JP5390448B2 - Membrane separation reactor and method for producing hydrogen - Google Patents

Membrane separation reactor and method for producing hydrogen Download PDF

Info

Publication number
JP5390448B2
JP5390448B2 JP2010073734A JP2010073734A JP5390448B2 JP 5390448 B2 JP5390448 B2 JP 5390448B2 JP 2010073734 A JP2010073734 A JP 2010073734A JP 2010073734 A JP2010073734 A JP 2010073734A JP 5390448 B2 JP5390448 B2 JP 5390448B2
Authority
JP
Japan
Prior art keywords
hydrogen
membrane
steam reforming
separation membrane
copper content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010073734A
Other languages
Japanese (ja)
Other versions
JP2011206612A (en
Inventor
崇志 前田
英二 根岸
稔 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Petroleum Energy Center JPEC
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Japan Petroleum Energy Center JPEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp, Japan Petroleum Energy Center JPEC filed Critical JXTG Nippon Oil and Energy Corp
Priority to JP2010073734A priority Critical patent/JP5390448B2/en
Publication of JP2011206612A publication Critical patent/JP2011206612A/en
Application granted granted Critical
Publication of JP5390448B2 publication Critical patent/JP5390448B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、膜分離型反応器及びそれを用いた水素の製造方法に関し、特には、炭化水素等の原料を水蒸気改質し、水素を含む改質ガスを生成させる水蒸気改質触媒層と、該改質ガスから水素を選択的に透過及び分離するパラジウムと銅を主成分とする水素分離膜とを有する膜分離型反応器に関するものである。   The present invention relates to a membrane separation reactor and a method for producing hydrogen using the same, and in particular, a steam reforming catalyst layer for steam reforming a raw material such as hydrocarbon to generate a reformed gas containing hydrogen, The present invention relates to a membrane separation reactor having palladium and a hydrogen separation membrane mainly composed of copper that selectively permeate and separate hydrogen from the reformed gas.

近年、環境対策、温室効果ガス対策として、水素をエネルギーとする燃料電池や水素エンジンなどの技術開発が注目されている。そのため、効率よく安価に水素を製造することが環境問題の解決に役立つことになる。   In recent years, technological developments such as fuel cells using hydrogen as energy and hydrogen engines have attracted attention as environmental measures and greenhouse gas measures. Therefore, efficient and inexpensive production of hydrogen will help solve environmental problems.

これまで、水素の製造方法としては、水素を含む混合ガスより水素だけを選択的に透過する水素透過膜を使用する方法が知られている。例えば、特許文献1(特開昭63−295402号公報)に記載されているようなメッキ法により形成したパラジウムを主成分とする薄膜や、特許文献2(特開2003−135943号公報)に記載されているようなCVD法により形成したパラジウムを主成分とする薄膜は、従来から、高温かつ高純度で混合ガスより水素を分離する膜材料として広く利用されている。これら膜材料の中でも、パラジウムと銅を主成分とする合金膜は、耐硫黄性に優れ、また、水素脆化にも優れた膜であり、銅含有率が40質量%のパラジウム−銅合金膜が広く利用されている。   Up to now, as a method for producing hydrogen, a method using a hydrogen permeable membrane that selectively permeates only hydrogen from a mixed gas containing hydrogen is known. For example, a thin film mainly composed of palladium formed by a plating method as described in Patent Document 1 (Japanese Patent Laid-Open No. 63-295402), or described in Patent Document 2 (Japanese Patent Laid-Open No. 2003-135943). Conventionally, a thin film mainly composed of palladium formed by a CVD method has been widely used as a film material for separating hydrogen from a mixed gas at high temperature and high purity. Among these film materials, an alloy film mainly composed of palladium and copper is a film excellent in sulfur resistance and hydrogen embrittlement, and a palladium-copper alloy film having a copper content of 40% by mass. Is widely used.

特開昭63−295402号公報JP 63-295402 A 特開2003−135943号公報Japanese Patent Laid-Open No. 2003-135943

しかしながら、銅含有率が40質量%のパラジウム−銅合金膜は、350〜450℃の温度領域での水素透過性能がパラジウム単体膜並みに優れているものの、450℃以上の温度領域では水素透過性能が著しく低下することが知られており、450℃以上の温度では効率的に水素を得ることが困難である。   However, although the palladium-copper alloy film having a copper content of 40% by mass has excellent hydrogen permeation performance in the temperature range of 350 to 450 ° C. as that of a single palladium membrane, the hydrogen permeation performance in a temperature range of 450 ° C. or higher. Is known to decrease significantly, and it is difficult to efficiently obtain hydrogen at temperatures of 450 ° C. or higher.

これに対して、銅含有率を40質量%より高くしたパラジウム−銅合金膜は、350〜450℃の温度領域での水素透過性能が銅含有率40質量%のパラジウム−銅合金膜より劣るものの、450℃〜600℃の温度領域では、水素透過性能が銅含有率40質量%の膜よりも優れている。   In contrast, a palladium-copper alloy film having a copper content higher than 40% by mass is inferior to a palladium-copper alloy film having a copper content of 40% by mass in the temperature range of 350 to 450 ° C. In a temperature range of 450 ° C. to 600 ° C., hydrogen permeation performance is superior to a film having a copper content of 40% by mass.

このように、パラジウムと銅を主成分とする合金膜は、その組成により、水素透過性能の最大を示す温度が変わってくることが解ってきた。   As described above, it has been understood that the temperature at which the maximum hydrogen permeation performance of the alloy film mainly composed of palladium and copper varies depending on the composition.

一方、水蒸気改質反応においては、温度が高いほど熱化学的な平衡組成から水素分圧が高くなり、水素の透過及び分離には有利な条件となる。   On the other hand, in the steam reforming reaction, the higher the temperature, the higher the hydrogen partial pressure from the thermochemical equilibrium composition, which is an advantageous condition for hydrogen permeation and separation.

そこで、本発明の目的は、このようなパラジウム−銅合金膜の特性を活かした、水蒸気改質反応と水素の分離精製を効率良く行うことが可能な膜分離型反応器を提供することにある。   Accordingly, an object of the present invention is to provide a membrane separation type reactor capable of efficiently performing a steam reforming reaction and hydrogen separation and purification utilizing the characteristics of such a palladium-copper alloy membrane. .

本発明者らは、上記目的を達成するために鋭意検討した結果、パラジウム及び銅を含む水素分離膜と水蒸気改質触媒層を具える膜分離型反応器において、水素分離膜の上流側と下流側で銅含有率を変化させ、水蒸気改質触媒層の上流側と下流側の内、平均温度が高くなる方に、水素分離膜の内、銅含有率が高い方を配置することで、水蒸気改質反応と水素の分離精製を効率良く行うことが可能になることを見出し、本発明を完成させるに至った。   As a result of intensive investigations to achieve the above object, the present inventors have found that in a membrane separation reactor comprising a hydrogen separation membrane containing palladium and copper and a steam reforming catalyst layer, the upstream side and the downstream side of the hydrogen separation membrane. By changing the copper content on the side and arranging the one with the higher copper content in the hydrogen separation membrane on the upstream side and downstream side of the steam reforming catalyst layer, the higher the average temperature, It has been found that the reforming reaction and the separation and purification of hydrogen can be performed efficiently, and the present invention has been completed.

即ち、本発明の膜分離型反応器は、
パラジウムと銅を含み、平均銅含有率が38〜48質量%の水素分離膜と、
炭化水素を水蒸気改質する水蒸気改質触媒からなり、前記水素分離膜の外周側に配設された水蒸気改質触媒層とを具え、
前記水素分離膜は、炭化水素と水蒸気の入口部を上流として、上流側半分と下流側半分との平均銅含有率の差が4〜10質量%であることを特徴とする。
That is, the membrane separation reactor of the present invention is
A hydrogen separation membrane comprising palladium and copper and having an average copper content of 38 to 48% by mass;
Comprising a steam reforming catalyst for steam reforming hydrocarbons, comprising a steam reforming catalyst layer disposed on the outer peripheral side of the hydrogen separation membrane,
The hydrogen separation membrane is characterized in that the difference in average copper content between the upstream half and the downstream half is 4 to 10% by mass with the hydrocarbon and water vapor inlets being upstream.

本発明の膜分離型反応器の好適例において、前記水素分離膜は、上流側半分と下流側半分の一方の平均銅含有率が44〜48質量%であり、他の一方の平均銅含有率が38〜44質量%である。   In a preferred embodiment of the membrane separation reactor of the present invention, the hydrogen separation membrane has an average copper content of 44 to 48 mass% in one of the upstream half and the downstream half, and the other average copper content. Is 38 to 44 mass%.

また、本発明の水素の製造方法は、上記の膜分離型反応器を用いる水素の製造方法であって、
前記水蒸気改質触媒層の上流側半分と下流側半分の内、平均温度が高い方に、前記水素分離膜の上流側半分と下流側半分の内、平均銅含有率が高い方を配置し、炭化水素と水蒸気の混合ガスを水蒸気改質触媒層に供給して、水蒸気改質反応により水素を主成分とする改質ガスを生成させるとともに、前記水素分離膜により水素を選択的に透過させて水素を取り出すことを特徴とする。
The method for producing hydrogen of the present invention is a method for producing hydrogen using the membrane separation reactor described above,
Among the upstream half and the downstream half of the steam reforming catalyst layer, the higher the average temperature, the higher the average copper content in the upstream half and the downstream half of the hydrogen separation membrane, A mixed gas of hydrocarbon and steam is supplied to the steam reforming catalyst layer to generate a reformed gas mainly composed of hydrogen by a steam reforming reaction, and hydrogen is selectively permeated by the hydrogen separation membrane. It is characterized by taking out hydrogen.

本発明によれば、パラジウム及び銅を含む水素分離膜と水蒸気改質触媒層を具え、水素分離膜の上流側と下流側で平均銅含有率が異なる膜分離型反応器を用い、水蒸気改質触媒層の上流側と下流側の内、平均温度が高くなる方に、水素分離膜の内、平均銅含有率が高い方を配置することで、水蒸気改質反応と水素の分離精製を効率良く行うことができる。   According to the present invention, a steam separation reformer comprising a hydrogen separation membrane containing palladium and copper and a steam reforming catalyst layer, using a membrane separation reactor having different average copper contents on the upstream side and the downstream side of the hydrogen separation membrane, Efficient steam reforming reaction and hydrogen separation and purification by placing the hydrogen separation membrane with higher average copper content in the upstream and downstream sides of the catalyst layer where the average temperature is higher It can be carried out.

本発明の膜分離型反応器の一例を示す模式図である。It is a schematic diagram which shows an example of the membrane separation type reactor of this invention. 本発明の膜分離型反応器の他の一例を示す模式図である。It is a schematic diagram which shows another example of the membrane separation type reactor of this invention. 本発明の膜分離型反応器の別の一例を示す模式図である。It is a schematic diagram which shows another example of the membrane separation type reactor of this invention. 本発明の膜分離型反応器に用いる水素分離膜の好適例の部分断面図である。It is a fragmentary sectional view of the suitable example of the hydrogen separation membrane used for the membrane separation type reactor of this invention. Pd−Cu合金膜の水素透過度の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the hydrogen permeability of a Pd-Cu alloy film.

以下に、本発明の膜分離型反応器を、図1を用いて詳細に説明する。図1は、本発明の膜分離型反応器の一例を示す模式図である。図1に示す膜分離型反応器1は、パラジウムと銅を主成分とする水素分離膜2と、該水素分離膜2の半径方向外周側に配設された水蒸気改質触媒層3とを具える。また、図示例の膜分離型反応器1は、炭化水素と水蒸気の入口部4と、水素分離膜2を透過しなかった非透過ガスの出口部5が設けられており、更に水素分離膜2に連通する製品水素の出口部6を具える。炭化水素と水蒸気の入口部4は、水蒸気改質触媒層3に連通しており、炭化水素と水蒸気とを入口部4を通して水蒸気改質触媒層3に供給して、水蒸気改質反応により改質ガスを生成させることができる。生成した改質ガスは、水素分離膜2を透過して製品水素として、出口部6を通して反応器の外に取り出される。また、水素分離膜2を透過しなかった改質ガスは、非透過ガスとして出口部5から反応器の外に排出される。   Hereinafter, the membrane separation type reactor of the present invention will be described in detail with reference to FIG. FIG. 1 is a schematic view showing an example of a membrane separation reactor according to the present invention. A membrane separation reactor 1 shown in FIG. 1 includes a hydrogen separation membrane 2 containing palladium and copper as main components, and a steam reforming catalyst layer 3 disposed on the radially outer side of the hydrogen separation membrane 2. Yeah. The illustrated membrane separation reactor 1 is provided with an inlet 4 for hydrocarbons and water vapor, and an outlet 5 for non-permeate gas that has not permeated the hydrogen separation membrane 2. A product hydrogen outlet 6 in communication with The hydrocarbon and steam inlet portion 4 communicates with the steam reforming catalyst layer 3, and the hydrocarbon and steam are supplied to the steam reforming catalyst layer 3 through the inlet portion 4 and reformed by a steam reforming reaction. Gas can be generated. The produced reformed gas passes through the hydrogen separation membrane 2 and is taken out of the reactor through the outlet 6 as product hydrogen. In addition, the reformed gas that has not permeated the hydrogen separation membrane 2 is discharged out of the reactor from the outlet portion 5 as a non-permeate gas.

また、図示例の膜分離型反応器1は、水蒸気改質触媒層3の半径方向外側に加熱用シェル7を具え、加熱用シェル7には、加熱ガス用の入口部8と加熱ガス用の出口部9が連結されており、加熱ガスを、入口部8を通して加熱用シェル7内に導入することで、水蒸気改質触媒層3を加熱することができ、一方、水蒸気改質触媒層3に熱を供与して温度が下がった加熱ガスは、出口部9を通して加熱用シェル7の外に排出される。   The illustrated membrane separation reactor 1 includes a heating shell 7 on the radially outer side of the steam reforming catalyst layer 3, and the heating shell 7 has a heating gas inlet 8 and a heating gas outlet. The outlet portion 9 is connected, and the steam reforming catalyst layer 3 can be heated by introducing the heating gas into the heating shell 7 through the inlet portion 8. The heated gas whose temperature has been reduced by supplying heat is discharged out of the heating shell 7 through the outlet 9.

また、水素分離膜2は、炭化水素と水蒸気の入口部4を上流として、上流側半分2Aと下流側半分2Bとの平均銅含有率が異なり、水蒸気改質触媒層3の上流側半分3Aと下流側半分3Bの内、平均温度が高い方に、水素分離膜の上流側半分2Aと下流側半分2Bの内、平均銅含有率が高い方が配置されている。ここで、本発明の膜分離型反応器においては、水素分離膜の上流側半分2Aと下流側半分2Bとの平均銅含有率の差を4〜10質量%とする。平均銅含有率の差が4質量%未満では、水蒸気改質反応と水素の膜分離を効率良く行うことが難しく、一方、10質量%を超えると、水素分離膜の上流側半分2Aと下流側半分2Bの少なくとも一方の平均銅含有率が38〜48質量%の範囲を外れ、パラジウム−銅合金膜は水素透過性能の低い膜となってしまい水素の分離回収効率が低下する。   The hydrogen separation membrane 2 is different from the upstream half 3A of the steam reforming catalyst layer 3 in that the upstream half 2A and the downstream half 2B have different average copper contents, with the hydrocarbon and steam inlet 4 being upstream. Among the downstream halves 3B, the one with the higher average temperature is arranged in the upstream half 2A and the downstream half 2B of the hydrogen separation membrane in the higher average temperature. Here, in the membrane separation type reactor of the present invention, the difference in average copper content between the upstream half 2A and the downstream half 2B of the hydrogen separation membrane is 4 to 10% by mass. If the difference in average copper content is less than 4% by mass, it is difficult to efficiently perform the steam reforming reaction and hydrogen membrane separation, while if it exceeds 10% by mass, the upstream half 2A and the downstream side of the hydrogen separation membrane When the average copper content of at least one of the halves 2B is out of the range of 38 to 48% by mass, the palladium-copper alloy membrane becomes a membrane with low hydrogen permeation performance and the hydrogen separation and recovery efficiency is lowered.

図1に示す膜分離型反応器1においては、炭化水素と水蒸気の混合ガスが、膜分離型反応器1の上部から下部に向けて流れ、更に、加熱ガスが膜分離型反応器1の下部から上部に向けて流れる。ここで、水蒸気改質触媒層3における水蒸気改質反応は吸熱反応であり、上流側で吸熱反応が急激に起こり、また、加熱ガスは、入口部8での温度が出口部9での温度よりも高いため、膜分離型反応器1は、下部で高温、上部では低温となる。従って、図1に示す膜分離型反応器1においては、水蒸気改質触媒層3の上流側半分3Aよりも、下流側半分3Bの平均温度の方が高くなるので、水素分離膜の上流側半分2Aよりも、下流側半分2Bの平均銅含有率を高くする。例えば、水素分離膜の上流側半分2Aの平均銅含有率を38〜44質量%とし、下流側半分2Bの平均銅含有率を44〜48質量%とすることが好ましい。   In the membrane separation reactor 1 shown in FIG. 1, a mixed gas of hydrocarbon and water vapor flows from the upper part to the lower part of the membrane separation reactor 1, and further, the heated gas flows into the lower part of the membrane separation reactor 1. Flows from the top to the top. Here, the steam reforming reaction in the steam reforming catalyst layer 3 is an endothermic reaction, and the endothermic reaction occurs abruptly on the upstream side, and the temperature of the heated gas is higher at the inlet 8 than at the outlet 9. Therefore, the membrane separation reactor 1 has a high temperature at the bottom and a low temperature at the top. Accordingly, in the membrane separation type reactor 1 shown in FIG. 1, the average temperature of the downstream half 3B is higher than that of the upstream half 3A of the steam reforming catalyst layer 3, and therefore the upstream half of the hydrogen separation membrane. The average copper content of the downstream half 2B is made higher than 2A. For example, the average copper content of the upstream half 2A of the hydrogen separation membrane is preferably 38 to 44% by mass, and the average copper content of the downstream half 2B is preferably 44 to 48% by mass.

一般に、炭化水素を水蒸気改質して得られる水素を含んだ改質ガスから水素分離膜を用いて、水素の分離回収を行う場合、水素の回収量を多くするためには、水素分離膜の面積を大きくすることが有利である。しかしながら、水素分離膜の面積を大きくした場合、図に示すように、水素分離膜のガスの流れ方向の長さが長くなり、加熱用シェル7内での温度勾配が大きくなる。そのため、水素分離膜にも温度勾配が発生し、最も水素透過性能が良いとされる銅含有率40質量%のパラジウム−銅合金膜を配しても、温度の高いところ低いところが発生してしまい、温度の高いところでは水素透過性能が低下してしまい、十分な水素回収量が得られなくなる。これに対して、本発明では、水素分離膜の上流側2Aと下流側2Bで平均銅含有率を変え、水蒸気改質触媒層の上流側3Aと下流側3Bの内、平均温度が高くなる方に、水素分離膜の内、平均銅含有率が高い方を配置することで、水蒸気改質反応と水素の膜分離を効率良く行うことが可能となる。   In general, when hydrogen is separated and recovered from a reformed gas containing hydrogen obtained by steam reforming hydrocarbons, in order to increase the amount of hydrogen recovered, It is advantageous to increase the area. However, when the area of the hydrogen separation membrane is increased, as shown in the figure, the length of the hydrogen separation membrane in the gas flow direction is increased, and the temperature gradient in the heating shell 7 is increased. For this reason, a temperature gradient also occurs in the hydrogen separation membrane, and even if a palladium-copper alloy membrane having a copper content of 40% by mass, which is considered to have the best hydrogen permeation performance, is disposed, a place where the temperature is high is low. When the temperature is high, the hydrogen permeation performance deteriorates, and a sufficient amount of hydrogen recovered cannot be obtained. On the other hand, in the present invention, the average copper content is changed between the upstream side 2A and the downstream side 2B of the hydrogen separation membrane, and the average temperature becomes higher among the upstream side 3A and the downstream side 3B of the steam reforming catalyst layer. In addition, by arranging the hydrogen separation membrane having the higher average copper content, it is possible to efficiently perform the steam reforming reaction and the hydrogen membrane separation.

図2は、本発明の膜分離型反応器の他の一例を示す模式図である。図2に示す膜分離型反応器1は、図1に示す膜分離型反応器1とほぼ同様の構成を有するが、加熱用シェル7の上部に加熱ガス用の入口部8を設け、加熱用シェル7の下部に加熱ガス用の出口部9を設けている点で異なる。そのため、図2に示す膜分離型反応器1においては、加熱ガスが膜分離型反応器1の上部から下部に向けて流れ、加熱用シェル7内においては、上部の温度が、下部の温度よりも高くなる。ここで、例えば、入口部4の更に上流側に、予備改質器(図示せず)を設け、予備改質後の高温ガスを入口部4から膜分離型反応器1内に導入した場合、水蒸気改質触媒層3における水蒸気改質反応は吸熱反応であるものの、緩やかに吸熱反応が起こる。この場合は、水蒸気改質反応による吸熱が加熱ガスからの熱の供与で十分に補われるため、水蒸気改質触媒層3の上流側半分3Aよりも、下流側半分3Bの平均温度の方が低くなる。そのため、図2においては、水素分離膜の上流側半分2Aよりも、下流側半分2Bの平均銅含有率を低くする。例えば、水素分離膜の上流側半分2Aの平均銅含有率を44〜48質量%とし、下流側半分2Bの平均銅含有率を38〜44質量%とすることが好ましい。   FIG. 2 is a schematic view showing another example of the membrane separation type reactor of the present invention. The membrane separation reactor 1 shown in FIG. 2 has substantially the same configuration as the membrane separation reactor 1 shown in FIG. 1, but an heating gas inlet portion 8 is provided on the upper part of the heating shell 7 and is used for heating. The difference is that an outlet 9 for heated gas is provided at the bottom of the shell 7. Therefore, in the membrane separation reactor 1 shown in FIG. 2, the heated gas flows from the upper part to the lower part of the membrane separation reactor 1, and the upper temperature is lower than the lower temperature in the heating shell 7. Also gets higher. Here, for example, when a pre-reformer (not shown) is provided further upstream of the inlet part 4 and the pre-reformed high-temperature gas is introduced into the membrane separation reactor 1 from the inlet part 4, Although the steam reforming reaction in the steam reforming catalyst layer 3 is an endothermic reaction, the endothermic reaction occurs slowly. In this case, since the endotherm due to the steam reforming reaction is sufficiently supplemented by the supply of heat from the heated gas, the average temperature of the downstream half 3B is lower than the upstream half 3A of the steam reforming catalyst layer 3. Become. Therefore, in FIG. 2, the average copper content of the downstream half 2B is made lower than the upstream half 2A of the hydrogen separation membrane. For example, the average copper content of the upstream half 2A of the hydrogen separation membrane is preferably 44 to 48% by mass, and the average copper content of the downstream half 2B is preferably 38 to 44% by mass.

なお、本発明の膜分離型反応器において、水素分離膜は、上流側から下流側にかけて、銅含有率を連続的に変えてもよいし、銅含有率の異なる複数の水素分離膜を連結して、上流側と下流側の平均銅含有率を変えてもよい。ここで、水素分離膜の銅含有率を連続的に変える方法としては、支持体にパラジウム−銅合金膜をメッキで形成する際に、メッキ浴より支持体をゆっくり引き上げつつメッキを行うことでパラジウムのメッキを行いパラジウムのメッキ膜の厚みに傾斜をつけ、次に銅をメッキする際には支持体を逆にして同様にメッキ浴より引き上げつつ銅メッキを行うことで膜厚を均一としながらもパラジウム−銅の組成を連続的に変化させる手法などが挙げられる。一方、銅含有率の異なる複数の水素分離膜モジュールを連結する場合は、例えば、銅含有率の異なる水素分離膜モジュールを溶接して連結する手法や、支持体にパラジウム−銅合金膜をメッキで形成する際に、メッキ膜の各部分ごとに異なる組成のメッキを行うなどの手法が挙げられる。なお、特に制限はないが、上記支持体の形状は、平板状でもよいし、筒状(管状)でもよく、例えば円筒状が好ましく用いられる。   In the membrane separation reactor of the present invention, the hydrogen separation membrane may continuously change the copper content from the upstream side to the downstream side, or may connect a plurality of hydrogen separation membranes having different copper content rates. Thus, the average copper content on the upstream side and the downstream side may be changed. Here, as a method of continuously changing the copper content of the hydrogen separation membrane, when forming a palladium-copper alloy film on the support by plating, the palladium is plated by slowly pulling up the support from the plating bath. Plating the thickness of the palladium plating film, and then plating the copper, the next time the copper is plated, the support is reversed and the copper plating is similarly performed while pulling up from the plating bath. For example, a method of continuously changing the composition of palladium-copper may be used. On the other hand, when connecting a plurality of hydrogen separation membrane modules having different copper contents, for example, a method of welding and connecting hydrogen separation membrane modules having different copper contents, or plating a palladium-copper alloy membrane on a support. When forming, there is a method of performing plating with a different composition for each part of the plating film. In addition, although there is no restriction | limiting in particular, The shape of the said support body may be flat form, and may be cylindrical (tubular), for example, cylindrical shape is used preferably.

図3は、本発明の膜分離型反応器の別の一例を示す模式図である。図3に示す膜分離型反応器1は、図1に示す膜分離型反応器1とほぼ同様の構成を有するが、水素分離膜2が、炭化水素と水蒸気の入口部4を上流として、最も銅含有率が低い部分2aが上流側に位置し、最も銅含有率が高い部分2cが下流側に位置し、銅含有率がそれらの間にある部分2bがそれらの間に配置されている点で異なる。この構成の水素分離膜2は、上述のように、各部分2a,2b,2cを溶接等により連結して準備してもよいし、支持体にパラジウム−銅合金膜をメッキで形成する際に、各部分2a,2b,2cに対応する合金膜をメッキするための各部分毎に組成を変化させてメッキを行ってもよい。ここで、例えば、水素分離膜の上流側1/3の部分2aの銅含有率を38〜41質量%とし、下流側1/3の部分2cの銅含有率を45〜48質量%とし、それらの間の中流1/3の部分2bの銅含有率を41〜45質量%とすることで、水蒸気改質反応と水素の分離精製を更に効率良く行うことが可能となる。   FIG. 3 is a schematic view showing another example of the membrane separation type reactor of the present invention. The membrane separation reactor 1 shown in FIG. 3 has substantially the same configuration as that of the membrane separation reactor 1 shown in FIG. 1, but the hydrogen separation membrane 2 is the most upstream with the hydrocarbon and water vapor inlets 4 upstream. The part 2a with a low copper content is located on the upstream side, the part 2c with the highest copper content is located on the downstream side, and the part 2b with the copper content in between is located between them It is different. As described above, the hydrogen separation membrane 2 having this configuration may be prepared by connecting the portions 2a, 2b, and 2c by welding or the like, or when the palladium-copper alloy membrane is formed on the support by plating. The plating may be performed by changing the composition for each part for plating the alloy film corresponding to each part 2a, 2b, 2c. Here, for example, the copper content of the upstream 1/3 portion 2a of the hydrogen separation membrane is 38 to 41% by mass, and the copper content of the downstream 1/3 portion 2c is 45 to 48% by mass. By making the copper content of the portion 2b of the middle stream 1/3 between 41 and 45% by mass, the steam reforming reaction and the separation and purification of hydrogen can be performed more efficiently.

[原料炭化水素]
改質反応により水素を製造するための原料となる炭化水素としては、沸点が300℃以下の炭化水素及びそれらの混合物を用いることができる。例えば、メタン、エタン、プロパン、ブタン、ペンタン、天然ガス、LPガスなどの常温で気体状態の炭化水素の他、ナフサ留分、ガソリン留分、灯油留分、軽油留分などの常温で液体状態の石油系炭化水素を用いることができる。
[Raw material hydrocarbon]
As the hydrocarbon used as a raw material for producing hydrogen by the reforming reaction, a hydrocarbon having a boiling point of 300 ° C. or less and a mixture thereof can be used. For example, methane, ethane, propane, butane, pentane, natural gas, LP gas and other hydrocarbons in the gaseous state at room temperature, as well as naphtha fraction, gasoline fraction, kerosene fraction, light oil fraction, etc. The following petroleum-based hydrocarbons can be used.

ナフサ留分は、原油や天然ガスコンデンセートなどを蒸留分離して得られる留分のうち、沸点範囲として30℃〜180℃の範囲内の沸点を有する留分である。ナフサ留分としては、例えば、沸点範囲が30℃〜80℃程度の軽質ナフサ留分、沸点範囲が80℃〜180℃程度の重質ナフサ留分、沸点範囲が30℃〜180℃程度のホールナフサ留分などが含まれる。   A naphtha fraction is a fraction having a boiling point within a range of 30 ° C. to 180 ° C. as a boiling point range among fractions obtained by distillation separation of crude oil, natural gas condensate, and the like. Examples of the naphtha fraction include a light naphtha fraction having a boiling range of about 30 ° C. to 80 ° C., a heavy naphtha fraction having a boiling range of about 80 ° C. to 180 ° C., and a hole having a boiling range of about 30 ° C. to 180 ° C. Includes naphtha fractions.

ガソリン留分は、沸点範囲として30℃〜200℃の範囲内の沸点を有する留分であり、市販の自動車ガソリン、工業ガソリンの他、自動車ガソリンの調合に用いられる沸点が上記の範囲内である中間製品(基材とも呼ばれる)、沸点範囲が上記の範囲にある中間製品や自動車ガソリンに相当する留分も含まれる。   The gasoline fraction is a fraction having a boiling point in the range of 30 ° C. to 200 ° C. as a boiling range, and the boiling point used for the preparation of automobile gasoline is within the above range in addition to commercial automobile gasoline and industrial gasoline. Intermediate products (also referred to as base materials), intermediate products having a boiling range in the above range, and fractions corresponding to automobile gasoline are also included.

灯油留分は、原油や天然ガスコンデンセートなどを蒸留分離して得られる留分のうち、沸点範囲として140℃〜270℃の範囲内の沸点を有する留分であり、灯火用、暖房用、ちゅう房用などの市販の灯油の他に、上記の範囲内の沸点範囲を有する灯油相当の留分が含まれる。   A kerosene fraction is a fraction having a boiling point within a range of 140 ° C. to 270 ° C. as a boiling point among fractions obtained by distillation separation of crude oil, natural gas condensate, and the like. In addition to commercially available kerosene such as for use, a fraction corresponding to kerosene having a boiling range within the above range is included.

軽油留分は、沸点範囲160℃〜370℃の範囲内の沸点を有する留分であり、ディーゼルエンジンに使用する市販の軽油の他、上記の範囲内の沸点範囲を有する軽油相当の留分が含まれる。   The light oil fraction is a fraction having a boiling point in the boiling range of 160 ° C. to 370 ° C. In addition to commercially available light oil used for diesel engines, a fraction corresponding to light oil having a boiling range in the above range is included. included.

製品の流通面、コスト、入手の容易性から、メタン、LPGなどのガス状炭化水素、ナフサ、ガソリン、灯油、軽油並びにそれらに相当する留分などの液状炭化水素が好ましく、特には灯油及びそれに相当する留分が好ましい。また、これら炭化水素は、水蒸気改質触媒に対する被毒の観点から、含有する硫黄分が低いものが好ましく、特には硫黄分が50質量ppb以下のものが好ましい。   From the viewpoint of product distribution, cost, and availability, liquid hydrocarbons such as gaseous hydrocarbons such as methane and LPG, naphtha, gasoline, kerosene, light oil and their corresponding fractions are preferred. The corresponding fraction is preferred. Further, these hydrocarbons preferably have a low sulfur content, particularly those having a sulfur content of 50 mass ppb or less, from the viewpoint of poisoning the steam reforming catalyst.

[水蒸気改質触媒、水蒸気改質触媒層]
本発明に用いる水蒸気改質触媒としては、通常の水蒸気改質触媒を用いることができる。例えば、Fe、Co、Ni、Ru、Rh、Pd、Ir、Ptのうちから選ばれる少なくとも1種の触媒活性成分を、Mg、Al、Si、Ti、Zr、Ba、Laの酸化物および/または水和酸化物から選ばれた少なくとも1種の担体成分を含む担体に担持したものを使用することができる。コーキングの発生を抑制する点から、触媒活性成分としてRuやRhの使用が好ましい。
[Steam reforming catalyst, steam reforming catalyst layer]
As the steam reforming catalyst used in the present invention, a normal steam reforming catalyst can be used. For example, at least one catalytically active component selected from Fe, Co, Ni, Ru, Rh, Pd, Ir, and Pt is used as an oxide of Mg, Al, Si, Ti, Zr, Ba, La and / or Those supported on a carrier containing at least one carrier component selected from hydrated oxides can be used. From the viewpoint of suppressing the occurrence of coking, it is preferable to use Ru or Rh as the catalyst active component.

これらの水蒸気改質触媒を、水素分離膜2の外側に充填して水蒸気改質触媒層3とする。水蒸気改質触媒層3に含ませる水蒸気改質触媒の量は、原料である炭化水素の種類、改質反応温度、スチーム/カーボン比などにより適宜決定することができる。   These steam reforming catalysts are filled outside the hydrogen separation membrane 2 to form the steam reforming catalyst layer 3. The amount of the steam reforming catalyst to be included in the steam reforming catalyst layer 3 can be appropriately determined depending on the type of hydrocarbon as a raw material, the reforming reaction temperature, the steam / carbon ratio, and the like.

[水素分離膜]
本発明の膜分離型反応器の水素分離膜としては、パラジウム−銅の合金膜を使用する。該水素分離膜は、パラジウムと銅を含み、平均銅含有率が38〜48質量%であり、また、平均パラジウム含有率は、52〜62質量%の範囲が好ましい。平均銅含有率が38質量%未満では、高温での水素の回収効率が低下し、一方、48質量%を超えると、低温での水素の回収効率が低下する。また、該水素分離膜はパラジウム−銅の合金膜からなっていてもよいし、支持体の外表面にパラジウム−銅の合金膜が形成されたものであってもよい。なお、本発明の水素透過膜は、膜厚が0.5〜50μmの範囲であることが好ましい。
[Hydrogen separation membrane]
As the hydrogen separation membrane of the membrane separation reactor of the present invention, a palladium-copper alloy membrane is used. The hydrogen separation membrane contains palladium and copper, the average copper content is 38 to 48% by mass, and the average palladium content is preferably in the range of 52 to 62% by mass. When the average copper content is less than 38% by mass, the hydrogen recovery efficiency at high temperature is lowered, while when it exceeds 48% by mass, the hydrogen recovery efficiency at low temperature is lowered. The hydrogen separation membrane may be composed of a palladium-copper alloy membrane, or may be one in which a palladium-copper alloy membrane is formed on the outer surface of the support. In addition, it is preferable that the film thickness of the hydrogen permeable film of this invention is 0.5-50 micrometers.

上記水素分離膜としては、図4に示すような、焼結フィルター部41を有する金属管42の焼結フィルター部41上にバリア層43を設け、該バリア層43の上にパラジウム−銅合金膜44を配した水素分離膜を用いることが好ましい。ここで、焼結フィルター部41及び金属管42は、ステンレス製であることが好ましく、バリア層43は、ジルコニア、アルミナなどからなることが好ましい。なお、バリア層43は、焼結フィルター部41の金属成分がパラジウム−銅合金膜44へ拡散して膜44の水素透過性能が劣化することを防止するとともに、表面の平滑度を上げてパラジウム−銅合金膜44に欠陥が生じることを防止する作用を有する。なお、パラジウム−銅合金膜44は、例えば、メッキなどにより、形成することができる。   As the hydrogen separation membrane, as shown in FIG. 4, a barrier layer 43 is provided on the sintered filter portion 41 of the metal tube 42 having the sintered filter portion 41, and a palladium-copper alloy film is formed on the barrier layer 43. It is preferable to use a hydrogen separation membrane provided with 44. Here, the sintered filter portion 41 and the metal tube 42 are preferably made of stainless steel, and the barrier layer 43 is preferably made of zirconia, alumina, or the like. The barrier layer 43 prevents the metal component of the sintered filter portion 41 from diffusing into the palladium-copper alloy film 44, thereby deteriorating the hydrogen permeation performance of the film 44, and increases the surface smoothness to increase the palladium- The copper alloy film 44 has an effect of preventing defects. The palladium-copper alloy film 44 can be formed by plating, for example.

[水素製造方法]
本発明の膜分離型反応器を用いた水素の製造方法は、次のように行う。まず、本発明の水素の製造方法においては、予め、膜分離型反応器および水素製造装置の構造および設計や運転条件より水蒸気改質触媒層の上流側半分3Aと下流側半分3Bの平均反応温度をそれぞれ想定もしくは設定する。そして、上流側半分3Aの平均温度が下流側半分3Bの平均温度よりも高い場合は、水素分離膜の上流側半分2Aの平均銅含有率が下流側半分2Bの平均銅含有率よりも高くなるように、水素分離膜2を配置する。逆に、上流側半分3Aの平均温度が下流側半分3Bの平均温度よりも低い場合は、水素分離膜の上流側半分2Aの平均銅含有率が下流側半分2Bの平均銅含有率よりも低くなるように、水素分離膜2を配置する。次に、上記の炭化水素と水蒸気の混合ガスを、水蒸気改質触媒層3に供給し、水蒸気改質反応を行い、水素を主成分とする改質ガスを生成させる。ここで、炭化水素と水蒸気の比率は、スチーム/カーボン比(S/C比)として2.5〜4.0の範囲が好ましく、2.8〜3.5の範囲がより好ましい。S/C比が低い状態ではコーキングが発生し、水蒸気改質触媒の活性を低下させてしまう。また、S/C比が必要以上に高い場合は、改質ガスの水素濃度が低下し、効率を低下させてしまう。
[Hydrogen production method]
The method for producing hydrogen using the membrane separation reactor of the present invention is performed as follows. First, in the hydrogen production method of the present invention, the average reaction temperature of the upstream half 3A and the downstream half 3B of the steam reforming catalyst layer is determined in advance from the structure, design, and operating conditions of the membrane separation reactor and the hydrogen production apparatus. Is assumed or set. When the average temperature of the upstream half 3A is higher than the average temperature of the downstream half 3B, the average copper content of the upstream half 2A of the hydrogen separation membrane is higher than the average copper content of the downstream half 2B. Thus, the hydrogen separation membrane 2 is disposed. Conversely, when the average temperature of the upstream half 3A is lower than the average temperature of the downstream half 3B, the average copper content of the upstream half 2A of the hydrogen separation membrane is lower than the average copper content of the downstream half 2B. The hydrogen separation membrane 2 is arranged so as to be. Next, the above-mentioned mixed gas of hydrocarbon and steam is supplied to the steam reforming catalyst layer 3 to perform a steam reforming reaction to generate a reformed gas containing hydrogen as a main component. Here, the ratio of hydrocarbon to water vapor is preferably in the range of 2.5 to 4.0 as the steam / carbon ratio (S / C ratio), and more preferably in the range of 2.8 to 3.5. When the S / C ratio is low, coking occurs and the activity of the steam reforming catalyst is reduced. On the other hand, when the S / C ratio is higher than necessary, the hydrogen concentration of the reformed gas is lowered and the efficiency is lowered.

水蒸気改質触媒層3の温度、すなわち改質反応の温度としては、450〜800℃が好ましく、500〜700℃がより好ましく、500〜600℃が特に好ましい。ここではPd−Cu合金膜の特性から、改質反応温度の上限は600℃が好ましい。改質反応の温度が450℃未満の場合は、水素分率が13vol%以下(メタン原料で反応圧0.9MPaGの条件下で)となり十分な水素透過量が得られず、一方、700℃を超える場合は、反応管の材質などとして耐熱材料(カンタル、インコネル、ハステロイなど)が必要となり、コストが高くなる。なお、予備改質器を設ける場合は、反応温度の上限600℃は関係なく600〜700℃が特に好ましい条件となる。   The temperature of the steam reforming catalyst layer 3, that is, the temperature of the reforming reaction, is preferably 450 to 800 ° C, more preferably 500 to 700 ° C, and particularly preferably 500 to 600 ° C. Here, the upper limit of the reforming reaction temperature is preferably 600 ° C. from the characteristics of the Pd—Cu alloy film. When the temperature of the reforming reaction is less than 450 ° C., the hydrogen fraction is 13 vol% or less (under the condition of a reaction pressure of 0.9 MPaG with a methane raw material), and a sufficient hydrogen permeation amount cannot be obtained. If it exceeds, a heat-resistant material (such as Kanthal, Inconel, Hastelloy) is required as the material of the reaction tube, and the cost increases. In the case of providing a pre-reformer, the upper limit of the reaction temperature of 600 ° C. is irrelevant and 600 to 700 ° C. is a particularly preferable condition.

改質反応の圧力としては、0.5〜1.5MPaGが好ましく、0.7〜1.2MPaGがより好ましい。反応圧力が低過ぎると水素透過量が十分得られず、また、反応圧力が高過ぎると炭化水素の反応(水素生成側への反応)が進みにくくなる。   The pressure for the reforming reaction is preferably 0.5 to 1.5 MPaG, more preferably 0.7 to 1.2 MPaG. If the reaction pressure is too low, a sufficient amount of hydrogen permeation cannot be obtained, and if the reaction pressure is too high, the hydrocarbon reaction (reaction toward the hydrogen production side) is difficult to proceed.

原料炭化水素として灯油を用いた場合、SV(灯油ベースのLHSV)としては、現状の触媒において0.3〜3.0h-1の範囲が好ましく、0.3〜1.7h-1の範囲がより好ましい。 When kerosene is used as the raw material hydrocarbon, SV (kerosene-based LHSV) is preferably in the range of 0.3 to 3.0 h −1 in the current catalyst, and in the range of 0.3 to 1.7 h −1 . More preferred.

水蒸気改質触媒層3で生成した改質ガスは、水蒸気改質触媒層3を流れると共に、水素分離膜2により水素が分離精製される。水素分離膜2による水素分離に好ましい温度は、600℃未満、特には350℃以上600℃未満である。本発明においては、水素分離膜2の温度が高くなる部分は銅含有率が高く、一方、水素分離膜2の温度が低くなる部分は銅含有率が低いため、水素分離膜2により効率的に水素を分離することができる。   The reformed gas generated in the steam reforming catalyst layer 3 flows through the steam reforming catalyst layer 3 and hydrogen is separated and purified by the hydrogen separation membrane 2. A preferable temperature for hydrogen separation by the hydrogen separation membrane 2 is less than 600 ° C., particularly 350 ° C. or more and less than 600 ° C. In the present invention, the portion where the temperature of the hydrogen separation membrane 2 is high has a high copper content, while the portion where the temperature of the hydrogen separation membrane 2 is low has a low copper content. Hydrogen can be separated.

以下に、本発明の知見の基礎をなすパラジウム−銅合金膜の水素透過度の測定結果を示す。   The measurement results of the hydrogen permeability of the palladium-copper alloy film that forms the basis of the knowledge of the present invention are shown below.

(参考例)
管状ステンレス製焼結金属フィルター(フィルター長5cm、フィルター直径1cm)の外表面にイットリウム安定化ジルコニア粒子をコーティングして、平均細孔径0.1μmのセラミックス多孔体薄膜(多孔性セラミックス膜)を成膜した多孔性支持体を作製した。この管状の焼結金属フィルター(多孔性セラミックス支持体)を市販の無電解パラジウムめっき液中に浸漬し、多孔性セラミックス膜表面にパラジウムをメッキした(膜厚1〜2μmになるように調整)。多孔性セラミック支持体の外表面をパラジウムでメッキした後、メッキしたパラジウムの量をメッキ重量(または、メッキ液濃度変化)から、測定した。次に、所定のパラジウム−銅組成比(銅含有率:38〜48質量%)になるように市販の銅メッキ液によりパラジウム薄膜上に銅メッキを行い、パラジウム薄膜上に銅薄膜を形成した。メッキ後のメッキ重量(またはメッキ液濃度変化)を測定し確認した。
(Reference example)
The outer surface of a tubular stainless steel sintered metal filter (filter length: 5 cm, filter diameter: 1 cm) is coated with yttrium-stabilized zirconia particles to form a ceramic porous thin film (porous ceramic film) with an average pore diameter of 0.1 μm. A porous support was prepared. This tubular sintered metal filter (porous ceramic support) was immersed in a commercially available electroless palladium plating solution, and palladium was plated on the surface of the porous ceramic film (adjusted so as to have a film thickness of 1 to 2 μm). After plating the outer surface of the porous ceramic support with palladium, the amount of palladium plated was measured from the plating weight (or change in plating solution concentration). Next, copper plating was performed on the palladium thin film with a commercially available copper plating solution so as to have a predetermined palladium-copper composition ratio (copper content: 38 to 48 mass%), thereby forming a copper thin film on the palladium thin film. The plating weight after plating (or change in plating solution concentration) was measured and confirmed.

次にメッキされた多孔性支持体を洗浄・乾燥し、更にメッキされた多孔性支持体の一方を封止し、水素透過性能の測定装置に設置し、窒素またはアルゴンの不活性ガス気流下で400℃まで昇温し、引き続き、水素雰囲気下400℃で24時間、加熱処理して多孔性セラミックス膜を支持体とするパラジウム−銅合金薄膜からなる水素分離膜を得た。パラジウム−銅合金からなる水素分離膜の評価は、水素分離膜を所定の温度(400〜600℃)にし、水素を投入、所定圧0.6MPaGでの水素透過量を測定し、更に、圧力を0.5MPaG、0.4MPaG、0.3MPaG、0.2MPaG、0.1MPaG、0.0MPaGとして各圧力での水素透過量を測定し、水素透過係数を算出した。また、窒素においても同様に圧をかけて、透過しないことを確認した。更に、測定終了後、支持体よりパラジウム−銅膜を剥離させて、元素分析を行い、パラジウム−銅組成比を確認した。結果を図5に示す。   Next, the plated porous support is washed and dried, and then one of the plated porous supports is sealed and placed in a hydrogen permeation measuring device, under an inert gas stream of nitrogen or argon. The temperature was raised to 400 ° C., followed by heat treatment at 400 ° C. for 24 hours in a hydrogen atmosphere to obtain a hydrogen separation membrane composed of a palladium-copper alloy thin film using a porous ceramic membrane as a support. The hydrogen separation membrane made of palladium-copper alloy is evaluated by setting the hydrogen separation membrane to a predetermined temperature (400 to 600 ° C.), supplying hydrogen, measuring the hydrogen permeation amount at a predetermined pressure of 0.6 MPaG, and further adjusting the pressure. The hydrogen permeation amount at each pressure was measured as 0.5 MPaG, 0.4 MPaG, 0.3 MPaG, 0.2 MPaG, 0.1 MPaG, and 0.0 MPaG, and the hydrogen permeation coefficient was calculated. In addition, it was confirmed that nitrogen was not permeated by applying pressure in the same manner. Furthermore, after the measurement was completed, the palladium-copper film was peeled from the support, and elemental analysis was performed to confirm the palladium-copper composition ratio. The results are shown in FIG.

図5から、パラジウムと銅を主成分とする合金膜は、その組成により、水素透過性能の最大を示す温度が異なり、上述した本発明のように、水蒸気改質触媒層の上流側と下流側の内、平均温度が高くなる方に、水素分離膜の内、銅含有率が高い方を配置することで、水蒸気改質反応と水素の膜分離を効率良く行うことが可能となることが分かる。   From FIG. 5, the temperature of the maximum hydrogen permeation performance varies depending on the composition of the alloy film mainly composed of palladium and copper, and the upstream side and the downstream side of the steam reforming catalyst layer as in the present invention described above. It can be seen that the steam reforming reaction and the hydrogen membrane separation can be efficiently performed by arranging the hydrogen separation membrane having the higher copper content in the higher average temperature. .

本発明によれば、水蒸気改質反応と水素の膜分離を効率良く行うことが可能な膜分離型反応器及びそれらを用いた水素の製造方法を提供することができる。なお、本発明の膜分離型反応器は、高純度の水素ガスを高効率かつ高回収量で製造できるので、高分子電解質形燃料電池(PEFC)用の水素製造装置、或いは水素ステーションで用いるオンサイト型の水素製造装置として好適に使用できる。   According to the present invention, it is possible to provide a membrane separation reactor capable of efficiently performing a steam reforming reaction and hydrogen membrane separation and a method for producing hydrogen using them. The membrane separation reactor of the present invention can produce high-purity hydrogen gas with high efficiency and a high recovery amount, so that it can be used in a hydrogen production apparatus for a polymer electrolyte fuel cell (PEFC) or a hydrogen station. It can be suitably used as a site-type hydrogen production apparatus.

1 膜分離型反応器
2 水素分離膜
2A 水素分離膜の上流側半分
2B 水素分離膜の下流側半分
2a 上流側1/3の部分
2b 中流1/3の部分
2c 下流側1/3の部分
3 水蒸気改質触媒層
3A 水蒸気改質触媒層の上流側半分
3B 水蒸気改質触媒層の下流側半分
4 炭化水素と水蒸気の入口部
5 非透過ガスの出口部
6 製品水素の出口部
7 加熱用シェル
8 加熱ガス用の入口部
9 加熱ガス用の出口部
41 焼結フィルター部
42 金属管
43 バリア層
44 パラジウム−銅合金膜
DESCRIPTION OF SYMBOLS 1 Membrane separation type reactor 2 Hydrogen separation membrane 2A Upstream half of hydrogen separation membrane 2B Downstream half of hydrogen separation membrane 2a Upstream 1/3 portion 2b Middle stream 1/3 portion 2c Downstream side 1/3 portion 3 Steam reforming catalyst layer 3A Upstream half of steam reforming catalyst layer 3B Downstream half of steam reforming catalyst layer 4 Hydrocarbon and steam inlet part 5 Nonpermeate gas outlet part 6 Product hydrogen outlet part 7 Heating shell 8 Inlet part for heating gas 9 Outlet part for heating gas 41 Sintered filter part 42 Metal tube 43 Barrier layer 44 Palladium-copper alloy film

Claims (3)

パラジウムと銅を含み、平均銅含有率が38〜48質量%の水素分離膜と、
炭化水素を水蒸気改質する水蒸気改質触媒からなり、前記水素分離膜の外周側に配設された水蒸気改質触媒層とを具え、
前記水素分離膜は、炭化水素と水蒸気の入口部を上流として、上流側半分と下流側半分との平均銅含有率の差が4〜10質量%であることを特徴とする、
膜分離型反応器。
A hydrogen separation membrane comprising palladium and copper and having an average copper content of 38 to 48% by mass;
Comprising a steam reforming catalyst for steam reforming hydrocarbons, comprising a steam reforming catalyst layer disposed on the outer peripheral side of the hydrogen separation membrane,
The hydrogen separation membrane is characterized in that the difference in average copper content between the upstream half and the downstream half is 4 to 10% by mass, with the hydrocarbon and water vapor inlets being upstream.
Membrane separation reactor.
前記水素分離膜は、上流側半分と下流側半分の一方の平均銅含有率が44〜48質量%であり、他の一方の平均銅含有率が38〜44質量%であることを特徴とする請求項1に記載の膜分離型反応器。   The hydrogen separation membrane is characterized in that the average copper content of one of the upstream half and the downstream half is 44 to 48% by mass, and the other one average copper content is 38 to 44% by mass. The membrane separation type reactor according to claim 1. 請求項1又は2に記載の膜分離型反応器を用いる水素の製造方法であって、
前記水蒸気改質触媒層の上流側半分と下流側半分の内、平均温度が高い方に、前記水素分離膜の上流側半分と下流側半分の内、平均銅含有率が高い方を配置し、炭化水素と水蒸気の混合ガスを前記水蒸気改質触媒層に供給して、水蒸気改質反応により水素を主成分とする改質ガスを生成させるとともに、前記水素分離膜により水素を選択的に透過させて水素を取り出すことを特徴とする、
水素の製造方法。
A method for producing hydrogen using the membrane separation reactor according to claim 1 or 2,
Among the upstream half and the downstream half of the steam reforming catalyst layer, the higher the average temperature, the higher the average copper content in the upstream half and the downstream half of the hydrogen separation membrane, A mixed gas of hydrocarbon and steam is supplied to the steam reforming catalyst layer to generate a reformed gas mainly composed of hydrogen by a steam reforming reaction, and hydrogen is selectively permeated through the hydrogen separation membrane. To extract hydrogen,
A method for producing hydrogen.
JP2010073734A 2010-03-26 2010-03-26 Membrane separation reactor and method for producing hydrogen Active JP5390448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010073734A JP5390448B2 (en) 2010-03-26 2010-03-26 Membrane separation reactor and method for producing hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010073734A JP5390448B2 (en) 2010-03-26 2010-03-26 Membrane separation reactor and method for producing hydrogen

Publications (2)

Publication Number Publication Date
JP2011206612A JP2011206612A (en) 2011-10-20
JP5390448B2 true JP5390448B2 (en) 2014-01-15

Family

ID=44938327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010073734A Active JP5390448B2 (en) 2010-03-26 2010-03-26 Membrane separation reactor and method for producing hydrogen

Country Status (1)

Country Link
JP (1) JP5390448B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11322766B2 (en) 2020-05-28 2022-05-03 Saudi Arabian Oil Company Direct hydrocarbon metal supported solid oxide fuel cell
US11492255B2 (en) 2020-04-03 2022-11-08 Saudi Arabian Oil Company Steam methane reforming with steam regeneration
US11492254B2 (en) 2020-06-18 2022-11-08 Saudi Arabian Oil Company Hydrogen production with membrane reformer
US11578016B1 (en) 2021-08-12 2023-02-14 Saudi Arabian Oil Company Olefin production via dry reforming and olefin synthesis in a vessel
US11583824B2 (en) 2020-06-18 2023-02-21 Saudi Arabian Oil Company Hydrogen production with membrane reformer
US11617981B1 (en) 2022-01-03 2023-04-04 Saudi Arabian Oil Company Method for capturing CO2 with assisted vapor compression
US11639290B2 (en) 2020-06-04 2023-05-02 Saudi Arabian Oil Company Dry reforming of methane with carbon dioxide at elevated pressure
US11718575B2 (en) 2021-08-12 2023-08-08 Saudi Arabian Oil Company Methanol production via dry reforming and methanol synthesis in a vessel
US11787759B2 (en) 2021-08-12 2023-10-17 Saudi Arabian Oil Company Dimethyl ether production via dry reforming and dimethyl ether synthesis in a vessel

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5786634B2 (en) * 2011-10-18 2015-09-30 コニカミノルタ株式会社 Secondary battery type fuel cell
US10105618B2 (en) 2016-08-17 2018-10-23 Ogosport Llc Wearable article and packaging for generating bubbles

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4823442B2 (en) * 2001-07-02 2011-11-24 株式会社ノリタケカンパニーリミテド Gas separation material, method for producing the same, and reactor
JP4211434B2 (en) * 2003-03-04 2009-01-21 トヨタ自動車株式会社 Hydrogen separator
JP5242233B2 (en) * 2008-04-28 2013-07-24 Jx日鉱日石エネルギー株式会社 Membrane separation type hydrogen production apparatus and hydrogen production method using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11492255B2 (en) 2020-04-03 2022-11-08 Saudi Arabian Oil Company Steam methane reforming with steam regeneration
US11322766B2 (en) 2020-05-28 2022-05-03 Saudi Arabian Oil Company Direct hydrocarbon metal supported solid oxide fuel cell
US11639290B2 (en) 2020-06-04 2023-05-02 Saudi Arabian Oil Company Dry reforming of methane with carbon dioxide at elevated pressure
US11492254B2 (en) 2020-06-18 2022-11-08 Saudi Arabian Oil Company Hydrogen production with membrane reformer
US11583824B2 (en) 2020-06-18 2023-02-21 Saudi Arabian Oil Company Hydrogen production with membrane reformer
US11578016B1 (en) 2021-08-12 2023-02-14 Saudi Arabian Oil Company Olefin production via dry reforming and olefin synthesis in a vessel
US11718575B2 (en) 2021-08-12 2023-08-08 Saudi Arabian Oil Company Methanol production via dry reforming and methanol synthesis in a vessel
US11787759B2 (en) 2021-08-12 2023-10-17 Saudi Arabian Oil Company Dimethyl ether production via dry reforming and dimethyl ether synthesis in a vessel
US11617981B1 (en) 2022-01-03 2023-04-04 Saudi Arabian Oil Company Method for capturing CO2 with assisted vapor compression

Also Published As

Publication number Publication date
JP2011206612A (en) 2011-10-20

Similar Documents

Publication Publication Date Title
JP5390448B2 (en) Membrane separation reactor and method for producing hydrogen
Rahimpour et al. Palladium membranes applications in reaction systems for hydrogen separation and purification: A review
Kikuchi Membrane reactor application to hydrogen production
CN107073427B (en) Shell-and-tube reactor for reforming natural gas and method for producing synthesis gas or hydrogen using the same
Iulianelli et al. Hydrogen production from ethanol via inorganic membrane reactors technology: a review
Gallucci et al. Recent advances on membranes and membrane reactors for hydrogen production
US8518151B2 (en) Porous hollow fiber supported dense membrane for hydrogen production, separation, or purification
Maneerung et al. Triple-layer catalytic hollow fiber membrane reactor for hydrogen production
JP5611627B2 (en) Membrane separation type reactor, membrane separation type hydrogen production apparatus and hydrogen production method
Lukyanov et al. Catalytic reactors with hydrogen membrane separation
Ryi et al. Methane steam reforming with a novel catalytic nickel membrane for effective hydrogen production
Kulprathipanja et al. Effects of water gas shift gases on Pd− Cu alloy membrane surface morphology and separation properties
Chen et al. Numerical characterization on concentration polarization of hydrogen permeation in a Pd-based membrane tube
Basile et al. An experimental study of multilayered composite palladium membrane reactors for partial oxidation of methane to syngas
US20140120023A1 (en) Methods and systems for ammonia production
Atsonios et al. Introduction to palladium membrane technology
JP5161763B2 (en) Hydrogen production method using selectively permeable membrane reactor
JP5757243B2 (en) Silica-based hydrogen separation material and method for producing the same, and hydrogen separation module and hydrogen production apparatus including the same
KR20190143593A (en) Pd-based metal dense hydrogen permeation membrane using a Ni-based porous support with methanation catalyst function
Jazani et al. Carbon-low, renewable hydrogen production from methanol steam reforming in membrane reactors–a review
JP5242233B2 (en) Membrane separation type hydrogen production apparatus and hydrogen production method using the same
Acha et al. PdCu membrane applied to hydrogen production from methane
JP5611628B2 (en) Membrane separation type reactor, membrane separation type hydrogen production apparatus and hydrogen production method
WO2007108543A1 (en) Process for producing hydrogen using permselective membrane reactor and permselective membrane reactor
Bredesen et al. Palladium-based membranes in hydrogen production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131010

R150 Certificate of patent or registration of utility model

Ref document number: 5390448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250