JP2009291740A - Hydrogen separation member and hydrogen generating apparatus - Google Patents

Hydrogen separation member and hydrogen generating apparatus Download PDF

Info

Publication number
JP2009291740A
JP2009291740A JP2008149614A JP2008149614A JP2009291740A JP 2009291740 A JP2009291740 A JP 2009291740A JP 2008149614 A JP2008149614 A JP 2008149614A JP 2008149614 A JP2008149614 A JP 2008149614A JP 2009291740 A JP2009291740 A JP 2009291740A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen separation
metal
catalyst
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008149614A
Other languages
Japanese (ja)
Inventor
Kazuhiro Yamamura
和広 山村
Masahiro Tobise
飛世  正博
Takao Ishikawa
敬郎 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008149614A priority Critical patent/JP2009291740A/en
Publication of JP2009291740A publication Critical patent/JP2009291740A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen separation member having excellent efficiency of hydrogen purification, excellent hydrogen permeability and excellent resistance to hydrogen embrittlement, and to provide a hydrogen generating apparatus. <P>SOLUTION: The hydrogen separation member includes a hydrogen separation metal film and a metal porous material arranged adjacently on at least one side of the hydrogen separation metal film, and a catalyst for modification of a fuel is supported in pores of the metal porous material. The hydrogen separation metal film and the metal porous material are preferably adhered to each other. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高純度水素製造および精製装置などに用いられる水素分離部材であり、水素精製反応の効率、水素透過能および耐水素脆性に優れた水素分離部材およびそれを用いた水素製造器に関する。   The present invention relates to a hydrogen separation member used in high-purity hydrogen production and purification equipment, and the like, and relates to a hydrogen separation member excellent in efficiency of hydrogen purification reaction, hydrogen permeability and hydrogen embrittlement resistance, and a hydrogen production apparatus using the same.

燃料電池用の燃料である水素は天然には単独に存在しないため、人工的に製造されている。現在、水素の製造には天然ガス(メタン)等の水蒸気改質反応が用いられている。水蒸気改質反応とは例えば以下の式1のような化学反応を用いて水素を得るものである。   Since hydrogen, which is a fuel for fuel cells, does not exist by nature, it is artificially produced. Currently, steam reforming reaction such as natural gas (methane) is used for the production of hydrogen. The steam reforming reaction is to obtain hydrogen using a chemical reaction such as the following formula 1.

この方法では水素と同時にCO、CO、HO等の不純物ガスが発生する。特にCOは燃料電池の電極を被毒するため、化石燃料の改質によって得られた水素を燃料電池で使用するためには、水素をこれらの不純物ガスから分離・精製して、高純度化しなければならない。 In this method, impurity gases such as CO, CO 2 and H 2 O are generated simultaneously with hydrogen. In particular, CO poisons fuel cell electrodes. In order to use hydrogen obtained by fossil fuel reforming in fuel cells, hydrogen must be separated and purified from these impurity gases to achieve high purity. I must.

燃料改質反応によって生成した混合ガスから水素のみを取り出す技術として、水素分離金属膜を利用した精製法が知られている。水素分離金属膜を透過する水素の量は次の式2で表される。すなわち水素分離金属膜にかかる圧力差が大きく、水素分離金属膜が薄いほど透過する水素の量は多くなる。   As a technique for extracting only hydrogen from a mixed gas generated by a fuel reforming reaction, a purification method using a hydrogen separation metal membrane is known. The amount of hydrogen that permeates the hydrogen separation metal membrane is expressed by the following formula 2. That is, the pressure difference applied to the hydrogen separation metal membrane is large, and the thinner the hydrogen separation metal membrane is, the more hydrogen is permeated.

(ここでJ:水素透過流束、Φ:水素透過係数、P:膜上流側圧力、P:膜下流側圧力、L:膜厚である。) (Where J: hydrogen permeation flux, Φ: hydrogen permeation coefficient, P u : membrane upstream pressure, P d : membrane downstream pressure, L: film thickness.)

前記燃料改質反応において、水素のみを取り除くことができれば、ル・シャトリエの法則に従って平衡は右側にずれる。従ってより高い転換率を得ることができ、また反応温度を下げることでエネルギーロスを抑え、水素製造コストの低減化が図ることができる。   In the fuel reforming reaction, if only hydrogen can be removed, the equilibrium shifts to the right according to Le Chatelier's law. Therefore, a higher conversion rate can be obtained, and by reducing the reaction temperature, energy loss can be suppressed and the hydrogen production cost can be reduced.

そのための試みとして多孔質部材に燃料改質触媒を担持させ、そこに燃料ガスを導入して水素を含む混合ガスを得、水素のみを選択的に分離する水素分離部材によって混合ガス中の水素のみを取り出す技術(例えば特許文献1)が知られている。   For that purpose, a fuel reforming catalyst is supported on a porous member, a fuel gas is introduced into the porous member to obtain a mixed gas containing hydrogen, and only hydrogen in the mixed gas is obtained by a hydrogen separation member that selectively separates only hydrogen. A technique (for example, Patent Document 1) for taking out the image is known.

特開2002−126519号公報JP 2002-126519 A

一般に水素分離金属膜は薄くなるほど強度が低下するため、大きな圧力差をつけた場合には膜破壊しやすくなる問題がある。すなわち水素分離速度を上昇させるために水素分離金属膜を薄くする方法と圧力差を大きくする方法とは相反するものであった。   In general, since the strength of a hydrogen separation metal membrane decreases as it becomes thinner, there is a problem that membrane breakage tends to occur when a large pressure difference is applied. That is, the method of thinning the hydrogen separation metal membrane to increase the hydrogen separation rate is contradictory to the method of increasing the pressure difference.

