JP3273641B2 - Hydrogen gas purification equipment - Google Patents

Hydrogen gas purification equipment

Info

Publication number
JP3273641B2
JP3273641B2 JP33294792A JP33294792A JP3273641B2 JP 3273641 B2 JP3273641 B2 JP 3273641B2 JP 33294792 A JP33294792 A JP 33294792A JP 33294792 A JP33294792 A JP 33294792A JP 3273641 B2 JP3273641 B2 JP 3273641B2
Authority
JP
Japan
Prior art keywords
hydrogen gas
palladium alloy
pipe
purified
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33294792A
Other languages
Japanese (ja)
Other versions
JPH06171904A (en
Inventor
健二 大塚
義雄 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Original Assignee
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd filed Critical Japan Pionics Ltd
Priority to JP33294792A priority Critical patent/JP3273641B2/en
Publication of JPH06171904A publication Critical patent/JPH06171904A/en
Application granted granted Critical
Publication of JP3273641B2 publication Critical patent/JP3273641B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はパラジウム合金膜の水素
透過膜を用いた水素ガス精製装置に関し、さらに詳細に
は、パラジウム合金膜を透過した高温の精製水素ガスと
接触する部分に不純物の脱着を防止するための表面皮膜
が形成された水素ガス精製装置に関する。水素ガスは近
年目覚ましく発展しつつある半導体製造工業で、各種工
程中の雰囲気ガスとして盛んに用いられている。そして
半導体の集積度の向上とともに水素ガスの純度向上への
要求は益々強くなっている。このため、水素ガス中にp
pmオーダーで存在する窒素、炭化水素、一酸化炭素、
二酸化炭素、酸素、および水分などの不純物を除去して
ppbオーダーまたはそれ以下のようなレベルの高純度
に精製することが望まれている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen gas purifying apparatus using a hydrogen permeable membrane of a palladium alloy membrane, and more particularly, to desorption of impurities from a portion of a palladium alloy membrane which comes into contact with high-temperature purified hydrogen gas. The present invention relates to a hydrogen gas purifying apparatus on which a surface film for preventing the formation of hydrogen gas is formed. BACKGROUND ART In the semiconductor manufacturing industry, which has been developing remarkably in recent years, hydrogen gas is actively used as an atmosphere gas in various processes. With the improvement in the degree of integration of semiconductors, the demand for improving the purity of hydrogen gas has been increasing. For this reason, p
pm nitrogen, hydrocarbons, carbon monoxide,
It is desired to remove impurities such as carbon dioxide, oxygen, and moisture to purify to a high level of ppb order or lower.

【0002】[0002]

【従来の技術】水素ガスの精製方法としては、加熱下で
のパラジウム合金膜の水素選択透過性を利用した精製方
法、金属触媒による化学反応と吸着材による物理吸着性
とを組み合わせて常温で精製する常温吸着精製方法、液
体窒素を冷熱源として極低温下に設置した吸着材の物理
吸着性を利用した深冷吸着型精製方法などが知られてい
る。
2. Description of the Related Art As a method for purifying hydrogen gas, a purification method utilizing the selective permeability of hydrogen of a palladium alloy membrane under heating, and a combination of a chemical reaction with a metal catalyst and a physical adsorption with an adsorbent at room temperature are used. There are known a room temperature adsorption purification method, a cryogenic adsorption purification method utilizing the physical adsorptivity of an adsorbent installed at cryogenic temperature using liquid nitrogen as a cold heat source, and the like.

【0003】これらのうちでもパラジウムまたはパラジ
ウムと銀、金などからなるパラジウム合金は水素ガスの
みを選択的に透過することから、この特性を利用して高
純度水素ガスを得るための水素ガス精製装置が改めて注
目され、多用されている。この水素ガス精製装置は例え
ば、パラジウム合金水素透過器本体、冷却管、接続配
管、バルブおよび継手などから構成されている。水素透
過器には種々の形態のものが知られているが、最近では
一端が封じられ、内部にコイルスプリングが挿入された
複数本のパラジウム合金細管が開口端で管板に固定され
されて、筒状の容器内に収納され、このパラジウム合金
および管板によって内部が二つの空間に仕切られ、パラ
ジウム合金細管の外側が一次側、内側が二次側とされた
ものが主流となっている。これらの装置の材質はパラジ
ウム合金細管を除いて、通常は大部分がステンレス鋼に
よって構成されている。
[0003] Among these, palladium or a palladium alloy made of palladium and silver, gold, etc. selectively permeates only hydrogen gas. Therefore, a hydrogen gas purifying apparatus for obtaining high-purity hydrogen gas by utilizing this characteristic. Is attracting attention again, and is frequently used. This hydrogen gas purifying apparatus includes, for example, a palladium alloy hydrogen permeator main body, a cooling pipe, a connection pipe, a valve, a joint, and the like. Various types of hydrogen permeable devices are known, but recently, one end is sealed, and a plurality of palladium alloy thin tubes into which a coil spring is inserted are fixed to a tube sheet at an open end, It is housed in a cylindrical container, the interior is partitioned into two spaces by the palladium alloy and the tube sheet, and the mainstream is a palladium alloy thin tube in which the outside is a primary side and the inside is a secondary side. Most of the materials for these devices, except for the palladium alloy thin tube, are usually made of stainless steel.

【0004】水素ガスの精製時には水素透過器を300
〜500℃に加熱しながら、原料水素ガスが加圧状態で
一次側に供給され、水素ガスのみがパラジウム合金細管
の外側(一次側)から内側(二次側)へと選択的に透過
され、細管内部に挿入されいてるコイルスプリングの流
路の空隙および透過器の二次側空間、冷却管などを経由
して精製ガスの出口に達する。パラジウム合金細管は十
分に脱ガス処理されたパラジウム合金膜を使用すること
により、不純物ガスの漏れは全く無く、透過時点におけ
る水素ガスの純度は実質的に100%であるとされてい
る。
When purifying hydrogen gas, the hydrogen permeable device is set to 300
While heating to ~ 500 ° C, the raw hydrogen gas is supplied to the primary side in a pressurized state, and only the hydrogen gas is selectively permeated from the outside (primary side) to the inside (secondary side) of the palladium alloy thin tube, It reaches the outlet of the purified gas via the space in the flow path of the coil spring inserted inside the narrow tube, the secondary space of the permeator, the cooling pipe, and the like. The palladium alloy thin tube uses a palladium alloy membrane that has been sufficiently degassed, so that no impurity gas leaks and the purity of hydrogen gas at the time of permeation is substantially 100%.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、パラジ
ウム合金膜を透過した時点では極めて高純度の水素ガス
であっても、透過器本体の二次側から冷却管、バルブ、
配管継手などを経由して精製装置の出口に達したときに
は、微量ではあるがこれらの表面に吸着されていたと考
えられる窒素、炭化水素、一酸化炭素、二酸化炭素、酸
素および水分などの不純物が混入するため、特に、最近
の超高純度化の要望に対しては必ずしも十分とはいえな
い面があった。このため、透過器本体、配管、バルブに
は内面が研磨加工されたものを使用したり、装置の使用
に際してこれらを加熱しながら内面をベーキングするこ
とにより、吸着していた不純物を脱着させ、事前に不純
物を系外に追い出すことによって、水分を除く不純物に
ついてはほぼ完全に除去されるようになった。
However, at the time of passing through the palladium alloy membrane, even if the hydrogen gas is of extremely high purity, the cooling pipe, valve,
When reaching the outlet of the refinery via pipe joints, impurities such as nitrogen, hydrocarbons, carbon monoxide, carbon dioxide, oxygen, and moisture, which are considered to have been adsorbed on these surfaces, though in trace amounts, are mixed. Therefore, in particular, there has been an aspect that it cannot always be said that it is sufficient for recent demands for ultra-high purity. For this reason, the permeator body, pipes, and valves used are those whose inner surfaces have been polished, or the inner surfaces are baked while heating them during use of the device to desorb the adsorbed impurities, By removing the impurities to the outside of the system, impurities other than water have been almost completely removed.

【0006】しかしながら、このような種々な処置を構
じても水分に関しては混入を完全に防止することができ
ず、これらの技術改良が不純物濃度でppbレベル以下
のような超高純度の精製水素ガスを安定して得るための
重要な課題となっている。
[0006] However, even if such various measures are taken, the contamination of water cannot be completely prevented, and these technical improvements have been made to purify ultra-high-purity hydrogen having an impurity concentration of ppb level or less. This is an important issue for obtaining a stable gas.

【0007】[0007]

【課題を解決するための手段】本発明者らは、脱着など
による水分の混入をも確実に防止し、もって極めて高純
度の精製水素ガスを得るべく研究に着手し、他の不純物
に対しては有効であった表面研磨やベーキング処理など
が水分に関しては必ずしも十分な効果が見られない事実
を把握するとともに、この事実に対してさらに鋭意研究
を重ねた結果、パラジウム合金膜を透過した高温の精製
水素ガスと接触する部品の接ガス部の表面をクロム皮膜
形成処理することによって目的を達成しうることを見い
だし、本発明を完成した。
Means for Solving the Problems The inventors of the present invention have steadily prevented the incorporation of water due to desorption and the like, and have therefore begun research to obtain purified hydrogen gas of extremely high purity. Was able to understand the fact that effective surface polishing and baking treatments did not always have a sufficient effect on moisture, and as a result of further intensive research on this fact, the high temperature It has been found that the object can be achieved by performing a chromium film forming treatment on the surface of the gas contacting part of the part that comes into contact with the purified hydrogen gas, and completed the present invention.

【0008】すなわち本発明は、加熱下でのパラジウム
合金膜の水素選択透過性を利用した水素ガス精製装置に
おいて、該精製装置のパラジウム合金膜を透過した二次
側であって、二次側室、パラジウム合金細管中のスプリ
ング、冷却管、接続配管及び配管継手から選ばれる1種
または2種以上の部品の精製水素ガスの接ガス部の表面
にクロム皮膜が形成せしめられてなることを特徴とする
水素ガス精製装置である。本発明においてクロム皮膜が
形成される部品はパラジウム合金膜を除き、透過器本
体、冷却管、バルブ、接続配管およびパラジウム合金細
管内に挿入されるスプリングなど高温で精製水素ガスと
接触する部分に使用される金属製の部品であり、その材
質は通常はステンレス鋼が主体で一部にニッケル鋼など
が使用されたものである。
That is, the present invention relates to a hydrogen gas purifying apparatus utilizing the hydrogen selective permeability of a palladium alloy membrane under heating, wherein a secondary side of the purifying apparatus, the secondary side having permeated the palladium alloy membrane , Splices in palladium alloy thin tubes
Type selected from cooling, cooling pipe, connection pipe and pipe joint
Alternatively, there is provided a hydrogen gas purifying apparatus characterized in that a chromium film is formed on a surface of a gas contacting part of two or more parts with purified hydrogen gas . Except for the palladium alloy film, the parts on which the chromium film is formed in the present invention are used for parts that come into contact with purified hydrogen gas at high temperatures, such as the permeator body, cooling pipes, valves, connection pipes, and springs inserted into the palladium alloy thin tubes. Usually, stainless steel is mainly used, and nickel steel or the like is partially used.

【0009】クロム皮膜を形成させる方法には特に制限
はなく、気相法では、例えば真空蒸着を含む蒸着法やC
VD法、液相法では、例えば電気メッキ、溶融メッキな
どが代表的な方法である。これらのうちでも一般的に広
く用いられているハードクロムメッキ処理などが好適で
ある。形成させるクロム皮膜層の厚さとしては、通常は
0.01μm〜100μmであり、好ましくは0.1μ
m〜30μmである。これよりも薄い場合には条件によ
っては均一な皮膜層の形成が困難となり、充分な効果が
得られず、また、これよりも厚い場合には、メッキ層の
ひび割れや剥離が生じ易く、安定した効果が得難くな
る。
There is no particular limitation on the method for forming the chromium film. In the gas phase method, for example, a vapor deposition method including vacuum
In the VD method and the liquid phase method, for example, electroplating and hot-dip plating are typical methods. Of these, hard chrome plating, which is generally widely used, is preferred. The thickness of the chromium film layer to be formed is usually 0.01 μm to 100 μm, preferably 0.1 μm to 100 μm.
m to 30 μm. If the thickness is smaller than this, it is difficult to form a uniform coating layer depending on the conditions, and a sufficient effect cannot be obtained.If the thickness is larger than this, cracking or peeling of the plating layer is likely to occur, which is stable. The effect becomes difficult to obtain.

【0010】次に本発明を図面により例示し、さらに具
体的に説明する。図1は本発明の希ガスの精製装置のフ
ローシートである。図1において、透過器1は、圧力に
よる変形を防止するためのスプリング2が挿入され、か
つ、一端を封止した複数本の細管状のパラジウム合金膜
3と、これを固着した管板4とにより、原料水素ガス室
5(一次側)と精製水素ガス室(二次側)6とが仕切ら
れた構造になっている。原料水素ガス室5には、原料水
素ガスの入口7と原料水素ガス弁8を有する原料水素ガ
ス配管9と、置換用の窒素ガスの入口10と窒素ガス弁
11を有する窒素ガス配管12と、精製時は不純物が濃
縮された水素ガスを、また置換時は窒素ガスを適量排出
するための排気管であって、排気ガス入口13と流量調
節弁14と排気ガス出口15を有する排気管16とが接
続されている。精製水素ガス室6には冷却管17が接続
されており、その下流には精製水素ガス弁18と精製水
素ガス出口19を有する精製水素ガス配管20が接続さ
れている。
Next, the present invention will be described more specifically with reference to the drawings. FIG. 1 is a flow sheet of the rare gas purifying apparatus of the present invention. In FIG. 1, a permeator 1 includes a plurality of thin tubular palladium alloy membranes 3 each having a spring 2 inserted therein for preventing deformation due to pressure and having one end sealed, and a tube sheet 4 to which this is fixed. Thereby, the raw material hydrogen gas chamber 5 (primary side) and the purified hydrogen gas chamber (secondary side) 6 are separated from each other. The raw hydrogen gas chamber 5 includes a raw hydrogen gas pipe 9 having a raw hydrogen gas inlet 7 and a raw hydrogen gas valve 8, a nitrogen gas pipe 12 having a replacement nitrogen gas inlet 10 and a nitrogen gas valve 11, An exhaust pipe for discharging an appropriate amount of hydrogen gas in which impurities are concentrated during purification and a nitrogen gas during replacement, and an exhaust pipe 16 having an exhaust gas inlet 13, a flow control valve 14, and an exhaust gas outlet 15; Is connected. A cooling pipe 17 is connected to the purified hydrogen gas chamber 6, and a purified hydrogen gas pipe 20 having a purified hydrogen gas valve 18 and a purified hydrogen gas outlet 19 is connected downstream of the cooling pipe 17.

【0011】[0011]

【図1】FIG.

【0012】ここでパラジウム合金膜を除いて高温の水
素ガスと接触する部品は、スプリング2、管板4、透過
器1の精製水素ガス室6、冷却管17であり、これらの
接ガス部の表面にはクロムメッキ処理による皮膜が形成
せしめられている。透過器1は温度調節器を介したヒー
ター21によって350〜500℃に加熱された状態で
原料水素ガスが供給され、パラジウム合金膜を透過した
高温の精製水素ガスは冷却管17を通過することにより
室温まで冷やされた後に精製ガス出口19を経由して抜
き出され、半導体製造プロセスなどに供給される。
Here, the parts that come into contact with high-temperature hydrogen gas except for the palladium alloy film are the spring 2, the tube plate 4, the purified hydrogen gas chamber 6 of the permeator 1, and the cooling pipe 17. A film is formed on the surface by chrome plating. The permeator 1 is supplied with the raw hydrogen gas while being heated to 350 to 500 ° C. by the heater 21 via the temperature controller, and the high-temperature purified hydrogen gas that has passed through the palladium alloy membrane passes through the cooling pipe 17. After being cooled to room temperature, it is extracted via a purified gas outlet 19 and supplied to a semiconductor manufacturing process or the like.

【0013】[0013]

【実施例】【Example】

実施例1 図1で示したと同様の構成の水素ガスの精製装置であっ
て、直径0.25mmのSUS316L鋼製の線材をピ
ッチ0.75mm、コイル径1.3mm、長さ240m
mに成形した後、厚さ3μmのハードクロムメッキ処理
を施したスプリングを、外径1.6mm、内径1.45
mm、長さ245mmで先端を溶封処理した金、銀、パ
ラジウムよりなるパラジウム三元合金細管内に挿入した
もの78本を製作した。次に、直径48.6mm、厚さ
5mmの円盤状で周縁部を除く平板部分に均等に直径
1.6mmの貫通孔を78個設けたニッケル製の管板に
厚さ5μmのハードクロムメッキ処理を施したのち、溶
接部となる周縁部と貫通孔の周壁部のメッキ層を削り落
として、前記のパラジウム合金管78本を貫通孔に挿入
し、それぞれを管板に溶接して固着し、一体化した。
Example 1 An apparatus for purifying hydrogen gas having the same configuration as that shown in FIG. 1, in which a wire made of SUS316L steel having a diameter of 0.25 mm was pitched 0.75 mm, a coil diameter was 1.3 mm, and a length was 240 m.
m, and a spring having a thickness of 3 μm and subjected to hard chrome plating is applied to an outer diameter of 1.6 mm and an inner diameter of 1.45.
78 pieces were inserted into a palladium ternary alloy thin tube made of gold, silver, and palladium having a diameter of 245 mm and a tip of 245 mm. Next, a hard chromium plating treatment of 5 μm thickness is performed on a nickel tube sheet having a disk-like shape having a diameter of 48.6 mm and a thickness of 5 mm and 78 through-holes having a diameter of 1.6 mm evenly formed in a flat plate portion excluding a peripheral portion. After performing the above, the plating layer of the peripheral portion serving as a welded portion and the peripheral wall portion of the through hole is scraped off, 78 palladium alloy tubes are inserted into the through hole, and each is welded and fixed to a tube sheet, Integrated.

【0014】外径48.6mmのSUS316L鋼製の
パイプと外径48.6mmのSUS316L鋼製のキャ
ップを溶接し、原料水素ガス配管と置換用の窒素ガス配
管と外径40mmのSUS316L鋼製のパイプと円板
より製作した排気ガス入口を備えた排気管を溶接して取
り付け、原料水素ガス室(一次側)とした。一方、内面
に厚さ2μmのハードクロムメッキを施した外径12.
7mmで長さが1mのSUS316L鋼製のパイプ4本
と、内面に厚さ3μmのハードクロムメッキ処理した外
径12.7mmのSUS316L鋼製溶接用エルボ継手
8個を溶接して製作した冷却管と、内面に厚さ3μmの
ハードクロムメッキを施した外径48.6mmのSUS
316L鋼製キャップとを溶接することにより精製水素
ガス室(二次側)を製作した。引続き、パラジウム合金
管と一体となった管板と原料水素ガス室と精製水素ガス
室とを溶接して一体とし透過器を得た。透過器の外部に
は加熱用のヒーターを取り付けて水素ガス精製装置を完
成した。
A pipe made of SUS316L steel having an outer diameter of 48.6 mm and a cap made of SUS316L steel having an outer diameter of 48.6 mm are welded, and a hydrogen gas pipe for replacement, a nitrogen gas pipe for replacement, and a SUS316L steel pipe having an outer diameter of 40 mm are welded. An exhaust pipe provided with an exhaust gas inlet made of a pipe and a disk was attached by welding to form a raw hydrogen gas chamber (primary side). On the other hand, an outer diameter having a 2 μm-thick hard chrome plating on the inner surface.
A cooling pipe manufactured by welding four SUS316L steel pipes of 7 mm and 1 m in length, and eight welding elbow joints of SUS316L steel with an outer diameter of 12.7 mm and having an inner diameter of 3 μm and having a thickness of 3 μm on the inner surface. And SUS with an outer diameter of 48.6 mm with a hard chrome plating of 3 μm thickness on the inner surface
A purified hydrogen gas chamber (secondary side) was manufactured by welding a 316L steel cap. Subsequently, the tube plate integrated with the palladium alloy tube, the raw material hydrogen gas chamber, and the purified hydrogen gas chamber were welded together to obtain a permeator. A heater for heating was attached to the outside of the permeator to complete a hydrogen gas purifying apparatus.

【0015】水素ガスの精製は次のようにしておこなっ
た。通常の立ち上げ操作により、透過器の温度を420
℃、原料水素ガスのゲージ圧力6kgf/cm2 とし
て、ゲージ圧力2kgf/cm2 の精製水素ガスを8N
L/minで取り出しながら、100℃以下の部分の精
製ガス配管および冷却管にヒーターを巻き付けて100
℃で5時間のベーキング処理をおこなった後、そのまま
水素ガスを流しながら精製を開始した。精製ガスの一部
を1NL/minの流量で大気圧イオン化質量分析計
(日立東京エレクトロニクス社製)に導入して水分量を
測定した結果、5時間の連続測定時間中を通じて水分は
0.1ppb以下であった。また、その他の各不純物に
ついてもいずれも0.1ppb以下であった。
Purification of hydrogen gas was performed as follows. The normal start-up operation raises the temperature of the permeator to 420
° C., as a gauge pressure 6 kgf / cm 2 of the raw material hydrogen gas at a gauge pressure of 2 kgf / cm 2 purified hydrogen gas 8N
While taking out at L / min, a heater was wound around the purified gas pipe and the cooling pipe at a temperature of 100 ° C. or less, and
After performing a baking treatment at 5 ° C. for 5 hours, purification was started while flowing hydrogen gas as it was. A part of the purified gas was introduced into an atmospheric pressure ionization mass spectrometer (manufactured by Hitachi Tokyo Electronics Co., Ltd.) at a flow rate of 1 NL / min, and the water content was measured. As a result, the water content was 0.1 ppb or less throughout the continuous measurement time of 5 hours. Met. The other impurities were all 0.1 ppb or less.

【0016】比較例1 スプリング、管板、精製水素ガス室、冷却管にクロムメ
ッキを施さなかった装置を用いた他は、実施例1と同様
にしてテストした結果、他の各不純物はいずれも0.1
ppb以下であったが、水分のみは5時間の連続測定時
間中を通じて常に7ppb以上であった。
Comparative Example 1 A test was conducted in the same manner as in Example 1 except that a device in which a spring, a tube plate, a purified hydrogen gas chamber, and a cooling tube were not subjected to chromium plating was used. 0.1
ppb or less, but only water was always 7 ppb or more throughout the continuous measurement time of 5 hours.

【0017】[0017]

【発明の効果】本発明によって、高温の精製水素ガスと
パラジウム合金膜以降の配管材料との接触により発生す
る数ppbの水分が精製ガス中へ混入するという従来技
術の欠点が防止され、水分など全ての不純物濃度が1p
pb以下、更には0.1ppb以下のような超高純度精
製水素ガスを確実に得ることが可能となった。
According to the present invention, the drawback of the prior art that several ppb of water generated by contact of high-temperature purified hydrogen gas with the piping material after the palladium alloy membrane is mixed into the purified gas is prevented. All impurity concentrations are 1p
It has become possible to reliably obtain an ultrahigh-purity purified hydrogen gas of not more than 0.1 ppb, especially not more than 0.1 ppb.

【0018】[0018]

【図面の簡単な説明】[Brief description of the drawings]

【図1】水素ガスの精製装置のフローシート。FIG. 1 is a flow sheet of a hydrogen gas purifying apparatus.

【符号の説明】[Explanation of symbols]

1 透過器 2 スプリング 3 パラジウム合金膜 4 管板 5 原料水素ガス室 6 精製水素ガス室 7 原料水素ガス入口 8 原料水素ガス弁 9 原料水素ガス配管 10 置換用窒素ガス入口 11 窒素ガス弁 12 窒素ガス配管 13 排気ガス入口 14 流量調節弁 15 排気ガス出口 16 排気管 17 冷却管 18 精製水素ガス弁 19 精製水素ガス出口 20 精製水素ガス配管 21 ヒーター DESCRIPTION OF SYMBOLS 1 Permeator 2 Spring 3 Palladium alloy film 4 Tube plate 5 Raw material hydrogen gas chamber 6 Purified hydrogen gas chamber 7 Raw material hydrogen gas inlet 8 Raw material hydrogen gas valve 9 Raw material hydrogen gas pipe 10 Replacement nitrogen gas inlet 11 Nitrogen gas valve 12 Nitrogen gas Piping 13 Exhaust gas inlet 14 Flow control valve 15 Exhaust gas outlet 16 Exhaust pipe 17 Cooling pipe 18 Purified hydrogen gas valve 19 Purified hydrogen gas outlet 20 Purified hydrogen gas pipe 21 Heater

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C01B 3/56 B01D 53/22 B01D 71/02 500 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) C01B 3/56 B01D 53/22 B01D 71/02 500

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 加熱下でのパラジウム合金膜の水素選択
透過性を利用した水素ガス精製装置において、該精製装
置のパラジウム合金膜を透過した二次側であって、二次
側室、パラジウム合金細管中のスプリング、冷却管、接
続配管及び配管継手から選ばれる1種または2種以上の
部品の精製水素ガスの接ガス部の表面にクロム皮膜が形
成せしめられてなることを特徴とする水素ガス精製装
置。
1. A hydrogen gas purifying apparatus utilizing the selective hydrogen permeable palladium alloy film under heating, a secondary side that has been transmitted through the palladium alloy membrane of the purified system, secondary
Side chamber, spring in palladium alloy thin tube, cooling pipe, connection
A hydrogen gas purifying apparatus, characterized in that a chromium film is formed on the surface of one or more parts selected from a continuation pipe and a pipe joint, which is in contact with the purified hydrogen gas .
【請求項2】接ガス部の表面に形成されるクロム皮膜の
厚さが0.01μm〜100μmである請求項1に記載
の精製装置。
2. The refining apparatus according to claim 1, wherein the thickness of the chromium film formed on the surface of the gas contact portion is 0.01 μm to 100 μm.
JP33294792A 1992-12-14 1992-12-14 Hydrogen gas purification equipment Expired - Fee Related JP3273641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33294792A JP3273641B2 (en) 1992-12-14 1992-12-14 Hydrogen gas purification equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33294792A JP3273641B2 (en) 1992-12-14 1992-12-14 Hydrogen gas purification equipment

Publications (2)

Publication Number Publication Date
JPH06171904A JPH06171904A (en) 1994-06-21
JP3273641B2 true JP3273641B2 (en) 2002-04-08

Family

ID=18260594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33294792A Expired - Fee Related JP3273641B2 (en) 1992-12-14 1992-12-14 Hydrogen gas purification equipment

Country Status (1)

Country Link
JP (1) JP3273641B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002308605A (en) * 2001-04-11 2002-10-23 Japan Pionics Co Ltd Method for refining gaseous hydrogen
US7407529B1 (en) * 2004-12-29 2008-08-05 Bossard Peter R System and method for reducing thermal shock in a hydrogen diffusion cell
JP2010042397A (en) * 2008-07-14 2010-02-25 Ngk Insulators Ltd Hydrogen separator and method of operating hydrogen separator
JP6082915B2 (en) * 2012-10-15 2017-02-22 日本パイオニクス株式会社 Ammonia and hydrogen recovery method
EP2896595A1 (en) * 2014-01-16 2015-07-22 Japan Pionics Co., Ltd. Palladium alloy membrane unit, storage structure thereof, and method of purifying hydrogen by using the same
JP6355944B2 (en) * 2014-03-18 2018-07-11 日本パイオニクス株式会社 Hydrogen purification apparatus and hydrogen purification system using the same
JP6653144B2 (en) * 2015-08-31 2020-02-26 株式会社日本エイピーアイ Hydrogen purification method

Also Published As

Publication number Publication date
JPH06171904A (en) 1994-06-21

Similar Documents

Publication Publication Date Title
Li et al. Characterisation and permeation of palladium/stainless steel composite membranes
US5652020A (en) Hydrogen-selective membrane
JP6181673B2 (en) Palladium alloy membrane unit, storage structure thereof, and hydrogen purification method using the same
EP1042049A1 (en) Hydrogen gas-extraction module
GB2173182A (en) Methods and apparatus for purifying inert gas streams
JP2572612B2 (en) Hydrogen purification method
JP3273641B2 (en) Hydrogen gas purification equipment
JP2596767B2 (en) Method and apparatus for purifying hydrogen
US7172644B2 (en) Method for curing defects in the fabrication of a composite gas separation module
US5224998A (en) Apparatus for oxidation treatment of metal
Shu et al. Gas permeation and isobutane dehydrogenation over very thin Pd/ceramic membranes
JP2000051606A (en) Gas permeation membrane apparatus
JP4514267B2 (en) Impurity extraction method and impurity extraction apparatus for semiconductor substrate
JP3359954B2 (en) Hydrogen permeable membrane
JPS62143801A (en) Purification of hydrogen gas with hydrogen occlusion alloy
JPS62273028A (en) Gas dehumidifier
JPH07223802A (en) Device for purifying hydrogen gas
JP3208673B2 (en) Gas purification method and apparatus
EP2841377B1 (en) Nitrous oxide regenerable room temperature purifier and method
JP2003530289A (en) Oxygen transfer membrane for silicon oxide plant
JPH0352630A (en) Hydrogen separating membrane
JPH06345409A (en) Device for purifying hydrogen gas
JP2651610B2 (en) High-purity gas purification method and apparatus
JPH04322716A (en) Gas dehymidifing method
JP2002308605A (en) Method for refining gaseous hydrogen

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees