrittlement is suppressed by adding 0 to 20 at% of Cu containing Pd as a main component. In Japanese Patent Application Laid-Open No. 2004-174373 (Patent Document 3), Cu has an effect of alloying Pd to improve strength and suppress hydrogen embrittlement, and a hydrogen gas purification / separation apparatus in which hydrogen gas can be 400 ° C. or higher. For example, it is preferable to use an alloy composition containing Pd as a main component and Cu in an amount of 1 to 40 at% so that high temperature strength can be maintained.

特表2002−539918号公報Special Table 2002-539918 特開2001−262252号公報JP 2001-262252 A 特開2004−174373号公報JP 2004-174373 A

上記先行技術文献に記載されているように、Pd−Cu合金は水素透過膜用の材料として有望であるが、Pd−Cu合金は高温下における水素透過性が極端に低下するという問題がある。すなわち、Pd−Cu合金は500℃程度までは水素透過性に大きな変化は見られないが、600℃近くまで加熱すると一桁近くも水素透過係数が減少する。   As described in the above-mentioned prior art documents, Pd—Cu alloys are promising as materials for hydrogen permeable membranes, but Pd—Cu alloys have a problem that hydrogen permeability at high temperatures is extremely lowered. That is, the Pd—Cu alloy shows no significant change in hydrogen permeability up to about 500 ° C., but when heated to near 600 ° C., the hydrogen permeability coefficient decreases by almost an order of magnitude.

上述したように、水素製造のための改質反応は高温で行う必要があることから、高温下における水素透過率は特に優れていることが望ましい。特に600℃付近というのはメンブレンリフォーマー技術の実用化を進める上でも重要であることから、この温度付近における水素透過率を高める必要性が存在する。   As described above, since the reforming reaction for producing hydrogen needs to be performed at a high temperature, it is desirable that the hydrogen permeability at a high temperature is particularly excellent. In particular, the vicinity of 600 ° C. is important in promoting the practical application of membrane reformer technology, and therefore there is a need to increase the hydrogen permeability in the vicinity of this temperature.

そこで、本発明は高温下での水素透過率に優れたCu−Pd合金を提供することを課題の一つとする。また、本発明はそのようなCu−Pd合金を材料とした水素透過膜を提供することを別の課題の一つとする。また、本発明はそのような水素透過膜を利用した水素含有ガスからの水素分離方法を提供することを更に別の課題の一つとする。   Thus, an object of the present invention is to provide a Cu—Pd alloy having excellent hydrogen permeability at high temperatures. Another object of the present invention is to provide a hydrogen permeable membrane made of such a Cu—Pd alloy. Another object of the present invention is to provide a method for separating hydrogen from a hydrogen-containing gas using such a hydrogen permeable membrane.

本発明者は上記課題を解決すべく鋭意研究を重ねたところ、所定の組成をもつCu−Pd合金に対してアルミニウムを所定量含有させることで、高温特性が有意に改善することを見出した。   The present inventor has conducted extensive research to solve the above problems, and has found that high temperature characteristics are significantly improved by adding a predetermined amount of aluminum to a Cu—Pd alloy having a predetermined composition.

上記知見を基礎として完成した本発明は一側面において、Cu、Pd及びAlで構成される水素透過性銅合金であり、Cu、Pd及びAlの原子濃度(at%)をそれぞれ[Cu]、[Pd]及び[Al]とすると、[Pd]/([Cu]+[Pd])=41〜50%、[Al]/([Cu]+[Pd])=0.05〜4.0%であって、式:[Al]/([Cu]+[Pd])≦(2/9)×[Pd]/([Cu]+[Pd])−(0.64/9)
の関係を満たす水素透過性銅合金である。
The present invention completed on the basis of the above knowledge is, in one aspect, a hydrogen permeable copper alloy composed of Cu, Pd, and Al, and the atomic concentrations (at%) of Cu, Pd, and Al are set to [Cu], [ When Pd] and [Al], [Pd] / ([Cu] + [Pd]) = 41-50%, [Al] / ([Cu] + [Pd]) = 0.05-4.0% And the formula: [Al] / ([Cu] + [Pd]) ≦ (2/9) × [Pd] / ([Cu] + [Pd]) − (0.64 / 9)
It is a hydrogen-permeable copper alloy that satisfies the relationship

本発明に係る水素透過性銅合金は一実施形態において、[Pd]/([Cu]+[Pd])=44〜47%、[Al]/([Cu]+[Pd])=0.4〜1.5%である。   In one embodiment, the hydrogen permeable copper alloy according to the present invention has [Pd] / ([Cu] + [Pd]) = 44 to 47%, [Al] / ([Cu] + [Pd]) = 0. 4 to 1.5%.

本発明は別の一側面において、本発明に係る銅合金でできた水素透過膜である。   In another aspect, the present invention is a hydrogen permeable membrane made of the copper alloy according to the present invention.

本発明に係る水素透過膜は一実施形態において、厚みが1〜200μmである。   In one embodiment, the hydrogen permeable membrane according to the present invention has a thickness of 1 to 200 μm.

本発明は別の一側面において、水素含有ガスが本発明に係る水素透過膜を通過する工程を含む水素含有ガスからの水素分離方法である。   In another aspect, the present invention is a method for separating hydrogen from a hydrogen-containing gas, including a step of allowing the hydrogen-containing gas to pass through the hydrogen-permeable membrane according to the present invention.

本発明に係る水素分離方法は一実施形態において、水素含有ガスが本発明に係る水素透過膜を550〜650℃の温度で通過する工程を含む。   In one embodiment, the hydrogen separation method according to the present invention includes a step in which a hydrogen-containing gas passes through the hydrogen permeable membrane according to the present invention at a temperature of 550 to 650 ° C.

本発明によれば、とりわけ600℃付近における高温特性に優れた水素透過膜を得ることができる。また、Pdは貴金属であり高価であるところ、本発明に係る水素透過膜の組成に占めるPdの割合は原子比でCu以下であることから、従来に比べて安価に製造できるようになる。   According to the present invention, it is possible to obtain a hydrogen permeable membrane having excellent high temperature characteristics particularly at around 600 ° C. Moreover, since Pd is a noble metal and is expensive, the proportion of Pd in the composition of the hydrogen permeable membrane according to the present invention is Cu or less in atomic ratio, so that it can be manufactured at a lower cost than conventional.

実施例において水素透過係数を求めた測定系の概略図を示す。The schematic of the measurement system which calculated | required the hydrogen permeability coefficient in the Example is shown. 実施例において採用した組成範囲を示す。The composition range employ | adopted in the Example is shown. 実施例において、Al比を変化させたときの水素透過係数の推移を示した図である。In an Example, it is the figure which showed transition of the hydrogen permeability coefficient when changing Al ratio. 実施例において、Pd比を変化させたときの水素透過係数の推移を示した図である。In an Example, it is the figure which showed transition of the hydrogen permeability coefficient when changing Pd ratio. 実施例において、加熱温度を変化させたときの水素透過係数の推移を示した図である。In an Example, it is the figure which showed transition of the hydrogen permeability coefficient when changing heating temperature.

以下、本発明の実施形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明に係る銅合金は所定の原子比を満足するCu、Pd及びAlの三成分で構成される。具体的には、本発明に係る銅合金はCu、Pd及びAlの原子濃度(at%)をそれぞれ[Cu]、[Pd]及び[Al]とすると、[Pd]/([Cu]+[Pd])=41〜50%、[Al]/([Cu]+[Pd])=0.05〜4.0%を満たす組成を有する。   The copper alloy according to the present invention is composed of three components of Cu, Pd and Al that satisfy a predetermined atomic ratio. Specifically, in the copper alloy according to the present invention, when the atomic concentrations (at%) of Cu, Pd and Al are [Cu], [Pd] and [Al], respectively, [Pd] / ([Cu] + [ Pd]) = 41 to 50% and [Al] / ([Cu] + [Pd]) = 0.05 to 4.0%.

本発明においては、原子濃度は、一定の質量の銅合金に含まれるCuのモル数、Pdのモル数及びAlのモル数を求め、
[Cu]=(Cuのモル数)/(Cuのモル数+Pdのモル数+Alのモル数)
[Pd]=(Pdのモル数)/(Cuのモル数+Pdのモル数+Alのモル数)
[Al]=(Alのモル数)/(Cuのモル数+Pdのモル数+Alのモル数)
で計算される。
In the present invention, the atomic concentration is determined by obtaining the number of moles of Cu, the number of moles of Pd and the number of moles of Al contained in a copper alloy having a constant mass,
[Cu] = (number of moles of Cu) / (number of moles of Cu + number of moles of Pd + number of moles of Al)
[Pd] = (number of moles of Pd) / (number of moles of Cu + number of moles of Pd + number of moles of Al)
[Al] = (number of moles of Al) / (number of moles of Cu + number of moles of Pd + number of moles of Al)
Calculated by

Cu−Pd合金に対してアルミニウム(Al)を少量添加すると、600℃付近の高温下における水素透過率が向上するという効果があり、[Al]/([Cu]+[Pd])が0.05at%以上になるとその効果が有意に表れてくる。ただし、[Al]/([Cu]+[Pd])が4.0at%を超えると今度は水素透過率の向上効果がほとんどなくなり、逆に悪化するケースもある。そこで、本発明では[Al]/([Cu]+[Pd])は0.05〜4.0at%と規定している。   When a small amount of aluminum (Al) is added to the Cu—Pd alloy, there is an effect that the hydrogen permeability at a high temperature around 600 ° C. is improved, and [Al] / ([Cu] + [Pd]) is 0. The effect appears significantly when it is over 05at%. However, when [Al] / ([Cu] + [Pd]) exceeds 4.0 at%, the effect of improving the hydrogen permeability is almost lost, and there is a case where it deteriorates. Therefore, in the present invention, [Al] / ([Cu] + [Pd]) is defined as 0.05 to 4.0 at%.

パラジウム(Pd)は、アルミニウム(Al)が存在しない系においては、[Pd]/([Cu]+[Pd])が50at%以上となる濃度に設定したほうが600℃付近の高温下における水素透過率は向上する傾向にあるが、本発明者の検討結果によれば、アルミニウムを含む系においては、上記の41〜50at%の範囲が600℃付近の高温下における高い水素透過率を得る観点で好ましく、50at%を超えると逆に水素透過率が低下していく傾向にある。   Palladium (Pd) has a hydrogen permeation at a high temperature around 600 ° C. when [Pd] / ([Cu] + [Pd]) is set to a concentration of 50 at% or more in a system in which aluminum (Al) is not present. Although the rate tends to improve, according to the study results of the present inventors, in the system containing aluminum, the above 41 to 50 at% range is obtained from the viewpoint of obtaining a high hydrogen permeability at a high temperature around 600 ° C. Preferably, when it exceeds 50 at%, the hydrogen permeability tends to decrease.