また燃料改質反応の高効率化を目指した上記従来技術では、水素分離層としてセラミックを用いているため水素分離・精製能が低く、十分に高純度の水素を得ることができず、取り出した水素をそのまま燃料電池に導入することはできない。またそれを補うために水素以外を吸着する層を設けているが、これにより圧損が生じて水素分離速度が低下し、結果として水素製造反応の効率も十分に高くならないという問題があった。   Moreover, in the above-mentioned conventional technology aiming at high efficiency of the fuel reforming reaction, ceramic is used as the hydrogen separation layer, so the hydrogen separation / purification ability is low, and sufficiently high-purity hydrogen cannot be obtained. Hydrogen cannot be directly introduced into the fuel cell. In addition, in order to compensate for this, a layer that adsorbs other than hydrogen is provided, but this causes a pressure loss, resulting in a decrease in the hydrogen separation rate, resulting in a problem that the efficiency of the hydrogen production reaction is not sufficiently increased.

さらに、燃料改質反応と水素分離金属膜を用いた水素精製のどちらも100〜500℃程度の温度環境で行われる。このため水素製造器においては燃料改質の反応場となる触媒と水素の精製場となる水素分離金属膜への熱供給を効率よく行うことができる構造にする必要があった。   Furthermore, both the fuel reforming reaction and the hydrogen purification using the hydrogen separation metal membrane are performed in a temperature environment of about 100 to 500 ° C. For this reason, it has been necessary for the hydrogen generator to have a structure that can efficiently supply heat to the catalyst that serves as the reaction field for fuel reforming and the hydrogen separation metal membrane that serves as the hydrogen purification field.

よって本発明では上記問題点を解決し、水素製造反応の高効率化、水素分離速度の高速化を図り、かつ簡便に高純度水素を得ることの出来る水素分離部材およびそれを用いた水素製造器を提供することを目的とする。   Therefore, the present invention solves the above problems, increases the efficiency of the hydrogen production reaction, speeds up the hydrogen separation rate, and easily obtains high-purity hydrogen, and a hydrogen production device using the same The purpose is to provide.

本発明者らは鋭意工夫を重ね、水素分離層に水素分離金属膜を用い、多孔質部材として金属多孔体を用い、さらに前記金属多孔体の空孔部に燃料改質用の触媒を担持させて、両者を隣接させることで上記課題を解決できることを見出した。   The inventors of the present invention have made extensive efforts to use a hydrogen separation metal membrane for the hydrogen separation layer, a metal porous body as the porous member, and a catalyst for fuel reforming to be supported in the pores of the metal porous body. Thus, the inventors have found that the above-mentioned problem can be solved by making both adjacent.

すなわち本発明の水素分離部材は、水素分離金属膜と、前記水素分離金属膜の少なくとも片面に金属多孔体が隣接した水素分離部材であって、前記金属多孔体の空孔部に燃料改質用の触媒が担持されていることを特徴とする。   That is, the hydrogen separating member of the present invention is a hydrogen separating metal membrane and a hydrogen separating member in which a metal porous body is adjacent to at least one surface of the hydrogen separating metal membrane. The catalyst is supported.

この構成によれば、水素分離金属膜と金属多孔体を密着させることで、水素分離金属膜が補強されてより一層の薄膜化を行うことができるため、水素分離速度を向上させることができる。また燃料改質用の触媒が金属多孔体に担持されることで燃料改質反応に供される表面積が増大して燃料改質の反応効率が増加する。また、水素分離金属膜はセラミック系のものより水素分離能が高く、金属多孔体との間に吸着層などを設ける必要がないため、圧損を生じることなく水素分離金属膜にガスが流れて効率よく水素分離を行うことができる。さらに燃料改質反応系から速やかに水素が取り除かれることにより、燃料改質反応のさらなる高効率化を図ることができる。さらに前記水素分離部材を用いた水素製造器においては金属多孔体が熱伝達の媒介となるため、金属多孔体に担持された燃料改質用触媒と、金属多孔体に密着した水素分離金属膜とに必要な熱を速やかに供給できるようになる。   According to this configuration, the hydrogen separation metal film and the metal porous body are brought into close contact with each other, whereby the hydrogen separation metal film can be reinforced and further thinning can be performed, so that the hydrogen separation rate can be improved. Further, since the fuel reforming catalyst is supported on the metal porous body, the surface area provided for the fuel reforming reaction is increased and the reaction efficiency of the fuel reforming is increased. In addition, the hydrogen separation metal membrane has a higher hydrogen separation ability than ceramic-based ones, and it is not necessary to provide an adsorption layer between the porous metal body, so the gas flows through the hydrogen separation metal membrane without causing pressure loss. Hydrogen separation can be performed well. Furthermore, since hydrogen is quickly removed from the fuel reforming reaction system, the fuel reforming reaction can be further improved in efficiency. Further, in the hydrogen production apparatus using the hydrogen separation member, since the metal porous body serves as a medium for heat transfer, a fuel reforming catalyst supported on the metal porous body, a hydrogen separation metal membrane closely attached to the metal porous body, It becomes possible to quickly supply the heat necessary for the operation.

上記構成の水素分離部材において前記水素分離金属膜はPd、V、Nb、Ta、Zr、Ni、Tiの金属膜、またはPd、V、Nb、Ta、Zr、Ni、Tiの2種以上を主成分とする合金膜を用いることができる。また水素分離金属膜の表面に水素分子を原子状に解離または水素原子を水素分子に再結合させる反応を促進するための触媒層を設けることができる。   In the hydrogen separation member configured as described above, the hydrogen separation metal film is mainly composed of Pd, V, Nb, Ta, Zr, Ni, Ti metal films, or two or more of Pd, V, Nb, Ta, Zr, Ni, Ti. An alloy film as a component can be used. Further, a catalyst layer for promoting a reaction of dissociating hydrogen molecules into atoms or recombining hydrogen atoms with hydrogen molecules can be provided on the surface of the hydrogen separation metal film.

上記構成の金属多孔体はNiまたはNi基合金、CuまたはCu基合金、AlまたはAl基合金、またはステンレス鋼を用いることが出来る。   As the metal porous body having the above structure, Ni or Ni-base alloy, Cu or Cu-base alloy, Al or Al-base alloy, or stainless steel can be used.

また前記金属多孔体は気孔率が30%以上90%以下とすることが好ましい。気孔率を限定した理由は気孔率が30%未満の時は圧損が大きく水素分離速度が低下してしまうためであり、逆に気孔率が90%超の時は燃料改質に必要な十分な量の触媒を担持することができず燃料改質反応の効率が低下してしまうためである。   The metal porous body preferably has a porosity of 30% to 90%. The reason for limiting the porosity is that when the porosity is less than 30%, the pressure loss is large and the hydrogen separation rate decreases, and conversely, when the porosity is more than 90%, it is sufficient for fuel reforming. This is because the amount of catalyst cannot be supported and the efficiency of the fuel reforming reaction is lowered.

前記水素分離金属膜と金属多孔体は互いに接着して用いることができる。接着の方法としては溶接、圧延による接合、または水素分離金属膜と金属多孔体の材質に合わせた適切なろう材を用いることができる。   The hydrogen separation metal membrane and the metal porous body can be used while being adhered to each other. As a bonding method, welding, rolling bonding, or a brazing material suitable for the material of the hydrogen separation metal film and the metal porous body can be used.

前記水素分離金属膜はその厚さを0.1μm以上1mm以下とすることが好ましい。水素分離金属膜は厚さに反比例して水素分離速度が低下するため、厚さが1mm超では十分な水素分離速度を得ることができない。一方0.1μm未満の厚さでは膜の作製時にピンホールが生じやすくなるため、結果として高純度な水素を得ることが難しくなるという問題がある。好ましい厚さは、0.3μm以上500μm以下であり、さらに好ましくは1μm以上300μm以下である。   The hydrogen separation metal membrane preferably has a thickness of 0.1 μm to 1 mm. Since the hydrogen separation metal membrane has a hydrogen separation rate that is inversely proportional to the thickness, a sufficient hydrogen separation rate cannot be obtained when the thickness exceeds 1 mm. On the other hand, if the thickness is less than 0.1 μm, pinholes are likely to occur during the production of the film, resulting in a problem that it is difficult to obtain high-purity hydrogen. The preferred thickness is 0.3 μm or more and 500 μm or less, and more preferably 1 μm or more and 300 μm or less.

燃料改質反応に用いる燃料は水素を含有する物質であれば特に制限されるものではない。例えばガソリン、灯油、軽油、天然ガスといった化石燃料や、メタン、プロパン、ジメチルエーテル、メタノール、エタノール、プロパノール、ブタノール、メチルシクロヘキサン、デカリン、メチルデカリンなどの有機化合物や、アンモニア、ヒドラジンなどの無機化合物などを用いることが出来る。   The fuel used for the fuel reforming reaction is not particularly limited as long as it is a substance containing hydrogen. For example, fossil fuels such as gasoline, kerosene, light oil and natural gas, organic compounds such as methane, propane, dimethyl ether, methanol, ethanol, propanol, butanol, methylcyclohexane, decalin and methyldecalin, and inorganic compounds such as ammonia and hydrazine. Can be used.

燃料改質反応に用いる触媒は前記燃料に応じて適切なものを使用することが出来る。例えばPtまたはPt基合金、PdまたはPd基合金、NiまたはNi基合金、CuまたはCu基合金などである。   As the catalyst used in the fuel reforming reaction, an appropriate catalyst can be used according to the fuel. For example, Pt or Pt base alloy, Pd or Pd base alloy, Ni or Ni base alloy, Cu or Cu base alloy.

水素分離金属膜を金属多孔体によって補強することで、水素分離金属膜を薄くして、かつ膜にかかる圧力を高圧とすることができ、その結果水素分離の高速化を達成できた。さらに前記金属多孔体に燃料改質用の触媒を担持させることで燃料改質反応の効率が向上し、前記効果との相乗効果により高純度の水素を高速にかつ簡便に得ることができる水素分離部材を提供することができた。さらに燃料改質反応と水素分離を一つの部材で行うことができるため、本発明を利用した水素製造器の小型化を図ることができた。   By reinforcing the hydrogen separation metal membrane with a metal porous body, the hydrogen separation metal membrane can be made thin and the pressure applied to the membrane can be increased, and as a result, high speed hydrogen separation can be achieved. Furthermore, by supporting a catalyst for fuel reforming on the metal porous body, the efficiency of the fuel reforming reaction is improved, and a high-purity hydrogen can be easily obtained at high speed by a synergistic effect with the above effect. A member could be provided. Furthermore, since the fuel reforming reaction and the hydrogen separation can be performed with a single member, the hydrogen generator utilizing the present invention can be downsized.

以下本発明を実施例によって説明するが、これら実施例により本発明が限定されるものではない。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

(実施例1)
本発明の実施において、水素分離金属膜としてのPd膜(厚さ1μm〜1mm)と、SUS316製金属多孔体(気孔率60%)と、市販のNi基触媒を用いた。まずNi基触媒をエタノールに分散させた後、この分散液に金属多孔体を含浸させ、乾燥後400℃×1hの熱処理を行って触媒を担持させた金属多孔体2を作製した。この触媒を担持させた金属多孔体2と触媒を担持させない金属多孔体3とでPd膜1を挟み、水素分離部材とした。作製した水素分離部材を用いて図1に示す水素製造器を作製した。
(Example 1)
In the practice of the present invention, a Pd membrane (thickness 1 μm to 1 mm) as a hydrogen separation metal membrane, a SUS316 metal porous body (porosity 60%), and a commercially available Ni-based catalyst were used. First, after a Ni-based catalyst was dispersed in ethanol, this dispersion was impregnated with a metal porous body, and after drying, a heat treatment was performed at 400 ° C. × 1 h to prepare a metal porous body 2 carrying the catalyst. The Pd membrane 1 was sandwiched between the metal porous body 2 supporting the catalyst and the metal porous body 3 not supporting the catalyst to form a hydrogen separation member. A hydrogen production device shown in FIG. 1 was produced using the produced hydrogen separation member.

この水素製造器に図2に示す配管を接続し、燃料改質反応を行った。燃料はCHを用い、反応条件はS/C比を2.5、反応温度を500℃、反応圧力を0.8MPaとした。ガスクロマトグラフ12とマスフローメーター10を用いて、燃料改質反応の反応効率、水素分離率、得られた水素の純度を測定した。表1に結果を示す。ここで反応効率は前記式1において、反応後に残留したCH、CO及びCOの濃度から計算した。水素分離率は改質反応によって生成した水素の内、高純度水素として得られた割合を示す。水素製造器にはガスの排出口として水素のみを排出する口と残留した不純物ガスを排出する口があり、水素排出口を塞ぐ様に水素分離部材が存在している。このため水素分離部材の水素透過速度が遅い場合、生成した水素も不純物ガス排出口から排出される。すなわち水素分離率が高いということは、水素分離部材の水素透過速度が十分速いことを示している。なお収率は反応効率と水素分離率とを掛け合わせたものである。 A pipe shown in FIG. 2 was connected to this hydrogen generator, and a fuel reforming reaction was performed. The fuel was CH 4 , and the reaction conditions were an S / C ratio of 2.5, a reaction temperature of 500 ° C., and a reaction pressure of 0.8 MPa. Using the gas chromatograph 12 and the mass flow meter 10, the reaction efficiency of the fuel reforming reaction, the hydrogen separation rate, and the purity of the obtained hydrogen were measured. Table 1 shows the results. Here, the reaction efficiency was calculated from the concentrations of CH 4 , CO and CO 2 remaining after the reaction in the above formula 1. The hydrogen separation rate indicates the ratio obtained as high-purity hydrogen among the hydrogen produced by the reforming reaction. The hydrogen generator has a port for discharging only hydrogen and a port for discharging remaining impurity gas as gas discharge ports, and a hydrogen separation member is present so as to close the hydrogen discharge port. For this reason, when the hydrogen permeation speed of the hydrogen separation member is slow, the generated hydrogen is also discharged from the impurity gas outlet. That is, the high hydrogen separation rate indicates that the hydrogen permeation rate of the hydrogen separation member is sufficiently high. The yield is a product of reaction efficiency and hydrogen separation rate.

(比較例1)
触媒を担持しないSUS316製の金属多孔体(気孔率60%)で水素分離膜であるPd膜を挟んで水素分離部材とした。Ni基触媒をエタノールと混ぜてスラリー状にし、加圧成形後400℃×1hの加熱によって脱脂したものを触媒塊とした。図3に示すように触媒塊6を反応槽4に、水素分離部材を精製槽5に設置し、水素製造器を作製した。なお、実施例1と同じ部材は同じ番号で示す。この水素製造器に図2に示す配管を接続して実施例1と同様に燃料改質反応を行い、結果を表1に示した。比較例1に対して実施例1は反応効率、水素分離率ともに大きく向上していることがわかる。比較例1に示したような構成の場合、CHの水蒸気改質は通常800℃以上で行われることから、本発明により燃料改質反応の高効率化、水素分離速度の高速化が達成できた。
(Comparative Example 1)
A hydrogen separation member was obtained by sandwiching a Pd membrane, which is a hydrogen separation membrane, with a metal porous body (porosity 60%) made of SUS316 that does not carry a catalyst. A Ni-based catalyst was mixed with ethanol to form a slurry, which was degreased by heating at 400 ° C. × 1 h after pressure molding to form a catalyst mass. As shown in FIG. 3, the catalyst mass 6 was installed in the reaction tank 4 and the hydrogen separation member was installed in the purification tank 5 to produce a hydrogen production device. In addition, the same member as Example 1 is shown with the same number. The piping shown in FIG. 2 was connected to this hydrogen generator, and a fuel reforming reaction was performed in the same manner as in Example 1. The results are shown in Table 1. It can be seen that Example 1 significantly improves both the reaction efficiency and the hydrogen separation rate as compared with Comparative Example 1. In the case of the configuration as shown in Comparative Example 1, since the steam reforming of CH 4 is usually performed at 800 ° C. or higher, the present invention can achieve high efficiency of the fuel reforming reaction and high speed of hydrogen separation. It was.

(比較例2、3)
SUS316製金属多孔体として気孔率が25%のものと、95%のものを使用し、実施例1と同様にして水素分離部材、および水素製造器を作製した。この水素製造器に図2に示す配管を接続して実施例1と同様に燃料改質反応を行った。実施例1と比較して比較例2では、反応効率、水素分離率ともに減少していることがわかる。比較例2の構成では金属多孔体の気孔率が小さくなったことで圧損が大きくなっている。そのため燃料ガスの供給速度が減少して燃料改質反応速度が低下しており、また生成したガスの流れが阻害されて水素透過速度も低下している。また、比較例3では、反応効率が大きく低下しているが、反応によって生成した水素についてはほぼ全量を分離できていることがわかる。これは比較例3では気孔率が大きすぎるため、効率的な反応を行うのに十分な量の触媒を担持することができなかったためである。
(Comparative Examples 2 and 3)
As the SUS316 porous metal body, those having a porosity of 25% and those having a porosity of 95% were used, and a hydrogen separation member and a hydrogen production device were produced in the same manner as in Example 1. The fuel reforming reaction was performed in the same manner as in Example 1 by connecting the pipe shown in FIG. Compared to Example 1, it can be seen that in Comparative Example 2, both the reaction efficiency and the hydrogen separation rate are reduced. In the configuration of Comparative Example 2, the pressure loss is increased due to the reduced porosity of the metal porous body. For this reason, the fuel gas supply rate is reduced and the fuel reforming reaction rate is lowered, and the flow of the generated gas is hindered and the hydrogen permeation rate is also lowered. In Comparative Example 3, the reaction efficiency is greatly reduced, but it can be seen that almost all of the hydrogen produced by the reaction can be separated. This is because, in Comparative Example 3, the porosity was too high, so that a sufficient amount of catalyst for carrying out an efficient reaction could not be supported.

(比較例4)
実施例1と同様にして作製した触媒を担持させた金属多孔体2の片面に厚さ0.08μmのPd膜をスパッタリングによって作製した。触媒を担持しないSUS316製の金属多孔体1でPd膜の他方の側に固着して水素分離部材を作製した。作製した水素分離部材は実施例1と同様にして水素製造器に供した。この水素製造器に図2に示す配管を接続して実施例1と同様に燃料改質反応を行った。実施例1と比較して比較例4では、反応効率、水素分離率共に実施例1を上回るが、得られた水素中に不純物ガスが存在し、純度が低くなっていることがわかる。これは本来水素分離金属膜を透過しないCOやCOなどが精製ガス中に含まれることを意味しており、水素分離金属膜にピンホールが存在することを示す結果である。
(Comparative Example 4)
A Pd film having a thickness of 0.08 μm was produced by sputtering on one side of a porous metal body 2 carrying a catalyst produced in the same manner as in Example 1. A hydrogen separation member was prepared by adhering to the other side of the Pd membrane with a metal porous body 1 made of SUS316 not supporting a catalyst. The produced hydrogen separation member was subjected to a hydrogen production device in the same manner as in Example 1. The fuel reforming reaction was performed in the same manner as in Example 1 by connecting the pipe shown in FIG. Compared with Example 1, in Comparative Example 4, both the reaction efficiency and the hydrogen separation rate are higher than in Example 1, but it can be seen that impurity gas is present in the obtained hydrogen and the purity is low. This means that CO, CO 2 or the like that does not permeate the hydrogen separation metal membrane is contained in the purified gas, and is a result indicating that pinholes exist in the hydrogen separation metal membrane.

(比較例5)
厚さ1.2mmのPd膜を用い、実施例1と同様にして水素分離部材、及び水素製造器を作製した。この水素製造器に図2に示す配管を接続して実施例1と同様に燃料改質反応を行った。反応効率、水素分離率共に低下していることがわかる。水素分離金属膜を通る水素の透過速度は前記式2によって表されることから、このような結果は水素分離金属膜の膜厚が増加したためと考えられる。
(Comparative Example 5)
Using a Pd membrane with a thickness of 1.2 mm, a hydrogen separation member and a hydrogen production device were produced in the same manner as in Example 1. The fuel reforming reaction was performed in the same manner as in Example 1 by connecting the pipe shown in FIG. It can be seen that both the reaction efficiency and the hydrogen separation rate are reduced. Since the permeation rate of hydrogen through the hydrogen separation metal membrane is expressed by the above equation 2, it is considered that such a result is due to an increase in the thickness of the hydrogen separation metal membrane.

(実施例2)
Nb合金膜(組成:Ni30Nb40Ti30、厚さ:50μm)を作製し、膜の両表面にスパッタリングによって触媒としてPd層(厚さ:0.1μm)を設け、これを水素分離金属膜とした。実施例1と同様にして、この水素分離金属膜の一方の面に触媒を担持させた金属多孔体2を、他方の面に触媒を担持させない金属多孔体3とを接着して水素分離部材、および水素製造器を作製した。
(Example 2)
An Nb alloy film (composition: Ni 30 Nb 40 Ti 30 , thickness: 50 μm) was prepared, and a Pd layer (thickness: 0.1 μm) was provided as a catalyst on both surfaces of the film by sputtering. It was. In the same manner as in Example 1, a metal porous body 2 supporting a catalyst on one surface of the hydrogen separation metal membrane and a metal porous body 3 not supporting a catalyst on the other surface are bonded to form a hydrogen separation member, And a hydrogen generator was made.

(比較例6)
Nb合金膜(組成:Ni30Nb40Ti30、厚さ:50μm)を作製し、膜の両表面に触媒としてスパッタリングによってPd層(厚さ:0.1μm)を設け、水素分離金属膜を作製した。比較例1と同様にしてNi基触媒塊を作製した。図4に示すように配管内に水素分離膜と触媒塊を設置し、水素製造器を作製した。
(Comparative Example 6)
An Nb alloy film (composition: Ni 30 Nb 40 Ti 30 , thickness: 50 μm) is prepared, and a Pd layer (thickness: 0.1 μm) is provided by sputtering on both surfaces of the film as a catalyst, thereby producing a hydrogen separation metal film did. A Ni-based catalyst mass was prepared in the same manner as in Comparative Example 1. As shown in FIG. 4, a hydrogen separation membrane and a catalyst lump were installed in the pipe to produce a hydrogen production device.

実施例2、及び比較例6の水素製造器に図2に示す配管を接続し、燃料改質反応を行った。燃料はCHを用い、反応条件はS/C比を2.5、反応温度を500℃とした。ガスクロマトグラフ12とマスフローメーター10を用いて、各反応圧力ごとの燃料改質反応の反応効率、水素分離率、得られた水素の純度を測定した。図5〜7に結果を示す。得られる水素の純度は実施例2、及び比較例6のどちらも変化は無いが実施例2の方が反応効率、水素分離率に優れることがわかる。また反応圧力が0.6MPaに到達したとき比較例6の水素分離膜に割れが観測されたが、実施例2の水素分離膜は反応圧力が0.9MPaでも割れることは無かった。この結果により金属多孔体によって水素分離膜が補強されていることがわかる。 The piping shown in FIG. 2 was connected to the hydrogen generators of Example 2 and Comparative Example 6, and a fuel reforming reaction was performed. The fuel was CH 4 , the reaction conditions were an S / C ratio of 2.5, and a reaction temperature of 500 ° C. Using the gas chromatograph 12 and the mass flow meter 10, the reaction efficiency of the fuel reforming reaction for each reaction pressure, the hydrogen separation rate, and the purity of the obtained hydrogen were measured. The results are shown in FIGS. The purity of the hydrogen obtained does not change in either Example 2 or Comparative Example 6, but it can be seen that Example 2 is superior in reaction efficiency and hydrogen separation rate. When the reaction pressure reached 0.6 MPa, cracks were observed in the hydrogen separation membrane of Comparative Example 6, but the hydrogen separation membrane of Example 2 was not cracked even when the reaction pressure was 0.9 MPa. This result shows that the hydrogen separation membrane is reinforced by the metal porous body.

(実施例3)
水素製造器内の温度分布を測定するため、水素分離金属膜としてPd膜(厚さ厚さ100μm)を、実施例1と同様にして作製した、触媒を担持させたSUS316製の金属多孔体2と触媒を担持しない金属多孔体3を用い、図8に示す様な水素製造器のモデル器を作製した。
(Example 3)
In order to measure the temperature distribution in the hydrogen generator, a Pd membrane (thickness: 100 μm) as a hydrogen separation metal membrane was prepared in the same manner as in Example 1, and a porous metal body made of SUS316 carrying a catalyst. And a metal porous body 3 not supporting a catalyst, a model device of a hydrogen production device as shown in FIG. 8 was produced.

(比較例7)
水素分離金属膜としてPd膜(厚さ厚さ100μm)を、実施例1と同様にして作製した、触媒を担持させたSUS316製の金属多孔体塊2aと触媒を担持しない金属多孔体塊3aを用い、図9に示す様な水素製造器のモデル器を作製した。触媒を担持させた金属多孔体塊2aと触媒を担持しない金属多孔体2bの重量は実施例3のそれぞれの金属多孔体2,3と同量になるように調整した。
(Comparative Example 7)
A Pd membrane (thickness: 100 μm) as a hydrogen separation metal membrane was prepared in the same manner as in Example 1, and a metal porous mass 2a made of SUS316 carrying a catalyst and a metal porous mass 3a not carrying a catalyst were used. As a result, a model device of a hydrogen generator as shown in FIG. 9 was produced. The weights of the metal porous body 2a carrying the catalyst and the metal porous body 2b not carrying the catalyst were adjusted so as to be equal to the respective metal porous bodies 2 and 3 of Example 3.

実施例3と比較例7のモデル器内に0.1MPaの水素を封入した。その後、モデル器を電気炉に入れて加熱を行った。電気炉内が所定の温度になった後、モデル器内の触媒を担持させた金属多孔体2と金属多孔体塊2aの近傍(測定点A、B)の温度と水素分離金属膜近傍(測定点C)の温度とを計測した。結果を図10に示す。比較例7において電気炉から加えられた熱は内部の水素を伝わって触媒と水素分離金属膜を加熱し、さらに水素分離金属膜については容器外壁から伝わった熱によって加熱される。一方、実施例3においては上記の熱伝導に加え、触媒と水素分離金属膜の両方が金属多孔体から伝わってきた熱によっても加熱される。熱伝導率は一般に気体よりも金属の方が大きいため実施例3の方が速やかに目的の反応温度まで達することが出来る。   Hydrogen of 0.1 MPa was sealed in the model devices of Example 3 and Comparative Example 7. Thereafter, the model device was placed in an electric furnace and heated. After the temperature in the electric furnace reaches a predetermined temperature, the temperature in the vicinity of the porous metal body 2 and the porous metal body 2a (measurement points A and B) supporting the catalyst in the model device and the vicinity of the hydrogen separation metal membrane (measurement) The temperature at point C) was measured. The results are shown in FIG. In Comparative Example 7, the heat applied from the electric furnace is transmitted through the internal hydrogen to heat the catalyst and the hydrogen separation metal membrane, and the hydrogen separation metal membrane is heated by the heat transmitted from the outer wall of the container. On the other hand, in Example 3, in addition to the above heat conduction, both the catalyst and the hydrogen separation metal membrane are also heated by the heat transmitted from the metal porous body. Since the metal generally has a higher thermal conductivity than the gas, Example 3 can reach the target reaction temperature more quickly.

(実施例4)
水素分離金属膜としてPd膜(厚さ100μm)を用い、実施例1と同様にして作製したSUS316製触媒担持金属多孔体、触媒を担持しないSUS316製金属多孔体を用い、図11に示す水素製造器を作製した。
Example 4
Using a Pd membrane (thickness: 100 μm) as a hydrogen separation metal membrane, a SUS316 catalyst-supported metal porous body produced in the same manner as in Example 1, and a SUS316 metal porous body not supporting a catalyst, shown in FIG. A vessel was made.

本発明の水素分離部材を使用した水素製造器の模式図である。It is a schematic diagram of the hydrogen production device using the hydrogen separation member of the present invention. 燃料改質反応を行うための配管の模式図である。It is a schematic diagram of piping for performing a fuel reforming reaction. 比較例1〜5の水素製造器の模式図である。It is a schematic diagram of the hydrogen production device of Comparative Examples 1-5. 比較例6で作製した水素製造器の模式図である。6 is a schematic diagram of a hydrogen generator produced in Comparative Example 6. FIG. 実施例2と比較例6における反応効率を反応圧力に対して示した図である。It is the figure which showed the reaction efficiency in Example 2 and Comparative Example 6 with respect to the reaction pressure. 実施例2と比較例6における水素分離率を反応圧力に対して示した図である。It is the figure which showed the hydrogen separation rate in Example 2 and Comparative Example 6 with respect to the reaction pressure. 実施例2と比較例6における得られた水素の純度を反応圧力に対して示した図である。It is the figure which showed the purity of the hydrogen obtained in Example 2 and Comparative Example 6 with respect to the reaction pressure. 実施例3で作製した水素製造器のモデル器の模式図である。6 is a schematic diagram of a model device of a hydrogen production device produced in Example 3. FIG. 比較例7で作製した水素製造器のモデル器の模式図である。10 is a schematic diagram of a model device of a hydrogen production device produced in Comparative Example 7. FIG. 実施例3と比較例7におけるモデル器内の温度を電気炉の温度に対して示した図である。It is the figure which showed the temperature in the model machine in Example 3 and Comparative Example 7 with respect to the temperature of an electric furnace. 実施例4で作製した水素製造器の模式図である。6 is a schematic diagram of a hydrogen production device produced in Example 4. FIG.

符号の説明Explanation of symbols

1:水素分離金属膜
2:触媒を担持した金属多孔体
3:触媒を担持しない金属多孔体
4:反応槽
5:精製槽
6:触媒塊
7:燃料供給ポンプ
8:水蒸気供給タンク
9:水素製造器
10:マスフローメーター
11:四方バルブ
12:ガスクロマトグラフ
13:熱電対
1: Hydrogen separation metal membrane 2: Metal porous body supporting catalyst 3: Metal porous body not supporting catalyst 4: Reaction tank 5: Purification tank 6: Catalyst lump 7: Fuel supply pump 8: Steam supply tank 9: Hydrogen production Apparatus 10: Mass flow meter 11: Four-way valve 12: Gas chromatograph 13: Thermocouple

Claims (5)

水素分離金属膜と、前記水素分離金属膜の少なくとも片面に金属多孔体が隣接した水素分離部材であって、前記金属多孔体の空孔部に燃料改質用の触媒が担持されていることを特徴とする水素分離部材。 A hydrogen separation metal membrane and a hydrogen separation member having a metal porous body adjacent to at least one surface of the hydrogen separation metal membrane, and a catalyst for fuel reforming is supported in the pores of the metal porous body. A hydrogen separation member. 前記水素分離金属膜と前記金属多孔体は接着されていることを特徴とする請求項1に記載の水素分離部材。 The hydrogen separation member according to claim 1, wherein the hydrogen separation metal membrane and the metal porous body are bonded to each other. 前記水素分離金属膜は厚さが0.1μm以上1mm以下であることを特徴とする請求項1又は請求項2に記載の水素分離部材。 The hydrogen separation member according to claim 1, wherein the hydrogen separation metal membrane has a thickness of 0.1 μm or more and 1 mm or less. 前記金属多孔体は気孔率が30%以上90%以下であることを特徴とする請求項1乃至請求項3に記載の水素分離部材。 The hydrogen separation member according to any one of claims 1 to 3, wherein the porous metal body has a porosity of 30% or more and 90% or less. 請求項1乃至4に記載の水素分離部材を使用した水素製造器。 A hydrogen generator using the hydrogen separation member according to claim 1.
JP2008149614A 2008-06-06 2008-06-06 Hydrogen separation member and hydrogen generating apparatus Pending JP2009291740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008149614A JP2009291740A (en) 2008-06-06 2008-06-06 Hydrogen separation member and hydrogen generating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008149614A JP2009291740A (en) 2008-06-06 2008-06-06 Hydrogen separation member and hydrogen generating apparatus

Publications (1)

Publication Number Publication Date
JP2009291740A true JP2009291740A (en) 2009-12-17

Family

ID=41540424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008149614A Pending JP2009291740A (en) 2008-06-06 2008-06-06 Hydrogen separation member and hydrogen generating apparatus

Country Status (1)

Country Link
JP (1) JP2009291740A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129153A1 (en) * 2015-02-12 2016-08-18 株式会社Screenホールディングス Catalyst structure and catalyst structure manufacturing method and manufacturing apparatus
JP2016172229A (en) * 2015-03-17 2016-09-29 京セラ株式会社 Hydrogen separation membrane, hydrogen separation module, hydrogen separation device and hydrogen production device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576738A (en) * 1991-09-25 1993-03-30 Mitsubishi Heavy Ind Ltd Hydrogen gas separation membrane
JPH05105407A (en) * 1991-10-14 1993-04-27 Mitsui Eng & Shipbuild Co Ltd Hydrogen production device
JPH0840703A (en) * 1994-05-23 1996-02-13 Ngk Insulators Ltd Hydrogen production unit
JPH09255306A (en) * 1996-03-18 1997-09-30 Mitsubishi Heavy Ind Ltd Hydrogen separating membrane
JP2004149332A (en) * 2002-10-29 2004-05-27 Tokyo Gas Co Ltd Hydrogen production system
JP2004148138A (en) * 2002-10-28 2004-05-27 Nissan Motor Co Ltd Hydrogen separation membrane and hydrogen production apparatus using the same
JP2008055310A (en) * 2006-08-31 2008-03-13 Sanyo Special Steel Co Ltd Supporting body for hydrogen-permeable membrane and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0576738A (en) * 1991-09-25 1993-03-30 Mitsubishi Heavy Ind Ltd Hydrogen gas separation membrane
JPH05105407A (en) * 1991-10-14 1993-04-27 Mitsui Eng & Shipbuild Co Ltd Hydrogen production device
JPH0840703A (en) * 1994-05-23 1996-02-13 Ngk Insulators Ltd Hydrogen production unit
JPH09255306A (en) * 1996-03-18 1997-09-30 Mitsubishi Heavy Ind Ltd Hydrogen separating membrane
JP2004148138A (en) * 2002-10-28 2004-05-27 Nissan Motor Co Ltd Hydrogen separation membrane and hydrogen production apparatus using the same
JP2004149332A (en) * 2002-10-29 2004-05-27 Tokyo Gas Co Ltd Hydrogen production system
JP2008055310A (en) * 2006-08-31 2008-03-13 Sanyo Special Steel Co Ltd Supporting body for hydrogen-permeable membrane and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016129153A1 (en) * 2015-02-12 2016-08-18 株式会社Screenホールディングス Catalyst structure and catalyst structure manufacturing method and manufacturing apparatus
JP2016172229A (en) * 2015-03-17 2016-09-29 京セラ株式会社 Hydrogen separation membrane, hydrogen separation module, hydrogen separation device and hydrogen production device

Similar Documents

Publication Publication Date Title
Boeltken et al. Ultra-compact microstructured methane steam reformer with integrated Palladium membrane for on-site production of pure hydrogen: Experimental demonstration
Dittmar et al. Methane steam reforming operation and thermal stability of new porous metal supported tubular palladium composite membranes
Basile et al. Synthesis, characterization, and applications of palladium membranes
Zhang et al. Experimental and simulation studies on concentration polarization in H2 enrichment by highly permeable and selective Pd membranes
EP2156883B1 (en) Method for producing hydrogen separation membrane and selectively permeable membrane reactor
Boeltken et al. Fabrication and testing of a planar microstructured concept module with integrated palladium membranes
US9011580B2 (en) Hydrogen purifier
JP5390448B2 (en) Membrane separation reactor and method for producing hydrogen
JP2004149332A (en) Hydrogen production system
JP2008248934A (en) Hydrogen gas supplying method and system
Lukyanov et al. Catalytic reactors with hydrogen membrane separation
Kim et al. Highly selective Pd composite membrane on porous metal support for high-purity hydrogen production through effective ammonia decomposition
Xie et al. Hydrogen permeability of Pd–Ag membrane modules with porous stainless steel substrates
Leimert et al. Nickel membranes for in-situ hydrogen separation in high-temperature fluidized bed gasification processes
Peters et al. Stability investigation of micro-configured Pd–Ag membrane modules–Effect of operating temperature and pressure
Hwang et al. A multi-membrane reformer for the direct production of hydrogen via a steam-reforming reaction of methane
Ryi et al. Pd-Cu alloy membrane deposited on alumina modified porous nickel support (PNS) for hydrogen separation at high pressure
Ji et al. Vacuum-assisted continuous flow electroless plating approach for high performance Pd membrane deposition on ceramic hollow fiber lumen
Chen et al. Hydrogen permeation and recovery from H2–N2 gas mixtures by Pd membranes with high permeance
JP2009291740A (en) Hydrogen separation member and hydrogen generating apparatus
JP5562698B2 (en) Hydrogen permeable alloy and hydrogen permeable membrane using the same
El Naggar et al. Novel intensified catalytic nano-structured nickel–zirconia supported palladium based membrane for high temperature hydrogen production from biomass generated syngas
Hu et al. Bifunctional palladium composite membrane for hydrogen separation and catalytic CO methanation
Lu et al. Repair of palladium membrane modules by metallic diffusion bonding
Bredesen et al. Pd‐Based Membranes in Hydrogen Production for Fuel cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121106