JP2004290811A - Hydrogen storage material and its manufacturing method - Google Patents

Hydrogen storage material and its manufacturing method Download PDF

Info

Publication number
JP2004290811A
JP2004290811A JP2003086299A JP2003086299A JP2004290811A JP 2004290811 A JP2004290811 A JP 2004290811A JP 2003086299 A JP2003086299 A JP 2003086299A JP 2003086299 A JP2003086299 A JP 2003086299A JP 2004290811 A JP2004290811 A JP 2004290811A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen storage
function
metal component
dissociating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003086299A
Other languages
Japanese (ja)
Inventor
Hironobu Fujii
博信 藤井
Takayuki Ichikawa
貴之 市川
Toyoyuki Kubokawa
豊之 窪川
Kazuhiko Tokiyoda
和彦 常世田
Shigeru Matsuura
茂 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2003086299A priority Critical patent/JP2004290811A/en
Publication of JP2004290811A publication Critical patent/JP2004290811A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen storage material having a high hydrogen occluding capacity, and its manufacturing method. <P>SOLUTION: In manufacturing the hydrogen storage material using a hydrogen storing functional material developing the hydrogen occluding capacity by micronizing the hydrogen storing functional material by mechanical grinding under a hydrogen gas atmosphere, a metal component, which has a function for dissociating a hydrogen molecule into hydrogen atoms, is added to the hydrogen storing functional material on the way of the mechanical grinding of the hydrogen storing functional material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、比較的低温で多量の水素を貯蔵することができる水素貯蔵体およびその製造方法に関する。本発明の水素貯蔵体は、燃料電池自動車用の水素貯蔵体や水素ガスの貯蔵および輸送用媒体、水素ガスの分離精製用として使用される。
【0002】
【従来技術】
化石燃料の枯渇や地球環境問題から、化石燃料に替わる2次エネルギーとして自然エネルギーや再生可能エネルギーが有望視されている。特に、水素ガスは、エネルギーサイクルの中で重要な位置を占める物質として期待されている。
【0003】
しかしながら、水素を燃料とする最大の問題は、燃料である水素の貯蔵にある。現在は、水素を気体として貯蔵する手段としては、高圧ガスボンベによる水素の貯蔵があるが、水素貯蔵量を増加させるためには、水素圧力を高めていく必要があり、容器の重量が重くなるとともに、バルブなどの耐圧性や信頼性に問題がある。また、水素を液体として貯蔵する手段としては、液体水素を断熱容器に貯蔵する方法がある。しかし、液体水素は、沸点が非常に低く、液化のために多くのエネルギーを要するとともに、断熱容器への液体水素の供給時に蒸発による損失が10〜20%、断熱をしても8%の水素が蒸発すると言われており、経済的に問題がある。
【0004】
最近、これらの問題を解決する水素貯蔵材料としてカーボンナノチューブ、活性炭等の炭素系材料が注目されており、盛んに研究が行われている。
【0005】
例えば、特許文献1には、カーボンナノチューブに水素を貯蔵する方法が提案されている。特許文献2には、活性炭による微細構造に水素を吸着させる方法が提案されている。また、本発明者が先に提案した特許文献3には、機械的粉砕によってナノ構造化されたグラファイトを用いた高い水素貯蔵能を有する水素貯蔵材が提案されている。
【0006】
【特許文献1】
特開平11−116219号公報
【特許文献2】
WO98/30496号公報
【特許文献3】
特開2001−302224号公報
【0007】
【発明が解決しようとする課題】
しかしながら、上記特許文献1のカーボンナノチューブは熱分解反応によって製造するために収率が低く、さらに多量の水素を貯蔵できると報告されているが、再現性が得られないといった欠点を有しているため、工業的製造法として好ましくない。また、上記特許文献2の活性炭は、水素の貯蔵のためには温度−173℃以下、水素圧約5MPa程度という、極低温、高圧を必要とするために、やはり工業的製造法としては好ましくない。一方、上記特許文献3は、常温、低圧下で比較的多量の水素を貯蔵することができるが、いまだ十分とはいえない。
【0008】
本発明はかかる事情に鑑みてなされたものであって、高い水素吸蔵能力を有する水素貯蔵体およびその製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記課題を解決するために、本発明者らは、特開2001−302224号公報に示された、水素ガス雰囲気下で機械的粉砕によってナノ構造化されたグラファイトの水素貯蔵能力をさらに向上させるべく検討を重ねた。その結果、触媒として作用する、水素分子を水素原子に解離させる機能を有した金属成分をグラファイトの機械粉砕の途中で添加すれば、その金属成分が水素貯蔵機能材料に厚く覆われることなく、金属成分を高分散状態で担持することができ、その金属成分の作用によって高い水素貯蔵能力が得られることを見出した。このような作用はグラファイトのみならず、水素ガス雰囲気下で機械的粉砕により細粒化することで水素貯蔵機能を発現する他の水素貯蔵機能材料でも同様に得られる。
【0010】
本発明は、本発明者らのこのような知見に基づいて完成されたものであり、以下の(1)〜(7)を提供する。
【0011】
(1)水素ガス雰囲気下で機械的粉砕により細粒化することで水素貯蔵機能を発現する水素貯蔵機能材料を用いて水素貯蔵体を製造するにあたり、水素分子を水素原子へ解離させる機能を有する金属成分を、前記水素貯蔵機能材料の機械的粉砕の途中に添加することを特徴とする水素貯蔵体の製造方法。
(2)上記(1)において、前記水素分子を水素原子に解離させる機能を有する金属成分が、Mn、Fe、Co、Ni、Pt、Pd、Rh、Li、B、Na、Mg、K、Ir、Nd、La、Ca、V、Ti、Cr、Cu、Zn、Al、Si、RuおよびAgから選ばれた1種または2種以上、もしくは水素貯蔵合金であることを特徴とする水素貯蔵体の製造方法。
(3)上記(2)において、前記水素分子を水素原子に解離させる機能を有する金属成分が、上記元素から選ばれた1種または2種以上の単体金属、上記元素から選ばれた1種または2種以上を構成成分とする合金、酸化物、窒化物、塩化物、その他の化合物のいずれかの形態をとることを特徴とする水素貯蔵体の製造方法。
(4)上記(1)〜(3)において、前記水素分子を水素原子に解離させる機能を有する金属成分の合計量が水素貯蔵体質量の0.3〜20.0質量%であることを特徴とする水素貯蔵体の製造方法。
(5)上記(1)〜(4)において、前記水素貯蔵機能材料がグラファイト、非晶質炭素、活性炭、カーボンナノチューブまたはフラーレンであることを特徴とする水素貯蔵体の製造方法。
(6)上記(5)において、前記水素貯蔵機能材料の水素/炭素の原子比が0.10〜0.25の範囲に到達後に、水素分子を水素原子へ解離させる機能を有する金属成分を添加することを特徴とする水素貯蔵体の製造方法。
(7)上記(1)〜(6)の方法により製造された水素貯蔵体。
【0012】
【発明の実態の形態】
以下、本発明の実施形態について説明する。
本発明においては、水素ガス雰囲気下で機械的粉砕により細粒化することで水素貯蔵機能を発現する水素貯蔵機能材料を用いて水素貯蔵体を製造するにあたり、水素分子を水素原子へ解離させる機能を有する金属成分を、水素貯蔵機能材料の機械的粉砕の途中に添加する。
【0013】
本発明では、グラファイト等の水素貯蔵機能材料を水素ガス雰囲気下で機械粉砕により微細化する過程で、微細化された水素貯蔵機能材料に水素が侵入し、微細化された水素貯蔵機能材料の表面および/または内部に水素が貯蔵される。ここで内部とは、結晶粒子間、層間、欠陥をいう。
【0014】
水素貯蔵機能材料としては、グラファイト、非晶質炭素、活性炭、カーボンナノチューブおよびフラーレン等の炭素質材料を用いることができる。この場合、水素の侵入の形態は、炭素水素共有結合をともなうものと、共有結合をともなわないものとがあるが、これらのうち主に共有結合をともなわない水素は可逆的に取り出し可能であり、貯蔵水素として有効である。上記炭素質材料の中でグラファイトが水素貯蔵能が大きく好ましい。グラファイトの結晶は層状構造を有しているため、水素雰囲気中での粉砕過程でその表面および層間に多量の水素を貯蔵することができる。
【0015】
上記特許文献3(特開2001−302224号公報)に開示された技術では、このように水素雰囲気中でのグラファイトの粉砕過程で水素を貯蔵するものであり、水素貯蔵量が最大3mass%程度であるが、水素貯蔵量のさらなる増加が求められる。
【0016】
そこで、本発明では、触媒成分として、水素分子を水素原子に解離させる機能を有する金属成分を用い、このような金属成分を水素貯蔵体の機械粉砕の途中に添加する。これにより金属成分を高分散状態で担持することができ、その金属成分の作用により高い水素貯蔵能力が得られる。触媒成分としては、このような機能を有する金属成分であれば特に制限はないが、Mn、Fe、Co、Ni、Pt、Pd、Rh、Li、B、Na、Mg、K、Ir、Nd、La、Ca、V、Ti、Cr、Cu、Zn、Al、Si、RuおよびAgから選ばれた1種または2種以上、もしくは水素貯蔵合金であることが好ましい。触媒として機能する金属成分は、上記元素から選ばれた1種または2種以上の単体金属であっても、上記元素から選ばれた1種または2種以上を構成成分とする合金であっても、酸化物、窒化物、塩化物、その他の化合物の形態であってもよい。上記元素の中ではPdが特に良好である。また、上記の水素貯蔵合金は、基本的には、安定な水素化物を形成しやすい発熱型金属A(例えば、Ti、Zr、ミッシュメタル(Mm)、Ca等)と水素との親和力を持たない吸熱型金属B(例えば、Ni、Fe、Co、Mn等)から構成されており、AB型(LaNiやMmNi等)、AB型(例えば、Ti1.2Mn1.8やTiCr1.8等)、AB型(TiFe等)、AB型(MgNiやMgCu等)を挙げることができる。
【0017】
以上のような水素分子を水素原子に解離させる機能を有する金属成分の合計量は、前記水素貯蔵機能材料の0.3〜20.0質量%であることが好ましい。その量が0.3mass%未満では水素分子を水素に解離する機能を有効に発揮させることができず、20.0mass%を超えても効果が飽和するばかりか、コストが上昇してしまう。
【0018】
本発明において、水素分子を水素原子に解離させる機能を有する金属成分は、水素貯蔵機能材料を機械的粉砕している途中に添加する。
【0019】
炭素質材料を微粉砕する前に触媒成分となる金属成分を担持させると、炭素を微粉砕した際に炭素質材料が金属表面を厚く被覆してしまい、触媒としての機能が有効に発揮されず、水素貯蔵量の上昇効果が小さいものとなってしまう。特に、水素貯蔵機能材料が炭素質材料の場合には、このように水素貯蔵量の上昇効果が小さいことに加え、触媒作用により発生した水素原子がグラフェンシートの切断に多く使用され、メタンなどの炭化水素が多く発生し、CH/H比が高くなり、放出ガス中の水素の割合(水素選択性)が低くなってしまう。
【0020】
これに対して、本発明では、水素貯蔵機能材料の機械的粉砕の途中で金属成分を添加するので、金属成分の表面を水素貯蔵機能材料が厚く被覆することがなく、かつ金属成分を高分散状態で担持することができ、金属成分の触媒作用が有効に発揮され、金属成分の表面で解離して生成された水素原子が金属成分と水素貯蔵機能材料との界面から水素機能材料中に有効に貯蔵されるので水素貯蔵量が高い。特に、水素貯蔵機能材料がグラファイト等の炭素質材料の場合には、機械的粉砕を開始した際には、触媒として機能する金属成分が存在していないので、粉砕によって形成されたグラフェンシートの端末基(ダングリングボンド)に水素が結合され、その状態で金属成分が添加されるので、グラフェンシートの切断に使用される水素量は少なく、CH/H比が低い(水素選択性が高い)。したがって、上記水素貯蔵量が高く、水素選択性の高い水素貯蔵体が得られる。
【0021】
水素分子を水素原子に解離させる機能を有する金属成分の添加方法は特に限定されるものではないが、水素貯蔵機能材料を機械粉砕する粉砕容器にバルブを介して金属成分導入容器を接続しておき、水素貯蔵機能材料の粉砕を開始してから所定時間後にバルブを開く方法や、粉砕媒体の表面に水素分子を水素原子に解離させる機能を有する金属成分をメッキ等によりコーティングしたり、粉砕媒体自体を水素分子を水素原子に解離させる機能を有する金属成分で構成して、水素貯蔵機能材料の粉砕過程で徐々に金属成分を添加する方法を挙げることができる。
【0022】
【実施例】
以下、本発明の実施例について比較例と対比しつつ説明する。
ここでは、水素貯蔵機能材料としてグラファイトを用いた結果について説明する。
【0023】
1.微粒化グラファイト調製
グラファイト粉末1.95g (キシダ化学社製人造グラファイト、平均粒径36μm)を内容積250mLのジルコニア製ミル容器に入れ、ミル容器内を真空排気した後、水素ガスを1.0MPa導入した。機械的粉砕は、遊星型ボールミル装置(Fritsch社製P5)を用いて、20℃で、公転数250r.p.mで所定の時間ミリングを行った。なお、粉砕ボールには容器とほぼ同等の組成および硬度を有するジルコニア製ボール(φ10mm)を60個使用した。なお、ミル容器としては、水素ガス導入用や真空排気用のコネクションバルブと水素分子を水素原子へ解離させる機能を有した金属成分を添加するための試料導入バルブを備え付けたものを用いた。
【0024】
2.水素分子を水素原子へ解離させる機能を有した金属成分の添加
水素分子を水素原子へ解離させる機能を有する金属成分の添加は以下のようにして行った。
【0025】
まず、ミリング前のグラファイト量に対して所定量の水素分子を水素原子へ解離させる機能を有する金属成分を高純度グローブボックス中で計り取り、サンプル導入容器に入れた。
【0026】
次いで、所定時間ミリングを行ったミル容器の水素圧を圧力計により測定しておき、前述のサンプル導入容器をミル容器のコネクションバルブに取り付けて真空排気し、所定時間ミリングしたミル容器と同等の水素圧になるまで水素を導入した。
【0027】
この水素を導入したサンプル導入容器とミル容器の間にあるバルブを開放し、所定量の水素分子を水素原子へ解離させる機能を有する金属成分を添加し、添加前までのミリング時間と併せてミリング時間が80時間となるまでミリングを行った。
【0028】
3.試料の取り出し
ミリング後の試料は、酸化と水分吸着の影響を最小限とするために、高純度アルゴン雰囲気のグローブボックス内で取り出し、アルゴン雰囲気で加熱容器に移し試験に供した後、この容器を真空排気した。
【0029】
4.水素放出量およびCH/H比の測定
真空排気した加熱容器中のグラファイトを電気炉で室温〜900℃まで昇温速度10℃/分で加熱し、グラファイトから放出されたガスを20℃に冷却し、ガス圧を圧力計で測定するとともに内容積50mLのガスボンベに採取した。
【0030】
この放出ガスは配管を通じてガスクロマトグラフに(島津製作所製、GC9A、TCD検出器、カラム:Molecular Sieve5A)導入し、水素放出量とメタン放出量を測定した。この際の代表的なチャートを図1に示す。水素貯蔵量としては、この水素量を加熱前のグラファイト量で除した値とした。炭素水素原子比は、放出水素量から水素原子量を加熱前のグラファイト量から炭素原子量を算出し、これらより求めた。また、CH/H比は、ガスクロマトグラフより得られたメタン量を同様の水素量で除した値とした。
【0031】
5.使用原料およびガス
水素分子を水素原子に解離させる機能を有する金属成分としては、Ni、Co、Fe、Pd、Ptを用い、その原料として以下のものを用いた。
▲1▼Ni、Co、Fe金属微粒子:真空冶金株式会社製
Ni:平均粒径20nm、比表面積:43.8m/g
Co:平均粒径20nm、比表面積:47.9m/g
Fe:平均粒径20nm、比表面積:46.0m/g
▲2▼Pd、Pt微粒子:石福金属興業
Pd:平均粒径0.5μm、比表面積:1.2m/g
Pt:平均粒径0.5μm、比表面積:10.1m/g
【0032】
また、水素ガス、アルゴンガスとしては以下のものを用いた。
水素ガス:G1 7N
アルゴンガス:α▲2▼ 6N
【0033】
図2および図3に、それぞれ水素分子を水素原子に解離させる機能を有する金属成分として3mass%のPd微粒子および3mass%のFe微粒子を用い、これらの添加時間と水素放出率との関係、および添加時間とCH/H比との関係を示す。なお、添加時間0時間は、グラファイトの粉砕前に金属成分を添加したことを示す。
【0034】
図2および図3に示すように、いずれの場合にも機械的粉砕(ミリング)前に水素分子を水素原子に解離させる機能を有する金属成分を添加するよりも、機械的粉砕(ミリング)途中(10時間、20時間)に添加したほうが、水素放出率(水素貯蔵量に対応)が増加するとともに、CH/H比が小さくなり水素の選択性が向上することが確認された。
【0035】
図4に、ミリング時間と水素貯蔵量(放出量)および水素炭素原子比との関係を示し、図5に、図4のミリング時間と水素炭素原子比との関係の拡大図(ミリング時間0〜50時間)を示す。
【0036】
本条件においては、グラファイトを5〜25時間ミリングすることにより水素炭素原子比(H/C)が0.10〜0.25の範囲であった。なお、当然のことながら、このような範囲の水素炭素原子比が得られるミリング時間がこのように規定されるものではなく、条件に応じてミリング時間は異なる。
【0037】
図4および図5の結果より、水素炭素比が0(ミリング0時間)、0.193(ミリング15時間)、および0.323(ミリング時間48時間)のグラファイトに水素分子を水素原子に解離させる機能を有する金属成分としてそれぞれPdおよびFeの微粒子を添加し、真空中で室温〜900℃まで放出されるガス量を測定し、水素放出量と水素メタン質量比を求めた。その結果を図6〜9に示す。図6はPd添加率と水素放出率との関係、図7はPd添加率とCH/H比との関係、図8はFe添加率と水素放出率との関係、図9はFe添加率とCH/H比との関係をそれぞれ示すものである。なお、図6〜9の中で(a)が全体を示し、(b)が金属成分0〜3mass%までの拡大図である。
【0038】
これら図に示すように、水素放出率と添加率との関係では、添加前のグラファイトの水素炭素原子比が0.193と0.323の試料では大きな差がみられないものの、水素炭素原子比が0.323のグラファイトを用いた場合、CH/H比が高くなり水素の選択性が劣る。
【0039】
次に、上記各水素炭素原子比のグラファイトに、水素分子を水素原子に解離させる機能を有する種々の金属成分を3mass%添加し、その際の水素炭素原子比と、粉砕されたグラファイトからの水素放出率およびCH/H比との関係を求めた。その結果を図10に示す。
【0040】
図10に示すように、金属元素の種類により、水素放出率とCH/H比の値は異なるものの、水素炭素原子比が0.10〜0.25の範囲のグラファイトに水素分子を水素原子に解離させる機能を有した金属を添加したナノグラファイトにおいて高い水素選択性が得られる結果となった。
【0041】
【発明の効果】
以上説明したように、本発明によれば、水素ガス雰囲気下で機械的粉砕により細粒化することで水素貯蔵機能を発現する水素貯蔵機能材料を用いて水素貯蔵体を製造するにあたり、水素分子を水素原子へ解離させる機能を有する金属成分を、前記水素貯蔵機能材料の機械的粉砕の途中に添加するので、その金属成分が水素貯蔵機能材料に厚く覆われることなく、しかも金属成分を高分散状態で担持することができ、その金属成分の作用によって高い水素貯蔵能力が得られる。
【図面の簡単な説明】
【図1】グラファイトから放出されたガスをガスクロマトグラフに導入し、水素放出量とメタン放出量を測定した結果を示すチャートの一例を示す図。
【図2】水素分子を水素原子に解離させる機能を有する金属成分として3mass%のPd微粒子を用いた場合の、その添加時間と水素放出率およびCH/H比との関係を示す図。
【図3】水素分子を水素原子に解離させる機能を有する金属成分として3mass%のFe微粒子を用いた場合の、その添加時間と水素放出率およびCH/H比との関係を示す図。
【図4】ミリング時間と水素貯蔵量(放出量)および水素炭素原子比との関係を示す図。
【図5】図4のミリング時間と水素炭素原子比との関係の拡大図(ミリング時間0〜50時間)を示す図。
【図6】Pd添加率と水素放出率との関係を示す図。
【図7】Pd添加率とCH/H比との関係を示す図。
【図8】Fe添加率と水素放出率との関係を示す図。
【図9】Fe添加率とCH/H比との関係を示す図。
【図10】各水素炭素原子比のグラファイトに、水素分子を水素原子に解離させる機能を有する種々の金属成分を3mass%添加した際の水素炭素原子比と、粉砕されたグラファイトからの水素放出率およびCH/H比との関係を示す図。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hydrogen storage capable of storing a large amount of hydrogen at a relatively low temperature and a method for producing the same. The hydrogen storage medium of the present invention is used as a hydrogen storage medium for a fuel cell vehicle, a medium for storing and transporting hydrogen gas, and for separating and purifying hydrogen gas.
[0002]
[Prior art]
Due to the depletion of fossil fuels and global environmental problems, natural energy and renewable energy are promising as secondary energy alternatives to fossil fuels. In particular, hydrogen gas is expected to be an important material in the energy cycle.
[0003]
However, the biggest problem using hydrogen as fuel is the storage of hydrogen as fuel. At present, as a means of storing hydrogen as a gas, there is storage of hydrogen by a high-pressure gas cylinder, but in order to increase the amount of stored hydrogen, it is necessary to increase the hydrogen pressure, and as the weight of the container increases, There are problems with the pressure resistance and reliability of valves and the like. As a means for storing hydrogen as a liquid, there is a method of storing liquid hydrogen in a heat insulating container. However, liquid hydrogen has a very low boiling point, requires a lot of energy for liquefaction, and a loss due to evaporation of 10 to 20% during supply of liquid hydrogen to an insulated container, and 8% of hydrogen even when insulated. Is said to evaporate, which is economically problematic.
[0004]
Recently, attention has been paid to carbon-based materials such as carbon nanotubes and activated carbon as hydrogen storage materials for solving these problems, and active research has been conducted.
[0005]
For example, Patent Document 1 proposes a method of storing hydrogen in carbon nanotubes. Patent Literature 2 proposes a method of adsorbing hydrogen on a fine structure using activated carbon. Further, Patent Document 3 proposed by the present inventor previously proposes a hydrogen storage material having high hydrogen storage capacity using graphite nanostructured by mechanical pulverization.
[0006]
[Patent Document 1]
JP-A-11-116219 [Patent Document 2]
WO98 / 30496 [Patent Document 3]
JP 2001-302224 A
[Problems to be solved by the invention]
However, although it is reported that the carbon nanotube of Patent Document 1 is produced by a thermal decomposition reaction and has a low yield and can store a large amount of hydrogen, it has a drawback that reproducibility cannot be obtained. Therefore, it is not preferable as an industrial production method. Further, the activated carbon of Patent Document 2 requires an extremely low temperature and a high pressure, such as a temperature of −173 ° C. or less and a hydrogen pressure of about 5 MPa, for storing hydrogen, which is not preferable as an industrial production method. On the other hand, Patent Document 3 mentioned above can store a relatively large amount of hydrogen at normal temperature and under low pressure, but it is still not enough.
[0008]
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a hydrogen storage body having a high hydrogen storage capacity and a method for producing the same.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors have developed a technique disclosed in Japanese Patent Application Laid-Open No. 2001-302224 to further improve the hydrogen storage capacity of nanostructured graphite by mechanical pulverization under a hydrogen gas atmosphere. The examination was repeated. As a result, if a metal component that functions as a catalyst and has a function of dissociating hydrogen molecules into hydrogen atoms is added during the mechanical grinding of graphite, the metal component is not thickly covered with the hydrogen storage function material, It has been found that the component can be supported in a highly dispersed state, and a high hydrogen storage capacity can be obtained by the action of the metal component. Such an effect can be similarly obtained not only for graphite but also for other hydrogen storage function materials that exhibit a hydrogen storage function by being finely divided by mechanical pulverization in a hydrogen gas atmosphere.
[0010]
The present invention has been completed based on such findings of the present inventors, and provides the following (1) to (7).
[0011]
(1) In producing a hydrogen storage body using a hydrogen storage function material that exhibits a hydrogen storage function by mechanically pulverizing it under a hydrogen gas atmosphere, it has a function of dissociating hydrogen molecules into hydrogen atoms. A method for producing a hydrogen storage body, comprising adding a metal component during the mechanical pulverization of the hydrogen storage function material.
(2) In the above (1), the metal component having a function of dissociating the hydrogen molecule into a hydrogen atom is Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, B, Na, Mg, K, Ir. , Nd, La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru and Ag, or a hydrogen storage alloy characterized by being a hydrogen storage alloy. Production method.
(3) In the above (2), the metal component having a function of dissociating the hydrogen molecule into a hydrogen atom is one or more elemental metals selected from the above elements, one or more elemental metals selected from the above elements, or A method for producing a hydrogen storage body, which is in any form of an alloy, an oxide, a nitride, a chloride, or another compound containing two or more kinds of components.
(4) In the above items (1) to (3), the total amount of the metal component having a function of dissociating the hydrogen molecules into hydrogen atoms is 0.3 to 20.0% by mass of the mass of the hydrogen storage body. A method for producing a hydrogen storage body.
(5) The method for producing a hydrogen storage material according to any one of (1) to (4), wherein the hydrogen storage function material is graphite, amorphous carbon, activated carbon, carbon nanotube, or fullerene.
(6) In the above (5), after the hydrogen / carbon atomic ratio of the hydrogen storage function material reaches a range of 0.10 to 0.25, a metal component having a function of dissociating hydrogen molecules into hydrogen atoms is added. A method for producing a hydrogen storage body.
(7) A hydrogen storage produced by the method of (1) to (6).
[0012]
Embodiment of the present invention
Hereinafter, embodiments of the present invention will be described.
In the present invention, the function of dissociating hydrogen molecules into hydrogen atoms when producing a hydrogen storage body using a hydrogen storage function material that expresses a hydrogen storage function by mechanically pulverizing under a hydrogen gas atmosphere to produce a hydrogen storage function. Is added during the mechanical pulverization of the hydrogen storage functional material.
[0013]
In the present invention, in the process of miniaturizing a hydrogen storage functional material such as graphite by mechanical pulverization in a hydrogen gas atmosphere, hydrogen penetrates into the micronized hydrogen storage functional material, and the surface of the micronized hydrogen storage functional material And / or hydrogen is stored inside. Here, the term “inside” means between crystal grains, between layers, and in defects.
[0014]
As the hydrogen storage function material, a carbonaceous material such as graphite, amorphous carbon, activated carbon, carbon nanotube, and fullerene can be used. In this case, the form of hydrogen intrusion includes those with a carbon-hydrogen covalent bond and those without a covalent bond, and among these, hydrogen mainly without a covalent bond can be reversibly extracted, Effective as stored hydrogen. Among the carbonaceous materials, graphite is preferable because of its high hydrogen storage capacity. Since graphite crystals have a layered structure, a large amount of hydrogen can be stored between the surfaces and between layers during the pulverization process in a hydrogen atmosphere.
[0015]
In the technique disclosed in Patent Document 3 (Japanese Patent Application Laid-Open No. 2001-302224), hydrogen is stored in the process of crushing graphite in a hydrogen atmosphere as described above, and the hydrogen storage amount is about 3 mass% at maximum. However, a further increase in hydrogen storage is required.
[0016]
Therefore, in the present invention, a metal component having a function of dissociating hydrogen molecules into hydrogen atoms is used as a catalyst component, and such a metal component is added during the mechanical pulverization of the hydrogen storage body. As a result, the metal component can be supported in a highly dispersed state, and a high hydrogen storage capacity can be obtained by the action of the metal component. The catalyst component is not particularly limited as long as it is a metal component having such a function, but Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, B, Na, Mg, K, Ir, Nd, One, two or more selected from La, Ca, V, Ti, Cr, Cu, Zn, Al, Si, Ru and Ag, or a hydrogen storage alloy is preferable. The metal component that functions as a catalyst may be one or more elemental metals selected from the above elements, or an alloy containing one or two or more elements selected from the above elements. , Oxides, nitrides, chlorides and other compounds. Among the above elements, Pd is particularly good. In addition, the above-mentioned hydrogen storage alloy basically has no affinity between the exothermic metal A (for example, Ti, Zr, misch metal (Mm), Ca, etc.) which easily forms a stable hydride and hydrogen. endothermic metal B (eg, Ni, Fe, Co, Mn, etc.) are composed of, AB 5 type (LaNi 5 or MmNi 5, etc.), AB 2 type (e.g., Ti 1.2 Mn 1.8 and TiCr 1.8, etc.), AB-type (TiFe, etc.), a 2 B type (Mg 2 Ni and Mg 2 Cu or the like) can be mentioned.
[0017]
It is preferable that the total amount of the metal component having a function of dissociating hydrogen molecules into hydrogen atoms as described above is 0.3 to 20.0% by mass of the hydrogen storage function material. If the amount is less than 0.3 mass%, the function of dissociating hydrogen molecules into hydrogen cannot be effectively exhibited, and if it exceeds 20.0 mass%, not only the effect is saturated, but also the cost increases.
[0018]
In the present invention, the metal component having a function of dissociating hydrogen molecules into hydrogen atoms is added during the mechanical pulverization of the hydrogen storage function material.
[0019]
If a metal component serving as a catalyst component is supported before finely pulverizing the carbonaceous material, the carbonaceous material will cover the metal surface thickly when the carbon is finely pulverized, and the function as a catalyst will not be effectively exhibited. However, the effect of increasing the hydrogen storage amount is small. In particular, when the hydrogen storage functional material is a carbonaceous material, in addition to such a small increase effect of the hydrogen storage amount, hydrogen atoms generated by the catalytic action are often used for cutting graphene sheets, and methane and the like are used. A large amount of hydrocarbons is generated, the CH 4 / H 2 ratio increases, and the ratio of hydrogen in the released gas (hydrogen selectivity) decreases.
[0020]
On the other hand, in the present invention, since the metal component is added during the mechanical pulverization of the hydrogen storage function material, the surface of the metal component is not thickly coated with the hydrogen storage function material, and the metal component is highly dispersed. It can be supported in a state, and the catalytic action of the metal component is effectively exhibited, and the hydrogen atoms generated by dissociation on the surface of the metal component are effective in the hydrogen functional material from the interface between the metal component and the hydrogen storage functional material Hydrogen storage capacity is high. In particular, in the case where the hydrogen storage function material is a carbonaceous material such as graphite, when mechanical pulverization is started, no metal component functioning as a catalyst is present, and thus the end of the graphene sheet formed by pulverization is not present. Since hydrogen is bonded to the group (dangling bond) and the metal component is added in that state, the amount of hydrogen used for cutting the graphene sheet is small, and the CH 4 / H 2 ratio is low (the hydrogen selectivity is high). ). Therefore, a hydrogen storage body having a high hydrogen storage amount and high hydrogen selectivity can be obtained.
[0021]
The method of adding a metal component having a function of dissociating hydrogen molecules into hydrogen atoms is not particularly limited, but a metal component introduction container is connected via a valve to a pulverization container for mechanically pulverizing a hydrogen storage function material. A method of opening a valve after a predetermined time from the commencement of grinding of the hydrogen storage functional material, coating a metal component having a function of dissociating hydrogen molecules into hydrogen atoms on the surface of the grinding medium by plating or the like, or grinding the grinding medium itself. Is composed of a metal component having a function of dissociating hydrogen molecules into hydrogen atoms, and a metal component is gradually added during the pulverization process of the hydrogen storage function material.
[0022]
【Example】
Hereinafter, examples of the present invention will be described in comparison with comparative examples.
Here, the result of using graphite as the hydrogen storage function material will be described.
[0023]
1. 1.95 g of finely divided graphite prepared graphite powder (artificial graphite manufactured by Kishida Chemical Co., Ltd., average particle size: 36 μm) was placed in a 250 mL zirconia mill container having an inner volume of 250 mL, and after evacuation of the inside of the mill container, hydrogen gas was introduced at 1.0 MPa. did. The mechanical pulverization was performed at 20 ° C. using a planetary ball mill (Fritsch P5) at a revolution number of 250 r. p. Milling was performed for a predetermined time at m. The crushed balls used were 60 zirconia balls (φ10 mm) having the same composition and hardness as the container. As the mill vessel, a vessel equipped with a connection valve for introducing hydrogen gas or vacuum evacuation and a sample introduction valve for adding a metal component having a function of dissociating hydrogen molecules into hydrogen atoms was used.
[0024]
2. Addition of metal component having a function of dissociating hydrogen molecules into hydrogen atoms The addition of a metal component having a function of dissociating hydrogen molecules into hydrogen atoms was performed as follows.
[0025]
First, a metal component having a function of dissociating a predetermined amount of hydrogen molecules into hydrogen atoms with respect to the amount of graphite before milling was measured in a high-purity glove box and placed in a sample introduction container.
[0026]
Next, the hydrogen pressure of the mill container that has been milled for a predetermined time is measured by a pressure gauge, and the above-described sample introduction container is attached to the connection valve of the mill container and evacuated, and hydrogen equivalent to that of the mill container milled for a predetermined time is measured. Hydrogen was introduced until pressure.
[0027]
Open the valve between the sample introduction container into which the hydrogen was introduced and the mill container, add a metal component having the function of dissociating a predetermined amount of hydrogen molecules into hydrogen atoms, and milling together with the milling time before addition Milling was performed until the time reached 80 hours.
[0028]
3. Take out the sample The sample after milling is taken out in a glove box in a high-purity argon atmosphere to minimize the effects of oxidation and moisture adsorption, transferred to a heating vessel in an argon atmosphere, and subjected to a test. Evacuated.
[0029]
4. Measurement of hydrogen release amount and CH 2 / H 2 ratio Graphite in a heating vessel evacuated was heated in an electric furnace from room temperature to 900 ° C. at a heating rate of 10 ° C./min, and gas released from graphite was reduced to 20 ° C. After cooling, the gas pressure was measured by a pressure gauge and collected in a gas cylinder having an inner volume of 50 mL.
[0030]
The released gas was introduced into a gas chromatograph (manufactured by Shimadzu Corporation, GC9A, TCD detector, column: Molecular Sieve 5A) through a pipe, and the amount of released hydrogen and the amount of released methane were measured. A typical chart at this time is shown in FIG. The amount of hydrogen stored was a value obtained by dividing the amount of hydrogen by the amount of graphite before heating. The carbon-to-hydrogen atomic ratio was determined by calculating the amount of hydrogen atoms from the amount of released hydrogen and the amount of carbon atoms from the amount of graphite before heating. The CH 4 / H 2 ratio was a value obtained by dividing the amount of methane obtained by gas chromatography by the same amount of hydrogen.
[0031]
5. Ni, Co, Fe, Pd, and Pt were used as raw materials used and metal components having a function of dissociating gaseous hydrogen molecules into hydrogen atoms, and the following materials were used as the raw materials.
{Circle around (1)} Ni, Co, Fe metal fine particles: Ni manufactured by Vacuum Metallurgy Co., Ltd .: average particle diameter 20 nm, specific surface area: 43.8 m 2 / g
Co: average particle size 20 nm, specific surface area: 47.9 m 2 / g
Fe: average particle size 20 nm, specific surface area: 46.0 m 2 / g
{Circle around (2)} Pd and Pt fine particles: Ishifuku Metal Industries Pd: average particle size 0.5 μm, specific surface area: 1.2 m 2 / g
Pt: average particle size 0.5 μm, specific surface area: 10.1 m 2 / g
[0032]
The following were used as the hydrogen gas and the argon gas.
Hydrogen gas: G17N
Argon gas: α 2 6N
[0033]
FIGS. 2 and 3 show the relationship between the addition time and the hydrogen release rate, and the addition of 3 mass% Pd fine particles and 3 mass% Fe fine particles as metal components having a function of dissociating hydrogen molecules into hydrogen atoms. 4 shows the relationship between time and the CH 4 / H 2 ratio. The addition time of 0 hours indicates that the metal component was added before the pulverization of graphite.
[0034]
As shown in FIGS. 2 and 3, in any case, rather than adding a metal component having a function of dissociating hydrogen molecules into hydrogen atoms before mechanical pulverization (milling), rather than adding a metal component having a function of dissociating hydrogen molecules into hydrogen atoms (milling) ( (10 hours, 20 hours), it was confirmed that the hydrogen release rate (corresponding to the hydrogen storage amount) was increased, the CH 4 / H 2 ratio was reduced, and the hydrogen selectivity was improved.
[0035]
FIG. 4 shows the relationship between the milling time and the hydrogen storage amount (release amount) and the hydrogen carbon atom ratio. FIG. 5 is an enlarged view of the relationship between the milling time and the hydrogen carbon atom ratio in FIG. 50 hours).
[0036]
Under these conditions, the hydrogen carbon atom ratio (H / C) was in the range of 0.10 to 0.25 by milling graphite for 5 to 25 hours. It is needless to say that the milling time for obtaining the hydrogen carbon atom ratio in such a range is not defined as described above, and the milling time varies depending on the conditions.
[0037]
From the results of FIGS. 4 and 5, hydrogen molecules are dissociated into hydrogen atoms in graphite having a hydrogen-carbon ratio of 0 (milling time 0), 0.193 (milling time 15 hours), and 0.323 (milling time 48 hours). Fine particles of Pd and Fe were added as metal components having a function, and the amount of gas released from room temperature to 900 ° C. in vacuum was measured to determine the amount of hydrogen released and the mass ratio of hydrogen methane. The results are shown in FIGS. 6 shows the relationship between the Pd addition rate and the hydrogen release rate, FIG. 7 shows the relationship between the Pd addition rate and the CH 4 / H 2 ratio, FIG. 8 shows the relationship between the Fe addition rate and the hydrogen release rate, and FIG. 9 shows the Fe addition. 3 shows the relationship between the ratio and the CH 4 / H 2 ratio, respectively. 6A to 9B, (a) shows the whole, and (b) is an enlarged view of a metal component of 0 to 3 mass%.
[0038]
As shown in these figures, in the relationship between the hydrogen release rate and the addition rate, although the hydrogen carbon atom ratio of the graphite before addition was not significantly different between the samples of 0.193 and 0.323, the hydrogen carbon atom ratio Is 0.323, the CH 4 / H 2 ratio is increased and the selectivity of hydrogen is inferior.
[0039]
Next, 3 mass% of various metal components having a function of dissociating hydrogen molecules into hydrogen atoms are added to the graphite having the above-mentioned hydrogen-carbon atom ratios. The relationship between the release rate and the CH 4 / H 2 ratio was determined. The result is shown in FIG.
[0040]
As shown in FIG. 10, although the values of the hydrogen release rate and the CH 4 / H 2 ratio differ depending on the type of the metal element, hydrogen molecules are converted to graphite with a hydrogen carbon atom ratio in the range of 0.10 to 0.25. High hydrogen selectivity was obtained in nanographite to which a metal having a function of dissociating into atoms was added.
[0041]
【The invention's effect】
As described above, according to the present invention, in producing a hydrogen storage body using a hydrogen storage function material that exhibits a hydrogen storage function by mechanically pulverizing under a hydrogen gas atmosphere, Is added during the mechanical pulverization of the hydrogen storage functional material, so that the metal component is not thickly covered by the hydrogen storage functional material, and the metal component is highly dispersed. It can be supported in a state, and a high hydrogen storage capacity can be obtained by the action of the metal component.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a chart showing a result obtained by introducing a gas released from graphite into a gas chromatograph and measuring a hydrogen release amount and a methane release amount.
FIG. 2 is a graph showing the relationship between the addition time, the hydrogen release rate, and the CH 4 / H 2 ratio when 3 mass% Pd fine particles are used as a metal component having a function of dissociating hydrogen molecules into hydrogen atoms.
FIG. 3 is a graph showing the relationship between the addition time, the hydrogen release rate, and the CH 4 / H 2 ratio when 3 mass% Fe fine particles are used as a metal component having a function of dissociating hydrogen molecules into hydrogen atoms.
FIG. 4 is a diagram showing a relationship between a milling time, a hydrogen storage amount (release amount), and a hydrogen carbon atom ratio.
FIG. 5 is an enlarged view of the relationship between the milling time and the hydrogen carbon atom ratio in FIG. 4 (milling time 0 to 50 hours).
FIG. 6 is a graph showing a relationship between a Pd addition rate and a hydrogen release rate.
FIG. 7 is a diagram showing a relationship between a Pd addition rate and a CH 4 / H 2 ratio.
FIG. 8 is a diagram showing a relationship between an Fe addition rate and a hydrogen release rate.
FIG. 9 is a graph showing the relationship between the Fe addition ratio and the CH 4 / H 2 ratio.
FIG. 10 shows the hydrogen carbon atom ratio when various metal components having a function of dissociating hydrogen molecules into hydrogen atoms are added to graphite of each hydrogen carbon atom ratio at 3 mass%, and the hydrogen release rate from pulverized graphite. FIG. 5 is a graph showing the relationship between the ratio and the CH 4 / H 2 ratio.

Claims (7)

水素ガス雰囲気下で機械的粉砕により細粒化することで水素貯蔵機能を発現する水素貯蔵機能材料を用いて水素貯蔵体を製造するにあたり、水素分子を水素原子へ解離させる機能を有する金属成分を、前記水素貯蔵機能材料の機械的粉砕の途中に添加することを特徴とする水素貯蔵体の製造方法。In producing a hydrogen storage body using a hydrogen storage material that exhibits a hydrogen storage function by mechanically pulverizing it under a hydrogen gas atmosphere, a metal component that has the function of dissociating hydrogen molecules into hydrogen atoms is used. And adding the hydrogen storage functional material during mechanical pulverization of the hydrogen storage functional material. 前記水素分子を水素原子に解離させる機能を有する金属成分が、Mn、Fe、Co、Ni、Pt、Pd、Rh、Li、B、Na、Mg、K、Ir、Nd、La、Ca、V、Ti、Cr、Cu、Zn、Al、Si、RuおよびAgから選ばれた1種または2種以上、もしくは水素貯蔵合金であることを特徴とする請求項1に記載の水素貯蔵体の製造方法。The metal component having a function of dissociating the hydrogen molecule into a hydrogen atom includes Mn, Fe, Co, Ni, Pt, Pd, Rh, Li, B, Na, Mg, K, Ir, Nd, La, Ca, V, The method for producing a hydrogen storage body according to claim 1, wherein the hydrogen storage body is one or more selected from Ti, Cr, Cu, Zn, Al, Si, Ru, and Ag, or a hydrogen storage alloy. 前記水素分子を水素原子に解離させる機能を有する金属成分が、上記元素から選ばれた1種または2種以上の単体金属、上記元素から選ばれた1種または2種以上を構成成分とする合金、酸化物、窒化物、塩化物、その他の化合物のいずれかの形態をとることを特徴とする請求項2に記載の水素貯蔵体の製造方法。The metal component having a function of dissociating the hydrogen molecule into a hydrogen atom is one or two or more simple metals selected from the above elements, and an alloy containing one or two or more selected from the above elements 3. The method for producing a hydrogen storage body according to claim 2, wherein the hydrogen storage body is in the form of any one of oxides, oxides, nitrides, chlorides, and other compounds. 前記水素分子を水素原子に解離させる機能を有する金属成分の合計量が水素貯蔵機能材料の質量の0.3〜20.0質量%であることを特徴とする請求項1から請求項3のいずれか1項に記載の水素貯蔵体の製造方法。4. The method according to claim 1, wherein the total amount of the metal component having a function of dissociating the hydrogen molecules into hydrogen atoms is 0.3 to 20.0 mass% of the mass of the hydrogen storage function material. 5. The method for producing a hydrogen storage according to claim 1. 前記水素貯蔵機能材料がグラファイト、非晶質炭素、活性炭、カーボンナノチューブまたはフラーレンであることを特徴とする請求項1から請求項4のいずれか1項に記載の水素貯蔵体の製造方法。The method for producing a hydrogen storage body according to any one of claims 1 to 4, wherein the hydrogen storage function material is graphite, amorphous carbon, activated carbon, carbon nanotube, or fullerene. 前記水素貯蔵機能材料の水素/炭素の原子比が0.10〜0.25の範囲に到達後に、水素分子を水素原子へ解離させる機能を有する金属成分を添加することを特徴とする請求項5に記載の水素貯蔵体の製造方法。6. A metal component having a function of dissociating hydrogen molecules into hydrogen atoms after the hydrogen / carbon atomic ratio of the hydrogen storage function material reaches a range of 0.10 to 0.25. The method for producing a hydrogen storage material according to item 1. 請求項1から請求項6のいずれかの方法により製造された水素貯蔵体。A hydrogen storage material produced by the method according to claim 1.
JP2003086299A 2003-03-26 2003-03-26 Hydrogen storage material and its manufacturing method Pending JP2004290811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003086299A JP2004290811A (en) 2003-03-26 2003-03-26 Hydrogen storage material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003086299A JP2004290811A (en) 2003-03-26 2003-03-26 Hydrogen storage material and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004290811A true JP2004290811A (en) 2004-10-21

Family

ID=33400995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003086299A Pending JP2004290811A (en) 2003-03-26 2003-03-26 Hydrogen storage material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004290811A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007090163A (en) * 2005-09-27 2007-04-12 Taiheiyo Cement Corp Method for manufacturing hydrogen storage material
JP2007289877A (en) * 2006-04-26 2007-11-08 Toyota Central Res & Dev Lab Inc Hydrogen storage material, manufacturing method thereof and hydride compound material
JP2011202258A (en) * 2010-03-26 2011-10-13 Jx Nippon Mining & Metals Corp Hydrogen permeable alloy and hydrogen permeation membrane utilizing the same
JP2014520751A (en) * 2011-07-14 2014-08-25 ユニスト・アカデミー―インダストリー・リサーチ・コーポレーション Graphite with edge functionalized by mechanochemical method and method for producing the same
WO2019003841A1 (en) * 2017-06-30 2019-01-03 国立大学法人京都大学 Hydrogen storage material, hydrogen storage method, and method for producing hydrogen storage material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007090163A (en) * 2005-09-27 2007-04-12 Taiheiyo Cement Corp Method for manufacturing hydrogen storage material
JP2007289877A (en) * 2006-04-26 2007-11-08 Toyota Central Res & Dev Lab Inc Hydrogen storage material, manufacturing method thereof and hydride compound material
JP2011202258A (en) * 2010-03-26 2011-10-13 Jx Nippon Mining & Metals Corp Hydrogen permeable alloy and hydrogen permeation membrane utilizing the same
JP2014520751A (en) * 2011-07-14 2014-08-25 ユニスト・アカデミー―インダストリー・リサーチ・コーポレーション Graphite with edge functionalized by mechanochemical method and method for producing the same
WO2019003841A1 (en) * 2017-06-30 2019-01-03 国立大学法人京都大学 Hydrogen storage material, hydrogen storage method, and method for producing hydrogen storage material
JP2019010611A (en) * 2017-06-30 2019-01-24 国立大学法人京都大学 Hydrogen storage body, hydrogen storage method, and manufacturing method of hydrogen storage body

Similar Documents

Publication Publication Date Title
EP1209119B1 (en) Hydrogen storage using carbon-metal hybrid compositions
Khafidz et al. The kinetics of lightweight solid-state hydrogen storage materials: A review
Sakintuna et al. Metal hydride materials for solid hydrogen storage: a review
Aguey-Zinsou et al. Hydrogen in magnesium: new perspectives toward functional stores
Dou et al. Hydrogen sorption and desorption behaviors of Mg-Ni-Cu doped carbon nanotubes at high temperature
Ichikawa et al. Composite materials based on light elements for hydrogen storage
Rud et al. Hydrogen storage of the Mg–C composites
Yang et al. Experimental studies on the poisoning properties of a low-plateau hydrogen storage alloy LaNi4. 3Al0. 7 against CO impurities
US7749484B2 (en) Li-B-Mg-X system for reversible hydrogen storage
Liu et al. Non-classical hydrogen storage mechanisms other than chemisorption and physisorption
Kumar et al. Catalytic effect of bis (cyclopentadienyl) nickel II on the improvement of the hydrogenation-dehydrogenation of Mg-MgH2 system
Fang et al. Reversible dehydrogenation of LiBH4 catalyzed by as-prepared single-walled carbon nanotubes
Narayanan et al. Mechanically milled coal and magnesium composites for hydrogen storage
Kojima et al. Hydrogen adsorption and desorption by potassium-doped superactivated carbon
JP2004290811A (en) Hydrogen storage material and its manufacturing method
Palma et al. MgAl alloy synthesis, characterization and its use in hydrogen storage
JP2005053731A (en) Hydrogen storing body and its manufacturing method
Kudiiarov et al. Microstructure and hydrogen storage properties of MgH2/MIL-101 (Cr) composite
JP2005052722A (en) Hydrogen storage medium and manufacturing method therefor
Somo Surface modified metal hydride alloys for carbon dioxide reduction into hydrocarbons
TWI297284B (en) Hydrogen storage composite and preparation thereof
Jurczyk et al. Materials overview for hydrogen storage
Shen Structural and thermodynamic studies of Y based AB2 hydride forming alloys Étude structurale et thermodynamique des alliages hydrurables de type AB2 à base de Y
Kim et al. Effect of MWCNT (Multi-Walled Carbon Nano-Tube) Doping on Hydrogenation Kinetics of Mg–CaO Alloys
JP2007289877A (en) Hydrogen storage material, manufacturing method thereof and hydride compound material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050322

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061003

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070807