JPS62128903A - Ultrahigh-purity hydrogen permeable cell - Google Patents

Ultrahigh-purity hydrogen permeable cell

Info

Publication number
JPS62128903A
JPS62128903A JP26495985A JP26495985A JPS62128903A JP S62128903 A JPS62128903 A JP S62128903A JP 26495985 A JP26495985 A JP 26495985A JP 26495985 A JP26495985 A JP 26495985A JP S62128903 A JPS62128903 A JP S62128903A
Authority
JP
Japan
Prior art keywords
coil spring
cell
cracks
hydrogen
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26495985A
Other languages
Japanese (ja)
Other versions
JPH0621001B2 (en
Inventor
Tadahiro Omi
忠弘 大見
Mitsushi Tsujimoto
辻本 光志
Yutaka Koyama
児山 豊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON PAIONIKUSU KK
Japan Pionics Ltd
Seiko Electronic Components Ltd
Original Assignee
NIPPON PAIONIKUSU KK
Japan Pionics Ltd
Seiko Electronic Components Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON PAIONIKUSU KK, Japan Pionics Ltd, Seiko Electronic Components Ltd filed Critical NIPPON PAIONIKUSU KK
Priority to JP26495985A priority Critical patent/JPH0621001B2/en
Publication of JPS62128903A publication Critical patent/JPS62128903A/en
Publication of JPH0621001B2 publication Critical patent/JPH0621001B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To produce ultrahigh-purity gaseous hydrogen by using the titled cell contg. plural Pd-alloy thin tubes wherein a coil spring without any cracks on its surface is inserted as the permeable membrane. CONSTITUTION:Plural Pd-alloy thin tubes 6 wherein the coil spring 5 is inserted are housed in the cylindrical hydrogen permeable cell 4, and the opening ends of the tubes are fixed to a tube plate 7. Stainless steel, Co-Ni-Cr steel, etc., are selectively used as the material of the coil spring 5, and the coil spring without any cracks on its surface is used. Consequently, water, air, etc., penetrated into the cracks are never leaked and mixed into the purified gas when the gas is purified, and the gaseous hydrogen can be purified to >=99.9999% purity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超高純度水素透過セルに関し、さらに詳細には
クラックのないコイルスプリングが挿入されたパラジウ
ム合金細管を使用した超高純度水素透過セルに関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an ultra-high purity hydrogen permeation cell, and more particularly to an ultra-high purity hydrogen permeation cell using a palladium alloy capillary in which a crack-free coil spring is inserted. Regarding.

半導体産業などにおける水素ガスの需要は急速に増加し
つつあり、これらの分野の技術の高度化に伴い、使用さ
れるガスも極めて純度の高いものが要求される。
The demand for hydrogen gas in the semiconductor industry and the like is rapidly increasing, and as the technology in these fields becomes more sophisticated, the gas used is also required to have extremely high purity.

〔従来の技術〕[Conventional technology]

パラジウムおよびパラジウム合金が水素ガスだけを選択
的に透過することは知られており、この特性を利用して
高純度水素を得るためにパラジウム合金透過膜を用いた
水素精製装置が使用されている。このような水素精製装
置は例えばパラジウム合金水素透過セル、ガスクーラー
、配管、継手およびバルブなどから構成されている。水
素透過セルは通常は一端が封じられた複数本のパラジウ
ム合金細管が開口端で管板に固定されてセル内に収納さ
れ、このパラジウム合金および管仮によってセル内が二
つの空間に仕切られ、パラジウム合金細管の外側が一次
側、内側が二次側とされたものである。パラジウム合金
細管の内部には一次側と二次側との差圧に耐えることが
でき、かつ、透過した水素の流路空間を保つためにスプ
リングが挿入されている。
It is known that palladium and palladium alloys selectively permeate only hydrogen gas, and hydrogen purification equipment using palladium alloy permeable membranes is used to utilize this property to obtain high-purity hydrogen. Such a hydrogen purification apparatus is comprised of, for example, a palladium alloy hydrogen permeation cell, a gas cooler, piping, fittings, valves, and the like. A hydrogen permeation cell usually has a plurality of palladium alloy thin tubes with one end sealed and the open end fixed to a tube plate and housed inside the cell, and the inside of the cell is partitioned into two spaces by the palladium alloy and the tube. The outside of the palladium alloy thin tube is the primary side, and the inside is the secondary side. A spring is inserted inside the palladium alloy thin tube to withstand the pressure difference between the primary side and the secondary side and to maintain a flow path space for permeated hydrogen.

水素ガスの精製時には水素透過セルを300〜500℃
に加熱しながら、原料ガスが加圧状態でセルの一次側に
供給され、水素ガスのみがパラジウム合金細管の外側(
−次側)から内側(二次側)へと選択的に透過され、コ
イルスプリングの流路空間およびセルの二次側空間を経
由してセルの精製ガスの出口に達する。
When refining hydrogen gas, the hydrogen permeation cell is heated to 300-500℃.
The raw material gas is supplied under pressure to the primary side of the cell while being heated to
- The purified gas is selectively permeated from the inside (secondary side) to the inside (secondary side) and reaches the purified gas outlet of the cell via the flow path space of the coil spring and the secondary side space of the cell.

パラジウム合金細管は充分に脱ガス処理された純度の高
いパラジウム合金膜を使用することにより、ヘリウムリ
ークテストでI X 10− ” atm/cc se
cに合格するものが得られ不純物の漏れは全くなく、透
過時点における水素ガスの純度は実質的に100%であ
るとされている。
The palladium alloy tube uses a highly purified palladium alloy membrane that has been thoroughly degassed, and has a helium leak test rating of IX 10-'' atm/cc se.
It is said that a product that passed the criteria c was obtained, and there was no leakage of impurities at all, and the purity of the hydrogen gas at the time of permeation was substantially 100%.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、このようなパラジウム合金細管を使用し
た水素透過セルを精製装置に用いても、セルの出口では
純度が低下し、長時間精製を続けても9!It 999
〜99.9999%が限界であり、これ以上の純度の精
製水素ガスを得ることができず、サブミクロン級の半導
体製造などの技術の高度化に対処出来ないという問題点
があった。
However, even if a hydrogen permeation cell using such a palladium alloy thin tube is used in a purification device, the purity decreases at the cell outlet, and even if the purification is continued for a long time, the purity will be 9! It 999
The limit is ~99.9999%, and there is a problem that it is impossible to obtain purified hydrogen gas with a purity higher than this, and it is not possible to cope with the advancement of technology such as the production of submicron-level semiconductors.

本発明は従来の水素透過セルにおける純度低下の原因を
究明するとともに改善を加えることによって99.99
999%以上の超高純度水素ガス用の水素透過セルを得
ることにある。
The present invention investigates the cause of purity reduction in conventional hydrogen permeation cells and improves the purity to 99.99%.
The object of the present invention is to obtain a hydrogen permeation cell for ultra-high purity hydrogen gas of 999% or more.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らはパラジウム合金細管を用いた水素透過セル
から超高純度水素を得るべく鋭意研究を続けた結果、パ
ラジウム合金細管に挿入されたコイルスプリングに多数
の微細なりラックがあり、このクラックが精製水素ガス
の純度に大きく影晋することを見出し、本発明に到達し
た。
The inventors of the present invention continued intensive research to obtain ultra-high purity hydrogen from a hydrogen permeation cell using palladium alloy tubes, and found that the coil spring inserted into the palladium alloy tube had many fine racks. The present invention was achieved based on the discovery that the purity of purified hydrogen gas is greatly affected.

すなわち本発明は、内部にコイルスプリングが挿入され
た複数本のパラジウム合金細管を透過膜とする超高純度
水素透過セルにおいて、該コイルスプリングの表面にク
ラックがないことを特徴とする超高純度水素透過セルで
ある。
That is, the present invention provides an ultra-high purity hydrogen permeation cell whose permeation membrane is a plurality of palladium alloy thin tubes each having a coil spring inserted therein, wherein the ultra-high purity hydrogen permeation cell is characterized in that there are no cracks on the surface of the coil spring. It is a transmission cell.

本発明の水素透過セルは第5図に示す縦断面概略図のよ
うに構成され、ガスの入口1、出口2およびプリードロ
3を有するステンレス製などの円筒状のセル4内に一端
が封じられ、内部にコイルスプリング5が挿入された複
数本のパラジウム合金細管6.−.6がその開口端で管
板7にそれぞれ固定されて収納され、このパラジウム合
金細管6.°・・、6および管板7によってセルの内部
が二つの空間に仕切られ、パラジウム合金細管6.・・
−16の外側が一次側、内側が二次側とされたものであ
る。
The hydrogen permeation cell of the present invention is constructed as shown in the schematic longitudinal cross-sectional view shown in FIG. A plurality of palladium alloy thin tubes into which coil springs 5 are inserted 6. −. 6 are housed with their open ends fixed to the tube plate 7, and the palladium alloy thin tubes 6. The inside of the cell is partitioned into two spaces by palladium alloy thin tubes 6, 6 and tube plate 7.・・・
-16, the outside is the primary side, and the inside is the secondary side.

本発明において、パラジウム合金細管に挿入されるコイ
ルスプリングの材料は使用温度に十分な耐熱性を備え、
パラジウム合金と反応せず内蔵ガス成分が十分に少ない
ものが選ばれる。
In the present invention, the material of the coil spring inserted into the palladium alloy thin tube has sufficient heat resistance to the operating temperature,
A material that does not react with the palladium alloy and has a sufficiently low internal gas component is selected.

コイルスプリングの金属線材はステンレス、C。The metal wire of the coil spring is stainless steel, C.

−Ni−Cr合金などであり、金属線材の径は0.1〜
0、8mmφ程度であり、コイルとしての外径はパラジ
ウム合金細管の内径よりも若干小さめとされ、通常0.
8〜2.8mmである。
-Ni-Cr alloy, etc., and the diameter of the metal wire is 0.1~
The outer diameter of the coil is approximately 0.8 mmφ, and the outer diameter of the coil is slightly smaller than the inner diameter of the palladium alloy thin tube.
It is 8 to 2.8 mm.

コイルスプリングの表面には通常、摩耗傷、亀裂、小孔
などの種々な形状の微細な凹みがあり、これらは肉眼で
見ることは困難であるが電子顕微鏡による拡大写真で詳
細に観察することができる。しかしながら奥行の深い凹
みについてその内部まで照写できず、この部分は黒色と
なっている。
The surface of a coil spring usually has various shapes of minute dents such as wear scars, cracks, and small holes.These are difficult to see with the naked eye, but can be observed in detail with magnified photographs taken with an electron microscope. can. However, it is not possible to image the inside of a deep dent, and this part is black.

本発明においてクラックとはスプリング表面の凹みのう
ち、電子顕微鏡による4500倍拡大写真で黒色部の面
積が20mm2以上である凹みのことを指す。
In the present invention, a crack refers to a dent on the surface of a spring in which the area of the black part is 20 mm 2 or more in a 4500 times enlarged photograph taken with an electron microscope.

第1図は本発明で使用される表面にクラックのないコイ
ルスプリングの電子顕微鏡による450倍拡大写真であ
り、第2図は4500倍拡大写真である。表面に線状の
凹みはあるが、いずれも浅く凹みの奥まで照写されてお
り、クラックは存在しない。
FIG. 1 is a 450 times enlarged photograph taken by an electron microscope of a coil spring with no cracks on the surface used in the present invention, and FIG. 2 is a 4500 times enlarged photograph. Although there are linear dents on the surface, they are all shallow and the depth of the dents has been illuminated, and there are no cracks.

第3図は従来、使用されてきたコイルスプリングの45
0倍拡大写真であり、第4図は4500倍拡大写真であ
る。第3図においてはクラックが黒色に写し出されて点
在するものが第4図においては黒色部の面積は20mm
2よりも大きく、クラックであることが認められる。第
3図から明らかなように、第4図にみられるようなりラ
ックが450倍拡大の一視野の中に極めて多数存在する
。本発明に使われているコイルスプリングの表面には第
1図のように450倍拡大視野像の中にクラックがほと
んど存在しない。このように450倍拡大視野像の中に
クラックがはきんど観察されない状態を本発明ではクラ
ックがない状態と定義する。
Figure 3 shows a 45mm coil spring that has been used conventionally.
This is a 0x magnified photograph, and FIG. 4 is a 4500x magnified photograph. In Fig. 3, the cracks are shown in black and are scattered, but in Fig. 4, the area of the black part is 20 mm.
It is larger than 2 and is recognized as a crack. As is clear from FIG. 3, an extremely large number of racks exist in one field of view magnified 450 times as seen in FIG. 4. As shown in FIG. 1, there are almost no cracks on the surface of the coil spring used in the present invention in a 450x magnified field image. In this invention, a state in which no cracks are observed in the 450 times magnified field image is defined as a crack-free state.

表面にクラックのあるコイルスプリングを水素透過セル
に用いると、クラックに浸入し滞留した水分、空気など
の不純ガスがガスの精製時に徐々に外部に漏れ出して、
長時間にわたって精製水素ガス中に混入し純度を低下さ
せるので高純度水素ガスを得ることができない。
If a coil spring with cracks on its surface is used in a hydrogen permeation cell, impure gases such as moisture and air that have penetrated into the cracks and remain will gradually leak out during gas purification.
High purity hydrogen gas cannot be obtained because it is mixed into purified hydrogen gas over a long period of time and reduces its purity.

本発明に使用されるクラックのないスプリングを得る方
法には特に制限はないが、例えば次のようにして得るこ
ともできる。1回あるいは2回の真空溶解により充分に
脱ガスされたステンレスまたはCo−N 1−Cr合金
などを冷間伸線し、光輝焼鈍後、研摩布などによる表面
研摩を行う。
There are no particular limitations on the method of obtaining the crack-free spring used in the present invention, but it can also be obtained, for example, as follows. Stainless steel or Co--N 1--Cr alloy, which has been sufficiently degassed by vacuum melting once or twice, is cold drawn, bright annealed, and then surface polished with a polishing cloth or the like.

続いて所定の太さに冷間延伸し700〜800℃で熱処
理後、所望により化学研摩などの処理を行うことにより
クラックのない線材とし、これを芯線に巻きつけてコイ
ルスプリングに加工する。
Subsequently, the wire is cold-stretched to a predetermined thickness, heat-treated at 700 to 800°C, and optionally subjected to chemical polishing or other treatments to obtain a crack-free wire, which is then wound around a core wire and processed into a coil spring.

コイルスプリングが挿入されるパラジウム合金細管とし
しては水素透過効率および機械的強度などから通常は外
径1.0〜3.0mm、厚さ30〜200μ程度のもの
が使用される。また水素透過性が大きく、加工性が良け
ればその材質には特に制限はないが、パラジウムと銀、
金、ロジウム、ルテニウムなどの合金が好ましく、例え
ばパラジウムと銀5〜50%からなる合金、パラジウム
と銀5〜40%および金1〜20%からなる合金、なら
びにパラジウムと銀5〜40%およびロジウム2〜10
%からなる合金などが挙げられ、これらの合金を用いて
従来の方法により細管とされ水素透過セルに使用される
The palladium alloy thin tube into which the coil spring is inserted usually has an outer diameter of 1.0 to 3.0 mm and a thickness of about 30 to 200 .mu.m from the viewpoint of hydrogen permeation efficiency and mechanical strength. There are no particular restrictions on the material as long as it has high hydrogen permeability and good workability, but palladium, silver,
Alloys of gold, rhodium, ruthenium, etc. are preferred, such as alloys of palladium and 5 to 50% silver, alloys of palladium and 5 to 40% silver and 1 to 20% gold, and alloys of palladium and 5 to 40% silver and rhodium. 2-10
These alloys are made into thin tubes by conventional methods and used in hydrogen permeation cells.

〔発明の効果〕〔Effect of the invention〕

本発明の超高純度水素透過セルを使用することにより、
水素ガスを従来得ることができなかった99.9999
9%以上の純度に精製することが可能となり、半導体の
超高集積化などに対し太きく貢献することが期待される
By using the ultra-high purity hydrogen permeation cell of the present invention,
99.9999 where hydrogen gas could not be obtained conventionally
It is now possible to purify the material to a purity of 9% or higher, and is expected to make a significant contribution to the ultra-high integration of semiconductors.

〔実施例〕〔Example〕

実施例に 度の真空溶解により内部ガスが充分に除去されたスプロ
ン(セイコー電子部品■製、Co−Ni−Cr合金)を
冷間伸線により0.8mmφとし光輝度焼鈍およびエン
ドレス研摩布による表面研摩により線材表面のクラック
を除去した。次に0、3mmφまで冷間伸線し、窒素ガ
ス中700℃で熱処理後、さらに0.2mmφに伸線し
た線材を芯線に巻きつけることにより外径1.3mm、
ピッチ0、75mm、長さ340mmのコイルスプリン
グとした。
In the example, a spron (manufactured by Seiko Electronics Parts, Co-Ni-Cr alloy) from which the internal gas had been sufficiently removed by vacuum melting was cold drawn to a diameter of 0.8 mm, and the surface was brightly annealed and polished with an endless polishing cloth. Cracks on the wire surface were removed by polishing. Next, the wire was cold drawn to 0.3 mmφ, heat treated at 700°C in nitrogen gas, and then the wire drawn to 0.2 mmφ was wound around the core wire, resulting in an outer diameter of 1.3 mm.
The coil spring had a pitch of 0, 75 mm, and a length of 340 mm.

このコイルスプリングの表面には第1図および第2図の
拡大写真で示したようにクラックは認められなかった。
No cracks were observed on the surface of this coil spring, as shown in the enlarged photographs of FIGS. 1 and 2.

このようなりラックのないコイルスプリングが1市人さ
れた外径1.6mm、厚さ80μ、長さ330mmのパ
ラジウム合金細管135本を管仮に固定しセル内に収納
して水素透過セルとした。
A hydrogen permeation cell was prepared by temporarily fixing 135 palladium alloy thin tubes each having an outer diameter of 1.6 mm, a thickness of 80 μm, and a length of 330 mm, each made of a coil spring without a rack, and then housed in a cell.

この水素透過セルに原料水毒ガス(ボンベ詰水素)を−
次側圧力3.5 kg/ciG 、二次側圧力0、03
kg / cnf Gで15001 / hrで流し、
セルノ出ロガスについて露点測定ならびに窒素および酸
素の分析を行った。その結果、第1表に示すように純度
99.99999%以上の水素ガスが得られることがわ
かった。露点測定にはパナメ) IJブックモデル70
0型(日本パナメl−1)ツタ社製)を用い水分を求め
、02、N2、C01Co2、メタンバガスクロマトグ
ラフ(TCD)および炎イオン検出器(PID)で分析
し、これらを全体から差し引いた差を水素ガスの純度と
した。
This hydrogen permeation cell is fed with raw water poisonous gas (hydrogen in cylinders).
Outlet pressure 3.5 kg/ciG, outlet pressure 0,03
kg/cnf G at 15001/hr,
Dew point measurements and nitrogen and oxygen analyzes were performed on the cell discharge log gas. As a result, as shown in Table 1, it was found that hydrogen gas with a purity of 99.99999% or higher was obtained. Paname for dew point measurement) IJ Book Model 70
Moisture was determined using Type 0 (Japan Paname L-1) manufactured by Tsuta Corporation), and analyzed using 02, N2, CO1Co2, methane bag gas chromatograph (TCD) and flame ion detector (PID), and these were subtracted from the total. The difference was defined as the purity of hydrogen gas.

比較例1 クラックのないコイルスプリングを用いる代わりに第3
図および第4図の拡大写真で示したように表面に種々の
クラックを有するコイルスプリングを用いた他は実施例
1と同じ水素透過セルを用い実施例1と同じ条件で水素
ガスの精製を行った。その結果は第1表に示すとおりで
あり、純度は99.9999%よりも低いものしか得ら
れなかった。
Comparative Example 1 Instead of using a crack-free coil spring, the third
Hydrogen gas was purified under the same conditions as Example 1 using the same hydrogen permeation cell as in Example 1, except that a coil spring with various cracks on the surface was used as shown in the enlarged photograph in Figure 4 and Figure 4. Ta. The results are shown in Table 1, and the purity was lower than 99.9999%.

第1表Table 1

【図面の簡単な説明】[Brief explanation of drawings]

第1〜2図は本発明に使用するコイルスプリングの表面
の電子顕微鏡による拡大写真であり、第3〜4図は従来
のコイルスプリングの表面の電子顕微鏡による拡大写真
であり、第5図は水素透過セルの縦断面概略図である。 図における番号は以下のとおりである。 1、入口 2.出口 3.プリードロ 4.セル5、コ
イルスプリング 6.パラジウム合金細管7、管板 特許出願人 大 見 忠 弘(他2名)代理人 弁理士
 小 堀 貞 文 算1図         甚30 第2図         名4図 第5図 手続補正書(方式) %式% 事件の表示 昭和60年特許願第264959号 発明の名称 超高純度水素透過セル 補正をする者 事件との関係 特許出願人 住所 宮城県仙台市米ケ袋2−1−17−301氏名大
見忠弘
Figures 1 and 2 are enlarged photographs taken with an electron microscope of the surface of the coil spring used in the present invention, Figures 3 and 4 are enlarged photographs taken with an electron microscope of the surface of a conventional coil spring, and Figure 5 is an enlarged picture taken with an electron microscope of the surface of a coil spring used in the present invention. FIG. 2 is a schematic vertical cross-sectional view of a transmission cell. The numbers in the figure are as follows. 1. Entrance 2. Exit 3. Pliedro 4. Cell 5, coil spring 6. Palladium Alloy Thin Tube 7, Tube Sheet Patent Applicant Tadahiro Omi (and 2 others) Representative Patent Attorney Tadashi Kobori Bunkan Figure 1 Jin 30 Figure 2 Name Figure 4 Figure 5 Procedural Amendment (Method) % Formula % Display of the case 1985 Patent Application No. 264959 Name of the invention Person who corrects ultra-high purity hydrogen permeation cell Relationship to the case Patent applicant Address 2-1-17-301 Yonegabukuro, Sendai City, Miyagi Prefecture Name Tadahiro Omi

Claims (1)

【特許請求の範囲】[Claims] 内部にコイルスプリングが挿入された複数本のパラジウ
ム合金細管を透過膜とする超高純度水素透過セルにおい
て、該コイルスプリングの表面にクラックがないことを
特徴とする超高純度水素透過セル
An ultra-high purity hydrogen permeation cell whose permeation membrane is a plurality of palladium alloy thin tubes with coil springs inserted therein, characterized in that there are no cracks on the surface of the coil springs.
JP26495985A 1985-11-27 1985-11-27 Ultra high purity hydrogen permeation cell Expired - Fee Related JPH0621001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26495985A JPH0621001B2 (en) 1985-11-27 1985-11-27 Ultra high purity hydrogen permeation cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26495985A JPH0621001B2 (en) 1985-11-27 1985-11-27 Ultra high purity hydrogen permeation cell

Publications (2)

Publication Number Publication Date
JPS62128903A true JPS62128903A (en) 1987-06-11
JPH0621001B2 JPH0621001B2 (en) 1994-03-23

Family

ID=17410582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26495985A Expired - Fee Related JPH0621001B2 (en) 1985-11-27 1985-11-27 Ultra high purity hydrogen permeation cell

Country Status (1)

Country Link
JP (1) JPH0621001B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376167A (en) * 1991-12-19 1994-12-27 Institut Francais Du Petrole Purifying device for hydrogen comprising a base made of an alloy of the same composition as that of the tubes
JP2008161805A (en) * 2006-12-28 2008-07-17 National Institute Of Advanced Industrial & Technology Metal thin tube for separation of hydrogen and its manufacturing method
JP2010188241A (en) * 2009-02-16 2010-09-02 Taiyo Nippon Sanso Corp Gas refining method
EP2896595A1 (en) 2014-01-16 2015-07-22 Japan Pionics Co., Ltd. Palladium alloy membrane unit, storage structure thereof, and method of purifying hydrogen by using the same
JP2015174815A (en) * 2014-03-18 2015-10-05 日本パイオニクス株式会社 Hydrogen purification device, and hydrogen purification system using the same
KR20170030430A (en) 2015-09-09 2017-03-17 니폰 파이오니쿠스 가부시키가이샤 Gas purification apparatus
US9809454B2 (en) 2014-10-24 2017-11-07 Japan Pionics Co., Ltd. Method for refining hydrogen
CN115340068A (en) * 2022-08-23 2022-11-15 中国原子能科学研究院 Hydrogen isotope purification device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376167A (en) * 1991-12-19 1994-12-27 Institut Francais Du Petrole Purifying device for hydrogen comprising a base made of an alloy of the same composition as that of the tubes
JP2008161805A (en) * 2006-12-28 2008-07-17 National Institute Of Advanced Industrial & Technology Metal thin tube for separation of hydrogen and its manufacturing method
JP2010188241A (en) * 2009-02-16 2010-09-02 Taiyo Nippon Sanso Corp Gas refining method
EP2896595A1 (en) 2014-01-16 2015-07-22 Japan Pionics Co., Ltd. Palladium alloy membrane unit, storage structure thereof, and method of purifying hydrogen by using the same
KR20150085775A (en) 2014-01-16 2015-07-24 니폰 파이오니쿠스 가부시키가이샤 Palladium alloy membrane unit, storage structure thereof, and method of purifying hydrogen by using the same
US9433889B2 (en) 2014-01-16 2016-09-06 Japan Pionics Co., Ltd. Palladium alloy membrane unit, storage structure thereof, and method of purifying hydrogen by using the same
JP2015174815A (en) * 2014-03-18 2015-10-05 日本パイオニクス株式会社 Hydrogen purification device, and hydrogen purification system using the same
TWI554469B (en) * 2014-03-18 2016-10-21 Japan Pionics A hydrogen purifying apparatus and a hydrogen purifying system using the same
US9809454B2 (en) 2014-10-24 2017-11-07 Japan Pionics Co., Ltd. Method for refining hydrogen
KR20170030430A (en) 2015-09-09 2017-03-17 니폰 파이오니쿠스 가부시키가이샤 Gas purification apparatus
CN115340068A (en) * 2022-08-23 2022-11-15 中国原子能科学研究院 Hydrogen isotope purification device

Also Published As

Publication number Publication date
JPH0621001B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
Fort et al. A comparison of palladium-silver and palladium-yttrium alloys as hydrogen separation membranes
US3241293A (en) Diffusion purification of gases
US3246449A (en) Recovery of helium
US6565631B2 (en) High carbon content filamentary membrane and method of making the same
US3534531A (en) Assembly of pure gas permeating separator
US3208198A (en) Method for hydrogen diffusion
US3245206A (en) Diffusion purification apparatus
US3344582A (en) Irreversible hydrogen membrane
JPS62128903A (en) Ultrahigh-purity hydrogen permeable cell
JP2572612B2 (en) Hydrogen purification method
Yukawa et al. Alloy design of Nb-based hydrogen permeable membrane with strong resistance to hydrogen embrittlement
US3238700A (en) Hydrogen diffusion process
JP2596767B2 (en) Method and apparatus for purifying hydrogen
US2892508A (en) Separation of gases by diffusion
Hughes et al. Hydrogen diffusion membranes based on some palladium-rare earth solid solution alloys
Yukawa et al. Ta-W alloy for hydrogen permeable membranes
US4944777A (en) Separating hydrogen from a mixture of substances
US8226750B2 (en) Hydrogen purifier module with membrane support
JP2011245459A (en) Hydrogen purification apparatus
US4781734A (en) Non-porous hydrogen diffusion membrane and utilization thereof
EP1637215B1 (en) Operation of mixed conducting metal oxide membrane systems under transient conditions
JP2012106210A (en) Manufacturing method of palladium-alloy seamless capillary
Timofeev et al. New palladium-based membrane alloys for separation of gas mixtures to generate ultrapure hydrogen
JP3273641B2 (en) Hydrogen gas purification equipment
US11420152B2 (en) Bandpass filter for separation of a specifically selected gas from a group of gases or an atmosphere

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees