JP2015163575A - 鋳造用装置およびインゴットの製造方法 - Google Patents

鋳造用装置およびインゴットの製造方法 Download PDF

Info

Publication number
JP2015163575A
JP2015163575A JP2015014400A JP2015014400A JP2015163575A JP 2015163575 A JP2015163575 A JP 2015163575A JP 2015014400 A JP2015014400 A JP 2015014400A JP 2015014400 A JP2015014400 A JP 2015014400A JP 2015163575 A JP2015163575 A JP 2015163575A
Authority
JP
Japan
Prior art keywords
mold
plate
cooling
heat
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015014400A
Other languages
English (en)
Other versions
JP6522963B2 (ja
Inventor
洋平 坂井
Yohei Sakai
洋平 坂井
将司 長谷川
Shoji Hasegawa
将司 長谷川
康夫 糸賀
Yasuo Itoga
康夫 糸賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2015014400A priority Critical patent/JP6522963B2/ja
Publication of JP2015163575A publication Critical patent/JP2015163575A/ja
Application granted granted Critical
Publication of JP6522963B2 publication Critical patent/JP6522963B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】インゴットを鋳造する際に、鋳型の底面からの冷却手段による抜熱量を容易に制御することができて、インゴットの応力を低減し、結晶欠陥、クラックの発生を低減することのできる鋳造用装置を提供すること。
【解決手段】底部を有し、シリコンを主成分とする融液4を保持し凝固させる鋳型1と、鋳型1の底部の下方に配置されて、上面に冷却面7aを有する冷却手段7と、冷却手段7の冷却面7aと鋳型1の底部との間に、底部に対して非接触の状態で配置されているとともに冷却手段7の冷却面7aに対して一主面が対向している板状部材8と、を備えている鋳造用装置Sとする。
【選択図】図1

Description

本発明は、鋳造用装置およびインゴットの製造方法に関する。
多結晶シリコン等のインゴットを作製するための一般的な鋳造用装置の一例を図12に示す。図12に示すように、鋳造用装置Sは上部構造S1と下部構造S2とからなる。
上部構造S1には、原料シリコンを溶融するための坩堝11が配置されており、坩堝11の周囲には加熱手段12が配置されている。そして、坩堝11からその下方に配置された下部構造S1にシリコンの融液4が供給される。
下部構造S2には、シリコン融液4が注ぎ込まれる開口部1cを有し、内壁に離型材層2を有する鋳型1が配置されている。この鋳型1の外側には断熱材3が設けられている。さらに、鋳型1の下方には鋳型ホルダ5および冷却手段7が設けられている。また、鋳型1の上方には、鋳型1内の融液4を加熱して、その凝固を制御するための鋳型加熱手段6が配置されている。
鋳型1は、例えば、1つの底部材1aと4つの側部材1bとを組み合わせて構成される。離型材層2は鋳型1の内壁にコーティングされている。断熱材3は鋳型側壁部からの抜熱を抑制する。
鋳型1の上方から鋳型加熱手段6で融液4を加熱する。そして、冷却手段7によって鋳型1内の融液4を下方から冷却することによって、鋳型1内の融液4および固化したインゴットに上方から下方に向かう温度分布勾配を形成することができる。これにより、融液4を下部から上部へ向けて一方向凝固させて、多結晶シリコンのインゴットを得ることができる(例えば、下記の特許文献1を参照)。
また、一方向凝固のための鋳型1の底部の冷却方法として、鋳型ホルダ5の中心部材と外周部材の熱伝導率を異ならせることで、鋳型1の底部材1aの中心部と側部材1bの直下部とからの抜熱量の比を調整する方法が提案されている(下記の特許文献2を参照)。
また、格子状の貫通部を有するチルプレート(鋳型ホルダ5に相当)を鋳型1に接触させ、その下方位置に吸熱板(冷却手段7に相当)を設けて、熱輻射および熱伝導を用いて鋳型1を冷却する方法も提案されている(下記の特許文献3を参照)。
特開平9−263489号公報 特開2005−152985号公報 特開2002−103610号公報
融液4は、鋳型1の底部材1aと側部材1bとからの抜熱、および融液4の上部表面からの抜熱・加熱に応じて冷却されて凝固する。この時、凝固時および凝固後の冷却中において、インゴットの温度分布および凝固速度がインゴット中の残留応力の要因となる。そして、この残留応力によって、インゴット中の結晶欠陥が生成するので、インゴットの切
断時に結晶欠陥が起因となったクラックが発生する。
そこで、本発明の目的の一つは、シリコンを主成分とするインゴットを鋳造する際に、鋳型の底面からの抜熱量を容易に制御することができて、インゴットにクラック等が生じにくくすることができる鋳造用装置およびインゴットの製造方法を提供することにある。
上記目的を達成するため、本発明の一形態に係る鋳造用装置は、底部を有し、シリコンを主成分とする融液を保持し凝固させる鋳型と、該鋳型の前記底部の下方に配置されて、上面に冷却面を有する冷却手段と、該冷却手段の前記冷却面と前記鋳型の前記底部との間に、前記底部に対して非接触の状態で配置されているとともに前記冷却手段の前記冷却面に対して一主面が対向している板状部材と、を備えている。
本発明の一形態に係るインゴットの製造方法は、前記鋳型内にシリコンの融液を入れた後に、前記板状部材によって前記鋳型からの抜熱量を調整しながら前記融液を前記鋳型の底部から上方へ一方向に凝固させる。
上記の鋳造用装置およびインゴットの製造方法によれば、鋳型の底部からの冷却手段による抜熱量を容易に制御できるので、凝固時および凝固後冷却中のインゴット内の温度分布および温度勾配の制御が容易になる。これにより、インゴット内の残留応力を低減することができて、インゴット中に転位などの結晶欠陥が生成にくくなり、結晶欠陥に起因する、クラック発生を低減できる。
図1は本発明の一実施形態に係る鋳造用装置の構成を示す断面図である。 図2は本発明の一実施形態に係る鋳造用装置を構成する板状部材を示す図であり、図2(a)は平面図、図2(b)は図2(a)のA−A線断面図である。 図3は本発明の一実施形態に係る鋳造用装置を構成する板状部材を示す図であり、図3(a)は平面図、図3(b)は図3(a)のA−A線断面図である。 図4は本発明の一実施形態に係る鋳造用装置を構成する板状部材を示す図であり、図4(a)は平面図、図4(b)は図4(a)のA−A線断面図である。 図5は本発明の一実施形態に係る鋳造用装置を構成する板状部材を示す図であり、図5(a)は平面図、図5(b)は図5(a)のA−A線断面図である。 図6は本発明の一実施形態に係る鋳造用装置を構成する板状部材を示す図であり、図6(a)は平面図、図6(b)は図6(a)のA−A線断面図である。 図7は本発明の一実施形態に係る鋳造用装置を構成する板状部材を示す図であり、図7(a)は平面図、図7(b)は図7(a)のA−A線断面図である。 図8は本発明の一実施形態に係る鋳造用装置を構成する板状部材を示す図であり、図8(a)は平面図、図8(b)は図8(a)のA−A線断面図である。 図9は本発明の一実施形態に係る鋳造用装置の変形例を示す断面図である。 図10は本発明の一実施形態に係る鋳造用装置の変形例を示す断面図である。 図11は本発明の一実施形態に係る鋳造用装置の変形例を示す断面図である。 図12は従来の一般的な鋳造用装置の一例を示す断面図である。
以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、図面はいずれも模式的に示されたものである。
図1に示すように、本実施形態の鋳造用装置Sは上部構造S1と下部構造S2とからなる。上部構造S1において、シリコンを主成分とする原料シリコンを溶融するための坩堝11が配置されている。なお、ここで「Aを主成分」という場合、Aが50質量%以上含まれることをいうものとし、以下の説明においても同様とする。坩堝11は、例えば高純度石英または黒鉛などからなる溶解坩堝11aが保持坩堝11bに保持されている。また、溶解坩堝11aおよび保持坩堝11bの周囲には坩堝加熱手段12が配置されている。坩堝加熱手段は、例えば、溶解坩堝11aおよび保持坩堝11bに対する上方、側方、下方など複数に分かれて配置されてもよい。溶解坩堝11a内に入れられたシリコン原料は、抵抗加熱式のヒーターまたは誘導加熱式のコイルなどからなる坩堝加熱手段12によって加熱溶融されて融液4となる。そして、溶解坩堝11aおよび保持坩堝11bの底部に設けた出湯口などの融液供給手段によって鋳型1内に融液4が注湯される。なお、前記出湯口を底部に設けない場合に、溶解坩堝11aおよび保持坩堝11bを傾動させるなどによって、溶解坩堝11aおよび保持坩堝11bの下方に配置された鋳造用装置Sの下部構造S2に融液4を供給してもよい。
下部構造S2において、融液4が注ぎ込まれる鋳型1が配置され、その外側周囲に断熱材3が設けられている。鋳型1の底部に接して鋳型1および断熱材3を保持するための鋳型ホルダ5が設けられ、さらにその下方に冷却手段7が設けられている。また、鋳型1の上方には、鋳型1内に入れられた融液4の凝固を制御するための鋳型加熱手段6が配置されている。後で詳述するが、鋳型1に近い側から第1鋳型ホルダ5a、板状部材8および第2鋳型ホルダ5bが配置されている。板状部材8は鋳型1の底部に対して非接触の状態で配置されていて、冷却手段7の冷却面7aに対して一主面が対向している。また、板状部材8は冷却手段7の冷却面7aに対しても非接触の状態で配置されている。
鋳型1は、例えば黒鉛、炭素繊維強化炭素材料、石英またはセラミックス(シリカ、アルミナまたは窒化珪素など)などからなり、底部材1a、側部材1bおよび上方開口部1cを有する。鋳型1は1つの部材で構成されていてもよいし、1つの底部材1aと複数(通常は4つ)の側部材1bとを組み合わせた、分割および組み立てが可能な分割鋳型などで構成されてもよい。なお、分割鋳型の場合、底部材1aと側部材1bとは、ボルト(不図示)などで固定することによって分割可能に組み立てられたり、底部材1aと側部材1bとが嵌まる枠部材(不図示)で固定することによって分割可能に組み立てられる。
また、鋳型1の内表面には、鋳型1とインゴットとが融着して、インゴットを鋳型1から取り出す際にインゴットが破損しないように、離型材層2が塗布されている。離型材層2は以下のようにして鋳型1の内表面に設ける。まず、スラリーを作製する。スラリーは、窒化珪素(Si)、炭化珪素(SiC)、酸化珪素(SiO)などの粉末、またはそれらの混合粉末を、適当なバインダー(例えばポリビニルアルコール(PVA))と、溶剤(例えば水)とに混合して作製する。そして、スラリーを鋳型1の内面に塗布またはスプレーなどの手段でコーティングする。具体的には、例えば、0.4〜0.6μm程度の平均粒径を有する窒化シリコンの粉体を、濃度が5〜15質量%程度のPVA水溶液に混合してスラリー状とし、これをへらまたは刷毛などを用いて鋳型1の内表面に塗布する。そして、この状態で自然乾燥またはホットプレートに載せて乾燥させて脱脂処理する。その後、鋳型1内に融液4を注湯する、あるいは、鋳型1内に原料シリコンを投入して加熱溶融する。なお、離型材層2は材質または平均粒径の異なる複数種類の粉体を混合したものであってもよい。
断熱材3は鋳型1の側面からの抜熱を抑制するものであり、耐熱性および断熱性などを考慮した材質のものが用いられる。断熱材3としては、グラファイトフェルトなど、主成分をカーボンとする材質が望ましい。特に、その表面をカーボンを主成分とするペースト
でコーティング処理を行ったものを用いれば、劣化しにくいので望ましい。
鋳型1の側面を断熱材3によって断熱するとともに、鋳型1の上部からは鋳型加熱手段6によって加熱する。そして、鋳型1を固定した鋳型ホルダ5の下部に、冷却手段7を接触または接近させることによって、鋳型1の下部から鋳型ホルダ5を通して抜熱し、下部から上部へ向かう方向に融液4を一方向凝固させる。
鋳型加熱手段6としては、抵抗加熱式のヒータまたは誘導加熱式のコイルなどを用いることができる。
また、冷却手段7は、例えばステンレスなどの熱伝導性の良好な材質からなり、内部に水などの冷媒を循環させるなどの構造を有する。冷却手段7によって、鋳型1内の高温の融液4から鋳型ホルダ5を通して効果的に抜熱できる。
インゴットの凝固後は、インゴットを冷却して断熱材3を取り外す。そして、最後に鋳型1からインゴットを取り出すことによって多結晶シリコンインゴットが完成する。
図1、図9〜11に示すように、鋳型ホルダ5は少なくとも第1鋳型ホルダ5aを有しており、鋳型1を保持するとともに、板状部材8を保持している。
第1鋳型ホルダ5aは開口部を有しおり、この開口部以外の領域で鋳型1に接し、鋳型1から熱伝導による抜熱をするものである。また、板状部材8は、鋳型1の中央部の下方に鋳型1に非接触の状態で配置されて、鋳型1からの熱輻射による抜熱量を調節する機能を有する。板状部材8は、それを他の構造の板状部材と適宜交換するだけで、鋳型1の底部からの抜熱量の調整が可能となる。
また、鋳型ホルダ5は、熱伝導による抜熱をする第2鋳型ホルダ5bをさらに有していてもよい。第2鋳型ホルダ5bは、開口部を有し、この開口部以外の領域で冷却手段7に接し、熱伝導による抜熱をする。この場合、鋳型ホルダ5は、例えば図10に示すように、第1鋳型ホルダ5aと第2鋳型ホルダ5bとが一体的に構成されていれば、組み立てが容易になる。さらに、高温の鋳型1からこれよりも低温の鋳型ホルダ5、そしてさらに低温の冷却手段7への熱伝導が、鋳型ホルダ5の組み立て精度および使用に伴う継時的変化の影響を受けにくいのでよい。また、鋳型ホルダ5は、例えば図11に示すように、熱伝導を良好にできて作製しやすいように、第1鋳型ホルダ5aと第2鋳型ホルダ5bとを別体として、両者が接触するように構成してもよい。
鋳型ホルダ5の材質としては、使用温度域で形状に大きな変形が無く、製造するインゴットの特性に悪影響を与えるような物質の発生が無い安定な材料であればよい。鋳型ホルダ5は、例えば、セラミックス、石英、金属または黒鉛(グラファイト)などが使用可能である。なお、第1鋳型ホルダ5aおよび第2鋳型ホルダ5bは同じ材質でもよい。特に、鋳型ホルダ5は、例えば、熱伝導度が80〜150W/(m・K)の等方性黒鉛、熱伝導度が4〜60W/(m・K)の炭素繊維強化炭素材料、熱伝導度が0.1〜0.5W/(m・K)の黒鉛製フェルトを使用することができる。
板状部材8は、熱輻射量等が調節できる調節用の貫通孔8aを、鋳型1の底部および冷却手段7の冷却面7aのそれぞれに対向する部位に設けている板状の部材である。板状部材8は、例えば2mm〜30mm程度の厚みの板に孔あけ加工するだけでよい。このため、鋳型ホルダ5全体を加工して抜熱量等を調整する場合と比べて安価であり、交換および取り付け作業も容易となる。また、板状部材8の外観形状に特に制限はなく、平面視して例えば円形等であってもよい。
また、板状部材8は鋳型ホルダ5と同様な理由によって鋳型ホルダ5と同一材質でもよいが、例えば、板状部材8を、第1鋳型ホルダ5aおよび第2鋳型ホルダ5bよりも熱伝導率の小さい材質としてもよい。これにより、鋳型1の底部から冷却手段7への伝熱のうち、第1鋳型ホルダ5aと第2鋳型ホルダ5bとで熱伝導を、板状部材8で鋳型1からの熱輻射をそれぞれ主として制御することができる。また、第1鋳型ホルダ5aおよび第2鋳型ホルダ5bは炭素繊維強化炭素材料または黒鉛製フェルトで構成して、板状部材8は等方性黒鉛材料で構成することによって、板状部材8を、第1鋳型ホルダ5aと第2鋳型ホルダ5bよりも熱伝導率を小さくすることができる。これにより、互いに異なる熱伝導率の鋳型ホルダ5および板状部材8を用いることによって抜熱の制御がしやすくなる。
板状部材8による抜熱量(熱輻射量)の調整は、鋳型の底部外側の面積に対する第1鋳型ホルダ5aの開口部面積Saおよび第2鋳型ホルダ5bの開口部面積Sc(本実施形態ではSa=Sc)と、板状部材8に形成された貫通孔(開口部)の総面積Sbの比率(貫通孔面積比率)R1=Sb/Sa、R2=Sb/Sc(本実施形態ではR1=R2)で調整できる。ここで、貫通孔面積比率R1およびR2は、それぞれ0〜1の間で調整可能である。なお、本実施形態において、Sa=Scとして、R1=R2としたのは、鋳型ホルダ5において、熱伝導により抜熱する領域と、熱輻射により抜熱する領域とを区別することで、抜熱量の制御をしやすくするためである。
図2に示すように、板状部材8には、平面視で円形状の貫通孔8aを1つだけ設けてもよいし、図3〜5に示すように、複数の貫通孔8aを設けてもよい。また、図3〜8に示すように、各貫通孔の形状、面積、数、位置等を調整することが可能である。また、例えば図3〜5に示すように、貫通孔8aの配置を中央部(板状部材8を平面視した際、外形と中心を同じくする相似形の面積が、外形面積の1/4以下の領域)と端部(板状部材8を平面視した際、外形と中心を同じくする相似形の面積が、外形面積の1/4よりも広い領域)とで変えるなど、適宜設計することも可能である。これにより、鋳型1の底面からの抜熱量(熱輻射量)の分布を調整して、インゴット形状(インゴットの底面積、高さ)、鋳造用装置の個体差、継時的変化(例えば、炉内の断熱材の使用回数など)に適した抜熱量分布を得ることもできる。
また、図7,8に示すように、板状部材8の複数の貫通孔8aが冷却手段7が位置する側に向かって広がっていてもよい。これにより、各貫通孔8aからの熱輻射が拡散して冷却手段7に達することができるので、抜熱を効率よく行わせることができる。
本実施形態においては、貫通孔面積比率R1(=R2)が0.02〜0.80、さらに望ましくは0.04〜0.5であれば、インゴットに発生する応力およびクラックを低減できるのでよい。
また、第1鋳型ホルダ5aおよび第2鋳型ホルダ5bは、鋳型1および鋳型1内のシリコンを機械的に支持または保持するための機械的強度が求められる。このため、例えば、第1鋳型ホルダ5aおよび第2鋳型ホルダ5bは炭素繊維強化炭素材料で構成してもよい。また、この場合に、板状部材8は等方性黒鉛材料、黒鉛フェルト、セラミックスまたは高融点金属などで構成してもよい。このように、鋳型ホルダ5および板状部材8を、機械的または物理的性質が互いに異なる材質の組合せで使用してもよい。
鋳型ホルダ5を、鋳型1および冷却手段7に接触させて、熱伝導によって抜熱を行う場合、各部材の寸法等の変化(特に、接触面の平面度の経時変化)によって、接触状況が変化して、抜熱量の調整が不安定となりやすい。本実施形態による鋳造用装置Sでは、抜熱量を調整するための板状部材8は、少なくとも鋳型1と非接触であるので、熱輻射によっ
て抜熱量を調整することができる。このため、鋳型ホルダ5および板状部材8の経時変化の影響が小さく、冷却手段7による安定した抜熱量を得ることができる。
冷却手段7は、上部の冷却面で鋳型ホルダ5と接している。そして、冷却手段7を板状部材8と非接触にして、第1鋳型ホルダ5aまたは第2鋳型ホルダ5bに冷却手段7が接触している。これにより、冷却手段7の冷却面7aには、第1鋳型ホルダ5aおよび第2鋳型ホルダ5bを介して熱伝導によって抜熱する領域と、板状部材8を介して熱輻射によって抜熱する領域とを形成できる。この場合、熱伝導制御に寄与する領域は接触面積を大きくして、熱輻射制御に寄与する領域は熱輻射の反射を小さく(熱の吸収を大きく)するように、鋳型ホルダ5と板状部材8との表面に、例えば凹凸形状のような加工を施すと効率的な抜熱ができるのでよい。
冷却手段7による抜熱量は、冷却手段7に供給される冷媒(水など)の流量、冷媒の供給時と排出時との温度差をモニターすることによって測定可能である。本実施形態の板状部材8の交換によって、抜熱量を最適な範囲にできる。これにより、凝固中および凝固後冷却中のインゴットの温度勾配および温度分布を最適化することができる。
鋳型ホルダ5は、図10、11に示すように、鋳型1の周辺部は第1鋳型ホルダ5aおよび第2鋳型ホルダ5bを通じて伝熱によって鋳型1を抜熱し、鋳型1の底部における中央部は板状部材8を介して熱輻射によって鋳型1を抜熱してもよい。これにより、鋳型1の底部がシリコンの融点に近い鋳造初期(熱輻射による抜熱が支配的)と、鋳造中期以降(伝熱による抜熱が支配的)とのそれぞれについて、所望の抜熱量および抜熱量分布を得ることができる。
以上のように、本実施形態の鋳型用装置Sによれば、冷却手段7の冷却面7aと鋳型1の底部との間に、鋳型1の底部に対して非接触の状態で配置されていて、冷却手段7の冷却面7aに対して一主面が対向している板状部材8を備えている。これにより、鋳型1の底面からの冷却手段7による抜熱量を容易に制御できて、凝固時および凝固後冷却中のインゴット中の温度分布および温度勾配の制御を容易にできる。そして、インゴット内の残留応力を低減することができて、インゴット中に転位などの結晶欠陥が生成にくくなり、結晶欠陥に起因する、クラック発生を低減できる。
なお、本発明は上述した実施形態に限定されない。例えば、インゴットとして単結晶または擬似単結晶を製造する鋳型用装置に適用することも可能である。また、鋳型1内には予め配置した固体のシリコン原料を鋳型1内で加熱溶融して融液4を得てもよく、その後、融液4を鋳型1の底部から上部へ一方向凝固させるようにしてもよい。
以下、本発明の実施例について説明する。
鋳型1の部材として、高純度黒鉛からなる厚み2mmの側部材1bを4枚と、厚み5mmの底部材1aを1枚とを準備した。平均粒径0.5μmの窒化シリコン粉末と平均粒径20μmの二酸化珪素粉末とを秤量して、10質量%のポリビニルアルコール水溶液で攪拌混合してスラリー状にし離型材を得た。この離型材を側部材1bおよび底部材1aの表面に刷毛を用いて塗布した。そして、これをホットプレートに載せて乾燥し、離型材層2を得た。その後、離型材層2が内側になるように、側部材1bおよび底部材1aを組み合わせて、内寸500mm×500mm、深さ200mmの鋳型1を作製した。
この鋳型1の外周を覆うように、図1に示す形状の黒鉛からなる断熱材3を配置した。なお、断熱材3の厚みは30mmとした。
さらに、鋳型1の下部には鋳型1と断熱材3を保持するの鋳型ホルダ5を配置した。また、第1鋳型ホルダ5aと第2鋳型ホルダ5bは厚みが25mmの等方性黒鉛製であり、上方から見た時に同じ位置に同形状の開口部を設けたものを用いた。また、板状部材8は厚みが5mmの炭素繊維強化炭素材料製の板状部材に、平面視で円形の貫通孔8aを設けたものを用いた。表1に示すように、板状部材8の貫通孔8aは面積比率(大きさと数)、配置を変更したものを複数用意し、板状部材8を交換しながら、繰り返しインゴットの製造を行った。
ここで、実施例の条件No.2〜7は、図2に示すように円形の貫通孔8aを1つ形成してその面積を段階的に大きくしたものを用いた。また、条件No.8,9は円形の貫通孔8aを複数形成し、貫通孔8aを均一に形成した場合(図4を参照)と比べて、条件No.8では端部側の貫通孔の数(密度)を小さくし(図5を参照)、条件No.9では中央部の貫通孔の数(密度)を小さくした(図3を参照)。また、比較のため貫通孔を形成していない板状部材8も使用した(条件No.1)。
これらの鋳型1、断熱材3、鋳型ホルダ5は、鋳造用装置Sの冷却手段7上の所定位置
にセットした。冷却手段7はステンレス製であり、上部に面積が1600cmの板状部を有し、内部に水を循環させたものを用いた。また、冷却手段7は水の流量および供給時、排出時の水温を測定して抜熱量を実測した。表1に、インゴットの凝固開始後3時間の抜熱量を記載した。また、鋳型加熱手段6として黒鉛ヒーターを所定位置に配置した。
その後、坩堝11内に固体の原料シリコンを充填し、鋳造用装置Sの内部を11kPa
に減圧したアルゴン雰囲気とした。そして、黒鉛ヒーターからなる坩堝加熱手段12を用いて原料シリコンを融点(1414℃)以上に加熱して融液を作製した。さらに、黒鉛ヒーターからなる鋳型加熱手段6を用いて1000℃に加熱した鋳型1の内部に坩堝11から85kgの融液を注湯した。
次に、鋳型加熱手段6によって融液4の上面を加熱しながら、冷却手段7を鋳型ホルダ5に接触させて融液4を一方向凝固させて多結晶シリコンのインゴットを作製した。そして、固化したインゴットを冷却して鋳型1から取り出した。このインゴットをバンドソーを用いて切断し、インゴットの切断面におけるクラックの発生状況を調べた。
これらの結果を表1に示す。表1の評価結果において、凝固時間とインゴットのクラックの発生状況とを記号で示した。各記号の意味は通りである。
<凝固時間>
○:凝固時間が十分短く(貫通孔の面積比率が1の時の凝固時間を100%としての125%以下)、生産性が良好である。
△:凝固時間が短く(貫通孔の面積比率が1の時の凝固時間を100%として125%よりも長く、150%以下)、生産性は問題にならない程度である。
×:凝固時間が長く(貫通孔の面積比率が1の時の凝固時間を100%として150%以上)、生産性を低下させる。
<クラック状況>
○:クラックが全く観察されなかった。
△:クラックわずかに認められたが歩留りに影響のない許容範囲(インゴットとして使用可能)である。
×:歩留りに影響を与える(インゴットとして使用できない)クラックが認められた。
Figure 2015163575
表1から明らかなように、鋳型用装置Sに本実施例の鋳型ホルダ5を用いることで、クラックの低減されたインゴットが生産性良く、製造できることが確認できた。特に、貫通孔面積比率R1またはR2が0.02〜0.80であれば、凝固時間およびクラックの状況が許容範囲内であった(条件No.2〜6を参照)。さらに、貫通孔面積比率R1またはR2が0.04〜0.5(条件No.3〜5を参照)であれば、クラックの発生は見られなかった。また、貫通孔の配置態様は、板状部材8の中央部よりも端部に貫通孔を多く(貫通孔の平面視した場合の孔面積を多くして抜熱量を大きく)配置した方が、クラックの発生をより低減する効果が高かった(条件No.8,9を参照)。また、冷却手段の抜熱量には最適値(本実施例においては凝固後3時間で42〜58kWh)があることを確認した。融液4の凝固後3時間で42kWhよりも小さい場合、または58kWhよりも大きい場合には、インゴットの応力が大きくなって、クラックが発生しやすくなることを確認した。さらに、板状部材8の貫通孔8aの形状を平面視で円形以外に角形状等の種々の形状を用いた場合でも円形と同様な効果を確認できた。
1 :鋳型
1a:底部材
1b:側部材
1c:上部開口部
2 :離型材層
3 :断熱材
4 :融液
5:鋳型ホルダ
5a:第1鋳型ホルダ
5b:第2鋳型ホルダ
6 :鋳型加熱手段
7 :冷却手段
8 :板状部材
8a:貫通孔
S :鋳造用装置

Claims (7)

  1. 底部を有し、シリコンを主成分とする融液を保持し凝固させる鋳型と、
    該鋳型の前記底部の下方に配置されて、上面に冷却面を有する冷却手段と、
    該冷却手段の前記冷却面と前記鋳型の前記底部との間に、前記底部に対して非接触の状態で配置されているとともに前記冷却手段の前記冷却面に対して一主面が対向している板状部材と、を備えている鋳造用装置。
  2. 前記板状部材は、前記冷却手段の前記冷却面に対して非接触の状態で配置されている請求項1に記載の鋳造用装置。
  3. 前記板状部材は、前記鋳型の前記底部および前記冷却手段の前記冷却面のそれぞれに対向する部位に貫通孔を有している請求項1または2に記載の鋳造用装置。
  4. 前記鋳型および前記冷却板とに接触し、前記板状部材を保持する鋳型ホルダをさらに備えている請求項1乃至3のいずれかに記載の鋳造用装置。
  5. 前記板状部材は、前記鋳型ホルダよりも熱伝導率が小さい材料で構成されている請求項4に記載の鋳造用装置。
  6. 前記板状部材の前記貫通孔は、前記冷却手段が位置する側に向かって広がっている請求項3乃至5のいずれかに記載の鋳造用装置。
  7. 請求項1乃至6のいずれかに記載の鋳造用装置を用いて、前記鋳型内にシリコンの融液を入れた後に、前記板状部材によって前記鋳型からの抜熱量を調整しながら前記融液を前記鋳型の底部から上方へ一方向に凝固させるインゴットの製造方法。
JP2015014400A 2014-01-29 2015-01-28 鋳造用装置およびインゴットの製造方法 Expired - Fee Related JP6522963B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015014400A JP6522963B2 (ja) 2014-01-29 2015-01-28 鋳造用装置およびインゴットの製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014014632 2014-01-29
JP2014014632 2014-01-29
JP2015014400A JP6522963B2 (ja) 2014-01-29 2015-01-28 鋳造用装置およびインゴットの製造方法

Publications (2)

Publication Number Publication Date
JP2015163575A true JP2015163575A (ja) 2015-09-10
JP6522963B2 JP6522963B2 (ja) 2019-05-29

Family

ID=54186691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015014400A Expired - Fee Related JP6522963B2 (ja) 2014-01-29 2015-01-28 鋳造用装置およびインゴットの製造方法

Country Status (1)

Country Link
JP (1) JP6522963B2 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090280050A1 (en) * 2008-04-25 2009-11-12 Applied Materials, Inc. Apparatus and Methods for Casting Multi-Crystalline Silicon Ingots
US20110220012A1 (en) * 2010-03-12 2011-09-15 Gt Solar, Incorporated Crystal growth apparatus with load-centered aperture, and device and method for controlling heat extraction from a crucible
CN102392293A (zh) * 2011-10-31 2012-03-28 杭州精功机电研究所有限公司 一种晶硅铸锭炉热场热门控制装置及其控制方法
WO2013025072A2 (ko) * 2011-08-18 2013-02-21 한국화학연구원 반도체 또는 금속산화물 잉곳 제조장치
WO2013031923A1 (ja) * 2011-08-30 2013-03-07 京セラ株式会社 半導体インゴットの製造方法
JP2013112582A (ja) * 2011-11-30 2013-06-10 Sharp Corp 多結晶シリコンインゴット製造装置、多結晶シリコンインゴット、多結晶シリコンウエハ、多結晶シリコン太陽電池、多結晶太陽電池モジュール
US20130152851A1 (en) * 2011-12-15 2013-06-20 Spx Corporation Bulk Growth Grain Controlled Directional Solidification Device and Method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090280050A1 (en) * 2008-04-25 2009-11-12 Applied Materials, Inc. Apparatus and Methods for Casting Multi-Crystalline Silicon Ingots
US20110220012A1 (en) * 2010-03-12 2011-09-15 Gt Solar, Incorporated Crystal growth apparatus with load-centered aperture, and device and method for controlling heat extraction from a crucible
WO2013025072A2 (ko) * 2011-08-18 2013-02-21 한국화학연구원 반도체 또는 금속산화물 잉곳 제조장치
WO2013031923A1 (ja) * 2011-08-30 2013-03-07 京セラ株式会社 半導体インゴットの製造方法
CN102392293A (zh) * 2011-10-31 2012-03-28 杭州精功机电研究所有限公司 一种晶硅铸锭炉热场热门控制装置及其控制方法
JP2013112582A (ja) * 2011-11-30 2013-06-10 Sharp Corp 多結晶シリコンインゴット製造装置、多結晶シリコンインゴット、多結晶シリコンウエハ、多結晶シリコン太陽電池、多結晶太陽電池モジュール
US20130152851A1 (en) * 2011-12-15 2013-06-20 Spx Corporation Bulk Growth Grain Controlled Directional Solidification Device and Method

Also Published As

Publication number Publication date
JP6522963B2 (ja) 2019-05-29

Similar Documents

Publication Publication Date Title
JP2006273666A (ja) シリコン融解坩堝及びこれを用いたシリコン鋳造装置並びに多結晶シリコンインゴットの鋳造方法
JPWO2005092791A1 (ja) シリコン鋳造装置および多結晶シリコンインゴットの製造方法
JP4863637B2 (ja) シリコン鋳造装置及び多結晶シリコンインゴットの鋳造方法
JP2012140267A (ja) SiC単結晶の製造装置および製造方法
JP2007015905A (ja) 多結晶シリコンインゴット、多結晶シリコン基板、並びに太陽電池素子および多結晶シリコンインゴットの鋳造方法。
JP2006282495A (ja) 鋳型及びこれを用いた多結晶シリコンインゴットの製造方法
JP6401051B2 (ja) 多結晶シリコンインゴットの製造方法
CN100406161C (zh) 一种定向凝固铸造方法
JP2015163575A (ja) 鋳造用装置およびインゴットの製造方法
JP4931432B2 (ja) 多結晶シリコン鋳片製造用の鋳型
JP2002308616A (ja) 多結晶シリコンの製造方法
JP6075625B2 (ja) シリコン用鋳造装置およびシリコンの鋳造方法
JP4484501B2 (ja) シリコン鋳造用装置
JP4480357B2 (ja) 板状シリコン製造装置
JP2005211937A (ja) シリコン鋳造用鋳型とそれを用いたシリコン鋳造装置
JP2007063048A (ja) 半導体インゴット及び太陽電池素子の製造方法
JP4868757B2 (ja) 半導体インゴットの製造方法
JP2004322195A (ja) 一方向凝固シリコンインゴット及びこの製造方法並びにシリコン板及び太陽電池用基板
JP2006083024A (ja) 多結晶シリコンインゴットの鋳造方法、これを用いた多結晶シリコンインゴット、多結晶シリコン基板、並びに太陽電池素子
JP4741221B2 (ja) 多結晶シリコンの鋳造方法とこれを用いた多結晶シリコンインゴット、多結晶シリコン基板並びに太陽電池素子
JP5701287B2 (ja) ドーパント材、半導体基板、太陽電池素子、およびドーパント材の製造方法
JP4085521B2 (ja) シリコン鋳塊切断方法
JP2006272373A (ja) 鋳型及びこれを用いた鋳造装置並びに多結晶シリコンインゴットの製造方法
JP4340124B2 (ja) シリコン鋳造用装置
JP2003311391A (ja) 鋳造物の製造装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190425

R150 Certificate of patent or registration of utility model

Ref document number: 6522963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees