JP2015167456A - 超音波モータ - Google Patents

超音波モータ Download PDF

Info

Publication number
JP2015167456A
JP2015167456A JP2014041540A JP2014041540A JP2015167456A JP 2015167456 A JP2015167456 A JP 2015167456A JP 2014041540 A JP2014041540 A JP 2014041540A JP 2014041540 A JP2014041540 A JP 2014041540A JP 2015167456 A JP2015167456 A JP 2015167456A
Authority
JP
Japan
Prior art keywords
ultrasonic motor
polarization
vibration
piezoelectric element
diaphragm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014041540A
Other languages
English (en)
Inventor
西谷 仁志
Hitoshi Nishitani
仁志 西谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014041540A priority Critical patent/JP2015167456A/ja
Publication of JP2015167456A publication Critical patent/JP2015167456A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

【課題】従来の略正方形の振動板、及び、圧電素子を有する超音波モータは、小型化に有利ではあるものの、円運動を生成し推進力を得るような共振周波数の設定が困難であるという課題を有していた。
【解決手段】分極領域のうち少なくとも1つが属する2つの分極領域群に節直径振動の共振周波数より節円振動の共振周波数に近い周波数であって、位相差が180度±45度である2つの交流電圧をそれぞれ印加する第一の駆動モードと、2つの分極領域群に節円振動の共振周波数より節直径振動の共振周波数に近い周波数であって、位相差が0度±45度である2つ、又は、同一の交流電圧をそれぞれ印加する第二の駆動モードの、少なくともいずれか一方で駆動する。
【選択図】図1

Description

本発明は超音波モータに係り、特に振動子を構成する弾性体を板状とした超音波モータに関するものである。
従来のリニア用の超音波モータの一例として特許文献1に略正方形の圧電素子、及び、振動板を有する超音波モータが開示されている。図11(a)と図11(b)はこの超音波モータの振動を示す図であり、特許文献1の図4及び図5に相当する図である。図11(a)は、進行方向Xに直交するA辺の曲げ方向の1次振動で生成される突上げ振動を示している。図11(b)は、進行方向Xに平行なB辺の曲げ方向の1次振動で生成される送り振動を示している。この突き上げ振動と送り振動とを合成することによって、突起先端に円運動を生成し、推進力を得ることができる。駆動方法の詳細は、特許文献1に記載されている。
同様に、2つの振動を合成して突起先端に円運動を生成し、推進力を得る超音波モータの例が特許文献2に記載されている。この超音波モータは、略長方形の圧電素子、及び、振動板を有しており、短辺方向の曲げ1次振動で生成される突上げ振動と、長辺方向の曲げ2次振動で生成される送り振動を合成することによって、突起先端に円運動を生成し、推進力を得ることができる。
近年、超音波モータが搭載される電子機器の小型化、特にレンズ駆動装置の小型化の要求は更に高まっている。ここで、特許文献2に記載の略長方形の超音波モータと、図11のような従来の略正方形の超音波モータとを比べると、長方形の短辺を2辺とする正方形で超音波モータを構成することができるから、略正方形の超音波モータの方が小型化に有利であるといえる。
特開2006−115559号明細書 特開2012−16107号明細書 特開平11−252945号明細書
しかし、図11のA辺の寸法とB辺の寸法はほぼ等しいので、それぞれの曲げ1次振動の共振周波数もほぼ等しい。このため図11のようなA辺とB辺の曲げ方向の1次振動モードでは、それぞれ単独では共振しにくいと考えられる。実際に振動解析を行った結果を図12に示す。図12(a)の通り、A辺とB辺の曲げ方向の1次振動モードがそれぞれ同一方向となるような第一の共振と、図12(b)の通り、A辺とB辺の曲げ方向の1次振動モードがそれぞれ反対方向となるような第二の共振が発生する。
特許文献3の記載によれば、円盤の振動においては、特許文献3の図3に示されるような節が円形に生じる振動は「節円振動」、特許文献3の図5に示されるような節が直径方向に生じる振動は「節直径振動」と呼ばれる。前述の略正方形の振動板における第一・第二の共振はこの円盤の振動の類型であり、図12(a)の第一の共振は節円振動、図12(b)の第二の共振は節直径振動ということができる。
振動解析の結果から、駆動周波数を調整しても、節円振動や節直径振動で共振し、図11のようなA辺とB辺の曲げ1次の振動がそれぞれ単独で共振しない可能性が高いことが予想される。この結果、特許文献1に記載されているような超音波モータでは、突起先端に円運動を生成することができず、超音波モータとしての推進力を得ることが困難となる。
以上説明した通り、従来の略正方形の振動板、及び、圧電素子を有する超音波モータは、小型化に有利ではあるものの、円運動を生成し推進力を得るような共振周波数の設定が困難であるという課題を有していた。
そこで、本発明の目的は、小型化に有利な略正方形の振動板、及び、圧電素子を有する超音波モータであっても、円運動を生成し推進力を得るような共振周波数の設定を容易にすることである。
上記の課題を解決するために、本発明の超音波モータは、略4回回転対称な平面部を有する薄板形状であり、前記平面部に少なくとも2つ以上の分極領域が設けられた圧電素子と、略4回回転対称な平面部を有する薄板形状であり、略4回回転対称中心以外の点に突起が設けられ、圧電素子が貼り付けられた振動板とを有する超音波モータであって前記圧電素子は、前記分極領域の少なくとも1つが属するように区分される2つの分極領域群を有し、前記2つの分極領域群に、節直径振動の共振周波数より節円振動の共振周波数に近い周波数であって、位相差が180°±45°である2つの交流電圧をそれぞれ印加する第一の駆動モードと、前記2つの分極領域群に、節円振動の共振周波数より節直径振動の共振周波数に近い周波数であって、位相差が0°±45°である2つの交流電圧をそれぞれ印加する第二の駆動モードと、のうち少なくとも1つの駆動モードを有することを特徴としている。
上記の手段により、小型化に有利な略正方形の振動板、及び、圧電素子を有する超音波モータであっても、円運動を生成し推進力を得るような共振周波数の設定を容易にすることができる。
本発明の第一の実施形態の構成図である。 本発明の第一の実施形態の第一の駆動モードの説明図である。 本発明の第一の実施形態の第一の駆動モードの動作説明図である。 本発明の第一の実施形態の第二の駆動モードの説明図である。 本発明の第一の実施形態の第二の駆動モードの動作説明図である。 本発明の第一の実施形態の別形態の構成図である。 本発明の第二の実施形態の構成図である。 本発明の第三の実施形態の構成図である。 本発明の第四の実施形態の構成図である。 本発明の第五の実施形態の構成図である。 従来の超音波モータの動作説明図である。 従来の超音波モータの動作説明図である。
(第一の実施形態)
以下、図1から図3を参照して、本願発明の第一の実施形態について説明する。
図1(a),図1(b),図1(c)は、第一の実施形態の超音波モータの構成を説明するための図である。図1(a)は、超音波モータを上方から見た平面図および短手方向からみた側面図である。図1(b)は、超音波モータを長手方向からみた側面図である。図1(c)は、超音波モータを下方向からみた底面図である。
圧電素子1は、略4回回転対称な平面部を有する薄板形状を有する。ここで、「n回回転対称(nは整数)」とは、「ある点を中心として360/n(度)図形を回転させると、元の図形と重なること」である。従って、「4回回転対称」とは「ある点を中心として90度、180度、270度回転させると、それぞれ元の図形と重なること」である。又、「2回回転対称」とは「ある点を中心として180度回転させると、元の図形と重なること」である。第一の実施形態では、略4回回転対称な平面部の例として正方形の圧電素子の例を示している。略4回回転対称の中心である点Oは、代表的には、圧電素子1の二本の対角線の交点である。
圧電素子1は、少なくとも2つ以上の分極領域に区分されている。本実施の形態では、少なくとも2つ以上の分極領域の例として、二本の対角線で画定される4つの分極領域1a1,1a2,1b1,1b2を2つの分極領域に分けた例で説明する。すなわち、分極領域1a1,1a2,1b1,1b2を、分極領域1a1,1a2が属する分極領域群(以下、A群と略す)と分極領域1b1,1b2が属する分極領域群(以下、B群と略す)に区分される。ここで、A群は、正方形の一辺であるA辺に沿って位置する分極領域のグループである。一方、B群は、A辺と直交するB辺に沿って位置する分極領域のグループである。これらの分極領域1a1,1a2,1b1,1b2は、グランド電極1cを介して、圧電素子1の裏面の全面電極から側面を経由して接地されている。
振動板2は、略4回回転対称な平面部を有する薄板形状を有する。本実施形態では、略4回回転対称な平面部の例として、圧電素子1と同様に平面部が正方形の例を示している。代表的には、振動板2の略4回回転対称の中心は、圧電素子1の略4回回転対称の中心である点Oに一致させることが好ましいが、必ずしも一致していなくてもよい。略4回回転対称中心以外の点に、突起2aが設けられている。突起2aが設けられている振動板2の面と反対側の振動板2の面には、圧電素子1が貼り付けられている。突起2aは振動板2と一体的に成形されても、別体部品を貼り付けされていてもよい。又、突起2aは円筒の例が示されているが、円筒形状に限定されるものではなく、直方体等でもよい。振動板2の平面部に設けられた接続部2bは、図1では省略されているが、後述する超音波モータの枠体と接続される部分である。接続部2bは、圧電素子1と振動板2の節円振動や節直径振動において変位が少ない部分に設けられ、かつ、十分に剛性が弱いので、節円振動や節直径振動を阻害しにくい形状となっている。従って、接続部2bは圧電素子1と振動板2の節円振動や節直径振動にほとんど影響を与えない。
振動板2の突起2aは、摩擦部材3に当接していて、摩擦部材3は振動板2に対して相対移動をする。摩擦部材3は、振動を減衰させないフエルト4、全体を均等に加圧するための加圧板5を介して、加圧手段であるばね6によって、図示矢印X方向に加圧されている。ばね6の上端6aは図1では省略されているが後述する超音波モータの枠体で支持されている。又、平面図においてフエルト4、加圧板5、ばね6は省略されている。
更に、図示されていない駆動回路と給電手段により、A群とB群とに、交流電圧を印加することができる。印加する交流電圧は、節円振動と節直径振動の共振周波数であって、位相差が所定の値を有している。この交流電圧によって、突起2aが円運動を生成できれば、従来の超音波モータを同様の原理で摩擦部材3と振動板2が相対移動をすることができる。
図2は第一の実施形態の超音波モータの第一の駆動モードを説明するための図である。
図2(a)はA群に印加する交流電圧を、図2(b)はB群に印加する交流電圧を示している。図2(c),図2(d)は、交流電圧が印加された圧電素子1,振動板2,突起2aの形状の変化を示している。周期T1の逆数である周波数f1は圧電素子1に振動板2が貼り付けられた状態での節円振動の共振周波数であって、A群とB群の交流電圧の位相差は180度である。入力される周波数は節円振動の共振周波数であるから、共振現象により、図2(c)のような節円振動が励振される。しかし、入力される電圧の位相差は180度であるから、圧電効果により、図2(d)のようにA辺とB辺を逆方向に変形させるような力が作用する。
図3は振動解析をした結果を示す図である。図3(a)は交流電圧が印加された圧電素子1,振動板2,突起2aの形状の変化を斜視図として示した図である。図3(b)は交流電圧が印加された圧電素子1,振動板2,突起2aの形状の変化を側面図で示した図である。図3(a)および図3(b)のいずれも、交流電圧の印加に合わせて、IからVIの順に振動が進行する様子を示している。前述の通り、接続部2bは圧電素子1と振動板2の節円振動や節直径振動にほとんど影響を与えないので省略されている。
図3(a)において、IおよびIVを見ると、A辺とB辺が同じ方向に変形しているので、全体としては節円振動に近い振動が生じていることが解る。これは、共振現象と圧電効果による変形とでは、圧電効果による変形の影響より、共振現象による変形の方が影響が大きいためである。
しかし、詳細にA辺とB辺を比較すると、B辺の変形に対してA辺の変形が遅れていることが解る。具体的に説明すると、IではA辺もB辺もいずれも上に凸であるが、IIではB辺はほぼ平坦になっているのに対して、A辺はいまだ上に凸であり、IIIではB辺が下に凸であるのに対し、A辺はいまだに平坦である。同様に、IVではA辺もB辺もいずれも下に凸であるが、VではB辺はほぼ平坦になっているのに対して、A辺はいまだ下に凸であり、VIではB辺が上に凸であるのに対し、A辺はいまだに平坦である。これは圧電効果によりA辺とB辺を逆方向に変形させるような力が作用しているためである。
このようにB辺の変形に対して、A辺の変形が遅れるために、突起2aの先端は、図3(b)に矢印で示す反時計回りの方向に、破線で示した軌跡の円運動を生じる。この結果、摩擦部材3に対して相対移動を行うための図示X方向へ推進力を得ることができる。
図4は第一の実施形態の超音波モータの第二の駆動モードを説明するための図である。
図4(a)はA群に印加する交流電圧、図4(b)はB群に印加する交流電圧を示している。図4(c),図4(d)は、交流電圧が印加された圧電素子1,振動板2,突起2aの形状の変化を示している。周期T2の逆数である周波数f2は圧電素子1に振動板2が貼り付けられた状態での節直径振動の共振周波数であって、A群とB群の交流電圧の位相差は0度である。入力される周波数は節直径振動の共振周波数であるから、共振現象により、図4(c)のような節直径振動が励振される。しかし、入力される電圧の位相差は0度であるから、圧電効果により、図4(d)のようにA辺とB辺を同じ方向に変形させるような力が作用する。
図5は振動解析をした結果を示す図である。図5(a)は交流電圧が印加された圧電素子1,振動板2,突起2aの形状の変化を斜視図で示した図である。図5(b)は交流電圧が印加された圧電素子1,振動板2,突起2aの形状の変化を側面図で示したものである。図5(a)および図5(b)のいずれも、圧電素子1への交流電圧の印加に合わせて、IからVIの順に振動が進行する様子を示している。前述の通り、接続部2bは圧電素子1と振動板2の節円振動や節直径振動にほとんど影響を与えないので省略されている。
図5(a)のIとIVを見ると、A辺とB辺が反対方向に変形しているので、全体としては節直径振動に近い振動が生じていることが解る。これは、共振現象と圧電効果による変形とでは、圧電効果による変形の影響より、共振現象による変形の影響が大きいためである。
しかし、詳細にA辺とB辺を比較すると、B辺の変形に対してA辺の変形が遅れていることが解る。具体的に説明すると、IではA辺が上にB辺が下に凸であるが、IIではB辺はほぼ平坦になっているのに対して、A辺はいまだ上に凸であり、IIIではB辺が上に凸であるのに対し、A辺はいまだに平坦である。同様に、IVではA辺が下にB辺が上に凸であるが、VではB辺はほぼ平坦になっているのに対して、A辺はいまだ下に凸であり、VIではB辺が下に凸であるのに対し、A辺はいまだに平坦である。これは圧電効果によりA辺とB辺を同じ方向に変形させるような力が作用しているためである。
このようにB辺の変形に対して、A辺の変形が遅れるために、突起2aの先端は、図5(b)に矢印で示す時計回りの方向に、破線で示した軌跡の円運動を生じる。この結果、摩擦部材3に対して相対移動を行うための図示X方向へ推進力を得ることができる。
以上説明した通り、本実施形態の超音波モータによれば、第一の駆動モードと第二の駆動モードとにより、共振現象が生じやすい節円振動と節直径振動を利用し、かつ、圧電効果による変形により、互いに直交するA辺とB辺の変形に遅れが生じる。
上記では、印加する交流電圧の周波数に関して、節円振動の共振周波数とする第一の駆動モードと、節直径振動の共振周波数とする第二の駆動モードと、を有する超音波モータとして説明した。これは、共振現象が最も生じやすい例である。しかし、第一の駆動モードで印加する交流電圧の周波数が節円振動の共振周波数と完全に一致しなくてもよい。同様に、第二の駆動モードで印加する交流電圧の周波数が節直径振動の共振周波数と完全に一致しなくてもよい。本発明では、第一の駆動モードにおいて印加する交流電圧の周波数が節直径振動の共振周波数より節円振動の共振周波数に近い周波数であればよい。同様に、第二の駆動モードで印加する交流電圧の周波数が節円振動の共振周波数より節直径振動の共振周波数に近い周波数であればよい。すなわち、共振周波数に近い周波数とは、第一駆動モードにおいて節円振動を励振し第二駆動モードにおいて節直径振動を励振することができ、かつ少なくとも他の共振を励振しない程度の周波数を意味する。この範囲の周波数である限り、同様の効果を得ることができる。
また、上記では、印加する交流電圧の周波数の位相差に関して、第一の駆動モードではA群とB群の交流電圧の位相差を180度とし、第二の駆動モードではA群とB群の交流電圧の位相差を0度とする例で説明した。これは、図2(d)および図4(d)のような節円振動・節直径振動とは反対の変形を最大にし、A辺とB辺の変形の遅れを生じやすくする例である。しかし、印加する交流電圧の周波数の位相差は、180度又は0度に完全に一致していなくてもよい。A辺とB辺の変形の遅れを生じる範囲であれば、同様の効果を得ることができる。たとえば、特許文献1に記載されているような90度又は−90度に近い位相差では、前述の通り図12に示した振動解析の結果の通り、A辺とB辺の変形の遅れを生じることはできない。すなわち、本実施形態では、第一の駆動モードにおいて印加する交流電圧の周波数の位相差が180度±45度の範囲であればよいことを意味する。また、第二の駆動モードにおいて印加する交流電圧の周波数の位相差が0度±45度の範囲であればよい。
又、本実施形態では、第一の駆動モードと第二の駆動モードの両方を有する例で説明した。これは、双方向に駆動可能な超音波モータを構成とするためである。しかし、本発明では、一方向のみ駆動可能である限り、超音波モータとしての効果を生るので、第一の駆動モードと第二の駆動モードとのうち少なくとも一方の駆動モードの交流電圧さえ印加すれば、超音波モータとして同様の効果を得ることができる。
また、上記では、突起2aが振動板2の進行方向の端部に設けられた例を説明した。ここで、略4回回転対称中心以外の点に突起2aが位置するとA辺に平行な方向の変形とB辺に平行な方向の変形による位相遅れが生じないので進行方向の円運動を生成できない。しかし、本発明では、略4回回転対称中心以外の点に突起2aが設けられている限り、進行方向の円運動を生成ができ、突起2aは図1に示された位置以外の位置でも、同様の効果を得ることができる。
また、上記では、図6(a)の通り、分極領域を正方形の平面部を4等分した直角二等辺三角形とした例を説明した。しかし、図6(b)の通り、分極領域1a1・1a2・1b1・1b2が同一形状の楕円となっていても、突起2aの先端が円運動をするならば、同様の効果を得ることができる。図6(b)のような分極領域の場合において、図6(a)より分極領域が狭いことに起因して、圧電効果による変形量が不足するならば、例えば交流電圧を大きくする等の対策をすればよい。
又、本実施形態では、圧電素子の分極領域1a1,1a2,1b1,1b2の全部が中心Oに関して略4回回転対称である例として説明した。ここで、「中心Oに関して4回回転対称」とは「分極領域1a1,1a2,1b1,1b2を中心Oまわりに90度、180度、270度回転させると、それぞれ元の分極領域と重なること」を意味する。しかし、本発明では、交流電圧を印加する分極領域1a1,1a2,1b1,1b2が、それぞれ、中心Oに関して略4回回転対称であることは必要とならない。図6(a)および図6(b)のように分極領域の全てが圧電素子の平面部と同様に略4回回転対称である場合は、特に、共振による節円振動や節直径振動を励振しやすい。しかし、図6(c),図6(d)のように、交流電圧を印加する分極領域が略4回回転対称ではない場合にも、共振による節円振動や節直径振動を励振しうる。
又、本実施形態では、A群・B群の2つの分極領域群に属する分極領域1a1,1a2の全部、及び、1b1,1b2の全部がそれぞれに中心Oに関して略2回回転対称である例で説明した。ここで、「中心Oに関して2回回転対称」とはA群については「A群に属する分極領域1a1,1a2を中心Oまわりに180度回転させると、元の分極領域と重なること」を意味する。また、B群については「B群に属する分極領域1b1,1b2を中心Oまわりに180度回転させると、元の分極領域と重なること」を意味する。しかし、本発明では、交流電圧を印加する分極領域群であるA群とB群が、それぞれ、中心Oに関して略2回回転対称であることは必要とならない。図6(a)、図6(b)のように、A群に属する分極領域とB群に属する分極領域がそれぞれに2回回転対称である場合には、特に圧電効果によるA辺とB辺の変形の遅れを生じやすく、効率がよい。しかし、分極領域群が略2回回転対称ではない場合でも、圧電効果によるA辺とB辺の変形の遅れを生じる限り、本発明の効果を生じる。たとえば、図6(c)や図6(d)のように、少なくとも、正方形の一辺であるA辺に沿って分割領域群であるA群を画定したような場合でも同様の効果を生じうる。すなわち、前記第一の駆動モードと第二の駆動モードの少なくとも一方の駆動モードの交流電圧をこれらの分極領域に印加すれば、圧電効果によるA辺とB辺の変形の遅れを生じうる。
すなわち、圧電素子1の分極領域1a1・1a2・1b1・1b2の全部が略4回回転対称である。その上、A群に属する分極領域1a1・1a2の全部、及び、B群に属する分極領域1b1・1b2の全部がそれぞれに略2回回転対称である。これらの両者を満たすことが最適条件といえる。本実施形態では、図6(a),図6(b)のような分極領域を、共振現象と圧電効果による変形を最大にできる最適の条件として説明したにすぎず、圧電素子1に交流電圧を印加する分極領域の位置関係は、第一の実施形態に限られない。以下、第二の実施形態において、圧電素子1に交流電圧を印加する分極領域の位置関係の他の例を説明する。上記のとおり、小型化に有利な略正方形の振動板、及び、圧電素子を有する超音波モータであっても、円運動を生成し推進力を得るような共振周波数の設定を容易にすることができる。
(第二の実施形態)
以下、発明を実施するための第二の実施形態について説明する。
第一の実施形態では、圧電素子の分極領域の全部が略4回回転対称であって、かつ、A群に属する分極領域の全部、及び、B群に属する分極領域の全部がそれぞれに2回回転対称である最適条件の例を説明した。第二の実施形態では、最適ではないが本願発明の効果を奏する分極領域の位置関係の他の例を説明する。第一の実施形態と同一の構成は、説明を省略する。
しかし、分極領域の少なくとも一部が略4回回転対称である場合であっても、前述のような節円振動・節直径振動の共振が発生し、かつ、互いに直交する方向の変形に遅れが生じるのであれば、同様の効果を得ることができる場合がある。又、A群・B群の2つの分極領域群に属する分極領域の少なくとも一部が略2回回転対称である場合であっても、同様の作用で、同様の効果を得ることができる場合がある。更に、分極領域の一部も略4回回転対称でない場合であっても、同様の作用で、同様の効果を得ることができる場合がある。第二の実施形態は、それらの例である。以下、図7(a),7(b),7(c),7(d)を参照して、第二の実施形態について説明する。
図7(a)に示す圧電素子1は、6つの分極領域21a1、21a2、21b1、21b2、21b3、21b4に区分されている。分極領域21a1、21a2は、A辺に沿って位置する分極領域群であって、中心Oをまわりに180度回転させて重なる分極領域群であるA群として区分される。また、分極領域21b1、21b2、21b3、21b4は、B辺に沿って位置する分極領域群であるB’群に区分される。このうち、分極領域21b1、21b2は、中心Oをまわりに180度回転させて重なる分極領域群である。図7(a)の圧電素子1では、分極領域21b3、21b4が存在するため分極領域の全部が略4回回転対称ではない。しかし、分極領域の一部である分極領域21a1、21a2、21b1、21b2が略4回回転対称となっている。又、A群に属する分極領域21a1、21a2の全部、及び、B群に属する分極領域21b1、21b2、21b3、21b4の全部が略2回回転対称となっている。このような分極領域であっても、第一の実施形態と同様にA群とB群とに交流電圧を印加することにより、第一の実施形態と同様な共振と変形の遅れが生じて、第一の実施形態と同様の効果を奏する。
図7(b)に示す圧電素子1は、4つの分極領域31a1、31a2、31b1、31b2に区分されている。分極領域31a1、31a2は、A辺に沿って位置する分極領域群であって、中心Oをまわりに180度回転させて重なる分極領域群であるA群として区分される。また、分極領域31b1、31b2は、B辺に沿って位置する分極領域群であって、中心Oをまわりに180度回転させて重なる分極領域群であるB群に区分される。
図7(b)は分極領域31a1、31a2、31b1、31b2のそれぞれは、略4回回転対称ではない。しかし、A群に属する分極領域31a1、31a2の全部、及び、B群に属する分極領域31b1、31b2の全部が略2回回転対称となっている。このような分極領域であっても、第一の実施形態と同様にA群とB群とに交流電圧を印加することにより、第一の実施形態と同様な共振と変形の遅れが生じて、第一の実施形態と同様の効果を奏する。
図7(c)に示す圧電素子1は、3つの分極領域41a1、41a2、41b1に区分されている。分極領域41a1、41a2は、A辺に沿って位置する分極領域群であって、中心Oをまわりに180度回転させて重なる分極領域群であるA群として区分される。一方、分極領域41b1は、一の分極領域のみで、B辺に沿って位置する分極領域群であるB’’群として区分される。図7(c)に示す圧電素子1の分極領域41a1、41a2、41b1それぞれも略4回回転対称ではない。更に、B群に属する分極領域41b1は、分極領域が一つしかないので、略2回回転対称ではない。しかし、A群に属する分極領域41a1、41a2の全部が略2回回転対称となっている。このような分極領域であっても、第一の実施形態と同様に交流電圧を印加することにより、第一の実施形態と同様な共振と変形の遅れが生じて、第一の実施形態と同様の効果を奏する。
図7(d)に示す圧電素子1では、平面部に略4回回転対称となる分極領域P1,P2,P3,P4を画定する。分極領域P1,P2,P3,P4は、それぞれ、第一の実施形態における図6(b)の分極領域1a1,1a2,1b1,1b2に対応する。すなわち、第一の実施形態と同様に、分極領域P1,P2,P3,P4は、略4回回転対称である。そして、A群に属する分極領域とB群に属する分極領域がそれぞれ略2回回転対称である。この分割領域は、特に圧電効果によるA辺とB辺の変形の遅れを生じやすく、効率がよい。
圧電素子1に実際に交流電圧を印加する電圧印加領域51a1、51a2、51b1、51b2は、分極領域P1,P2,P3,P4がそれぞれ包含されるように、分極領域P1,P2,P3,P4よりも大きい領域として画定される。そして、分極領域51a1、51a2は、A辺に沿って位置する分極領域群であるA群として区分される。分極領域51b1、51b2は、B辺に沿って位置する分極領域群であるB群に区分される。すなわち、図7(d)は分極領域51a1、51a2、51b1、51b2がいずれも略4回回転対称ではなく、かつ、A群に属する分極領域51a1,51a2もB群に属する分極領域51b1,51b2も略2回回転対称ではない。このような分極領域であっても、第一の実施形態と同様に交流電圧を印加することにより、第一の実施形態と同様な共振と変形の遅れは生じて、第一の実施形態と同様の効果を奏する。
図7(a)から図7(d)のような分極領域の場合において、第一の実施形態の図6(a)より分極領域が狭いことに起因して、圧電効果による変形量が不足するならば、例えば交流電圧を大きくする等の対策をすればよい。
以上説明した通り、図7(a)から図7(d)のような分極領域であっても、前述のような節円振動・節直径振動の共振が発生し、かつ、互いに直交する方向の変形に遅れが生じる場合がある。この結果、小型化に有利な略正方形の振動板、及び、圧電素子を有する超音波モータであっても、円運動を生成し推進力を得るような共振周波数の設定を容易にすることができる。
(第三の実施形態)
以下、発明を実施するための第三の実施形態について説明する。
本発明の第一の実施形態では、圧電素子、及び、振動板の両方の平面部が略正方形である例を説明した。これは、正方形である場合が、材料の無駄が少なく生産効率がよいためである。しかし、圧電素子、及び、振動板の一方、又は、両方が正方形ではなくても、略4回回転対称な平面部を有する薄板形状であれば同様の効果を得ることができる。図8はその例であって、図8(a)のように圧電素子61が八角形の場合や、図8(b)のように圧電素子71が円形の場合でも、第一の実施形態と同様な共振と変形の遅れは生じうる。又、図8(c)や図8(d)のように、振動板62が八角形や、振動板72が円形であっても同様である。
以上説明した通り、圧電素子、又は、振動板が、図8(a)、図8(b)のような外形であっても、前述のような節円振動・節直径振動の共振が発生し、かつ、互いに直交する方向の変形に遅れが生じる場合がある。この結果、小型化に有利な略正方形の振動板、及び、圧電素子を有する超音波モータであっても、円運動を生成し推進力を得るような共振周波数の設定を容易にすることができる。
図8(a)のような圧電素子及び振動板の場合、第一の実施形態に対して生産効率がやや劣るものの、4つの隅が占有されないので超音波モータの省スペース化を図ることができる。この結果、例えば、超音波モータの配置に自由度が増すという効果がある。
その他の構成、及び、第一・第二の駆動モードの制御方法については第一の実施形態と同一であるので説明を省略する。
(第四の実施形態)
以下、発明を実施するための第四の実施形態について説明する。
図9は本発明の超音波モータを利用したリニア駆動装置100の概略図である。図9(a)は超音波モータの進行方向から見た図である。図9(b)はその平面図である。図9(c)は図9(a)のA−A断面で表された側面図である。図9(a)において、圧電素子1、振動板2、不図示の枠体に固定された摩擦部材3、フエルト4、加圧板5、加圧ばね6の構成は第一の実施例と同様であるので説明を省略する。摩擦材3の裏面には回転摺動するローラ101の転動面が当接するように配置される。被駆動体102は、平行な2つの支持部102a,102bを具備し、支持部102aで加圧ばね6の上端6aを支持し、支持部102bでローラ101を支持する。支持部102a部と支持部102b部とが連結された被駆動体102は、駆動伝達部位103と連結されている。加圧ばね6の加圧力により突起2aは摩擦部材3に当接した状態で押圧されている。第一の実施形態に従って電圧が圧電素子に印加され、摩擦部材3に対して振動板2が駆動力を与える。それにより、突起2aが摩擦部材3に対して前述の通り図3,図5のような円運動による駆動力を与えて、図示X方向に推進力を得る。ローラ101は駆動の際の摺動抵抗を軽減するために設けられているものであって、転動コロのような機構でもよい。
以上説明した通り、本実施形態のリニア駆動装置は、第一の実施形態から第三の実施形態に記載した超音波モータを利用している。この結果、小型化に有利な略正方形の振動板、及び、圧電素子を有する超音波モータ利用した本実施形態のリニア駆動装置においても、円運動を生成し推進力を得るような共振周波数の設定を容易にすることができる。
本実施形態では摩擦材3が固定され、それに沿って圧電素子1及び振動板2等が移動する例を説明したが、圧電素子1及び振動板2が固定され、それに沿って摩擦部材3が移動する構成であっても、同様の作用を実現することができる。
その他の構成、及び、第一の駆動モードと第二の駆動モードの制御方法については第一の実施形態と同一であるので説明を省略する。
(第五の実施形態)
以下、発明を実施するための第五の実施形態について説明する。
図10は、本発明の超音波モータを利用したリニア駆動装置100を搭載したレンズ駆動装置のレンズ駆動部の概略図を示したものである。リニア駆動装置100は、第四の実施形態と同様である。図10(a)は光軸方向の正面図である。図10(b)は一部を破断した側面図である。図10(a)において、レンズ302はレンズホルダー303に保持されている。ガイド軸304,305は、レンズホルダー303を支持しながら、レンズ302とともにレンズホルダー303を光軸方向(図示X方向)に案内する。ガイド軸301は、外枠301に対して固定されている。理解を容易にするため、図10(b)において、リニア駆動装置100のうち、振動板2と摩擦部材3のみを示している。振動板2の突起2aは、摩擦部材3に当接している。図示されていないマイコンからの移動命令に従い、第一の実施形態に従って電圧が圧電素子に印加され、振動板2の突起2aが摩擦部材3に対して駆動力を与える。これによりリニア駆動装置100が相当の距離を移動し、レンズホルダー303を303から303´の範囲で移動させることができる。
以上説明した通り、本実施形態のレンズ駆動装置は、第一から第三の実施例に記載した超音波モータを利用したリニア駆動装置を搭載している。この結果、小型化に有利な略正方形の振動板、及び、圧電素子を有する超音波モータ利用したリニア駆動装置を搭載した本実施形態のレンズ駆動装置においても、円運動を生成し推進力を得るような共振周波数の設定を容易にすることができる。
なお、本実施形態では摩擦材3が固定され、それに沿って圧電素子1及び振動板2等が移動する例を説明したが、圧電素子1及び振動板2が固定され、それに沿って摩擦部材3が移動する構成であっても、同様の作用を実現することができる。
その他の構成、及び、第一・第二の駆動モードの制御方法については第一の実施形態と同一であるので説明を省略する。
本発明は、小型軽量かつ広い駆動速度レンジが要求される電子機器、特にレンズ駆動装置等に利用可能である。
1 圧電素子
1a1・1a2・1b1・1b2 分極領域
2 振動板
2a 突起
3 摩擦部材
4 フエルト
5 加圧板
6 ばね

Claims (7)

  1. 略4回回転対称な平面部を有する薄板形状であり、前記平面部に少なくとも2つ以上の分極領域が設けられた圧電素子と、
    略4回回転対称な平面部を有する薄板形状であり、略4回回転対称中心以外の点に突起が設けられ、前記圧電素子が貼り付けられた振動板と、
    を有する超音波モータであって、
    前記圧電素子は、前記分極領域の少なくとも1つが属するように区分される2つの分極領域群を有し、
    前記2つの分極領域群に、節直径振動の共振周波数より節円振動の共振周波数に近い周波数であって、位相差が180度±45度である2つの交流電圧をそれぞれ印加する第一の駆動モードと、
    前記2つの分極領域群に、節円振動の共振周波数より節直径振動の共振周波数に近い周波数であって、位相差が0度±45度である2つの交流電圧をそれぞれ印加する第二の駆動モードと、
    のうち少なくとも1つの駆動モードを有する超音波モータ。
  2. 前記振動板の前記突起が当接し前記振動板に対して相対移動をする摩擦部材を有する
    ことを特徴とする請求項1に記載の超音波モータ。
  3. 前記分極領域群の少なくとも一部の分極領域が略4回回転対称である
    ことを特徴とする請求項1に記載の超音波モータ。
  4. 前記2つの分極領域群のうち少なくとも1つの前記分極領域群に属する前記分極領域の少なくとも一部が略2回回転対称であることを特徴とする請求項1に記載の超音波モータ。
  5. 前記第一の駆動モードの交流電圧と前記第二の駆動モードの交流電圧とは、前記略4回回転対称である前記少なくとも一部の前記分極領域を包含する更に広い分極領域に印加されることを特徴とする請求項3に記載の超音波モータ。
  6. 前記圧電素子の前記平面部が略正方形である
    ことを特徴とする請求項1に記載の超音波モータ。
  7. 前記振動板の前記平面部が略正方形である
    ことを特徴とする請求項1に記載の超音波モータ。
JP2014041540A 2014-03-04 2014-03-04 超音波モータ Pending JP2015167456A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014041540A JP2015167456A (ja) 2014-03-04 2014-03-04 超音波モータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014041540A JP2015167456A (ja) 2014-03-04 2014-03-04 超音波モータ

Publications (1)

Publication Number Publication Date
JP2015167456A true JP2015167456A (ja) 2015-09-24

Family

ID=54258083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014041540A Pending JP2015167456A (ja) 2014-03-04 2014-03-04 超音波モータ

Country Status (1)

Country Link
JP (1) JP2015167456A (ja)

Similar Documents

Publication Publication Date Title
JP6501487B2 (ja) 超音波モータ及び超音波モータを用いた駆動装置
JP5765993B2 (ja) 振動型駆動装置
US9705427B2 (en) Ultrasonic motor and lens apparatus including the same
JP2014018027A (ja) 振動型アクチュエータ、撮像装置、及びステージ
JP5683643B2 (ja) リニア超音波モータ及びそれを有する光学装置
JP2015008631A (ja) 圧電アクチュエータ及びレンズ鏡筒
JP2012039848A (ja) 駆動装置
JP6422248B2 (ja) 駆動装置及びそれを有するレンズ駆動装置
US8736143B2 (en) Vibration wave driving apparatus
JP4043497B2 (ja) 超音波振動子の振動特性の調整方法およびそれに用いられる超音波振動子
JP2015065809A (ja) リニア超音波モータ及びそれを有する光学装置
JP6381326B2 (ja) 超音波モータ
JP5473702B2 (ja) 振動型駆動装置
JP2015186329A (ja) 圧電モーター
JP2017195743A (ja) 振動型アクチュエータ、レンズ鏡筒及び撮像装置
JP2015167456A (ja) 超音波モータ
JP2016032351A (ja) 振動型アクチュエータ、光学機器、及び撮像装置
JP6273137B2 (ja) モータ、及びモータ付き装置
JP6779660B2 (ja) 振動波モータ及び振動波モータを利用した駆動装置
JP5974612B2 (ja) 超音波モータ
JP6269224B2 (ja) 圧電モーター
JP6501488B2 (ja) 超音波モータ及び超音波モータを用いた駆動装置
JP5640334B2 (ja) 駆動装置、レンズ鏡筒及びカメラ
JP2008148440A (ja) 振動駆動装置
US9362850B2 (en) Vibration type driving apparatus and driving circuit thereof