JP5786634B2 - Secondary battery type fuel cell - Google Patents

Secondary battery type fuel cell Download PDF

Info

Publication number
JP5786634B2
JP5786634B2 JP2011229120A JP2011229120A JP5786634B2 JP 5786634 B2 JP5786634 B2 JP 5786634B2 JP 2011229120 A JP2011229120 A JP 2011229120A JP 2011229120 A JP2011229120 A JP 2011229120A JP 5786634 B2 JP5786634 B2 JP 5786634B2
Authority
JP
Japan
Prior art keywords
fuel
electrode
fuel cell
hydrogen
water vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011229120A
Other languages
Japanese (ja)
Other versions
JP2013089462A (en
Inventor
誉之 岡野
誉之 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2011229120A priority Critical patent/JP5786634B2/en
Publication of JP2013089462A publication Critical patent/JP2013089462A/en
Application granted granted Critical
Publication of JP5786634B2 publication Critical patent/JP5786634B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、発電動作だけでなく充電動作も行える2次電池型燃料電池に関する。   The present invention relates to a secondary battery type fuel cell that can perform not only a power generation operation but also a charging operation.

燃料電池は、典型的には、固体ポリマーイオン交換膜を用いた固体高分子電解質膜、イットリア安定化ジルコニア(YSZ)を用いた固体酸化物電解質膜等を、燃料極(アノード)と酸化剤極(カソード)とで両側から挟み込んだものを1つのセル構成としている。そして、燃料極に燃料ガス(例えば水素ガス)を供給する燃料ガス流路と、酸化剤極に酸化剤ガス(例えば酸素や空気)を供給する酸化剤ガス流路とが設けられ、これらの流路を介して燃料ガス、酸化剤ガスがそれぞれ燃料極、酸化剤極に供給されることにより発電が行われる。   A fuel cell typically includes a solid polymer electrolyte membrane using a solid polymer ion exchange membrane, a solid oxide electrolyte membrane using yttria-stabilized zirconia (YSZ), a fuel electrode (anode) and an oxidizer electrode. The one sandwiched from both sides by the (cathode) has a single cell configuration. A fuel gas flow path for supplying fuel gas (for example, hydrogen gas) to the fuel electrode and an oxidant gas flow path for supplying oxidant gas (for example, oxygen or air) to the oxidant electrode are provided. Power generation is performed by supplying fuel gas and oxidant gas to the fuel electrode and oxidant electrode through the passage.

この燃料電池は、水素と酸素から水を生成した際に電力を取り出すものであり、原理的に取り出せる電力エネルギーの効率が高いため、省エネルギーになるだけでなく、発電時の排出物が水のみであるため、環境に優れた発電方式であり、地球規模でのエネルギーや環境問題解決の切り札として期待されている。   This fuel cell is designed to extract electric power when water is generated from hydrogen and oxygen. In principle, the efficiency of the electric power that can be extracted is high, which not only saves energy, but also generates only water when generating electricity. Therefore, it is an environmentally friendly power generation method, and is expected as a trump card for solving global energy and environmental problems.

国際公開第2011/030625号International Publication No. 2011/030625 特開2011−29149号公報JP 2011-29149 A

特許文献1には、燃料電池部と、化学反応により還元性物質である燃料を発生し、前記化学反応の逆反応により再生可能な燃料発生部材とを備える2次電池型燃料電池が開示されている。特許文献1で開示されている2次電池型燃料電池では、燃料電池部の燃料極と燃料発生部材とを封じた空間が閉空間になっており、その閉空間内には、燃料電池部の発電に必要となる燃料ガス(発電用ガスと称す)と、燃料電池部の発電反応によって生成した生成ガス(このガスは充電時に燃料発生部材の再生に必要となるため充電用ガスと称す)とが存在する。   Patent Document 1 discloses a secondary battery type fuel cell including a fuel cell unit and a fuel generating member that generates a fuel that is a reducing substance by a chemical reaction and can be regenerated by a reverse reaction of the chemical reaction. Yes. In the secondary battery type fuel cell disclosed in Patent Document 1, the space where the fuel electrode of the fuel cell unit and the fuel generating member are sealed is a closed space, and the fuel cell unit includes the fuel cell unit. Fuel gas required for power generation (referred to as power generation gas) and generated gas generated by power generation reaction in the fuel cell section (this gas is referred to as charging gas because it is required for regeneration of the fuel generating member during charging) Exists.

特許文献1で開示されている2次電池型燃料電池において、例えば、燃料電池部として固体酸化物型燃料電池(SOFC:Solid Oxide Fuel Cell)を用い、燃料発生部材として鉄を用いた場合、発電時の燃料電池部では下記の(1)式の反応が起こる。燃料電池部として用いられているSOFCは、燃料極で水素(発電用ガス)を消費し、酸化剤極で酸素を消費して発電を行う。そして、燃料極側で生成された水蒸気(充電用ガス)は燃料発生部材に供給される。
+1/2O→HO …(1)
In the secondary battery type fuel cell disclosed in Patent Document 1, for example, when a solid oxide fuel cell (SOFC) is used as a fuel cell unit and iron is used as a fuel generating member, power generation is performed. In the fuel cell part at the time, the reaction of the following formula (1) occurs. The SOFC used as the fuel cell unit consumes hydrogen (power generation gas) at the fuel electrode and consumes oxygen at the oxidant electrode to generate power. Then, water vapor (charging gas) generated on the fuel electrode side is supplied to the fuel generating member.
H 2 + 1 / 2O 2 → H 2 O (1)

また、発電時の燃料発生部材では下記の(2)式の反応が起こる。燃料発生部材として用いられている鉄は、燃料電池部から供給された水蒸気を消費して水素を生成し、その生成した水素を燃料電池部へと供給する。
3Fe+4HO→Fe+4H …(2)
Further, the following reaction (2) occurs in the fuel generating member during power generation. Iron used as a fuel generating member consumes water vapor supplied from the fuel cell unit to generate hydrogen, and supplies the generated hydrogen to the fuel cell unit.
3Fe + 4H 2 O → Fe 3 O 4 + 4H 2 (2)

また、充電時においては、上記の(1)式および(2)式の逆反応がそれぞれ起こる。このため、充電時に燃料電池部は充電用ガスである水蒸気を電気分解し、燃料極で水素を生成し、酸化剤極で酸素を生成する。また、充電時に燃料発生部材は、燃料電池部の燃料極から供給された水素を消費して酸化鉄を還元して水蒸気(充電用ガス)を生成し、その生成した水蒸気(充電用ガス)を燃料電池部の燃料極へと供給する。   Moreover, the reverse reaction of said (1) type | formula and (2) type | formula occurs at the time of charge, respectively. For this reason, at the time of charging, the fuel cell unit electrolyzes water vapor as a charging gas, generates hydrogen at the fuel electrode, and generates oxygen at the oxidant electrode. In addition, the fuel generating member consumes hydrogen supplied from the fuel electrode of the fuel cell unit during charging to reduce iron oxide to generate water vapor (charging gas), and the generated water vapor (charging gas) Supply to the fuel electrode of the fuel cell.

しかしながら、上記の(2)式の反応は化学反応であるため、化学平衡状態が存在し、発電時において、水素(発電用ガス)と水蒸気(充電用ガス)とが混在した混合ガスが燃料電池部の燃料極と燃料発生部材とを封じた閉空間内に残存する。例えば300℃における平衡時の水素と水蒸気との分圧比は水素:水蒸気≒0.965:0.035であり、400℃における平衡時の水素と水蒸気との分圧比は水素:水蒸気≒0.909:0.091であり、600℃における平衡時の水素と水蒸気との分圧比は水素:水蒸気≒0.753:0.247であり、鉄が十分に反応すれば、燃料発生部材の温度に応じた平衡時の分圧比で水素と水蒸気が混合した混合ガスが燃料電池部へと供給される。なお、充電時においても、上記の(2)式の反応方向が逆転するだけであり、同様に燃料発生部材の温度に応じた平衡時の分圧比で水素と水蒸気が混在した混合ガスが燃料電池部へと供給される。   However, since the reaction of the above formula (2) is a chemical reaction, a chemical equilibrium exists, and a mixed gas in which hydrogen (power generation gas) and water vapor (charging gas) are mixed during power generation is a fuel cell. It remains in the closed space where the fuel electrode and the fuel generating member of the part are sealed. For example, the partial pressure ratio between hydrogen and water vapor at equilibrium at 300 ° C. is hydrogen: water vapor≈0.965: 0.035, and the partial pressure ratio between hydrogen and water vapor at equilibrium at 400 ° C. is hydrogen: water vapor≈0.909: 0.091, 600 The partial pressure ratio between hydrogen and water vapor at equilibrium at ℃ is hydrogen: water vapor ≒ 0.753: 0.247. If iron reacts sufficiently, hydrogen and water vapor are mixed at the partial pressure ratio at equilibrium according to the temperature of the fuel generating member. The mixed gas thus supplied is supplied to the fuel cell unit. Even during charging, the reaction direction of the above equation (2) is merely reversed, and similarly, a mixed gas in which hydrogen and water vapor are mixed at a partial pressure ratio at equilibrium corresponding to the temperature of the fuel generating member is a fuel cell. Supplied to the department.

上述した分圧比の例から明らかなように、燃料発生部材の温度に応じた平衡時の分圧比で水素と水蒸気が混在した混合ガスは、発電用ガスである水素の方が充電用ガスである水蒸気よりも含有量が多い。このため、燃料電池部において充電反応が効率良く行えない、すなわち充電時間が長くなってしまうという課題がある。   As is clear from the example of the partial pressure ratio described above, in the mixed gas in which hydrogen and water vapor are mixed at the partial pressure ratio at the time of equilibrium corresponding to the temperature of the fuel generating member, hydrogen as the power generation gas is the charging gas. Higher content than water vapor. For this reason, there exists a subject that charge reaction cannot be performed efficiently in a fuel cell part, ie, charge time will become long.

なお、高濃度な燃料ガスを燃料電池に供給する方法として、例えば特許文献2においては、水素分離膜を設けて、混合ガスから水素のみを分離して燃料電池に供給している。しかしながら、特許文献2に記載のシステム構成では、特許文献1で開示されている2次電池型燃料電池とは異なり、燃料極側に水素しか流せないため、燃料電池部の燃料極側に水蒸気を供給する必要がある充電動作を行うことができない。すなわち、特許文献2に記載のシステム構成では、2次電池型燃料電池を実現することができない。   As a method for supplying a high concentration fuel gas to the fuel cell, for example, in Patent Document 2, a hydrogen separation membrane is provided, and only hydrogen is separated from the mixed gas and supplied to the fuel cell. However, in the system configuration described in Patent Document 2, unlike the secondary battery type fuel cell disclosed in Patent Document 1, since only hydrogen can flow on the fuel electrode side, water vapor is supplied to the fuel electrode side of the fuel cell unit. The charging operation that needs to be supplied cannot be performed. That is, the system configuration described in Patent Document 2 cannot realize a secondary battery type fuel cell.

本発明は、上記の状況に鑑み、充電時間の短縮を図ることができる2次電池型燃料電池を提供することを目的とする。   In view of the above situation, an object of the present invention is to provide a secondary battery type fuel cell that can shorten the charging time.

上記目的を達成するために本発明に係る2次電池型燃料電池は、 水蒸気との化学反応により水素を含む燃料を発生し、前記化学反応の逆反応により再生可能な燃料発生部材と、酸素を含む酸化剤と前記燃料発生部材から供給される燃料との反応により発電を行う発電機能及び前記燃料発生部材に供給する水素を生成するため水蒸気の電気分解を行う電気分解機能を有する発電・電気分解部とを備え、前記発電・電気分解部が、充電時に水蒸気の電気分解を行う燃料電池部を有し、前記燃料電池部が、燃料極と、酸化剤極と、前記燃料極と前記酸化剤極との間に挟持される電解質とを有し、前記電解質は酸素イオンを通すものであり、充電時に前記燃料極と前記電解質との界面において水蒸気が電気分解され、記燃料極に前記燃料極の表面上及び内部のいずれにも吸水性物質が設けられることなく、充電時に前記燃料電池部に供給される水素及び水蒸気が前記燃料極と前記電解質との界面まで差異なく透過する第1の部分と、充電時に前記燃料極と前記電解質との界面において水蒸気の電気分解によって発生した水素が充電時に前記燃料電池部に供給され前記燃料極内に流入した水蒸気よりも優先的に透過し前記燃料極外へ流出する第2の部分とが設けられている構成(第1の構成)とする。
In order to achieve the above object, a secondary battery type fuel cell according to the present invention generates a fuel containing hydrogen by a chemical reaction with water vapor and regenerates the fuel by a reverse reaction of the chemical reaction, and oxygen. power generation and electricity with electrolysis function for electrolysis of water vapor to produce hydrogen to be supplied to the power generation function and the fuel generating member for generating electric power by a reaction between the fuel supplied from the fuel generating member and an oxidizing agent containing A fuel cell unit that performs electrolysis of water vapor during charging, and the fuel cell unit includes a fuel electrode, an oxidant electrode, the fuel electrode, and the oxidation unit. and a electrolyte is sandwiched between the agent electrode, the electrolyte is intended to pass the oxygen ions, water vapor is electrolyzed at the interface between the electrolyte and the fuel electrode during charge, before Ki燃 charge electrode It is, of the fuel electrode Without water absorbing material is provided in either on or inside the surface, a first portion of hydrogen and steam is supplied to the fuel cell unit is transmitted without difference to the interface between the electrolyte and the fuel electrode during charge the preferentially permeable than water vapor is hydrogen generated by electrolysis of water vapor was introduced into the is supplied to the fuel cell unit in the fuel electrode during charge at the interface between the fuel electrode and the electrolyte during charge the fuel Gokusoto And a second portion that flows out into the first portion (first configuration).

このような構成によると、充電時に、燃料発生部材から燃料電池部に供給された混合ガスは、第1の部分から優先的に燃料極の内部に流入し、燃料極と電解質との界面で起こる充電反応後のガスは、流入ガスの気流に乗って、第2の部分から燃料極の外部に流出する。このとき、水素は第2の部分から抜けていくが、燃料極の内部で未反応のまま残った水蒸気は第2の部分によって透過が阻害されるため、燃料極の内部に残る。その結果、燃料極内の水蒸気濃度は、燃料発生部材から燃料電池部に供給される混合ガスの水蒸気濃度よりも高くなるため、燃料極と電解質との界面で起こる充電反応が促進される。この充電反応の促進によって、充電時間を短縮することができる。   According to such a configuration, at the time of charging, the mixed gas supplied from the fuel generating member to the fuel cell unit flows into the fuel electrode preferentially from the first portion, and occurs at the interface between the fuel electrode and the electrolyte. The gas after the charging reaction rides on the inflow gas flow and flows out of the fuel electrode from the second portion. At this time, hydrogen escapes from the second portion, but water vapor remaining unreacted inside the fuel electrode remains in the fuel electrode because permeation is inhibited by the second portion. As a result, the water vapor concentration in the fuel electrode becomes higher than the water vapor concentration of the mixed gas supplied from the fuel generating member to the fuel cell unit, and the charge reaction that occurs at the interface between the fuel electrode and the electrolyte is promoted. By promoting the charging reaction, the charging time can be shortened.

