WO2019225641A1 - Hydrogen permeable membrane and method for producing same - Google Patents

Hydrogen permeable membrane and method for producing same Download PDF

Info

Publication number
WO2019225641A1
WO2019225641A1 PCT/JP2019/020255 JP2019020255W WO2019225641A1 WO 2019225641 A1 WO2019225641 A1 WO 2019225641A1 JP 2019020255 W JP2019020255 W JP 2019020255W WO 2019225641 A1 WO2019225641 A1 WO 2019225641A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy film
hydrogen
film
treating
alloy
Prior art date
Application number
PCT/JP2019/020255
Other languages
French (fr)
Japanese (ja)
Inventor
之貴 加藤
前田 哲彦
成輝 遠藤
聡 八重樫
義智 古川
憲和 出澤
Original Assignee
国立大学法人東京工業大学
国立研究開発法人産業技術総合研究所
株式会社山王
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学, 国立研究開発法人産業技術総合研究所, 株式会社山王 filed Critical 国立大学法人東京工業大学
Publication of WO2019225641A1 publication Critical patent/WO2019225641A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys

Definitions

  • the present invention relates to a hydrogen permeable membrane and a manufacturing method thereof.
  • a hydrogen permeable membrane that selectively transmits hydrogen As a material for obtaining high-purity hydrogen, a hydrogen permeable membrane that selectively transmits hydrogen has been proposed.
  • a film containing a Pd alloy film is known as a hydrogen permeable film.
  • a PdCu alloy film is known as a Pd alloy film.
  • Patent Document 1 Japanese Patent Laid-Open No. 2008-817605 discloses a palladium alloy plating solution containing a specific palladium complex and a hydrogen separation membrane formed by the plating solution. ing. Patent Document 1 describes that, as a specific example, an alloy film is formed using a plating solution containing palladium chloride, copper nitrate, asparagine, dipotassium citrate, and dipotassium hydrogen phosphate.
  • Non-Patent Document 1 (Creation of Electrolytic PdCu Alloy Plating Film for Hydrogen Permeation Membrane, Surface Technology Association, Abstract of 125th Lecture Meeting, page 141), after depositing electrolytic PdCu plating film on SUS304, PdCu
  • the obtained PdCu film was a film of Pd63 wt% -Cu 37 wt%, a value very close to Pd60 wt% -Cu 40 wt%, which is an alloy ratio having hydrogen permeability, and PdCu before and after heat treatment
  • the crystallinity of the film was confirmed, only the ⁇ phase was confirmed before the heat treatment, but the ⁇ phase was formed after the heat treatment, and the hydrogen permeability of the PdCu alloy film is a mixture of the ⁇ phase and the ⁇ phase. Since the effect is acquired by this, it is described that the obtained PdCu alloy film is considered to have a function as a hydrogen permeable film.
  • Patent Document 1 there is no description as to whether or not the obtained PdCu alloy film actually functioned as a hydrogen permeable film. And according to the knowledge of the present inventors, even if a PdCu alloy film is formed by electrolytic plating and a ⁇ phase (body-centered cubic phase) is formed by performing heat treatment as described in Non-Patent Document 1, By itself, sufficient hydrogen permeation performance as a hydrogen permeable membrane cannot be obtained.
  • an object of the present invention is to provide a hydrogen permeable film using a PdCu alloy film having sufficient hydrogen permeable performance, and a method for manufacturing the same.
  • the present invention includes the following matters.
  • the alloy film is Electrolytic plating film, Has a BCC structure,
  • the Pd: Cu ratio (atomic ratio) in the alloy film is 6: 4 to 4: 6.
  • Hydrogen permeable membrane [2] The hydrogen permeable membrane according to [1], wherein the alloy film has a thickness of 1 to 100 ⁇ m.
  • a step of treating with oxygen includes the step of introducing the reducing gas into an environment including the alloy film after the step of reducing the pressure, and any one of the above [3] to [6] The manufacturing method described in 1.
  • a hydrogen permeable membrane using a PdCu alloy membrane having sufficient hydrogen permeability there are provided a hydrogen permeable membrane using a PdCu alloy membrane having sufficient hydrogen permeability and a method for producing the same.
  • FIG. 1 shows an SEM photograph of the alloy film.
  • FIG. 2 shows an X-ray diffraction intensity spectrum of the alloy film.
  • FIG. 3 shows the indentation test result in the alloy film.
  • a method for producing a hydrogen permeable membrane according to an embodiment of the present invention includes a step of producing an alloy film containing Pd and Cu (step S1), and at least part of the crystal structure of the alloy film.
  • step S3 After step S3) and the step of treating with oxygen, a step of treating the alloy film with a reducing gas
  • Step 1 Formation of alloy film An alloy film containing Pd and Cu is prepared.
  • an alloy film is produced by electrolytic plating using a PdCu plating solution. That is, first, a PdCu plating solution is prepared.
  • a PdCu plating solution for example, a plating solution containing a palladium ion supply source such as dichlorotetraammine palladium, a copper ion supply source such as copper sulfate, and an additive such as polyphosphate can be used.
  • an alloy film containing Pd and Cu is deposited on the conductive substrate by electrolytic plating.
  • the bath temperature at the time of plating is, for example, 20 to 80 ° C., preferably 30 to 70 ° C., more preferably 40 to 60 ° C.
  • the current density is, for example, 0.5 to 3.0 A / dm 2 , preferably 1.0 to 2.0 A / dm 2 .
  • the thickness of the alloy film is, for example, 1 to 100 ⁇ m, preferably 3 to 30 ⁇ m, more preferably 5 to 20 ⁇ m.
  • Step 2 Conversion of Crystal Structure
  • the alloy film formed in step S1 has a normal FCC (face-centered cubic) structure. Therefore, at least a part of the crystal structure of the alloy film is changed to a BCC structure in the absence of oxygen.
  • the alloy film is heat-treated in a reduced pressure state using a high vacuum electric furnace. By performing heat treatment in a reduced pressure state, at least part of the crystal structure of the alloy film can be changed to a BCC structure.
  • the heat treatment temperature at this time is, for example, preferably 300 ° C. or higher, more preferably 400 ° C. or higher.
  • the upper limit of heat processing temperature is 600 degrees C or less, for example, Preferably it is 500 degrees C or less.
  • the heat treatment time is, for example, 10 minutes to 10 hours, preferably 20 minutes to 5 hours, more preferably 30 minutes to 3 hours.
  • the reduced pressure state means, for example, a state of 100 Pa or less, preferably 50 Pa or less, more preferably 10 Pa or less.
  • Step 3 Oxygen treatment Subsequently, the alloy film is treated with oxygen under heating conditions. Specifically, an alloy film is disposed under the same temperature and pressure conditions as in step S2, and an oxygen-containing gas (preferably air) is introduced into the environment including the alloy film, that is, a high vacuum electric furnace. Oxygen is introduced, for example, so that the pressure returns to atmospheric pressure.
  • an oxygen-containing gas preferably air
  • Step 4 Treatment with reducing gas Subsequently, the environment containing the alloy film is reduced in pressure again while maintaining the heating state, and the pressure is reduced. Next, a reducing gas is introduced into the environment including the alloy film. The reducing gas is introduced, for example, until the pressure returns to atmospheric pressure.
  • reducing gas for example, hydrogen, green gas (3% hydrogen + argon) or the like can be used, and preferably hydrogen is used.
  • Step S5 Cooling After cooling the alloy film, it is taken out from the high vacuum electric furnace. Thereby, the hydrogen permeable film which concerns on this embodiment can be obtained.
  • the PdCu alloy film has the property of occluding hydrogen under low temperature conditions (about 300 ° C. or lower). Therefore, hydrogen may be occluded in the alloy film when cooling is simply performed after step S4. When hydrogen is occluded, the film may become hard and brittle.
  • the high vacuum electric furnace is preferably depressurized again before being cooled to a depressurized state. Then, after cooling in a reduced pressure state, the pressure is returned to atmospheric pressure. Thereafter, the alloy film is taken out. By using such a procedure, occlusion of hydrogen during cooling can be prevented.
  • the hydrogen permeable membrane which concerns on this embodiment has an alloy film obtained by the above-mentioned method.
  • This alloy film may be used alone as a hydrogen permeable film, or the alloy film may be used as a hydrogen permeable film in combination with other materials.
  • step S2 after the crystal structure of the alloy film is converted (step S2), the oxygen treatment under heating conditions (step S3) and the treatment with the reducing gas (step S4) are performed.
  • a PdCu alloy film having high hydrogen permeation performance can be obtained.
  • an alloy film having a hydrogen permeation performance of, for example, 3 to 20 mL / min / cm 2 , preferably 5 to 20 mL / min / cm 2 can be obtained.
  • the hydrogen permeation performance here refers to a value measured at 450 ° C. and a differential pressure of 1 atm.
  • the alloy film used for the hydrogen permeable film according to the present embodiment is an electrolytic plating film.
  • the hydrogen permeation performance depends on the film thickness of the hydrogen permeable membrane. The thinner the film thickness, the higher the hydrogen permeation performance can be obtained.
  • the PdCu plating solution according to this embodiment it becomes easier to stably form a thin film as compared with the rolling method.
  • an alloy film having a dense and fine crystal structure can be obtained as compared with the rolling method, and as a result, an alloy film having excellent durability can be obtained. Can do. Whether or not it is an electrolytic plating film can be confirmed, for example, by observing a SEM photograph of a cross section of the alloy film. That is, in the case of an electrolytic plating film, the size of crystal grains observed in the cross section is smaller than that of a film obtained by a rolling method or the like.
  • the alloy film is an electrolytic plating film. Conceivable.
  • the “peripheral length of the maximum crystal grains” usually exceeds 4 ⁇ m.
  • the example in which the crystal structure is changed to the BCC structure by performing the heat treatment in the reduced pressure state in Step S2 has been described.
  • a reducing gas for example, argon and 3% hydrogen
  • the crystal structure is changed to a BCC structure. be able to.
  • Example 1 Step S1 Formation of an alloy film A PdCu plating solution was prepared.
  • the PdCu plating solution a plating solution containing dichlorotetraamminepalladium (Pd concentration 8 g / L), copper sulfate (Cu concentration 3 g / L), and polyphosphate was prepared.
  • SUS304 was prepared as a base material.
  • electrolytic plating was performed using the prepared PdCu plating solution to deposit a PdCu alloy film. After deposition, the PdCu alloy film was peeled from the substrate.
  • the conditions for electrolytic plating were as follows.
  • the hydrogen permeation test was performed according to the following procedure.
  • an alloy film was previously arranged so as to separate the primary side space and the secondary side space. Hydrogen was supplied to the primary space so that the differential pressure between the primary space and the secondary space was 1 atm. Then, the amount of hydrogen flowing from the primary side space to the secondary side space via the alloy film was measured.
  • Example 1 In the same manner as in Example 1, an alloy film was formed on the substrate using a PdCu plating solution. However, the formed alloy film was directly put into the hydrogen permeation amount measuring apparatus without performing the processes after the heat treatment in the reduced pressure state (Steps S2 and S3). After the inside of the hydrogen permeation measuring apparatus was in a reduced pressure state, a hydrogen permeation test was performed while introducing hydrogen into the apparatus at room temperature to measure hydrogen permeation performance (step S4).
  • Step S2 By the same method as in Example 1, an alloy film was formed on the substrate using a PdCu plating solution (step S1). The obtained alloy film was put into a high vacuum electric furnace in the same manner as in Example 1 and heat-treated in a reduced pressure state (step S2). However, unlike Example 1, the hydrogen permeation test (Step S4) was performed without performing the oxygen treatment (Step S3) in a high temperature state. That is, after step S2, the alloy film taken out from the high-vacuum electric furnace is set in a hydrogen permeation measuring device, the inside of the device is put under reduced pressure, heated to 450 ° C., hydrogen is introduced into the device, and hydrogen permeation is performed. Tests were conducted to measure hydrogen permeation performance.
  • Example 2 A PdCu alloy film (film thickness 10 ⁇ m) prepared by a rolling method was prepared. The prepared PdCu alloy film was subjected to the same treatment as in Example 1 (Steps S1 to S4), and a hydrogen permeation test was conducted.
  • Comparative Example 3 As in Example 2, a PdCu alloy film (film thickness 10 ⁇ m) prepared by a rolling method was prepared. However, as in Comparative Example 1, a hydrogen permeation test was performed at room temperature and hydrogen permeation performance was measured without performing the processes after the heat treatment in a reduced pressure state (steps S2 and S3).
  • Example 4 As in Example 2, a PdCu alloy film (film thickness 10 ⁇ m) prepared by a rolling method was prepared. Thereafter, the same treatment as in Comparative Example 2 was performed, and a hydrogen permeation test was performed. That is, the obtained alloy film was heat-treated in a reduced pressure state (Step S2). It cooled to room temperature with the pressure-reduced state, and after cooling, pressure was returned to atmospheric pressure and the alloy film was taken out from the high vacuum electric furnace. Then, the alloy film was transferred to a hydrogen permeation measuring device, the inside of the device was depressurized, and heated to 450 ° C. without performing oxygen treatment (step S3) in a high temperature state, and a hydrogen permeation test was performed (step S4).
  • Example 3 The hydrogen permeation amount of the alloy film was measured in the same procedure as in Example 1. However, the heating temperature at the time of measuring the hydrogen permeation amount was set to 300 ° C. instead of 450 ° C.
  • Table 1 shows the results of hydrogen permeation tests of Examples 1 to 3 and Comparative Examples 1 to 4.
  • the hydrogen permeation amount was 0. That is, it was found that the alloy film does not have hydrogen permeation performance when heat treatment in a reduced pressure state is not performed.
  • the hydrogen permeation (mL / min / cm 2 ) was 2.30 and 2.21, respectively. It was confirmed that hydrogen permeation performance can be imparted to the alloy film by performing heat treatment in a reduced pressure state. However, the hydrogen permeation amount was still small, and hydrogen permeation performance at a level that could be used as a hydrogen permeable membrane (for example, 3 mL / min / cm 2 or more) was not obtained.
  • the hydrogen permeation amount is remarkably improved as compared with Comparative Examples 2 and 4, and the hydrogen permeation performance at a level that can be used as a hydrogen permeable membrane, for example, 3 mL / min / cm 2. Had more. That is, after the heat treatment in the reduced pressure state, the oxygen permeation in the heated state and the treatment with the reducing gas are performed, so that the hydrogen permeation amount is remarkably compared with the case where only the heat treatment in the reduced pressure state is performed. It turned out to increase.
  • Example 2 [Examination of mechanical properties] Under the same conditions as in Example 1, a PdCu alloy film having a film thickness of 5 ⁇ m and 10 ⁇ m was formed by electrolytic plating using a PdCu plating solution, and the alloy film was peeled off from the substrate after plating. Moreover, the PdCu alloy film whose film thickness is 5 micrometers and 10 micrometers was prepared by the rolling method. Each alloy film was supported by a support member having a circular unsupported region. Next, at the center of the non-support region, a bar-shaped jig is pressed perpendicularly to the alloy film, and the amount of displacement of the alloy film and the force (test force) received by the bar-shaped jig until the alloy film is broken. The relationship was measured.
  • FIG. 3 Each spectrum in FIG. 3 corresponds to the following conditions.
  • an alloy film formed by electrolytic plating under the same conditions as in Example 1 has a larger displacement and test force until the film breaks than an alloy film obtained by rolling. It was. That is, it was found that the alloy film obtained by electrolytic plating is more flexible than the rolled film and has excellent durability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

This hydrogen permeable membrane comprises an alloy film which contains Pd and Cu. This alloy film is an electrolytic plating film and has a BCC structure; and the Pd:Cu ratio (atomic ratio) in this alloy film is from 4:6 to 6:4.

Description

水素透過膜及びその製造方法Hydrogen permeable membrane and method for producing the same
 本発明は、水素透過膜及びその製造方法に関する。 The present invention relates to a hydrogen permeable membrane and a manufacturing method thereof.
 高純度の水素を得るための材料として、水素を選択的に透過させる水素透過膜が提案されている。水素透過膜として、Pd合金膜を含む膜が知られている。Pd合金膜として、PdCu合金膜が知られている。 As a material for obtaining high-purity hydrogen, a hydrogen permeable membrane that selectively transmits hydrogen has been proposed. A film containing a Pd alloy film is known as a hydrogen permeable film. A PdCu alloy film is known as a Pd alloy film.
 水素透過膜用のPdCu合金膜に関して、特許文献1(特開2008-81765号公報)には、特定のパラジウム錯体を含むパラジウム合金メッキ液、及びそのめっき液により形成された水素分離膜が開示されている。特許文献1には、具体例として、塩化パラジウム、硝酸銅、アスパラギン、クエン酸二カリウム、及びリン酸水素二カリウムを含むめっき液を用いて合金膜を形成したことが記載されている。 Regarding a PdCu alloy membrane for a hydrogen permeable membrane, Patent Document 1 (Japanese Patent Laid-Open No. 2008-81765) discloses a palladium alloy plating solution containing a specific palladium complex and a hydrogen separation membrane formed by the plating solution. ing. Patent Document 1 describes that, as a specific example, an alloy film is formed using a plating solution containing palladium chloride, copper nitrate, asparagine, dipotassium citrate, and dipotassium hydrogen phosphate.
 また、非特許文献1(水素透過膜向け電解PdCu合金めっき皮膜の作成、表面技術協会 第125回講演大会要旨集、141ページ)には、SUS304上に電解PdCuめっき皮膜を成膜した後、PdCu皮膜を剥離した点、得られたPdCu皮膜がPd63wt%-Cu37wt%の皮膜であり、水素透過性を有する合金比率であるPd60wt%-Cu40wt%に非常に近い値であった点、熱処理前後のPdCu皮膜の結晶性を確認したところ、熱処理前ではα相のみ確認されたが、熱処理後はβ相が形成されていた点、及び、PdCu合金皮膜の水素透過性はα相とβ相が混在することによりその効果が得られる事から、得られたPdCu合金皮膜は水素透過膜としての機能を有すると考えられる点が記載されている。 In Non-Patent Document 1 (Creation of Electrolytic PdCu Alloy Plating Film for Hydrogen Permeation Membrane, Surface Technology Association, Abstract of 125th Lecture Meeting, page 141), after depositing electrolytic PdCu plating film on SUS304, PdCu The point where the film was peeled off, the obtained PdCu film was a film of Pd63 wt% -Cu 37 wt%, a value very close to Pd60 wt% -Cu 40 wt%, which is an alloy ratio having hydrogen permeability, and PdCu before and after heat treatment When the crystallinity of the film was confirmed, only the α phase was confirmed before the heat treatment, but the β phase was formed after the heat treatment, and the hydrogen permeability of the PdCu alloy film is a mixture of the α phase and the β phase. Since the effect is acquired by this, it is described that the obtained PdCu alloy film is considered to have a function as a hydrogen permeable film.
 しかしながら、特許文献1及び非特許文献1のいずれにおいても、得られたPdCu合金膜が、実際に水素透過膜として機能したか否かについては、記載がない。そして、本発明者らの知見によれば、電解めっきによりPdCu合金膜を形成し、非特許文献1に記載されるように熱処理を行ってβ相(体心立方相)を形成したとしても、それだけでは水素透過膜として十分な水素透過性能を得ることができない。 However, in both Patent Document 1 and Non-Patent Document 1, there is no description as to whether or not the obtained PdCu alloy film actually functioned as a hydrogen permeable film. And according to the knowledge of the present inventors, even if a PdCu alloy film is formed by electrolytic plating and a β phase (body-centered cubic phase) is formed by performing heat treatment as described in Non-Patent Document 1, By itself, sufficient hydrogen permeation performance as a hydrogen permeable membrane cannot be obtained.
 そこで、本発明の課題は、十分な水素透過性能を有する、PdCu合金膜を利用した水素透過膜、及びその製造方法を提供することにある。 Therefore, an object of the present invention is to provide a hydrogen permeable film using a PdCu alloy film having sufficient hydrogen permeable performance, and a method for manufacturing the same.
 上記課題を解決する為に、本発明は以下の事項を含む。
〔1〕Pd及びCuを含む合金膜を含み、
 前記合金膜が、
  電解めっき膜であり、
  BCC構造を有し、
 前記合金膜におけるPd:Cu比率(原子比)が、6:4~4:6である、
水素透過膜。
〔2〕前記合金膜の膜厚が1~100μmである、前記〔1〕に記載の水素透過膜。
〔3〕Pd及びCuを含む合金膜を作製する工程と、
 前記合金膜の結晶構造の少なくとも一部を、非酸素存在下で、BCC構造に変化させる工程と、
 前記BCC構造に変化させる工程の後に、加熱条件下で、前記合金膜を酸素により処理する工程と、
 前記酸素により処理する工程の後に、前記合金膜を還元性ガスにより処理する工程と、を備える、
水素透過膜の製造方法。
〔4〕前記合金膜を作製する工程は、電解めっきにより前記合金膜を成膜する工程を含む、前記〔3〕に記載された製造方法。
〔5〕前記BCC構造に変化させる工程は、減圧状態で前記合金膜を熱処理する工程を含んでいる、前記〔3〕又は〔4〕に記載された製造方法。
〔6〕前記還元性ガスが水素を含む、前記〔3〕乃至〔5〕のいずれかに記載された製造方法。
〔7〕更に、前記酸素により処理する工程の後に、前記合金膜を含む環境を減圧状態にする工程を備え、
 前記還元性ガスにより処理する工程は、前記減圧状態にする工程の後に、前記合金膜を含む環境に前記還元性ガスを導入する工程を含んでいる、前記〔3〕乃至〔6〕のいずれかに記載された製造方法。
〔8〕前記還元性ガスにより処理する工程が、加熱条件下で実施される、前記〔3〕乃至〔7〕のいずれかに記載された製造方法。
〔9〕更に、
  前記還元性ガスにより処理する工程の後に、前記合金膜を含む環境を減圧し、再度減圧状態にする工程と、
  前記再度減圧状態にする工程の後に、前記合金膜を冷却する工程と、
  前記冷却する工程の後に、前記合金膜を含む環境を大気圧に戻す工程と、
を備える、前記〔3〕乃至〔8〕のいずれかに記載の製造方法。
In order to solve the above problems, the present invention includes the following matters.
[1] including an alloy film containing Pd and Cu,
The alloy film is
Electrolytic plating film,
Has a BCC structure,
The Pd: Cu ratio (atomic ratio) in the alloy film is 6: 4 to 4: 6.
Hydrogen permeable membrane.
[2] The hydrogen permeable membrane according to [1], wherein the alloy film has a thickness of 1 to 100 μm.
[3] producing an alloy film containing Pd and Cu;
Changing at least part of the crystal structure of the alloy film to a BCC structure in the presence of non-oxygen;
After the step of changing to the BCC structure, the step of treating the alloy film with oxygen under heating conditions;
After the step of treating with oxygen, the step of treating the alloy film with a reducing gas,
A method for producing a hydrogen permeable membrane.
[4] The manufacturing method according to [3], wherein the step of manufacturing the alloy film includes a step of forming the alloy film by electrolytic plating.
[5] The manufacturing method according to [3] or [4], wherein the step of changing to the BCC structure includes a step of heat-treating the alloy film in a reduced pressure state.
[6] The production method according to any one of [3] to [5], wherein the reducing gas contains hydrogen.
[7] Further, after the step of treating with oxygen, a step of reducing the environment containing the alloy film to a reduced pressure state,
The step of treating with the reducing gas includes the step of introducing the reducing gas into an environment including the alloy film after the step of reducing the pressure, and any one of the above [3] to [6] The manufacturing method described in 1.
[8] The production method according to any one of [3] to [7], wherein the treatment with the reducing gas is performed under heating conditions.
[9] Furthermore,
After the step of treating with the reducing gas, the step of depressurizing the environment including the alloy film and re-depressing the environment,
After the step of reducing the pressure again, cooling the alloy film;
After the cooling step, returning the environment containing the alloy film to atmospheric pressure;
The manufacturing method in any one of said [3] thru | or [8] provided.
 本発明によれば、十分な水素透過性能を有する、PdCu合金膜を利用した水素透過膜、及びその製造方法が提供される。 According to the present invention, there are provided a hydrogen permeable membrane using a PdCu alloy membrane having sufficient hydrogen permeability and a method for producing the same.
図1は、合金膜のSEM写真を示す。FIG. 1 shows an SEM photograph of the alloy film. 図2は、合金膜のX線回折強度スペクトルを示す。FIG. 2 shows an X-ray diffraction intensity spectrum of the alloy film. 図3は、合金膜における押し込み試験結果を示す。FIG. 3 shows the indentation test result in the alloy film.
1:水素透過膜の製造方法
 本発明の実施形態に係る水素透過膜の製造方法は、Pd及びCuを含む合金膜を作製する工程(ステップS1)、合金膜の結晶構造の少なくとも一部を、酸素非存在下でBCC(body-centered cubic,;体心立方格子)構造に変化させる工程(ステップS2)、BCC構造に変化させる工程の後に、加熱条件下で合金膜を酸素により処理する工程(ステップS3)、及び、酸素により処理する工程の後に、前記合金膜を還元性ガスにより処理する工程(ステップS4)を備える。
1: Method for Producing Hydrogen Permeable Membrane A method for producing a hydrogen permeable membrane according to an embodiment of the present invention includes a step of producing an alloy film containing Pd and Cu (step S1), and at least part of the crystal structure of the alloy film. A step of changing the alloy film to a BCC (body-centered cubic) structure in the absence of oxygen (step S2) and a step of changing to a BCC structure after the alloy film is treated with oxygen under heating conditions (step S2) After step S3) and the step of treating with oxygen, a step of treating the alloy film with a reducing gas (step S4) is provided.
 一般に、Pd合金膜について水素透過性能を高めるためには、結晶構造の一部がBCC構造となっている必要があると考えられている。しかしながら、PdCu合金膜の場合、単に結晶構造の一部をBCC構造にしただけでは、十分な水素透過性能が得られない。これに対して、本発明によれば、結晶構造の一部を酸素非存在下でBCC構造に変化させた後に、合金膜を加熱条件下で酸素により処理し、更に還元性ガスにより処理することにより、PdCu合金膜の水素透過性能を高めることができる。
 以下に、各工程について詳述する
In general, it is considered that a part of the crystal structure needs to have a BCC structure in order to improve the hydrogen permeation performance of the Pd alloy film. However, in the case of a PdCu alloy film, sufficient hydrogen permeation performance cannot be obtained by simply forming part of the crystal structure into the BCC structure. On the other hand, according to the present invention, after changing a part of the crystal structure to the BCC structure in the absence of oxygen, the alloy film is treated with oxygen under heating conditions, and further treated with a reducing gas. Thus, the hydrogen permeation performance of the PdCu alloy film can be enhanced.
Below, each step is described in detail.
ステップ1:合金膜の成膜
 Pd及びCuを含む合金膜を作製する。本実施形態では、PdCuめっき液を用いた電解めっきにより、合金膜を作製する。
 すなわち、まず、PdCuめっき液を準備する。
 PdCuめっき液としては、例えば、ジクロロテトラアンミンパラジウム等のパラジウムイオン供給源、硫酸銅などの銅イオン供給源、及びポリリン酸塩等の添加剤を含むめっき液を用いることができる。
Step 1: Formation of alloy film An alloy film containing Pd and Cu is prepared. In this embodiment, an alloy film is produced by electrolytic plating using a PdCu plating solution.
That is, first, a PdCu plating solution is prepared.
As the PdCu plating solution, for example, a plating solution containing a palladium ion supply source such as dichlorotetraammine palladium, a copper ion supply source such as copper sulfate, and an additive such as polyphosphate can be used.
 次に、準備したPdCuめっき液を使用して、電解めっきにより、導電性の基材上にPd及びCuを含む合金膜を析出させる。
 めっき時の浴温は、例えば、20~80℃、好ましくは30~70℃、より好ましくは40~60℃である。
 電流密度は、例えば0.5~3.0A/dm2、好ましくは1.0~2.0A/dm2である。
 合金膜の厚みは、例えば、1~100μm、好ましくは3~30μm、より好ましくは5~20μmである。
 また、電解めっきは、得られる合金膜のPd:Cu比率(原子比)が4:6~6:4、好ましくは4.5:5.5~5.5:4.5となるような条件で実施する。
 尚、基材として、合金膜との間の密着性が低い材料(例えばSUS304)を用いた場合には、合金膜の成膜後、基材から合金膜を剥離することができる。その結果、合金膜を単独で水素透過膜として利用することができる。
 但し、用途によっては、基材から合金膜を剥離すること無く、基材と合金膜との積層体を水素分離膜として使用してもよい。
Next, using the prepared PdCu plating solution, an alloy film containing Pd and Cu is deposited on the conductive substrate by electrolytic plating.
The bath temperature at the time of plating is, for example, 20 to 80 ° C., preferably 30 to 70 ° C., more preferably 40 to 60 ° C.
The current density is, for example, 0.5 to 3.0 A / dm 2 , preferably 1.0 to 2.0 A / dm 2 .
The thickness of the alloy film is, for example, 1 to 100 μm, preferably 3 to 30 μm, more preferably 5 to 20 μm.
Electrolytic plating is performed under conditions such that the Pd: Cu ratio (atomic ratio) of the obtained alloy film is 4: 6 to 6: 4, preferably 4.5: 5.5 to 5.5: 4.5. To implement.
In addition, when a material having low adhesion to the alloy film (for example, SUS304) is used as the base material, the alloy film can be peeled from the base material after the alloy film is formed. As a result, the alloy film can be used alone as a hydrogen permeable film.
However, depending on the application, a laminate of the base material and the alloy film may be used as the hydrogen separation membrane without peeling the alloy film from the base material.
ステップ2:結晶構造の変換
 ステップS1で成膜された合金膜は、通常FCC(face-centered cubic;面心立方格子)構造となっている。そこで、この合金膜の結晶構造の少なくとも一部を、酸素非存在下で、BCC構造に変化させる。具体的には、高真空電気炉を用いて、合金膜を減圧状態で熱処理する。減圧状態で熱処理を行うことにより、合金膜の結晶構造の少なくとも一部をBCC構造に変化させることができる。
 この際の熱処理温度は、例えば好ましくは300℃以上、より好ましくは400℃以上である。また、熱処理温度の上限は、例えば600℃以下、好ましくは500℃以下である。
 熱処理時間は、例えば10分~10時間、好ましくは20分~5時間、より好ましくは30分から3時間である。
 尚、本明細書において、減圧状態とは、例えば100Pa以下、好ましくは50Pa以下、より好ましくは10Pa以下の状態であることを意味するものとする。
Step 2: Conversion of Crystal Structure The alloy film formed in step S1 has a normal FCC (face-centered cubic) structure. Therefore, at least a part of the crystal structure of the alloy film is changed to a BCC structure in the absence of oxygen. Specifically, the alloy film is heat-treated in a reduced pressure state using a high vacuum electric furnace. By performing heat treatment in a reduced pressure state, at least part of the crystal structure of the alloy film can be changed to a BCC structure.
The heat treatment temperature at this time is, for example, preferably 300 ° C. or higher, more preferably 400 ° C. or higher. Moreover, the upper limit of heat processing temperature is 600 degrees C or less, for example, Preferably it is 500 degrees C or less.
The heat treatment time is, for example, 10 minutes to 10 hours, preferably 20 minutes to 5 hours, more preferably 30 minutes to 3 hours.
In the present specification, the reduced pressure state means, for example, a state of 100 Pa or less, preferably 50 Pa or less, more preferably 10 Pa or less.
ステップ3:酸素処理
 続いて、合金膜を、加熱条件下で、酸素により処理する。
 具体的には、ステップS2と同程度の温度及び圧力条件下に合金膜を配置し、合金膜を含む環境、すなわち高真空電気炉に酸素含有ガス(好ましくは空気)を導入する。酸素は、例えば、圧力が大気圧にまで戻るように、導入される。
Step 3: Oxygen treatment Subsequently, the alloy film is treated with oxygen under heating conditions.
Specifically, an alloy film is disposed under the same temperature and pressure conditions as in step S2, and an oxygen-containing gas (preferably air) is introduced into the environment including the alloy film, that is, a high vacuum electric furnace. Oxygen is introduced, for example, so that the pressure returns to atmospheric pressure.
ステップ4:還元性ガスによる処理
 続いて、加熱状態を維持したまま、合金膜を含む環境を再度減圧し、減圧状態にする。
次いで、合金膜を含む環境に還元性ガスを導入する。還元性ガスは、例えば、圧力が大気圧に戻るまで、導入される。
 還元性ガスとしては、例えば水素、グリーンガス(3%水素+アルゴン)などを用いることができ、好ましくは水素が用いられる。
Step 4: Treatment with reducing gas Subsequently, the environment containing the alloy film is reduced in pressure again while maintaining the heating state, and the pressure is reduced.
Next, a reducing gas is introduced into the environment including the alloy film. The reducing gas is introduced, for example, until the pressure returns to atmospheric pressure.
As the reducing gas, for example, hydrogen, green gas (3% hydrogen + argon) or the like can be used, and preferably hydrogen is used.
ステップS5:冷却
 合金膜を冷却した後、高真空電気炉から取り出す。これにより、本実施形態に係る水素透過膜を得ることができる。
 尚、PdCu合金膜は、低温条件下(約300℃以下)において水素を吸蔵する性質を有している。そのため、ステップS4の後、単に冷却を行うと、合金膜に水素が吸蔵する場合がある。水素が吸蔵すると、皮膜が固く脆くなる場合がある。合金膜に水素が吸蔵することを避けるため、好ましくは、冷却前に、高真空電気炉を再度減圧し、減圧状態にする。そして、減圧状態で冷却を行った後、圧力を大気圧に戻す。その後、合金膜を取り出す。このような手順を用いることにより、冷却時における水素の吸蔵を防ぐことができる。
Step S5: Cooling After cooling the alloy film, it is taken out from the high vacuum electric furnace. Thereby, the hydrogen permeable film which concerns on this embodiment can be obtained.
The PdCu alloy film has the property of occluding hydrogen under low temperature conditions (about 300 ° C. or lower). Therefore, hydrogen may be occluded in the alloy film when cooling is simply performed after step S4. When hydrogen is occluded, the film may become hard and brittle. In order to prevent hydrogen from being occluded in the alloy film, the high vacuum electric furnace is preferably depressurized again before being cooled to a depressurized state. Then, after cooling in a reduced pressure state, the pressure is returned to atmospheric pressure. Thereafter, the alloy film is taken out. By using such a procedure, occlusion of hydrogen during cooling can be prevented.
2:水素透過膜
 本実施形態に係る水素透過膜は、上述の方法で得られる合金膜を有する。この合金膜を単独で水素透過膜として使用してもよいし、合金膜を他の材料と組み合わせて水素透過膜として使用してもよい。
 尚、上記の方法により得られる合金膜は、BCC構造を有し、Pd:Cu比率(原子比)が4:6~6:4である。
 合金膜がBCC構造を有しているか否かは、例えば、X線回折において確認することができる。具体的には、BCC構造が存在する場合、CuKα線を用いたX線回折において、回折角2θ=43±0.5の位置にピークが存在する。一方、FCC構造が存在する場合、CuKα線を用いたX線回折において、回折角2θ=42±0.5の位置にピークが存在する。
 上記の合金膜において、好ましくは、CuKα線を用いた水素透過膜のX線回折において、回折角2θ=43±0.5の位置に現れるピークのピーク強度が、回折角2θ=42±0.5の位置に現れるピークのピーク強度よりも大きい。
2: Hydrogen permeable membrane The hydrogen permeable membrane which concerns on this embodiment has an alloy film obtained by the above-mentioned method. This alloy film may be used alone as a hydrogen permeable film, or the alloy film may be used as a hydrogen permeable film in combination with other materials.
The alloy film obtained by the above method has a BCC structure and a Pd: Cu ratio (atomic ratio) of 4: 6 to 6: 4.
Whether or not the alloy film has a BCC structure can be confirmed by, for example, X-ray diffraction. Specifically, when the BCC structure exists, a peak exists at a diffraction angle 2θ = 43 ± 0.5 in the X-ray diffraction using CuKα rays. On the other hand, when the FCC structure is present, a peak is present at the diffraction angle 2θ = 42 ± 0.5 in the X-ray diffraction using the CuKα ray.
In the above alloy film, preferably, in the X-ray diffraction of the hydrogen permeable film using CuKα rays, the peak intensity of the peak appearing at the diffraction angle 2θ = 43 ± 0.5 is the diffraction angle 2θ = 42 ± 0. It is larger than the peak intensity of the peak appearing at position 5.
 以上説明したように、本実施形態によれば、合金膜の結晶構造を変換した後(ステップS2)に、加熱条件下での酸素処理(ステップS3)及び還元性ガスによる処理(ステップS4)を実施することにより、高い水素透過性能を有するPdCu合金膜を得ることができる。
 本実施形態によれば、例えば3~20mL/分/cm2、好ましくは5~20mL/分/cm2の水素透過性能を有する合金膜を得ることができる。尚、ここでいう水素透過性能は、450℃、差圧1気圧で測定した場合の値を言う。
As described above, according to the present embodiment, after the crystal structure of the alloy film is converted (step S2), the oxygen treatment under heating conditions (step S3) and the treatment with the reducing gas (step S4) are performed. By carrying out, a PdCu alloy film having high hydrogen permeation performance can be obtained.
According to this embodiment, an alloy film having a hydrogen permeation performance of, for example, 3 to 20 mL / min / cm 2 , preferably 5 to 20 mL / min / cm 2 can be obtained. The hydrogen permeation performance here refers to a value measured at 450 ° C. and a differential pressure of 1 atm.
 尚、本実施形態では、ステップ1(合金膜の作製)において電解めっきにより合金膜を作製する例について説明した。但し、電解めっきではなく、圧延によって合金膜を作製した場合であっても、ステップS2乃至S4の処理を実施することにより、高い水素透過性能を得ることができる。
 但し、好ましくは、本実施形態に係る水素透過膜に使用される合金膜は、電解めっき膜であることが好ましい。水素透過性能は、水素透過膜の膜厚に依存する。膜厚が薄い程、高い水素透過性能を得ることができる。本実施形態に係るPdCuめっき液を使用した場合には、圧延法と比べて、薄い膜を安定的に作成しやすくなる。また、本実施形態に係るPdCuめっき液を使用した場合には、圧延法と比べて緻密で微小な結晶構造の合金膜を得ることができ、その結果、耐久性に優れた合金膜を得ることができる。
 電解めっき膜であるか否かは、例えば、合金膜の断面のSEM写真を観察することにより、確認することができる。すなわち、電解めっき膜である場合、その断面に観察される結晶粒の大きさが、圧延法等で得られた膜と比べて小さくなる。例えば、合金膜の断面を20,000倍のSEM写真により観察した場合に、5μm×5μmの視野内における最大結晶粒の周囲長が4μm以下であれば、その合金膜は電解めっき膜であると考えられる。圧延法などで得られた膜である場合、その「最大結晶粒の周囲長」は、通常、4μmを超える。
In the present embodiment, an example in which an alloy film is produced by electrolytic plating in Step 1 (production of an alloy film) has been described. However, even when an alloy film is produced by rolling instead of electrolytic plating, high hydrogen permeation performance can be obtained by performing the processing of steps S2 to S4.
However, it is preferable that the alloy film used for the hydrogen permeable film according to the present embodiment is an electrolytic plating film. The hydrogen permeation performance depends on the film thickness of the hydrogen permeable membrane. The thinner the film thickness, the higher the hydrogen permeation performance can be obtained. When the PdCu plating solution according to this embodiment is used, it becomes easier to stably form a thin film as compared with the rolling method. Further, when the PdCu plating solution according to the present embodiment is used, an alloy film having a dense and fine crystal structure can be obtained as compared with the rolling method, and as a result, an alloy film having excellent durability can be obtained. Can do.
Whether or not it is an electrolytic plating film can be confirmed, for example, by observing a SEM photograph of a cross section of the alloy film. That is, in the case of an electrolytic plating film, the size of crystal grains observed in the cross section is smaller than that of a film obtained by a rolling method or the like. For example, when the cross section of the alloy film is observed by a SEM photograph at a magnification of 20,000, if the perimeter of the maximum crystal grain within a 5 μm × 5 μm visual field is 4 μm or less, the alloy film is an electrolytic plating film. Conceivable. In the case of a film obtained by a rolling method or the like, the “peripheral length of the maximum crystal grains” usually exceeds 4 μm.
 尚、本実施形態では、ステップS2において、減圧状態で熱処理を行うことにより、結晶構造をBCC構造に変化させる例について説明した。但し、非酸素存在下であれば、必ずしも減圧状態である必要は無く、例えば、還元性ガス(例えばアルゴン及び3%水素)の存在下で熱処理を行っても、結晶構造をBCC構造に変化させることができる。 In the present embodiment, the example in which the crystal structure is changed to the BCC structure by performing the heat treatment in the reduced pressure state in Step S2 has been described. However, in the presence of non-oxygen, it is not always necessary to be in a reduced pressure state. For example, even if heat treatment is performed in the presence of a reducing gas (for example, argon and 3% hydrogen), the crystal structure is changed to a BCC structure. be able to.
[実験例]
 続いて、本発明をより詳細に説明するため、出願人により行われた実験例について説明する。
[Experimental example]
Subsequently, in order to describe the present invention in more detail, an experimental example performed by the applicant will be described.
[水素透過性能の検討]
(実施例1)
ステップS1:合金膜の成膜
 PdCuめっき液を用意した。PdCuめっき液としては、ジクロロテトラアンミンパラジウム(Pd濃度8g/L)、硫酸銅(Cu濃度3g/L)、及びポリリン酸塩を含むめっき液を用意した。
 基材としてSUS304を準備した。準備した基材上に、準備したPdCuめっき液を用いて電解めっきを行い、PdCu合金膜を析出させた。析出後、PdCu合金膜を基材から剥離した。
 電解めっきの条件は、以下の通りとした。
  浴温:50℃
  電流密度:1.5A/dm2
 得られた合金膜におけるPd:Cu原子比をEPMA(Electron Probe Micro Analyzer)により測定したところ、5:5であった。
 合金膜の膜厚は、10μmであった。
[Examination of hydrogen permeation performance]
Example 1
Step S1: Formation of an alloy film A PdCu plating solution was prepared. As the PdCu plating solution, a plating solution containing dichlorotetraamminepalladium (Pd concentration 8 g / L), copper sulfate (Cu concentration 3 g / L), and polyphosphate was prepared.
SUS304 was prepared as a base material. On the prepared base material, electrolytic plating was performed using the prepared PdCu plating solution to deposit a PdCu alloy film. After deposition, the PdCu alloy film was peeled from the substrate.
The conditions for electrolytic plating were as follows.
Bath temperature: 50 ° C
Current density: 1.5 A / dm 2
When the Pd: Cu atomic ratio of the obtained alloy film was measured by EPMA (Electron Probe Micro Analyzer), it was 5: 5.
The film thickness of the alloy film was 10 μm.
ステップS2:減圧状態での加熱処理
 次に、得られた合金膜を高真空電気炉内に配置した。炉内を減圧状態として、合金膜を加熱した。加熱温度は450℃とし、加熱時間は1時間とした。
 ついで、室温まで冷却した後、圧力を大気圧に戻し、合金膜を高真空電気炉から取り出した。
Step S2: Heat treatment under reduced pressure Next, the obtained alloy film was placed in a high vacuum electric furnace. The alloy film was heated by reducing the pressure inside the furnace. The heating temperature was 450 ° C. and the heating time was 1 hour.
Subsequently, after cooling to room temperature, the pressure was returned to atmospheric pressure, and the alloy film was taken out from the high vacuum electric furnace.
ステップS3:高温状態での酸素処理
 次に、合金膜を、水素透過量測定装置にセットした。合金膜の環境を再び減圧状態とした。また、450℃に合金膜を加熱した。そして、水素透過量測定装置内に空気を導入し、圧力を大気圧に戻した。すなわち、高温状態での酸素処理を実施した。
ステップS4:水素ガスによる処理(水素透過試験)
 次に、加熱状態を維持したまま、水素透過量測定装置内を再度減圧状態にした。減圧状態にした後、水素透過量測定装置内に水素を導入し、圧力を大気圧に戻した。
 この際、加熱状態を維持したまま、水素透過試験を行い、合金膜の水素透過性能を測定した。水素透過試験については、次の手順により実施した。水素透過量測定装置内において、予め、1次側空間と2次側空間とを隔てるように合金膜を配置しておいた。1次側空間と2次側空間との間の差圧が1気圧となるように、1次側空間に水素を供給した。そして、1次側空間から合金膜を介して2次側空間に流れる水素量を測定した。
Step S3: Oxygen Treatment at High Temperature Next, the alloy film was set in a hydrogen permeation measuring device. The environment of the alloy film was again reduced. The alloy film was heated to 450 ° C. And air was introduce | transduced in the hydrogen-permeation amount measuring apparatus, and the pressure was returned to atmospheric pressure. That is, oxygen treatment was performed at a high temperature.
Step S4: Treatment with hydrogen gas (hydrogen permeation test)
Next, the inside of the hydrogen permeation amount measuring apparatus was again evacuated while maintaining the heating state. After reducing the pressure, hydrogen was introduced into the hydrogen permeation measuring device, and the pressure was returned to atmospheric pressure.
At this time, a hydrogen permeation test was performed while maintaining the heating state, and the hydrogen permeation performance of the alloy film was measured. The hydrogen permeation test was performed according to the following procedure. In the hydrogen permeation amount measuring apparatus, an alloy film was previously arranged so as to separate the primary side space and the secondary side space. Hydrogen was supplied to the primary space so that the differential pressure between the primary space and the secondary space was 1 atm. Then, the amount of hydrogen flowing from the primary side space to the secondary side space via the alloy film was measured.
(比較例1)
 実施例1と同様の方法により、基材上にPdCuめっき液を用いて合金膜を成膜した。
 但し、減圧状態における加熱処理以降の処理(ステップS2及び3)を行うことなく、成膜された合金膜をそのまま水素透過量測定装置に投入した。水素透過量測定装置内を減圧状態とした後、室温にて装置内に水素を導入しつつ、水素透過試験を行い、水素透過性能を測定した(ステップS4)。
(Comparative Example 1)
In the same manner as in Example 1, an alloy film was formed on the substrate using a PdCu plating solution.
However, the formed alloy film was directly put into the hydrogen permeation amount measuring apparatus without performing the processes after the heat treatment in the reduced pressure state (Steps S2 and S3). After the inside of the hydrogen permeation measuring apparatus was in a reduced pressure state, a hydrogen permeation test was performed while introducing hydrogen into the apparatus at room temperature to measure hydrogen permeation performance (step S4).
(比較例2)
 実施例1と同様の方法により、基材上にPdCuめっき液を用いて合金膜を成膜した(ステップS1)。得られた合金膜を、実施例1と同様に高真空電気炉に投入し、減圧状態で加熱処理を行った(ステップS2)。但し、実施例1とは異なり、高温状態での酸素処理(ステップS3)を実施することなく、水素透過試験(ステップS4)を行った。すなわち、ステップS2の後、高真空電気炉から取り出した合金膜を水素透過量測定装置にセットし、装置内を減圧状態とし、450℃に加熱した後、水素を装置内に導入し、水素透過試験を行い、水素透過性能を測定した。
(Comparative Example 2)
By the same method as in Example 1, an alloy film was formed on the substrate using a PdCu plating solution (step S1). The obtained alloy film was put into a high vacuum electric furnace in the same manner as in Example 1 and heat-treated in a reduced pressure state (step S2). However, unlike Example 1, the hydrogen permeation test (Step S4) was performed without performing the oxygen treatment (Step S3) in a high temperature state. That is, after step S2, the alloy film taken out from the high-vacuum electric furnace is set in a hydrogen permeation measuring device, the inside of the device is put under reduced pressure, heated to 450 ° C., hydrogen is introduced into the device, and hydrogen permeation is performed. Tests were conducted to measure hydrogen permeation performance.
(実施例2)
 圧延法により作成したPdCu合金膜(膜厚10μm)を準備した。準備したPdCu合金膜について、実施例1と同様の処理(ステップS1~S4)を施し、水素透過試験を行った。
(Example 2)
A PdCu alloy film (film thickness 10 μm) prepared by a rolling method was prepared. The prepared PdCu alloy film was subjected to the same treatment as in Example 1 (Steps S1 to S4), and a hydrogen permeation test was conducted.
(比較例3)
 実施例2と同様に、圧延法により作成したPdCu合金膜(膜厚10μm)を準備した。但し、比較例1と同様に、減圧状態での加熱処理以降の処理(ステップS2及びS3)を行うことなく、室温で水素透過試験を実施し、水素透過性能を測定した。
(Comparative Example 3)
As in Example 2, a PdCu alloy film (film thickness 10 μm) prepared by a rolling method was prepared. However, as in Comparative Example 1, a hydrogen permeation test was performed at room temperature and hydrogen permeation performance was measured without performing the processes after the heat treatment in a reduced pressure state (steps S2 and S3).
(比較例4)
 実施例2と同様に、圧延法により作成したPdCu合金膜(膜厚10μm)を準備した。その後、比較例2と同様に処理を行い、水素透過試験を実施した。すなわち、得られた合金膜に対して、減圧状態で加熱処理を行った(ステップS2)。減圧状態のままで室温まで冷却し、冷却後、圧力を大気圧に戻し、合金膜を高真空電気炉から取り出した。その後、合金膜を水素透過量測定装置に移し、装置内を減圧状態にし、高温状態での酸素処理(ステップS3)を実施すること無く、450℃に加熱し、水素透過試験を行った(ステップS4)。
(Comparative Example 4)
As in Example 2, a PdCu alloy film (film thickness 10 μm) prepared by a rolling method was prepared. Thereafter, the same treatment as in Comparative Example 2 was performed, and a hydrogen permeation test was performed. That is, the obtained alloy film was heat-treated in a reduced pressure state (Step S2). It cooled to room temperature with the pressure-reduced state, and after cooling, pressure was returned to atmospheric pressure and the alloy film was taken out from the high vacuum electric furnace. Then, the alloy film was transferred to a hydrogen permeation measuring device, the inside of the device was depressurized, and heated to 450 ° C. without performing oxygen treatment (step S3) in a high temperature state, and a hydrogen permeation test was performed (step S4).
(実施例3)
 実施例1と同様の手順で、合金膜の水素透過量を測定した。但し、水素透過量測定時の加熱温度を、450℃ではなく300℃とした。
Example 3
The hydrogen permeation amount of the alloy film was measured in the same procedure as in Example 1. However, the heating temperature at the time of measuring the hydrogen permeation amount was set to 300 ° C. instead of 450 ° C.
 実施例1~3及び比較例1~4の水素透過試験の結果を表1に示す。 Table 1 shows the results of hydrogen permeation tests of Examples 1 to 3 and Comparative Examples 1 to 4.
 表1に示されるように、比較例1及び比較例3では、水素透過量が0であった。すなわち、減圧状態における加熱処理を行わない場合、合金膜が水素透過性能を有しないことが判った。また、比較例2及び4では、水素透過量(mL/分/cm2)がそれぞれ2.30及び2.21であった。減圧状態で加熱処理を行うことによって、合金膜に水素透過性能を付与できることが確認された。但し、その水素透過量は依然として小さく、水素透過膜として使用可能なレベル(例えば、3mL/分/cm2以上)の水素透過性能は得られなかった。 As shown in Table 1, in Comparative Example 1 and Comparative Example 3, the hydrogen permeation amount was 0. That is, it was found that the alloy film does not have hydrogen permeation performance when heat treatment in a reduced pressure state is not performed. In Comparative Examples 2 and 4, the hydrogen permeation (mL / min / cm 2 ) was 2.30 and 2.21, respectively. It was confirmed that hydrogen permeation performance can be imparted to the alloy film by performing heat treatment in a reduced pressure state. However, the hydrogen permeation amount was still small, and hydrogen permeation performance at a level that could be used as a hydrogen permeable membrane (for example, 3 mL / min / cm 2 or more) was not obtained.
 一方、実施例1~3では、水素透過量が、比較例2及び4と比べて、著しく向上しており、水素透過膜として使用可能なレベルの水素透過性能、例えば、3mL/分/cm2以上を有していた。すなわち、減圧状態の加熱処理の後に、加熱状態での酸素処理、及び、還元性ガスによる処理を行うことによって、単に減圧状態での加熱処理だけを行った場合と比べて、水素透過量が著しく高まることが判った。 On the other hand, in Examples 1 to 3, the hydrogen permeation amount is remarkably improved as compared with Comparative Examples 2 and 4, and the hydrogen permeation performance at a level that can be used as a hydrogen permeable membrane, for example, 3 mL / min / cm 2. Had more. That is, after the heat treatment in the reduced pressure state, the oxygen permeation in the heated state and the treatment with the reducing gas are performed, so that the hydrogen permeation amount is remarkably compared with the case where only the heat treatment in the reduced pressure state is performed. It turned out to increase.
[表面状態の検討]
 比較例1及び3(ステップS1の後、ステップS4の前)、比較例2(ステップS2の後、ステップS4の前)及び実施例1及び2(ステップS4の後)に係る合金膜について、その表面状態をSEM写真により観察した。また、実施例1については、高温状態での酸素処理後、水素ガスによる処理前(ステップS3とS4の間)のサンプルについても、その表面状態をSEM写真により観察した。SEM写真を図1に示す。図1に示されるように、比較例1及び2と、実施例1との間には、表面状態に大きな違いがあった。すなわち、加熱条件下において酸素処理を実施し、加熱状態を維持したまま再び減圧状態にし、その後水素を導入して大気圧に戻すことにより、合金膜の構造が変化することが判った。
[Examination of surface condition]
Regarding the alloy films according to Comparative Examples 1 and 3 (after Step S1 and before Step S4), Comparative Example 2 (After Step S2 and before Step S4) and Examples 1 and 2 (After Step S4), The surface state was observed by SEM photographs. Moreover, about Example 1, the surface state was observed with the SEM photograph also about the sample before the process by hydrogen gas (between step S3 and S4) after the oxygen process in a high temperature state. A SEM photograph is shown in FIG. As shown in FIG. 1, there was a great difference in surface condition between Comparative Examples 1 and 2 and Example 1. That is, it was found that the structure of the alloy film changes by performing oxygen treatment under heating conditions, reducing the pressure again while maintaining the heating state, and then introducing hydrogen to return to atmospheric pressure.
[結晶構造の検討]
 次に、比較例1(ステップS1の後、ステップS4の前)及び比較例2(ステップS2の後、ステップS4の前)の合金膜に対して、X線回折強度スペクトルを測定した。測定結果を、図2に示す。図2に示されるように、比較例1では、FCC構造のピーク(図中、A)のみが観察された。すなわち、減圧状態における加熱処理前における合金膜は、FCC構造であることが判った。一方、比較例2は、主にBCC構造のピーク(図中、B)を示し、わずかにFCC構造のピークも見られた。具体的には、比較例2では、BCC構造のピークである回折角2θ=43±0.5におけるピーク強度が、FCC構造のピークである回折角2θ=42±0.5におけるピーク強度よりも、十分に大きかった。すなわち、比較例2に係る合金膜の結晶構造は、主にBCC構造であり、わずかにFCC構造が混相していることが判った。
[Examination of crystal structure]
Next, X-ray diffraction intensity spectra were measured for the alloy films of Comparative Example 1 (after Step S1 and before Step S4) and Comparative Example 2 (After Step S2 and before Step S4). The measurement results are shown in FIG. As shown in FIG. 2, in Comparative Example 1, only the peak of the FCC structure (A in the figure) was observed. That is, it was found that the alloy film before the heat treatment in the reduced pressure state has an FCC structure. On the other hand, Comparative Example 2 mainly showed a peak of BCC structure (B in the figure), and a slight peak of FCC structure was also observed. Specifically, in Comparative Example 2, the peak intensity at the diffraction angle 2θ = 43 ± 0.5, which is the peak of the BCC structure, is larger than the peak intensity at the diffraction angle 2θ = 42 ± 0.5, which is the peak of the FCC structure. It was big enough. That is, it was found that the crystal structure of the alloy film according to Comparative Example 2 was mainly a BCC structure, and the FCC structure was slightly mixed.
 X回折強度スペクトルの結果から、合金膜に対して減圧状態で加熱処理を施すことにより、結晶構造の少なくとも一部がFCC構造からBCC構造に変化することが判った。しかしながら、BCC構造を有する比較例2においても、表1に示したように、十分な水素透過性能は得られていない。すなわち、結晶構造をBCC構造に変化させるだけでは、所望する水素透過性能は得られないことが理解できる。 From the result of the X diffraction intensity spectrum, it was found that at least a part of the crystal structure changes from the FCC structure to the BCC structure when the alloy film is heat-treated in a reduced pressure state. However, in Comparative Example 2 having the BCC structure, as shown in Table 1, sufficient hydrogen permeation performance is not obtained. That is, it can be understood that the desired hydrogen permeation performance cannot be obtained simply by changing the crystal structure to the BCC structure.
[機械的特性の検討]
 実施例1と同様の条件で、PdCuめっき液を用いて、電解めっきにより、膜厚が5μm及び10μmであるPdCu合金膜を成膜し、めっき後、基材から合金膜剥離した。
 また、圧延法により、膜厚が5μm及び10μmであるPdCu合金膜を用意した。
 各合金膜を、円形の非支持領域を有する支持部材によって支持した。次いで、非支持領域の中心部において、合金膜に対して垂直に棒状の治具を押し当て、合金膜が破れるまで、合金膜の変位量と、棒状の治具が受ける力(試験力)との関係を測定した。
 試験結果を図3に示す。図3における各スペクトルは、以下の条件に対応している。
 スペクトルA:電解めっき5μm
 スペクトルB:電解めっき10μm
 スペクトルC:圧延膜5μm
 スペクトルD:圧延膜10μm
 図3に示されるように、実施例1と同様の条件で電解めっきにより成膜した合金膜は、圧延法で得られた合金膜よりも、膜が突き破れるまでの変位量及び試験力が大きかった。
すなわち、電解めっきにより得た合金膜の方が、圧延膜よりもしなやかであり、耐久性に優れていることが判った。
[Examination of mechanical properties]
Under the same conditions as in Example 1, a PdCu alloy film having a film thickness of 5 μm and 10 μm was formed by electrolytic plating using a PdCu plating solution, and the alloy film was peeled off from the substrate after plating.
Moreover, the PdCu alloy film whose film thickness is 5 micrometers and 10 micrometers was prepared by the rolling method.
Each alloy film was supported by a support member having a circular unsupported region. Next, at the center of the non-support region, a bar-shaped jig is pressed perpendicularly to the alloy film, and the amount of displacement of the alloy film and the force (test force) received by the bar-shaped jig until the alloy film is broken. The relationship was measured.
The test results are shown in FIG. Each spectrum in FIG. 3 corresponds to the following conditions.
Spectrum A: Electrolytic plating 5 μm
Spectrum B: 10 μm electrolytic plating
Spectrum C: Rolled film 5 μm
Spectrum D: Rolled film 10 μm
As shown in FIG. 3, an alloy film formed by electrolytic plating under the same conditions as in Example 1 has a larger displacement and test force until the film breaks than an alloy film obtained by rolling. It was.
That is, it was found that the alloy film obtained by electrolytic plating is more flexible than the rolled film and has excellent durability.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (9)

  1.  Pd及びCuを含む合金膜を含み、
     前記合金膜が、
      電解めっき膜であり、
      BCC構造(body-centered-cubic;体心立法格子)を有し、
     前記合金膜におけるPd:Cu比率(原子比)が、6:4~4:6である、
    水素透過膜。
    Including an alloy film containing Pd and Cu;
    The alloy film is
    Electrolytic plating film,
    Having a BCC structure (body-centered-cubic);
    The Pd: Cu ratio (atomic ratio) in the alloy film is 6: 4 to 4: 6.
    Hydrogen permeable membrane.
  2.  前記合金膜の膜厚が1~100μmである、請求項1に記載の水素透過膜。 2. The hydrogen permeable membrane according to claim 1, wherein the alloy membrane has a thickness of 1 to 100 μm.
  3.  Pd及びCuを含む合金膜を作製する工程と、
     前記合金膜の結晶構造の少なくとも一部を、非酸素存在下で、BCC構造に変化させる工程と、
     前記BCC構造に変化させる工程の後に、加熱条件下で、前記合金膜を酸素により処理する工程と、
     前記酸素により処理する工程の後に、前記合金膜を還元性ガスにより処理する工程と、を備える、
    水素透過膜の製造方法。
    Producing an alloy film containing Pd and Cu;
    Changing at least part of the crystal structure of the alloy film to a BCC structure in the presence of non-oxygen;
    After the step of changing to the BCC structure, the step of treating the alloy film with oxygen under heating conditions;
    After the step of treating with oxygen, the step of treating the alloy film with a reducing gas,
    A method for producing a hydrogen permeable membrane.
  4.  前記合金膜を作製する工程は、電解めっきにより前記合金膜を成膜する工程を含む、請求項3に記載された製造方法。 The manufacturing method according to claim 3, wherein the step of producing the alloy film includes a step of forming the alloy film by electrolytic plating.
  5.  前記BCC構造に変化させる工程は、減圧状態で前記合金膜を熱処理する工程を含んでいる、請求項3又は4に記載された製造方法。 The manufacturing method according to claim 3 or 4, wherein the step of changing to the BCC structure includes a step of heat-treating the alloy film in a reduced pressure state.
  6.  前記還元性ガスが水素を含む、請求項3乃至5のいずれかに記載された製造方法。 The manufacturing method according to any one of claims 3 to 5, wherein the reducing gas contains hydrogen.
  7.  更に、前記酸素により処理する工程の後に、前記合金膜を含む環境を減圧状態にする工程を備え、
     前記還元性ガスにより処理する工程は、前記減圧状態にする工程の後に、前記合金膜を含む環境に前記還元性ガスを導入する工程を含んでいる、請求項3乃至6のいずれかに記載された製造方法。
    Furthermore, after the step of treating with oxygen, the step of reducing the environment containing the alloy film to a reduced pressure state,
    7. The process according to claim 3, wherein the step of treating with the reducing gas includes a step of introducing the reducing gas into an environment including the alloy film after the step of reducing the pressure. Manufacturing method.
  8.  前記還元性ガスにより処理する工程が、加熱条件下で実施される、請求項3乃至7のいずれかに記載された製造方法。 The manufacturing method according to any one of claims 3 to 7, wherein the step of treating with the reducing gas is performed under heating conditions.
  9.  更に、
      前記還元性ガスにより処理する工程の後に、前記合金膜を含む環境を減圧し、再度減圧状態にする工程と、
      前記再度減圧状態にする工程の後に、前記合金膜を冷却する工程と、
      前記冷却する工程の後に、前記合金膜を含む環境を大気圧に戻す工程と、
    を備える、請求項3乃至8のいずれかに記載の製造方法。
    Furthermore,
    After the step of treating with the reducing gas, the step of depressurizing the environment including the alloy film and re-depressing the environment,
    After the step of reducing the pressure again, cooling the alloy film;
    After the cooling step, returning the environment containing the alloy film to atmospheric pressure;
    The manufacturing method in any one of Claims 3 thru | or 8 provided with these.
PCT/JP2019/020255 2018-05-22 2019-05-22 Hydrogen permeable membrane and method for producing same WO2019225641A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-098024 2018-05-22
JP2018098024A JP6695929B2 (en) 2018-05-22 2018-05-22 Hydrogen permeable membrane and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2019225641A1 true WO2019225641A1 (en) 2019-11-28

Family

ID=68615825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020255 WO2019225641A1 (en) 2018-05-22 2019-05-22 Hydrogen permeable membrane and method for producing same

Country Status (3)

Country Link
JP (1) JP6695929B2 (en)
TW (1) TWI716879B (en)
WO (1) WO2019225641A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070240566A1 (en) * 2005-12-23 2007-10-18 Benn Raymond C Duarable Pd-based alloy and hydrogen generation membrane thereof
JP2008289970A (en) * 2007-05-23 2008-12-04 Sumitomo Metal Mining Co Ltd Hydrogen permeable membrane and its manufacturing method
JP2012152701A (en) * 2011-01-27 2012-08-16 National Institute Of Advanced Industrial Science & Technology Hydrogen separation membrane, method of manufacturing the same, and hydrogen separation method
JP2012201974A (en) * 2011-03-28 2012-10-22 Jx Nippon Mining & Metals Corp Hydrogen permeable copper alloy, hydrogen permeable film, and steam reformer
JP2014097443A (en) * 2012-11-13 2014-05-29 Tomyeng Corp Hydrogen separation membrane, hydrogen separator, and organic hydride system
JP2016175016A (en) * 2015-03-20 2016-10-06 国立研究開発法人産業技術総合研究所 Hydrogen separation membrane, manufacturing method of the same, and hydrogen separation method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070240566A1 (en) * 2005-12-23 2007-10-18 Benn Raymond C Duarable Pd-based alloy and hydrogen generation membrane thereof
JP2008289970A (en) * 2007-05-23 2008-12-04 Sumitomo Metal Mining Co Ltd Hydrogen permeable membrane and its manufacturing method
JP2012152701A (en) * 2011-01-27 2012-08-16 National Institute Of Advanced Industrial Science & Technology Hydrogen separation membrane, method of manufacturing the same, and hydrogen separation method
JP2012201974A (en) * 2011-03-28 2012-10-22 Jx Nippon Mining & Metals Corp Hydrogen permeable copper alloy, hydrogen permeable film, and steam reformer
JP2014097443A (en) * 2012-11-13 2014-05-29 Tomyeng Corp Hydrogen separation membrane, hydrogen separator, and organic hydride system
JP2016175016A (en) * 2015-03-20 2016-10-06 国立研究開発法人産業技術総合研究所 Hydrogen separation membrane, manufacturing method of the same, and hydrogen separation method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HOWARD B. H. ET AL.: "Hydrogen permeance of palladium-copper alloy membranes over a wide range of temperatures and pressures", JOURNAL OF MEMBRANE SCIENCE, vol. 241, 2004, pages 207 - 218, XP004525726, DOI: 10.1016/j.memsci.2004.04.031 *
WATANABE; SHINGO, ET.AL.: "Manufacturing of electrolytic PdCu alloy plating film for hydrogen permeable membrane", ABSTRACTS OF THE 125TH LECTURE CONFERENCE OF THE SURFACE FINISHING SOCIETY OF JAPAN, 1 March 2012 (2012-03-01), pages 141 *
WESTERWAAL R. J. ET AL.: "The hydrogen permeability of Pd-Cu based thin film membranes in relation to their structure:A combinatorial approach", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, vol. 40, 14 February 2015 (2015-02-14), pages 3932 - 3943, XP029142803, DOI: 10.1016/j.ijhydene.2015.01.124 *

Also Published As

Publication number Publication date
TWI716879B (en) 2021-01-21
JP6695929B2 (en) 2020-05-20
JP2019202259A (en) 2019-11-28
TW202003100A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
EP2520691B1 (en) Tantalum carbide-coated carbon material and manufacturing method for same
JP5563500B2 (en) Synthesis method of graphene and carbon molecular thin film
WO2009107763A1 (en) Metallic sputtering target material
KR20000028678A (en) Method for improving the morphology of refactory metal thin films
JP2011062699A (en) Method for manufacturing palladium alloy composite membrane for hydrogen gas separation
JP6479788B2 (en) Sputtering target and manufacturing method thereof
CN110997972B (en) Member and semiconductor manufacturing apparatus
JP6539673B2 (en) Substrate for superconducting wire, method of manufacturing the same, and superconducting wire
KR101176585B1 (en) Method of Manufacturing Palladium Alloy Hydrogen Separation Membrane
TW201040292A (en) ZnO-Ga2O3-based sintered body for sputtering target and method of producing
WO2019225641A1 (en) Hydrogen permeable membrane and method for producing same
WO2019092969A1 (en) Tungsten sputtering target and method for producing same
US20230340693A1 (en) Single-crystal metal film by solid-state crystal growth of seed crystals, large-area single-layer or multilayer graphene with adjusted orientation angle using same, and method for manufacturing same
KR20200135436A (en) Tungsten silicide target, manufacturing method thereof, and manufacturing method of tungsten silicide film
Kim et al. The effect of Cu reflow on the Pd–Cu–Ni ternary alloy membrane fabrication for infinite hydrogen separation
CN111926303A (en) Preparation method of high-entropy alloy film
JP3281173B2 (en) High hardness thin film and method for producing the same
US10253409B2 (en) Method of manufacturing graphene using metal catalyst
Heras et al. Annealing behaviour of clean and oxygen covered polycrystalline palladium films: a work function and electrical resistance study
WO2020194789A1 (en) Joint body of target material and backing plate, and method for manufacturing joint body of target material and backing plate
KR100622988B1 (en) Preparation Method of Palladium Alloy Composite Membrane for Hydrogen Separation
WO2000031316A1 (en) Co-Ti ALLOY SPUTTERING TARGET AND MANUFACTURING METHOD THEREOF
CN112725748B (en) Preparation method of superfine nanocrystalline tungsten material
JP6631029B2 (en) Permanent magnet and rotating machine having the same
JP5918920B2 (en) Superconducting compound substrate and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19806669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19806669

Country of ref document: EP

Kind code of ref document: A1