パラジウムの濃度が高いときには600℃付近の高温下における最も高い水素透過率を得ることのできるアルミニウム濃度は高い方へシフトする傾向にある。逆に、パラジウムの濃度が低いときには600℃付近の高温下における最も高い水素透過率を得ることのできるアルミニウム濃度も低い方へシフトする傾向にある。そのため、[Pd]/([Cu]+[Pd])が47at%を超える範囲では[Al]/([Cu]+[Pd])は1.5at%を超えることが好ましく、[Pd]/([Cu]+[Pd])が47%以下の範囲では[Al]/([Cu]+[Pd])は1.5at%以下とすることが好ましい。600℃付近で特に高い水素透過率を示すパラジウム濃度とアルミニウム濃度の組み合わせは、[Pd]/([Cu]+[Pd])が44〜47at%、且つ、[Al]/([Cu]+[Pd])が0.4〜1.5at%である。   When the concentration of palladium is high, the aluminum concentration at which the highest hydrogen permeability can be obtained at a high temperature around 600 ° C. tends to shift to a higher level. Conversely, when the palladium concentration is low, the aluminum concentration at which the highest hydrogen permeability at a high temperature around 600 ° C. tends to shift to the lower side. Therefore, in a range where [Pd] / ([Cu] + [Pd]) exceeds 47 at%, it is preferable that [Al] / ([Cu] + [Pd]) exceeds 1.5 at%, and [Pd] / In the range where ([Cu] + [Pd]) is 47% or less, [Al] / ([Cu] + [Pd]) is preferably 1.5 at% or less. The combination of palladium concentration and aluminum concentration exhibiting particularly high hydrogen permeability near 600 ° C. is [Pd] / ([Cu] + [Pd]) of 44 to 47 at% and [Al] / ([Cu] + [Pd]) is 0.4 to 1.5 at%.

同様に、パラジウムの濃度が高いときには所望の効果を発揮する上で許容されるアルミニウム濃度も高くなる傾向にあり、パラジウムの濃度が低いときには許容されるアルミニウム濃度も低くなる傾向にある。本発明者の検討結果によれば、600℃付近の高温下において優れた水素透過率を得るためには、銅、パラジウム及びアルミニウムの原子比の関係として次式:
[Al]/([Cu]+[Pd])≦(2/9)×[Pd]/([Cu]+[Pd])−(0.64/9)
を満たすことが必要である。
Similarly, when the concentration of palladium is high, the aluminum concentration allowed to exhibit a desired effect tends to be high, and when the concentration of palladium is low, the allowable aluminum concentration tends to be low. According to the study results of the present inventor, in order to obtain an excellent hydrogen permeability at a high temperature around 600 ° C., the relationship of the atomic ratio of copper, palladium and aluminum is as follows:
[Al] / ([Cu] + [Pd]) ≦ (2/9) × [Pd] / ([Cu] + [Pd]) − (0.64 / 9)
It is necessary to satisfy.

本発明に係る銅合金は、Cu、Pd及びAlの三成分で構成されており、他の元素を積極的に含有させることはないが、製造過程で混入する不可避的不純物のように他の元素が極微量含有していても構わないため、そのような場合も本発明の範囲とする。他の元素の許容値は一概には決定できないが、600℃付近における水素透過係数に有意な悪影響を与えない程度の場合(例:水素透過係数の低下率が5%以下)、例えばCu、Pd及びAlの合計に対してそれぞれ1at%以下の濃度で混入している場合には有意な悪影響はないと考えられる。他の元素としては、限定的ではないが、水素透過膜への添加元素として公知であるGa、Pt、Rh、Ir、Ru、Ni、Co、Ti、Nb、Ta、Ag、B、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuが挙げられる。   The copper alloy according to the present invention is composed of three components of Cu, Pd and Al, and does not actively contain other elements, but other elements such as inevitable impurities mixed in during the manufacturing process. However, such a case is also included in the scope of the present invention. The allowable values of other elements cannot be determined in general, but when the hydrogen permeation coefficient is not significantly adversely affected near 600 ° C. (eg, the rate of decrease of the hydrogen permeation coefficient is 5% or less), for example, Cu, Pd In addition, it is considered that there is no significant adverse effect when it is mixed at a concentration of 1 at% or less with respect to the total of Al and Al. Other elements include, but are not limited to, Ga, Pt, Rh, Ir, Ru, Ni, Co, Ti, Nb, Ta, Ag, B, Y, La, which are known as additive elements to the hydrogen permeable film. , Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.

本発明に係る銅合金は、このようにAlを所定量添加したCu−Pd合金であり、600℃付近における水素透過率がAlを添加しない場合よりも有意に高い。このため、当該温度付近で水素含有ガスから水素を分離することが要求される場合に用いる水素透過膜として特に好適に使用できる。   The copper alloy according to the present invention is a Cu—Pd alloy to which a predetermined amount of Al is added as described above, and the hydrogen permeability in the vicinity of 600 ° C. is significantly higher than that in the case of not adding Al. For this reason, it can be particularly suitably used as a hydrogen permeable membrane used when it is required to separate hydrogen from a hydrogen-containing gas near the temperature.

本発明に係る銅合金は、限定されるものではないが、所定の成分に調整したインゴットを溶解鋳造した後、適宜焼鈍及び圧延を繰り返すことで製造可能である。具体的には、800℃以上で加熱したインゴットを熱間圧延し、黒皮除去後、冷間圧延で所定厚みまで薄くする。必要に応じて焼鈍を行う。また、湿式めっきやスパッタリングで作製することも可能である。   Although the copper alloy which concerns on this invention is not limited, after melt-casting the ingot adjusted to the predetermined component, it can manufacture by repeating annealing and rolling suitably. Specifically, an ingot heated at 800 ° C. or higher is hot-rolled, and after removing the black skin, it is thinned to a predetermined thickness by cold rolling. Annealing is performed as necessary. It can also be produced by wet plating or sputtering.

本発明に係る銅合金を水素透過膜として利用する場合、水素透過量は膜厚に反比例するため、膜厚が薄いほど単位面積当たりの透過量は上昇する。また、同じ面積でも膜厚が薄いと使用する材料も少なくなることから、膜厚を薄くすることは水素透過膜として使用する場合、非常に効果的である。ただし、あまり薄すぎると機械的強度が保てず、ピンホール等によって水素以外の不純物ガスが二次側に到達してしまうことから一定以上の膜厚があることが必要である。一方、膜厚があまり厚すぎると今度は二次側に到達する水素の量が少なくなり、生産性が悪くなる。そこで、膜厚は1〜200μmとするのが好ましく、3〜100μmとするのがより好ましい。膜厚は圧延時の圧下率を制御することで調節可能である。   When the copper alloy according to the present invention is used as a hydrogen permeable membrane, the hydrogen permeation amount is inversely proportional to the film thickness, so that the permeation amount per unit area increases as the film thickness decreases. Moreover, since the material to be used is reduced when the film thickness is small even in the same area, it is very effective to reduce the film thickness when used as a hydrogen permeable film. However, if it is too thin, the mechanical strength cannot be maintained, and an impurity gas other than hydrogen reaches the secondary side due to pinholes or the like, so that it is necessary to have a certain thickness or more. On the other hand, if the film thickness is too thick, the amount of hydrogen that reaches the secondary side is reduced and productivity is deteriorated. Therefore, the film thickness is preferably 1 to 200 μm, and more preferably 3 to 100 μm. The film thickness can be adjusted by controlling the rolling reduction during rolling.

本発明に係る水素透過膜を利用して水素含有ガスから水素を分離する方法は、水素含有ガスが当該水素透過膜を通過する工程を含む。一般的には、膜の一方の面(一次側)に水素を含有する混合ガスを配置し、一次側の圧力を膜の他方の面(二次側)に対して高くする方法が採用される。本発明に係る水素透過膜は特に600℃付近での水素透過率に優れていることから、水素含有ガスは550〜650℃の温度として水素透過膜を通過することが好ましく、580〜620℃の温度として水素透過膜を通過することがより好ましい。   The method for separating hydrogen from a hydrogen-containing gas using the hydrogen-permeable membrane according to the present invention includes a step of passing the hydrogen-containing gas through the hydrogen-permeable membrane. Generally, a method is adopted in which a mixed gas containing hydrogen is disposed on one side (primary side) of the membrane, and the pressure on the primary side is increased relative to the other side (secondary side) of the membrane. . Since the hydrogen permeable membrane according to the present invention is particularly excellent in hydrogen permeability at around 600 ° C., the hydrogen-containing gas preferably passes through the hydrogen permeable membrane at a temperature of 550 to 650 ° C. More preferably, the temperature passes through the hydrogen permeable membrane.

水素透過膜を利用して水素含有ガスから水素を分離するシステム自体は公知であり、任意の公知のシステムを採用することができ、特に制限はない。一例を挙げると、本発明に係る水素分離システムは水素含有ガスを流すための一次側配管と、水素透過膜をガス通路に設置した加熱管と、水素透過膜を通過した後の水素ガスを流すための二次側配管とを備え、加熱管の入口を一次側配管に、出口を二次側配管に連結したシステムである。別の一例を挙げると、本発明に係る水素透過膜は水素分離型改質器であるメンブレンリフォーマーに組み込む水素透過膜として使用することができる。   A system itself for separating hydrogen from a hydrogen-containing gas using a hydrogen permeable membrane is known, and any known system can be adopted without any particular limitation. For example, the hydrogen separation system according to the present invention is configured to flow a primary side pipe for flowing a hydrogen-containing gas, a heating pipe having a hydrogen permeable membrane installed in a gas passage, and a hydrogen gas after passing through the hydrogen permeable membrane. And a secondary side pipe for connecting the inlet of the heating pipe to the primary side pipe and the outlet to the secondary side pipe. As another example, the hydrogen permeable membrane according to the present invention can be used as a hydrogen permeable membrane incorporated in a membrane reformer which is a hydrogen separation type reformer.

以下に本発明を実施例でさらに詳細に説明するが、本発明はこれらに限定されるものではない。   The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.

<1.合金組成が与える影響>
Cu、Pd及びAlで構成され、表1に記載の原子比を満足する組成となるように成分調整したCu−Pd−Al合金をそれぞれ溶解鋳造後、800℃以上に加熱したインゴットを熱間圧延し、黒皮除去後、膜厚25μmの膜に冷間圧延した。
膜厚はマイクロメータで測定した5箇所の平均値を指す。
<1. Effect of alloy composition>
An ingot heated at 800 ° C. or higher after hot casting each Cu—Pd—Al alloy composed of Cu, Pd, and Al and adjusted to have a composition satisfying the atomic ratio shown in Table 1 was hot-rolled. After removing the black skin, the film was cold-rolled to a film thickness of 25 μm.
The film thickness refers to the average value of five locations measured with a micrometer.

このようにして得られたそれぞれの膜に対して、以下の要領で水素透過係数を測定した。
水素のガスボンベ(図示せず)、加熱炉11、一次側水素配管12、二次側水素配管13、管状炉内に配置され、一次側水素配管及び二次側水素配管を連結する1/2VCR(登録商標)継手内にガスケットと共に固定された水素透過膜14(水素透過部の直径11.2mm)、二次側の水素配管に連結した水素測定器(水素用マスフローコントローラ(山武、MQV9050))15を備えた測定系を構築した(図1参照)。水素のガスボンベから配管を通じて供給される水素はVCR継手の一次側に入り、水素透過膜を通過して、VCR継手の二次側から出てくる。水素透過膜を固定したVCR継手が入っている管状炉は所定の温度に加熱可能となっており、水素固定部のVCR継手部分の温度を熱電対で測定している。測定試験は、一次側圧を0.1MPaG、二次側圧を0MPaGとし、一次側の水素供給量を20sccmとして600℃に水素を加熱しながら3時間供給し続けたときの水素透過量を測定し、以下の式により水素透過係数qを測定した。
q=fM・d・S-1・(P1/2−p1/2-1
q:水素透過係数(mol・m-1・sec-1・Pa-1/2
M:二次側水素流量(mol・sec-1
d:膜厚(m)
S:膜面積(m2
P:一次側圧力(Pa)
p:二次側圧力(Pa)
The hydrogen permeation coefficient was measured for each of the membranes thus obtained in the following manner.
A hydrogen gas cylinder (not shown), a heating furnace 11, a primary-side hydrogen pipe 12, a secondary-side hydrogen pipe 13, and a 1/2 VCR that is arranged in a tubular furnace and connects the primary-side hydrogen pipe and the secondary-side hydrogen pipe ( (Registered trademark) Hydrogen permeable membrane 14 (hydrogen permeable part diameter 11.2 mm) fixed with a gasket in the joint, hydrogen measuring instrument (hydrogen mass flow controller (Yamatake, MQV9050)) 15 connected to the secondary side hydrogen piping 15 Was constructed (see FIG. 1). Hydrogen supplied through a pipe from a hydrogen gas cylinder enters the primary side of the VCR joint, passes through the hydrogen permeable membrane, and exits from the secondary side of the VCR joint. The tubular furnace containing the VCR joint to which the hydrogen permeable membrane is fixed can be heated to a predetermined temperature, and the temperature of the VCR joint portion of the hydrogen fixing portion is measured with a thermocouple. In the measurement test, the primary side pressure was set to 0.1 MPaG, the secondary side pressure was set to 0 MPaG, the primary side hydrogen supply amount was set to 20 sccm, and the hydrogen permeation amount was measured while continuing to supply hydrogen at 600 ° C. for 3 hours, The hydrogen permeation coefficient q was measured by the following formula.
q = f M · d · S -1 · (P 1/2 -p 1/2) -1
q: Hydrogen permeation coefficient (mol · m -1 · sec -1 · Pa -1/2 )
f M : secondary hydrogen flow rate (mol · sec −1 )
d: Film thickness (m)
S: membrane area (m 2 )
P: Primary pressure (Pa)
p: Secondary pressure (Pa)

試験結果を表1に示す。図2は、横軸に[Pd]/([Cu]+[Pd])(以下、「Pd比」ともいう)、縦軸に[Al]/([Cu]+[Pd])(以下、「Al比」ともいう)をとり、試験したデータ範囲を示している。台形で囲った範囲が本発明の範囲である。得られた結果を幾つかの切り口で以下に検討してみる。
The test results are shown in Table 1. In FIG. 2, the horizontal axis indicates [Pd] / ([Cu] + [Pd]) (hereinafter also referred to as “Pd ratio”), and the vertical axis indicates [Al] / ([Cu] + [Pd]) (hereinafter, It is also referred to as “Al ratio” and shows the data range tested. The range enclosed by the trapezoid is the scope of the present invention. The results obtained will be examined below in several ways.

(1)[Pd]/([Cu]+[Pd]):約41at%
表1からPd比が41at%付近の例を抽出し、Al比の小さい順に並べたのが表2である。表2より、Al比が0のとき(No.1)は水素透過係数が最も低く、Al比が増加するにつれて水素透過係数が徐々に上昇し、Al比が0.49at%のとき(No.4)に最大の水素透過係数が得られた。その後、更にAl比を増加させていくと今度は徐々に水素透過率が減少していき、Al比が2.30まで増えると(No.21)、式:[Al]/([Cu]+[Pd])≦(2/9)×[Pd]/([Cu]+[Pd])−(0.64/9)を満たさなくなったため、優れた水素透過係数は得られなくなった。
(1) [Pd] / ([Cu] + [Pd]): about 41 at%
Table 2 shows an example in which the Pd ratio is around 41 at% extracted from Table 1 and arranged in order of increasing Al ratio. From Table 2, when the Al ratio is 0 (No. 1), the hydrogen permeation coefficient is the lowest, the hydrogen permeation coefficient gradually increases as the Al ratio increases, and when the Al ratio is 0.49 at% (No. 1). The maximum hydrogen permeation coefficient was obtained in 4). Thereafter, when the Al ratio is further increased, the hydrogen permeability gradually decreases. When the Al ratio increases to 2.30 (No. 21), the formula: [Al] / ([Cu] + Since [Pd]) ≦ (2/9) × [Pd] / ([Cu] + [Pd]) − (0.64 / 9) was not satisfied, an excellent hydrogen permeability coefficient could not be obtained.

(2)[Pd]/([Cu]+[Pd]):約46at%
表1からPd比が46at%付近の例を抽出し、Al比の小さい順に並べたのが表3である。表3より、Al比が0のとき(No.6)は水素透過係数が最も低く、Al比が増加するにつれて水素透過係数が徐々に上昇し、Al比が0.99at%のとき(No.9)に最大の水素透過係数が得られた。その後、更にAl比を増加させていくと今度は徐々に水素透過率が減少していき、Al比が3.27まで増えると(No.22)、式:[Al]/([Cu]+[Pd])≦(2/9)×[Pd]/([Cu]+[Pd])−(0.64/9)を満たさなくなったため、優れた水素透過係数は得られなくなった。
(2) [Pd] / ([Cu] + [Pd]): about 46 at%
Table 3 shows an example in which the Pd ratio is around 46 at% extracted from Table 1 and arranged in ascending order of the Al ratio. From Table 3, when the Al ratio is 0 (No. 6), the hydrogen permeation coefficient is the lowest, the hydrogen permeation coefficient gradually increases as the Al ratio increases, and when the Al ratio is 0.99 at% (No. 6). The maximum hydrogen permeation coefficient was obtained in 9). Thereafter, when the Al ratio is further increased, the hydrogen permeability gradually decreases. When the Al ratio increases to 3.27 (No. 22), the formula: [Al] / ([Cu] + Since [Pd]) ≦ (2/9) × [Pd] / ([Cu] + [Pd]) − (0.64 / 9) was not satisfied, an excellent hydrogen permeability coefficient could not be obtained.

(3)[Pd]/([Cu]+[Pd]):約50at%
表1からPd比が50at%付近の例を抽出し、Al比の小さい順に並べたのが表4である。表4より、Al比が0のとき(No.12)は水素透過係数が最も低く、Al比が増加するにつれて水素透過係数が徐々に上昇し、Al比が1.96at%のとき(No.16)に最大の水素透過係数が得られた。その後、更にAl比を増加させていくと今度は徐々に水素透過率が減少していき、Al比が4.25まで増えると(No.23)、式:[Al]/([Cu]+[Pd])≦(2/9)×[Pd]/([Cu]+[Pd])−(0.64/9)を満たさなくなったため、優れた水素透過係数は得られなくなった。
(3) [Pd] / ([Cu] + [Pd]): about 50 at%
Table 4 shows an example in which the Pd ratio is around 50 at% extracted from Table 1 and arranged in ascending order of Al ratio. From Table 4, when the Al ratio is 0 (No. 12), the hydrogen permeation coefficient is the lowest, the hydrogen permeation coefficient gradually increases as the Al ratio increases, and when the Al ratio is 1.96 at% (No. 12). The maximum hydrogen permeation coefficient was obtained in 16). Thereafter, when the Al ratio is further increased, the hydrogen permeability gradually decreases. When the Al ratio increases to 4.25 (No. 23), the formula: [Al] / ([Cu] + Since [Pd]) ≦ (2/9) × [Pd] / ([Cu] + [Pd]) − (0.64 / 9) was not satisfied, an excellent hydrogen permeability coefficient could not be obtained.

上記の(1)、(2)及び(3)について、横軸をAl比とし、縦軸を水素透過係数としてプロットしたものが図3である。   FIG. 3 is a plot of the above (1), (2) and (3) plotted with the horizontal axis as the Al ratio and the vertical axis as the hydrogen permeation coefficient.

(4)[Al]/([Cu]+[Pd]):0at%
表1からAl比が0at%の例を抽出し、Pd比の小さい順に並べたのが表5である。表5より、Pd比が41.3at%のとき(No.1)は水素透過係数が最も低く、Pd比が増加するにつれて水素透過係数が徐々に上昇し、Pd比が50.2at%のとき(No.12)に最大の水素透過係数が得られた。ただし、Al比が0at%であったため、本発明に匹敵する水素透過係数は得られなかった。
(4) [Al] / ([Cu] + [Pd]): 0 at%
Table 5 shows an example in which the Al ratio is 0 at% extracted from Table 1 and arranged in ascending order of the Pd ratio. From Table 5, when the Pd ratio is 41.3 at% (No. 1), the hydrogen permeation coefficient is the lowest, and as the Pd ratio increases, the hydrogen permeation coefficient gradually increases, and when the Pd ratio is 50.2 at%. The maximum hydrogen permeation coefficient was obtained for (No. 12). However, since the Al ratio was 0 at%, a hydrogen permeation coefficient comparable to the present invention was not obtained.

(5)[Al]/([Cu]+[Pd]):0.5at%
表1からAl比が約0.5at%の例を抽出し、Pd比の小さい順に並べたのが表6である。表6より、Pd比が39.1at%のとき(No.24)は水素透過係数が最も低く、Pd比が増加するにつれて水素透過係数が徐々に上昇し、Pd比が46.0at%のとき(No.8)に最大の水素透過係数が得られた。その後、更にPd比を増加させていくと今度は徐々に水素透過率が減少していき、Pd比が51.9at%まで増えると(No.25)、優れた水素透過係数は得られなくなった。
(5) [Al] / ([Cu] + [Pd]): 0.5 at%
Table 6 shows an example in which the Al ratio is about 0.5 at% extracted from Table 1 and arranged in ascending order of the Pd ratio. From Table 6, when the Pd ratio is 39.1 at% (No. 24), the hydrogen permeation coefficient is the lowest, and as the Pd ratio increases, the hydrogen permeation coefficient gradually increases, and when the Pd ratio is 46.0 at%. The maximum hydrogen permeation coefficient was obtained for (No. 8). Thereafter, when the Pd ratio is further increased, the hydrogen permeability is gradually reduced. When the Pd ratio is increased to 51.9 at% (No. 25), an excellent hydrogen permeability coefficient cannot be obtained. .

(6)[Al]/([Cu]+[Pd]):2.0at%
表1からAl比が約2.0at%の例を抽出し、Pd比の小さい順に並べたのが表7である。表7より、Pd比が39.4at%のとき(No.26)は水素透過係数が最も低く、Pd比が増加するにつれて水素透過係数が徐々に上昇し、Pd比が49.5at%のとき(No.16)に最大の水素透過係数が得られた。その後、更にPd比を増加させていくと今度は徐々に水素透過率が減少していき、Pd比が52.4at%まで増えると(No.27)、優れた水素透過係数は得られなくなった。
(6) [Al] / ([Cu] + [Pd]): 2.0 at%
Table 7 shows an example in which the Al ratio is about 2.0 at% extracted from Table 1 and arranged in ascending order of the Pd ratio. From Table 7, when the Pd ratio is 39.4 at% (No. 26), the hydrogen permeation coefficient is the lowest, and as the Pd ratio increases, the hydrogen permeation coefficient gradually increases, and when the Pd ratio is 49.5 at%. The maximum hydrogen permeation coefficient was obtained for (No. 16). Thereafter, when the Pd ratio is further increased, the hydrogen permeability gradually decreases. When the Pd ratio increases to 52.4 at% (No. 27), an excellent hydrogen permeability coefficient cannot be obtained. .

上記の(4)、(5)及び(6)について、横軸をPd比とし、縦軸を水素透過係数としてプロットしたものが図4である。   FIG. 4 is a plot of the above (4), (5), and (6) plotted with the horizontal axis as the Pd ratio and the vertical axis as the hydrogen permeation coefficient.

<2.加熱温度の影響>
Cu、Pd及びAlで構成され、表8に記載の原子比を満足する組成となるように成分調整したCu−Pd−Al合金をそれぞれ溶解鋳造後、800℃以上に加熱したインゴットを熱間圧延し、黒皮除去後、膜厚25μmの膜に冷間圧延した。
<2. Effect of heating temperature>
An ingot heated at 800 ° C. or higher after hot casting each Cu—Pd—Al alloy composed of Cu, Pd, and Al and adjusted to have a composition satisfying the atomic ratio shown in Table 8 was hot-rolled. After removing the black skin, the film was cold-rolled to a film thickness of 25 μm.

このようにして得られたそれぞれの膜に対して、先の実施例と同様の手順で水素透過係数を測定した。ただし、水素ガスの加熱温度を350℃、400℃、450℃、500℃、及び600℃に変動させることで、水素透過係数の変化を調べた。   For each of the membranes thus obtained, the hydrogen permeation coefficient was measured in the same procedure as in the previous example. However, the change of the hydrogen permeability coefficient was investigated by changing the heating temperature of the hydrogen gas to 350 ° C., 400 ° C., 450 ° C., 500 ° C., and 600 ° C.

試験結果を、温度(℃)を横軸に、水素透過係数を縦軸にしてプロットして示したのが図5である。これらから、Cu−Pd合金に対してAlを所定量添加した場合、水素透過係数は、低温領域ではAlを添加しない場合よりも低いにもかかわらず、高温条件下(とりわけ600℃付近)では逆転し、Alを添加しない場合よりも高いことが分かる。
FIG. 5 shows the test results plotted with the temperature (° C.) on the horizontal axis and the hydrogen permeability coefficient on the vertical axis. From these results, when a predetermined amount of Al is added to the Cu—Pd alloy, the hydrogen permeation coefficient is lower than that in the case where Al is not added in the low temperature region, but it is reversed under high temperature conditions (especially around 600 ° C.). And it turns out that it is higher than the case where Al is not added.

Claims (6)

Cu、Pd及びAlで構成される水素透過性銅合金であり、Cu、Pd及びAlの原子濃度(at%)をそれぞれ[Cu]、[Pd]及び[Al]とすると、[Pd]/([Cu]+[Pd])=41〜50%、[Al]/([Cu]+[Pd])=0.05〜4.0%であって、式:[Al]/([Cu]+[Pd])≦(2/9)×[Pd]/([Cu]+[Pd])−(0.64/9)
の関係を満たす水素透過性銅合金。
It is a hydrogen permeable copper alloy composed of Cu, Pd and Al. When the atomic concentrations (at%) of Cu, Pd and Al are [Cu], [Pd] and [Al], respectively, [Pd] / ( [Cu] + [Pd]) = 41-50%, [Al] / ([Cu] + [Pd]) = 0.05-4.0%, and the formula: [Al] / ([Cu] + [Pd]) ≦ (2/9) × [Pd] / ([Cu] + [Pd]) − (0.64 / 9)
Hydrogen permeable copper alloy that satisfies the relationship
[Pd]/([Cu]+[Pd])=44〜47%、[Al]/([Cu]+[Pd])=0.4〜1.5%である請求項1に記載の水素透過性銅合金。   2. The hydrogen according to claim 1, wherein [Pd] / ([Cu] + [Pd]) = 44 to 47% and [Al] / ([Cu] + [Pd]) = 0.4 to 1.5%. Transparent copper alloy. 請求項1又は2に記載の銅合金でできた水素透過膜。   A hydrogen permeable membrane made of the copper alloy according to claim 1. 厚みが1〜200μmである請求項3に記載の水素透過膜。   The hydrogen permeable membrane according to claim 3, which has a thickness of 1 to 200 μm. 水素含有ガスが請求項3又は4に記載の水素透過膜を通過する工程を含む水素含有ガスからの水素分離方法。   A method for separating hydrogen from a hydrogen-containing gas, comprising a step in which the hydrogen-containing gas passes through the hydrogen permeable membrane according to claim 3 or 4. 水素含有ガスが請求項3又は4に記載の水素透過膜を550〜650℃の温度で通過する工程を含む請求項5に記載の水素含有ガスからの水素分離方法。   The method for separating hydrogen from a hydrogen-containing gas according to claim 5, comprising a step of passing the hydrogen-containing gas according to claim 3 or 4 at a temperature of 550 to 650 ° C.
JP2010072926A 2010-03-26 2010-03-26 Hydrogen permeable alloy and hydrogen permeable membrane using the same Active JP5562698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010072926A JP5562698B2 (en) 2010-03-26 2010-03-26 Hydrogen permeable alloy and hydrogen permeable membrane using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010072926A JP5562698B2 (en) 2010-03-26 2010-03-26 Hydrogen permeable alloy and hydrogen permeable membrane using the same

Publications (2)

Publication Number Publication Date
JP2011202258A true JP2011202258A (en) 2011-10-13
JP5562698B2 JP5562698B2 (en) 2014-07-30

Family

ID=44879195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010072926A Active JP5562698B2 (en) 2010-03-26 2010-03-26 Hydrogen permeable alloy and hydrogen permeable membrane using the same

Country Status (1)

Country Link
JP (1) JP5562698B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012201974A (en) * 2011-03-28 2012-10-22 Jx Nippon Mining & Metals Corp Hydrogen permeable copper alloy, hydrogen permeable film, and steam reformer
JP2012200716A (en) * 2011-03-28 2012-10-22 Jx Nippon Mining & Metals Corp Hydrogen permeable module and hydrogen separation method using the same
JP2013209729A (en) * 2012-03-30 2013-10-10 Jx Nippon Mining & Metals Corp Hydrogen permeable copper alloy, hydrogen permeation membrane and steam reformer
US8608829B1 (en) * 2011-08-12 2013-12-17 U.S. Department Of Energy Cu—Pd—M hydrogen separation membranes

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49113720A (en) * 1973-02-16 1974-10-30
JP2003135943A (en) * 2001-11-06 2003-05-13 Japan Pionics Co Ltd Hydrogen separating membrane and method for manufacturing the same
JP2004290811A (en) * 2003-03-26 2004-10-21 Taiheiyo Cement Corp Hydrogen storage material and its manufacturing method
JP2006007134A (en) * 2004-06-28 2006-01-12 Rikogaku Shinkokai Hydrogen permeation apparatus and production method therefor
JP2006239526A (en) * 2005-03-02 2006-09-14 Toyota Motor Corp Hydrogen permeable membrane and production method for hydrogen permeable membrane
JP2007044593A (en) * 2005-08-08 2007-02-22 Toyota Motor Corp Hydrogen permeable membrane and production method for hydrogen permeable membrane
JP2008043908A (en) * 2006-08-21 2008-02-28 Sumitomo Metal Mining Co Ltd Hydrogen-permeable membrane, its manufacturing method, and hydrogen-permeable member using this hydrogen-permeable membrane
JP2009022946A (en) * 2007-06-20 2009-02-05 Nissan Motor Co Ltd Hydrogen separation apparatus and process for manufacturing the same
JP2010070818A (en) * 2008-09-19 2010-04-02 Tanaka Holdings Kk Pd-Cu BASED ALLOY SUPERIOR IN HYDROGEN PERMEABILITY

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49113720A (en) * 1973-02-16 1974-10-30
JP2003135943A (en) * 2001-11-06 2003-05-13 Japan Pionics Co Ltd Hydrogen separating membrane and method for manufacturing the same
JP2004290811A (en) * 2003-03-26 2004-10-21 Taiheiyo Cement Corp Hydrogen storage material and its manufacturing method
JP2006007134A (en) * 2004-06-28 2006-01-12 Rikogaku Shinkokai Hydrogen permeation apparatus and production method therefor
JP2006239526A (en) * 2005-03-02 2006-09-14 Toyota Motor Corp Hydrogen permeable membrane and production method for hydrogen permeable membrane
JP2007044593A (en) * 2005-08-08 2007-02-22 Toyota Motor Corp Hydrogen permeable membrane and production method for hydrogen permeable membrane
JP2008043908A (en) * 2006-08-21 2008-02-28 Sumitomo Metal Mining Co Ltd Hydrogen-permeable membrane, its manufacturing method, and hydrogen-permeable member using this hydrogen-permeable membrane
JP2009022946A (en) * 2007-06-20 2009-02-05 Nissan Motor Co Ltd Hydrogen separation apparatus and process for manufacturing the same
JP2010070818A (en) * 2008-09-19 2010-04-02 Tanaka Holdings Kk Pd-Cu BASED ALLOY SUPERIOR IN HYDROGEN PERMEABILITY

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012201974A (en) * 2011-03-28 2012-10-22 Jx Nippon Mining & Metals Corp Hydrogen permeable copper alloy, hydrogen permeable film, and steam reformer
JP2012200716A (en) * 2011-03-28 2012-10-22 Jx Nippon Mining & Metals Corp Hydrogen permeable module and hydrogen separation method using the same
US8608829B1 (en) * 2011-08-12 2013-12-17 U.S. Department Of Energy Cu—Pd—M hydrogen separation membranes
JP2013209729A (en) * 2012-03-30 2013-10-10 Jx Nippon Mining & Metals Corp Hydrogen permeable copper alloy, hydrogen permeation membrane and steam reformer

Also Published As

Publication number Publication date
JP5562698B2 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
JP5814506B2 (en) Hydrogen separation membrane and selectively permeable membrane reactor
JP5998022B2 (en) Separation membrane, hydrogen separation membrane provided with the same, and hydrogen separation apparatus provided with the hydrogen separation membrane
EP2720976B1 (en) Method for hydrogen production
JP5562698B2 (en) Hydrogen permeable alloy and hydrogen permeable membrane using the same
Baloyi et al. The production of hydrogen through the use of a 77 wt% Pd 23 wt% Ag membrane water gas shift reactor
JP5185035B2 (en) Pd-Cu alloy with excellent hydrogen permeation performance
US10590516B2 (en) Alloy for catalytic membrane reactors
Chen et al. Hydrogen permeation and recovery from H2–N2 gas mixtures by Pd membranes with high permeance
US20070056660A1 (en) Hydrogen permeable alloy and method for producing the same
JP2012201974A (en) Hydrogen permeable copper alloy, hydrogen permeable film, and steam reformer
US7560090B2 (en) Process for producing hydrogen with permselective membrane reactor and permselective membrane reactor
JP2008050210A (en) Permselective membrane reactor and method of manufacturing hydrogen gas
JP5823807B2 (en) Hydrogen permeable membrane and hydrogen separation method using the same
JP5723650B2 (en) Hydrogen permeation module and hydrogen separation method using the same
KR102012010B1 (en) Separation membrane, hydrogen separation membrane including separation membrane and device including hydrogen separation membrane
JP2014198883A (en) Hydrogen permeable copper alloy, hydrogen permeation membrane and steam reformer
WO2021251471A1 (en) Co2 methanation reaction apparatus provided with selective oxidation catalyst for co, and metod for removing co from gas
JP2013209729A (en) Hydrogen permeable copper alloy, hydrogen permeation membrane and steam reformer
US10105657B2 (en) Separation membrane, hydrogen separation membrane including the separation membrane, and method of manufacturing the separation membrane
JP5803928B2 (en) Hydrogen separation membrane
KR101275213B1 (en) Boron-doped vanadium based alloy membranes for separation of hydrogen and methods of separating hydrogen using the same
AU2012354917C1 (en) CO shift conversion device and shift conversion method
JP5584477B2 (en) Two-stage hydrogen separation reformer
JP2009291740A (en) Hydrogen separation member and hydrogen generating apparatus
TW202317256A (en) Hydrogen permeable membrane including pdcu alloy and hydrogen purification method using hydrogen permeable membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140611

R150 Certificate of patent or registration of utility model

Ref document number: 5562698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250