また、上記第1の構成の2次電池型燃料電池において、前記第2の部分は、水素を透過し、水蒸気の透過を妨げる水素透過部材が前記燃料極の表面上に設けられている部分であり、前記第1の部分は、前記水素透過部材が設けられていない部分である構成(第2の構成)にしてもよい。   In the secondary battery type fuel cell having the first configuration, the second portion is a portion in which a hydrogen permeable member that permeates hydrogen and prevents permeation of water vapor is provided on the surface of the fuel electrode. In addition, the first portion may be a configuration (second configuration) in which the hydrogen permeable member is not provided.

また、上記第1又は第2の構成の2次電池型燃料電池において、前記第1の部分は、電極構造内の最小開口径が水素の分子直径および水蒸気の分子直径のそれぞれよりも大きい部分であり、前記第2の部分は、電極構造内の最小開口径が水素の分子直径よりも大きく水蒸気の分子直径よりも小さい部分である構成(第3の構成)にしてもよい。さらに、第3の構成の2次電池型燃料電池において、前記第1の部分の電極材料の粒径は、前記第2の部分の電極材料の粒径より大きい構成(第4の構成)にしてもよい。
Further, in the secondary battery type fuel cell having the first or second configuration, the first portion is a portion in which a minimum opening diameter in the electrode structure is larger than each of a molecular diameter of hydrogen and a molecular diameter of water vapor. In addition, the second portion may have a configuration (third configuration) in which the minimum opening diameter in the electrode structure is larger than the molecular diameter of hydrogen and smaller than the molecular diameter of water vapor. Furthermore, in the secondary battery type fuel cell of the third configuration, the particle size of the electrode material of the first portion is configured to be larger than the particle size of the electrode material of the second portion (fourth configuration). Also good.

また、上記第1〜のいずれかの構成の2次電池型燃料電池において、充電時に前記燃料発生部材から前記燃料極の第1の部分に偏って水素と水蒸気の混合ガスが供給される構成(第の構成)にしてもよい。
In the secondary battery type fuel cell having any one of the first to fourth configurations, a mixed gas of hydrogen and water vapor is supplied from the fuel generating member to the first portion of the fuel electrode during charging. ( Fifth configuration) may be used.

また、上記第1〜のいずれかの構成の2次電池型燃料電池において、前記燃料発生部材の燃料を放出する放出面と前記燃料極の燃料が供給される供給面とが対向しており、前記燃料極に複数の前記第1の部分が分散して設けられている構成(第の構成)にしてもよい。
Further, in the secondary battery type fuel cell having any one of the first to fourth configurations, a discharge surface for discharging the fuel of the fuel generating member and a supply surface for supplying the fuel of the fuel electrode are opposed to each other. In addition, a configuration ( sixth configuration) in which a plurality of the first portions are provided in a dispersed manner on the fuel electrode may be adopted.

また、上記第1〜のいずれかの構成の2次電池型燃料電池において、前記燃料電池部が固体酸化物燃料電池であるようにしてもよい。
In the secondary battery type fuel cell having any one of the first to sixth configurations, the fuel cell unit may be a solid oxide fuel cell.

本発明に係る2次電池型燃料電池によると、充電時間の短縮を図ることができる。   According to the secondary battery type fuel cell of the present invention, the charging time can be shortened.

本発明の第1実施形態に係る2次電池型燃料電池の概略構成を示す図である。It is a figure which shows schematic structure of the secondary battery type fuel cell which concerns on 1st Embodiment of this invention. 燃料極と電解質との界面近傍の構造を示す模式図である。It is a schematic diagram which shows the structure of the interface vicinity of a fuel electrode and electrolyte. 水素透過膜の概略構成を示す図である。It is a figure which shows schematic structure of a hydrogen permeable film. 充電時における燃料電池部の動作を示す模式図である。It is a schematic diagram which shows operation | movement of the fuel cell part at the time of charge. 本発明の第2実施形態に係る2次電池型燃料電池の概略構成を示す図である。It is a figure which shows schematic structure of the secondary battery type fuel cell which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態での燃料極と電解質との界面近傍の構造を示す模式図である。It is a schematic diagram which shows the structure of the interface vicinity of the fuel electrode and electrolyte in 3rd Embodiment of this invention. 本発明の第3実施形態での燃料極と電解質との界面近傍の他の構造を示す模式図である。It is a schematic diagram which shows the other structure of the interface vicinity of the fuel electrode and electrolyte in 3rd Embodiment of this invention.

本発明の実施形態について図面を参照して以下に説明する。なお、本発明は、後述する実施形態に限られない。   Embodiments of the present invention will be described below with reference to the drawings. In addition, this invention is not restricted to embodiment mentioned later.

<第1実施形態>
本発明の第1実施形態に係る2次電池型燃料電池の概略構成を図1に示す。本発明の第1実施形態に係る2次電池型燃料電池は、化学反応により水素を含む燃料を発生し、前記化学反応の逆反応により再生可能な燃料発生部材1と、酸素を含む酸化剤と燃料発生部材1から供給される燃料との反応により発電を行う燃料電池部2と、燃料発生部材1を収容する容器3と、燃料電池部2を収容する容器4と、燃料発生部材1と燃料電池部2とを連通するガス流通経路5とを備えている。
<First Embodiment>
FIG. 1 shows a schematic configuration of a secondary battery type fuel cell according to the first embodiment of the present invention. The secondary battery type fuel cell according to the first embodiment of the present invention generates a fuel containing hydrogen by a chemical reaction and can be regenerated by a reverse reaction of the chemical reaction, an oxidant containing oxygen, A fuel cell unit 2 that generates power by reaction with fuel supplied from the fuel generating member 1, a container 3 that stores the fuel generating member 1, a container 4 that stores the fuel cell unit 2, the fuel generating member 1 and the fuel A gas flow path 5 communicating with the battery unit 2 is provided.

ガス流通経路5には必要に応じて、ブロアやポンプ等の循環器を設けてもよい。また、燃料発生部材1の周辺や燃料電池部2の周辺には必要に応じて、温度を調節するヒーター等を設けてもよい。   The gas distribution path 5 may be provided with a circulator such as a blower or a pump as necessary. Further, a heater or the like for adjusting the temperature may be provided around the fuel generating member 1 or the fuel cell unit 2 as necessary.

燃料発生部材1としては、例えば、金属を母材として、その表面に金属または金属酸化物が添加されており、化学反応によって燃料を発生するものを用いることができる。母材の金属としては例えば、Ni、Fe、Pd、V、Mgやこれらを基材とする合金が挙げられ、特にFeは安価で、加工も容易なので好ましい。また、添加される金属としては、Al、Rd、Pd、Cr、Ni、Cu、Co、V、Moが挙げられ、添加される金属酸化物としてはSiO、TiOが挙げられる。ただし、母材となる金属と、添加される金属は同一の材料ではない。なお、本実施形態においては、燃料発生部材1として、Feを主体とする水素発生部材を用いる。 As the fuel generating member 1, for example, a material in which a metal is used as a base material, a metal or a metal oxide is added to the surface, and fuel is generated by a chemical reaction can be used. Examples of the base metal include Ni, Fe, Pd, V, Mg, and alloys based on these, and Fe is particularly preferable because it is inexpensive and easy to process. Examples of the added metal include Al, Rd, Pd, Cr, Ni, Cu, Co, V, and Mo. Examples of the added metal oxide include SiO 2 and TiO 2 . However, the metal used as a base material and the added metal are not the same material. In the present embodiment, a hydrogen generating member mainly composed of Fe is used as the fuel generating member 1.

また、燃料発生部材1においては、その反応性を上げるために単位体積当りの表面積を大きくすることが望ましい。燃料発生部材1の単位体積当りの表面積を増加させる方策としては、例えば、燃料発生部材1の主体を微粒子化し、その微粒子化したものを成型すればよい。微粒子化の方法は例えばボールミル等を用いた粉砕によって粒子を砕く方法が挙げられる。さらに、機械的な手法などにより微粒子にクラックを発生させることで微粒子の表面積をより一層増加させてもよく、酸処理、アルカリ処理、ブラスト加工などによって微粒子の表面を荒らして微粒子の表面積をより一層増加させてもよい。また、燃料発生部材1としては、微粒子をガスが通過する程度の空隙を残して固めたものであってもよいし、ペレット状の粒に形成してこの粒を多数空間内に埋める形態であっても構わない。   In the fuel generating member 1, it is desirable to increase the surface area per unit volume in order to increase the reactivity. As a measure for increasing the surface area per unit volume of the fuel generating member 1, for example, the main body of the fuel generating member 1 may be made into fine particles, and the fine particles may be molded. Examples of the fine particles include a method of crushing particles by crushing using a ball mill or the like. Further, the surface area of the fine particles may be further increased by generating cracks in the fine particles by a mechanical method or the like, and the surface area of the fine particles is further increased by roughening the surface of the fine particles by acid treatment, alkali treatment, blasting, etc. It may be increased. In addition, the fuel generating member 1 may be one in which fine particles are solidified leaving a space that allows gas to pass through, or in a form in which a large number of these particles are filled in a space formed into pellets. It doesn't matter.

燃料電池部2は、図1に示す通り、電解質膜6の両面に燃料極7と酸化剤極である空気極8を接合したMEA構造(膜・電極接合体:Membrane Electrode Assembly)である。なお、図1では、MEAを1つだけ設けた構造を図示しているが、MEAを複数設けたり、さらに複数のMEAを積層構造にしたりしてもよい。   As shown in FIG. 1, the fuel cell unit 2 has an MEA structure (membrane / electrode assembly) in which a fuel electrode 7 and an air electrode 8 that is an oxidant electrode are joined to both surfaces of an electrolyte membrane 6. Although FIG. 1 illustrates a structure in which only one MEA is provided, a plurality of MEAs may be provided, or a plurality of MEAs may be stacked.

電解質膜6の材料としては、酸素イオン又は水酸化物イオンを通す電解質、例えばイットリア安定化ジルコニア(YSZ)を用いた固体酸化物電解質を用い、発電時に燃料極7側に水を発生させるようにしている。この場合、発電時に燃料極7側に発生した水を用いた化学反応によって燃料発生部材1から水素を発生させることができる。   As a material of the electrolyte membrane 6, an electrolyte that passes oxygen ions or hydroxide ions, for example, a solid oxide electrolyte using yttria-stabilized zirconia (YSZ) is used, and water is generated on the fuel electrode 7 side during power generation. ing. In this case, hydrogen can be generated from the fuel generating member 1 by a chemical reaction using water generated on the fuel electrode 7 side during power generation.

電解質膜6は、電気化学蒸着法(CVD−EVD法;Chemical Vapor Deposition -Electrochemical Vapor Deposition)等を用いて形成することができる。   The electrolyte membrane 6 can be formed using an electrochemical vapor deposition method (CVD-EVD method; Chemical Vapor Deposition-Electrochemical Vapor Deposition) or the like.

燃料極7、空気極8はそれぞれ、例えば、電解質膜6に接する触媒層と、その触媒層に積層された拡散電極とからなる構成にすることができる。触媒層としては、例えば白金黒或いは白金合金をカーボンブラックに担持させたもの等を用いることができる。また、燃料極7の拡散電極の材料としては、例えばカーボンペーパ、Ni−Fe系サーメットやNi−YSZ系サーメット等を用いることができる。また、空気極8の拡散電極の材料としては、例えばカーボンペーパ、La−Mn−O系化合物やLa−Co−Ce系化合物等を用いることができる。燃料極7、空気極8はそれぞれ、例えば蒸着法等を用いて形成することができる。   Each of the fuel electrode 7 and the air electrode 8 can be configured by, for example, a catalyst layer in contact with the electrolyte membrane 6 and a diffusion electrode laminated on the catalyst layer. As the catalyst layer, for example, platinum black or a platinum alloy supported on carbon black can be used. Moreover, as a material of the diffusion electrode of the fuel electrode 7, for example, carbon paper, Ni—Fe cermet, Ni—YSZ cermet or the like can be used. Moreover, as a material of the diffusion electrode of the air electrode 8, for example, carbon paper, La—Mn—O compound, La—Co—Ce compound, or the like can be used. Each of the fuel electrode 7 and the air electrode 8 can be formed using, for example, vapor deposition.

燃料極7は、図2に示す通り、ガスが透過できるように多孔質形状になっている。燃料電池部2として固体酸化物燃料電池を用いた場合、燃料極7と電解質6との界面において、発電時には下記の(3)式の反応が起こり、充電時には下記の(3)式の逆反応である下記の(4)式の反応が起こる。
+O2-→HO+2e- …(3)
O+2e-→H+O2- …(4)
As shown in FIG. 2, the fuel electrode 7 has a porous shape so that gas can pass therethrough. When a solid oxide fuel cell is used as the fuel cell unit 2, a reaction of the following formula (3) occurs at the interface between the fuel electrode 7 and the electrolyte 6 during power generation, and a reverse reaction of the following formula (3) during charging. The following reaction of the formula (4) occurs.
H 2 + O 2− → H 2 O + 2e (3)
H 2 O + 2e → H 2 + O 2− (4)

燃料極7の一部の表面上には、図1に示す通り、水素を透過し、水蒸気の透過を妨げる水素透過部9が設けられている。燃料極7の、表面上に水素透過部9が設けられている部分は、水素が水蒸気よりも優先的に透過する部分になる。これに対して、燃料極7の、表面上に水素透過部9が設けられていない部分は、水素及び水蒸気が差異なく透過する部分になる。   On a part of the surface of the fuel electrode 7, as shown in FIG. 1, there is provided a hydrogen permeation section 9 that permeates hydrogen and prevents permeation of water vapor. The portion of the fuel electrode 7 where the hydrogen permeable portion 9 is provided on the surface is a portion through which hydrogen permeates preferentially over water vapor. On the other hand, the portion of the fuel electrode 7 where the hydrogen permeable portion 9 is not provided on the surface is a portion through which hydrogen and water vapor permeate without difference.

水素透過部9には、例えば、Pdのように水素透過部材として一般的に用いられている材料を用いてもよいし、プロトン導電性の電解質を2つの電極で挟み込んだ水素透過膜を用いてもよい。プロトン導電性の電解質を2つの電極で挟み込んだ水素透過膜は、図3に示すように、2つの電極91及び93間に電圧を印加することによって、水素分子は陽極である電極93側でプロトンとなって電解質92内を陰極である電極91側へと移動し、陰極である電極91側で再び水素分子となる。プロトン導電性の電解質には、強度や耐熱性等の観点からSrCeO等のCeやZrを基材としたセラミクス系の固体電解質を用いることが好ましい。 For the hydrogen permeable portion 9, for example, a material generally used as a hydrogen permeable member such as Pd may be used, or a hydrogen permeable membrane in which a proton conductive electrolyte is sandwiched between two electrodes is used. Also good. As shown in FIG. 3, in the hydrogen permeable membrane in which the proton conductive electrolyte is sandwiched between two electrodes, a voltage is applied between the two electrodes 91 and 93 so that hydrogen molecules are protonated on the electrode 93 side which is an anode. Then, the electrolyte 92 moves to the electrode 91 side which is the cathode, and becomes hydrogen molecules again on the electrode 91 side which is the cathode. As the proton conductive electrolyte, it is preferable to use a ceramics-based solid electrolyte based on Ce or Zr such as SrCeO 3 from the viewpoint of strength and heat resistance.

次に、充電時における燃料電池部2の動作について図4を参照して説明する。充電時には燃料発生部材1から水蒸気と水素を含む混合ガスが燃料電池部2に供給される。燃料電池部2に供給された混合ガスは、流入抵抗が少ない水素透過部9が設けられていない部分から優先的に燃料極7の内部に流入する。例えば燃料電池部2に固体酸化物燃料電池を用いた場合、燃料極7と電解質6との界面において上述した(4)式の反応が生じて水蒸気が消費され、水素が生成される。燃料極7の内部へのガス流入は、水素透過部9が設けられていない部分から優先的に行われているため、反応後のガスは流入ガスの気流に乗って、水素透過部9が設けられている部分から燃料極7の外部に流出する。このとき、水素は水素透過部9を透過するので燃料極7から抜けていくが、燃料極7の内部で未反応のまま残った水蒸気は、水素透過部9によって透過が阻害されるため、燃料極7の内部に残る。その結果、燃料極7内の水蒸気濃度は、燃料発生部材1から燃料電池部2に供給される混合ガスの水蒸気濃度よりも高くなるため、燃料極7と電解質6との界面で起こる充電反応が促進される。この充電反応の促進によって、充電時間を短縮することができる。   Next, the operation of the fuel cell unit 2 during charging will be described with reference to FIG. During charging, a mixed gas containing water vapor and hydrogen is supplied from the fuel generating member 1 to the fuel cell unit 2. The mixed gas supplied to the fuel cell unit 2 flows preferentially into the fuel electrode 7 from a portion where the hydrogen permeation unit 9 having a low inflow resistance is not provided. For example, when a solid oxide fuel cell is used for the fuel cell unit 2, the reaction of the above-described formula (4) occurs at the interface between the fuel electrode 7 and the electrolyte 6 to consume water vapor and generate hydrogen. Since the gas inflow into the fuel electrode 7 is preferentially performed from the portion where the hydrogen permeation section 9 is not provided, the gas after the reaction rides on the inflow gas flow and the hydrogen permeation section 9 is provided. It flows out of the fuel electrode 7 from the portion where it is formed. At this time, since hydrogen passes through the hydrogen permeable portion 9 and escapes from the fuel electrode 7, the water vapor remaining unreacted inside the fuel electrode 7 is blocked by the hydrogen permeable portion 9, so that It remains inside the pole 7. As a result, the water vapor concentration in the fuel electrode 7 becomes higher than the water vapor concentration of the mixed gas supplied from the fuel generating member 1 to the fuel cell unit 2, so that the charging reaction occurring at the interface between the fuel electrode 7 and the electrolyte 6 occurs. Promoted. By promoting the charging reaction, the charging time can be shortened.

なお、水素透過部9は燃料極7の表面の一部に適当に設けてもよいが、例えば、図1に示すように、燃料発生部材1から燃料電池部2へのガス供給が、燃料電池部2の或る部分(図1においては紙面上部)に偏って供給される場合は、前記ガスが偏って供給される部分を水素透過部9が設けられていない部分とすることが好ましい。この好適態様によると、燃料発生部材1から供給されるガスを燃料極7の内部によりスムーズに流入させることができる。   The hydrogen permeation unit 9 may be appropriately provided on a part of the surface of the fuel electrode 7. For example, as shown in FIG. 1, the gas supply from the fuel generation member 1 to the fuel cell unit 2 may be performed as a fuel cell. In the case where the gas is supplied to a certain part of the part 2 (upper part of the drawing in FIG. 1), the part where the gas is supplied is preferably a part where the hydrogen permeable part 9 is not provided. According to this preferred embodiment, the gas supplied from the fuel generating member 1 can flow more smoothly into the fuel electrode 7.

また、水素透過部9にプロトン導電性の電解質を2つの電極で挟み込んだ水素透過膜を用いている場合、発電時には水素の透過方向を図4に示す矢印と逆方向にすることで燃料極7の内部への水素の流入量を増やすことができる。   Further, when a hydrogen permeable membrane in which a proton conductive electrolyte is sandwiched between two electrodes is used for the hydrogen permeable portion 9, the fuel electrode 7 is formed by making the hydrogen permeation direction opposite to the arrow shown in FIG. The amount of hydrogen flowing into the interior can be increased.

<第2実施形態>
本発明の第2実施形態に係る2次電池型燃料電池の概略構成を図5に示す。なお、図5において図1と同一の部分には同一の符号を付し詳細な説明を省略する。本発明の第2実施形態に係る2次電池型燃料電池は、本発明の第1実施形態に係る2次電池型燃料電池と異なり、燃料発生部材1と燃料電池部2とを同一の容器10に収容している構成である。
Second Embodiment
FIG. 5 shows a schematic configuration of a secondary battery type fuel cell according to the second embodiment of the present invention. 5 that are the same as those in FIG. 1 are assigned the same reference numerals, and detailed descriptions thereof are omitted. The secondary battery type fuel cell according to the second embodiment of the present invention is different from the secondary battery type fuel cell according to the first embodiment of the present invention in that the fuel generating member 1 and the fuel cell unit 2 are arranged in the same container 10. It is the structure accommodated in.

図5に示す通り、本発明の第2実施形態に係る2次電池型燃料電池においては、燃料発生部材1の燃料を放出する放出面1aと燃料極7の燃料が供給される供給面7aとは対向し、図示しないビーズ等のスペーサにより一定の間隔で平行に配置される。このような構成により、燃料発生部材1から燃料電池部2へガスが面状に均一に供給される。   As shown in FIG. 5, in the secondary battery type fuel cell according to the second embodiment of the present invention, the discharge surface 1a for discharging the fuel of the fuel generating member 1 and the supply surface 7a for supplying the fuel of the fuel electrode 7 are provided. Are opposed to each other and arranged in parallel at regular intervals by spacers such as beads (not shown). With such a configuration, the gas is uniformly supplied from the fuel generating member 1 to the fuel cell unit 2 in a planar shape.

水素透過部9は燃料極7の表面の一部に適当に設けてもよいが、例えば、図5に示すように、燃料発生部材1の燃料を放出する放出面1aと燃料極7の燃料が供給される供給面7aとが対向している場合は、複数の水素透過部9を燃料極7の表面上に分散して設けることが好ましい。この好適態様によると、燃料発生部材1から均一に供給されるガスの流れを阻害することなく、燃料極7の内部によりスムーズに流入させることができる。   The hydrogen permeation section 9 may be appropriately provided on a part of the surface of the fuel electrode 7. For example, as shown in FIG. 5, the discharge surface 1 a for discharging the fuel of the fuel generating member 1 and the fuel on the fuel electrode 7 When the supply surface 7 a to be supplied is opposed to the supply surface 7 a, it is preferable to disperse and provide the plurality of hydrogen permeable portions 9 on the surface of the fuel electrode 7. According to this preferred embodiment, the gas can be smoothly introduced into the fuel electrode 7 without hindering the flow of gas uniformly supplied from the fuel generating member 1.

本発明の第2実施形態に係る2次電池型燃料電池も本発明の第1実施形態に係る2次電池型燃料電池と同様に、充電時において、燃料極7内の水蒸気濃度が、燃料発生部材1から燃料電池部2に供給される混合ガスの水蒸気濃度よりも高くなるため、燃料極7と電解質6との界面で起こる充電反応が促進される。その結果、充電時間を短縮することができる。   Similarly to the secondary battery type fuel cell according to the first embodiment of the present invention, the secondary battery type fuel cell according to the second embodiment of the present invention has a water vapor concentration in the fuel electrode 7 that generates fuel during charging. Since the water vapor concentration of the mixed gas supplied from the member 1 to the fuel cell unit 2 is higher, the charging reaction occurring at the interface between the fuel electrode 7 and the electrolyte 6 is promoted. As a result, the charging time can be shortened.

<第3実施形態>
本発明の第3実施形態に係る2次電池型燃料電池は、燃料発生部材1及び燃料電池部2の材料や配置については本発明の第1実施形態に係る2次電池型燃料電池または本発明の第2実施形態に係る2次電池型燃料電池と同様であるが、本発明の第1実施形態に係る2次電池型燃料電池及び本発明の第2実施形態に係る2次電池型燃料電池と異なり、水素透過部9を設けず、図6や図7に示すように燃料極7の多孔質形状を部分的に異なるようにして、水素及び水蒸気が差異なく透過する第1の部分71と、水素が水蒸気よりも優先的に透過する第2の部分72とを燃料極7に設けている。より具体的には、水素の分子直径をσ1とし、水蒸気の分子直径をσ2として、φ1>σ1かつφ1>σとなる最小開口径φ1を有する部分と、σ>φ>σ1となる最小開口径φを有する部分とを燃料極7に設けている。燃料極7の、φ1>σ1かつφ1>σとなる最小開口径φ1を有する部分は、水素及び水蒸気が差異なく透過する部分になる。これに対して、燃料極7の、σ>φ>σ1となる最小開口径φを有する部分は、水素が水蒸気よりも優先的に透過する部分になる。
<Third Embodiment>
The secondary battery type fuel cell according to the third embodiment of the present invention is the secondary battery type fuel cell according to the first embodiment of the present invention or the present invention with respect to the material and arrangement of the fuel generating member 1 and the fuel cell unit 2. The secondary battery type fuel cell according to the second embodiment of the present invention, but the secondary battery type fuel cell according to the first embodiment of the present invention and the secondary battery type fuel cell according to the second embodiment of the present invention. Unlike the first portion 71 which does not provide the hydrogen permeation portion 9 and the porous shape of the fuel electrode 7 is partially different as shown in FIGS. The fuel electrode 7 is provided with a second portion 72 through which hydrogen permeates preferentially over water vapor. More specifically, assuming that the molecular diameter of hydrogen is σ 1 and the molecular diameter of water vapor is σ 2 , a portion having a minimum opening diameter φ 1 that satisfies φ 1 > σ 1 and φ 1 > σ 2, and σ 2 > A portion having a minimum opening diameter φ 2 that satisfies φ 2 > σ 1 is provided in the fuel electrode 7. The portion of the fuel electrode 7 having the minimum opening diameter φ 1 satisfying φ 1 > σ 1 and φ 1 > σ 2 is a portion through which hydrogen and water vapor are transmitted without difference. In contrast, the portion of the fuel electrode 7 having the minimum opening diameter φ 2 that satisfies σ 2 > φ 2 > σ 1 is a portion through which hydrogen permeates preferentially over water vapor.

なお、燃料発生部材1及び燃料電池部2の配置を本発明の第2実施形態に係る2次電池型燃料電池と同様にする場合、水素透過部9を設けないので、燃料発生部材1の燃料を放出する放出面1aと燃料極7の燃料が供給される供給面7aとを間隔をあけずに対向させる、すなわち燃料発生部材1の燃料を放出する放出面1aと燃料極7の燃料が供給される供給面7aとを重ねるように配置することも可能である。   When the arrangement of the fuel generating member 1 and the fuel cell unit 2 is the same as that of the secondary battery type fuel cell according to the second embodiment of the present invention, the hydrogen permeating unit 9 is not provided, so the fuel of the fuel generating member 1 The discharge surface 1a that discharges the fuel and the supply surface 7a to which the fuel of the fuel electrode 7 is supplied are opposed to each other without any gap, that is, the discharge surface 1a that discharges the fuel of the fuel generating member 1 and the fuel of the fuel electrode 7 are supplied It is also possible to arrange the supply surface 7a to be overlapped.

最小開口径が場所によって異なる構造の燃料極7を作製する方法としては、例えば、燃料極7の形成時に燃料極材料に有機系バインダー等を混ぜておき、その有機系バインダー等の量を場所によって変えておき、燃料極7の形成後に昇温による気化等で有機系バインダー等を除去する方法を挙げることができる。この方法によると、図6に示す構造の燃料極7を得ることができる。また、燃料極材料の粒径を場所によって変えて燃料極7を形成してもよい。この方法によると、図7に示す構造の燃料極7を得ることができる。また、ここで例示した2つの方法を組み合わせて実施してもよい。   As a method of manufacturing the fuel electrode 7 having a structure in which the minimum opening diameter varies depending on the location, for example, an organic binder or the like is mixed with the fuel electrode material at the time of forming the fuel electrode 7, and the amount of the organic binder or the like varies depending on the location. In other words, there may be mentioned a method of removing the organic binder or the like by vaporization by heating after the formation of the fuel electrode 7. According to this method, the fuel electrode 7 having the structure shown in FIG. 6 can be obtained. Further, the fuel electrode 7 may be formed by changing the particle diameter of the fuel electrode material depending on the location. According to this method, the fuel electrode 7 having the structure shown in FIG. 7 can be obtained. Moreover, you may implement combining the two methods illustrated here.

燃料極7を上記のように最小開口径が場所によって異なる構造にした場合、充電時に燃料電池部2に供給された混合ガスは、流入抵抗が少ない最小開口径φ1を有する部分から優先的に燃料極7の内部に流入する。例えば燃料電池部2に固体酸化物燃料電池を用いた場合、燃料極7と電解質6との界面において上述した(4)式の反応が生じて水蒸気が消費され、水素が生成される。燃料極7の内部へのガス流入は、最小開口径φ1を有する部分から優先的に行われているため、反応後のガスは流入ガスの気流に乗って、最小開口径φを有する部分から燃料極7の外部に流出する。このとき、水素は分子直径σ1が最小開口径φよりも小さいので燃料極7から抜けていくが、燃料極7の内部で未反応のまま残った水蒸気は分子直径σが最小開口径φよりも大きく透過が阻害されるため、燃料極7の内部に残る。その結果、燃料極7内の水蒸気濃度は、燃料発生部材1から燃料電池部2に供給される混合ガスの水蒸気濃度よりも高くなるため、燃料極7と電解質6との界面で起こる充電反応が促進される。この充電反応の促進によって、充電時間を短縮することができる。 When the fuel electrode 7 has a structure in which the minimum opening diameter differs depending on the location as described above, the mixed gas supplied to the fuel cell unit 2 at the time of charging is preferentially from the portion having the minimum opening diameter φ 1 with a small inflow resistance. It flows into the fuel electrode 7. For example, when a solid oxide fuel cell is used for the fuel cell unit 2, the reaction of the above-described formula (4) occurs at the interface between the fuel electrode 7 and the electrolyte 6 to consume water vapor and generate hydrogen. Since the gas inflow into the fuel electrode 7 is preferentially performed from the portion having the minimum opening diameter φ 1 , the gas after the reaction rides on the flow of the inflowing gas and has the minimum opening diameter φ 2 From the fuel electrode 7 to the outside. At this time, since hydrogen has a molecular diameter σ 1 smaller than the minimum opening diameter φ 2 , it escapes from the fuel electrode 7, but water vapor remaining unreacted inside the fuel electrode 7 has a molecular diameter σ 2 having a minimum opening diameter. since large transmission is inhibited than phi 2, it remains in the fuel electrode 7. As a result, the water vapor concentration in the fuel electrode 7 becomes higher than the water vapor concentration of the mixed gas supplied from the fuel generating member 1 to the fuel cell unit 2, so that the charging reaction occurring at the interface between the fuel electrode 7 and the electrolyte 6 occurs. Promoted. By promoting the charging reaction, the charging time can be shortened.

なお、最小開口径φ1を有する部分及び最小開口径φを有する部分はそれぞれ燃料極7に適当に設けてもよいが、第1実施形態と同様に燃料発生部材1から燃料電池部2へのガス供給が、燃料電池部2の或る部分に偏って供給される場合は、前記ガスが偏って供給される部分を最小開口径φ1を有する部分とし、前記ガスが余り供給されない部分を最小開口径φを有する部分とすることが好ましく、また、第2実施形態と同様に燃料発生部材1の燃料を放出する放出面1aと燃料極7の燃料が供給される供給面7aとが対向している場合は、複数の最小開口径φ1を有する部分を燃料極7に分散して設け、複数の最小開口径φを有する部分も燃料極7に分散して設けることが好ましい。 Note that the portion having the minimum opening diameter φ 1 and the portion having the minimum opening diameter φ 2 may be appropriately provided in the fuel electrode 7, respectively, but from the fuel generating member 1 to the fuel cell unit 2 as in the first embodiment. Is supplied to a certain part of the fuel cell unit 2, the part where the gas is supplied unevenly is defined as a part having a minimum opening diameter φ 1, and the part where the gas is not supplied excessively. A portion having a minimum opening diameter φ 2 is preferable. Similarly to the second embodiment, a discharge surface 1a for discharging the fuel of the fuel generating member 1 and a supply surface 7a for supplying fuel of the fuel electrode 7 are provided. When facing each other, it is preferable that a portion having a plurality of minimum opening diameters φ 1 is provided dispersed in the fuel electrode 7, and a portion having a plurality of minimum opening diameters φ 2 is also provided dispersed in the fuel electrode 7.

また、説明を簡単にするため、本発明の第3実施形態に係る2次電池型燃料電池では、水素透過部9を設けていない構成としたが、燃料極7の、最小開口径φ2を有する部分の表面に水素透過部9を設けてもよい。 Further, in order to simplify the description, the secondary battery type fuel cell according to the third embodiment of the present invention has a configuration in which the hydrogen permeable portion 9 is not provided, but the minimum opening diameter φ 2 of the fuel electrode 7 is You may provide the hydrogen permeation | transmission part 9 in the surface of the part to have.

<変形例>
上述した各実施形態では、1つの燃料電池部2が発電も水の電気分解も行っているが、燃料電池(例えば発電専用の固体酸化物燃料電池)と水の電気分解器(例えば水の電気分解専用の固体酸化物燃料電池)が燃料発生部材1に対してガス流路上並列に接続される構成にしてもよい。
<Modification>
In each of the embodiments described above, one fuel cell unit 2 performs both power generation and water electrolysis. However, a fuel cell (for example, a solid oxide fuel cell dedicated to power generation) and a water electrolyzer (for example, water electricity) A solid oxide fuel cell dedicated for decomposition) may be connected to the fuel generating member 1 in parallel on the gas flow path.

1 燃料発生部材
1a 燃料の放出面
2 燃料電池部
3、4、10 容器
5 ガス流通経路
6 電解質膜
7 燃料極
7a 燃料の供給面
8 空気極
9 水素透過部
91、93 電極
92 プロトン導電性の電解質
DESCRIPTION OF SYMBOLS 1 Fuel generating member 1a Fuel discharge | emission surface 2 Fuel cell part 3, 4, 10 Container 5 Gas distribution path 6 Electrolyte membrane 7 Fuel electrode 7a Fuel supply surface 8 Air electrode 9 Hydrogen permeation | transmission part 91, 93 Electrode 92 Proton conductive Electrolytes

Claims (7)

水蒸気との化学反応により水素を含む燃料を発生し、前記化学反応の逆反応により再生可能な燃料発生部材と、
酸素を含む酸化剤と前記燃料発生部材から供給される燃料との反応により発電を行う発電機能及び前記燃料発生部材に供給する水素を生成するため水蒸気の電気分解を行う電気分解機能を有する発電・電気分解部とを備え、
前記発電・電気分解部が、充電時に水蒸気の電気分解を行う燃料電池部を有し、
前記燃料電池部が、燃料極と、酸化剤極と、前記燃料極と前記酸化剤極との間に挟持される電解質とを有し、
前記電解質は酸素イオンを通すものであり、充電時に前記燃料極と前記電解質との界面において水蒸気が電気分解され、
記燃料極に前記燃料極の表面上及び内部のいずれにも吸水性物質が設けられることなく、充電時に前記燃料電池部に供給される水素及び水蒸気が前記燃料極と前記電解質との界面まで差異なく透過する第1の部分と、充電時に前記燃料極と前記電解質との界面において水蒸気の電気分解によって発生した水素が充電時に前記燃料電池部に供給され前記燃料極内に流入した水蒸気よりも優先的に透過し前記燃料極外へ流出する第2の部分とが設けられていることを特徴とする2次電池型燃料電池。
A fuel generating member that generates hydrogen-containing fuel by a chemical reaction with water vapor and can be regenerated by a reverse reaction of the chemical reaction;
A power generation function for generating power by a reaction between an oxidant containing oxygen and a fuel supplied from the fuel generating member, and an electric power generating function for performing electrolysis of water vapor to generate hydrogen to be supplied to the fuel generating member・ Equipped with an electrolysis unit,
The power generation / electrolysis unit has a fuel cell unit for electrolyzing water vapor during charging,
The fuel cell unit includes a fuel electrode, an oxidant electrode, and an electrolyte sandwiched between the fuel electrode and the oxidant electrode;
The electrolyte passes oxygen ions, and water vapor is electrolyzed at the interface between the fuel electrode and the electrolyte during charging,
The front Ki燃 charge electrode, the upper surface of the fuel electrode and one on without water absorbing material is also provided inside the hydrogen and water vapor and the fuel electrode is supplied to the fuel cell unit during charging and the electrolyte And hydrogen generated by electrolysis of water vapor at the interface between the fuel electrode and the electrolyte during charging is supplied to the fuel cell unit during charging and flows into the fuel electrode. And a second portion that permeates preferentially over water vapor and flows out of the fuel electrode .
前記第2の部分は、水素を透過し、水蒸気の透過を妨げる水素透過部材が前記燃料極の前記電解質と反対側の表面上に設けられている部分であり、
前記第1の部分は、前記水素透過部材が設けられていない部分であることを特徴とする請求項1に記載の2次電池型燃料電池。
The second portion is a portion in which a hydrogen permeable member that permeates hydrogen and prevents permeation of water vapor is provided on the surface of the fuel electrode opposite to the electrolyte ,
The secondary battery type fuel cell according to claim 1, wherein the first portion is a portion where the hydrogen permeable member is not provided.
前記第1の部分は、電極構造内の最小開口径が水素の分子直径および水蒸気の分子直径のそれぞれよりも大きい部分であり、
前記第2の部分は、電極構造内の最小開口径が水素の分子直径よりも大きく水蒸気の分子直径よりも小さい部分であることを特徴とする請求項1または請求項2に記載の2次電池型燃料電池。
The first portion is a portion in which the minimum opening diameter in the electrode structure is larger than each of the molecular diameter of hydrogen and the molecular diameter of water vapor,
3. The secondary battery according to claim 1, wherein the second portion is a portion in which a minimum opening diameter in the electrode structure is larger than a molecular diameter of hydrogen and smaller than a molecular diameter of water vapor. 4. Type fuel cell.
前記第1の部分の電極材料の粒径は、前記第2の部分の電極材料の粒径より大きいことを特徴とする請求項3に記載の2次電池型燃料電池。4. The secondary battery type fuel cell according to claim 3, wherein the particle size of the electrode material of the first portion is larger than the particle size of the electrode material of the second portion. 充電時に前記燃料発生部材から前記燃料極の第1の部分に偏って水素と水蒸気の混合ガスが供給されることを特徴とする請求項1〜4のいずれか一項に記載の2次電池型燃料電池。5. The secondary battery type according to claim 1, wherein a mixed gas of hydrogen and water vapor is supplied from the fuel generating member toward the first portion of the fuel electrode during charging. Fuel cell. 前記燃料発生部材の燃料を放出する放出面と前記燃料極の燃料が供給される供給面とが対向しており、The discharge surface for discharging the fuel of the fuel generating member and the supply surface for supplying the fuel of the fuel electrode are opposed to each other,
前記燃料極に複数の前記第1の部分が分散して設けられていることを特徴とする請求項1〜4のいずれか一項に記載の2次電池型燃料電池。The secondary battery type fuel cell according to any one of claims 1 to 4, wherein a plurality of the first portions are provided in a distributed manner on the fuel electrode.
前記燃料電池部が固体酸化物燃料電池であることを特徴とする請求項1〜6のいずれか一項に記載の2次電池型燃料電池。The secondary battery type fuel cell according to claim 1, wherein the fuel cell unit is a solid oxide fuel cell.
JP2011229120A 2011-10-18 2011-10-18 Secondary battery type fuel cell Expired - Fee Related JP5786634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011229120A JP5786634B2 (en) 2011-10-18 2011-10-18 Secondary battery type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011229120A JP5786634B2 (en) 2011-10-18 2011-10-18 Secondary battery type fuel cell

Publications (2)

Publication Number Publication Date
JP2013089462A JP2013089462A (en) 2013-05-13
JP5786634B2 true JP5786634B2 (en) 2015-09-30

Family

ID=48533166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011229120A Expired - Fee Related JP5786634B2 (en) 2011-10-18 2011-10-18 Secondary battery type fuel cell

Country Status (1)

Country Link
JP (1) JP5786634B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014188968A1 (en) * 2013-05-24 2014-11-27 コニカミノルタ株式会社 Rechargeable battery-type fuel cell system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5492777A (en) * 1995-01-25 1996-02-20 Westinghouse Electric Corporation Electrochemical energy conversion and storage system
JP4211434B2 (en) * 2003-03-04 2009-01-21 トヨタ自動車株式会社 Hydrogen separator
JP2005022936A (en) * 2003-07-01 2005-01-27 Toyota Central Res & Dev Lab Inc Apparatus and method for reforming fuel
US20050064259A1 (en) * 2003-09-24 2005-03-24 Protonetics International, Inc. Hydrogen diffusion electrode for protonic ceramic fuel cell
JP2006302804A (en) * 2005-04-25 2006-11-02 Nissan Motor Co Ltd Fuel cell and fuel cell system
JP2008034111A (en) * 2006-07-26 2008-02-14 Toyota Motor Corp Fuel cell and fuel cell system
JP2011148664A (en) * 2010-01-25 2011-08-04 Konica Minolta Holdings Inc Hydrogen generation material, fuel cell, and method for producing the hydrogen generation material
JP5390448B2 (en) * 2010-03-26 2014-01-15 Jx日鉱日石エネルギー株式会社 Membrane separation reactor and method for producing hydrogen

Also Published As

Publication number Publication date
JP2013089462A (en) 2013-05-13

Similar Documents

Publication Publication Date Title
US7241521B2 (en) Hydrogen/hydrogen peroxide fuel cell
EP3072174A1 (en) Oxygen-vanadium redox flow battery with vanadium electrolyte having carbon particles dispersed therein
JP2012513074A (en) Method for manufacturing and integrating direct sodium borohydride fuel cells
Ho et al. Microfluidic fuel cell systems
JP4816816B2 (en) Fuel cell
JP2007284705A (en) Electrolytic hydrogen-generating device, method for generating hydrogen gas, and fuel cell
JP2014512646A (en) Long-life fuel cell with proton exchange membrane
JP4658784B2 (en) Liquid fuel cartridge and direct liquid fuel cell having the same
JP5786634B2 (en) Secondary battery type fuel cell
JP5969000B2 (en) Long-life fuel cell with proton exchange membrane
KR20140133301A (en) The membrane electrdoe assembly for an electrochemical cell
JP5166387B2 (en) High temperature fuel cell separator
JP5435178B2 (en) Secondary battery type fuel cell system
JP5742394B2 (en) Aging method for polymer electrolyte fuel cell and power generation system for polymer electrolyte fuel cell
JP5790530B2 (en) Secondary battery type fuel cell system
JP5772681B2 (en) Fuel cell system
JP2013054868A (en) Secondary battery type fuel cell
JP5640821B2 (en) Secondary battery type fuel cell system
JP6084532B2 (en) Hydrogen production equipment
JP2008021533A (en) Fuel cell stack
Dolev et al. Bio-Fuel Cells–Energy Harvesting Nano Particles
JP2007335112A (en) Fuel cell
US6833167B2 (en) Methanol fuel cell comprising a membrane which conducts metal cations
CN102881934B (en) Methanol fuel cell
KR20130075902A (en) Metal supported solid oxide fuel cell stack using external manifold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150130

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150713

R150 Certificate of patent or registration of utility model

Ref document number: 5786634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees