JP2015160239A - Method and apparatus for surface defect determination for continuously cast slab - Google Patents

Method and apparatus for surface defect determination for continuously cast slab Download PDF

Info

Publication number
JP2015160239A
JP2015160239A JP2014037707A JP2014037707A JP2015160239A JP 2015160239 A JP2015160239 A JP 2015160239A JP 2014037707 A JP2014037707 A JP 2014037707A JP 2014037707 A JP2014037707 A JP 2014037707A JP 2015160239 A JP2015160239 A JP 2015160239A
Authority
JP
Japan
Prior art keywords
mold
principal component
temperature measuring
slab
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014037707A
Other languages
Japanese (ja)
Other versions
JP6119640B2 (en
Inventor
章敏 松井
Akitoshi Matsui
章敏 松井
裕美 吉冨
Yumi Yoshitomi
裕美 吉冨
則親 荒牧
Norichika Aramaki
則親 荒牧
三木 祐司
Yuji Miki
祐司 三木
山田 敏雄
Toshio Yamada
敏雄 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014037707A priority Critical patent/JP6119640B2/en
Publication of JP2015160239A publication Critical patent/JP2015160239A/en
Application granted granted Critical
Publication of JP6119640B2 publication Critical patent/JP6119640B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a method and an apparatus for surface defect determination for a continuously cast slab, enabling a high quality slab to be produced.SOLUTION: The method for surface defect determination for a continuously cast slab related to the present invention comprises: a cast mold copper plate temperature acquisition step of acquiring a cast mold copper plate temperature measured by thermocouples (temperature measuring elements) 5; a main component analysis step of calculating a main component score by carrying out the main component analysis on the basis of the acquired cast mold copper plate temperature; and a main component score determination step of determining presence or absence of defects in the surface of a cast metal on the basis of the calculated main component score. The thermocouples 5 are embedded in a cast mold long side and are arranged in such a manner that: in the casting direction, a position of the uppermost stage temperature measuring element is within 250 mm from a molten metal surface control level, a position of the lowermost stage temperature measuring element is away from the molten metal surface control level by 500 mm or more, and a gap between adjacent temperature measuring elements is 250 mm or less; and in the cast mold width direction, positions of the temperature measuring elements installed at points closest to both short sides are within 250 mm along a direction from the position of intersection of a short side face with a long side face of a sab width being a measurement object toward a center in the cast mold width, and a gap between adjacent temperature measuring elements is 250 mm or less.

Description

本発明は、スラブの連続鋳造に用いる鋳型に測温素子を埋設し、該測温素子によって得られる鋳型銅板温度の測温値に基づいてスラブ表面欠陥の判定行う連続鋳造スラブの表面欠陥判定方法及び装置に関する。   The present invention relates to a method for determining a surface defect of a continuous casting slab in which a temperature measuring element is embedded in a mold used for continuous casting of a slab, and a slab surface defect is determined based on a temperature measurement value of a mold copper plate temperature obtained by the temperature measuring element. And an apparatus.

近年、高級鋼製品の品質要求が厳しくなっており、鋳片(スラブ)段階すなわち連続鋳造段階からの高品質化が要望されている。
製品段階での表面欠陥の1つに、鋳型内溶鋼湯面上に散布したモールドパウダーに起因するものが挙げられる。例えば、鋳型内溶鋼湯面の表面流速が早すぎる場合には、モールドパウダーが溶鋼中に巻き込まれることが知られており、このモールドパウダーが表面欠陥の要因となる。また、鋳型内溶鋼湯面の変動量が大きい場合にも、モールドパウダーが溶鋼中にトラップされ、上記と同様に表面欠陥の要因となる。
あるいは、溶鋼中に存在するアルミナ(Al23)などの脱酸生成物やArガス気泡、あるいはその他の異物が凝固シェルへ捕捉されることも表面欠陥要因として挙げられる。これら凝固シェルに補足されたモールドパウダー等を除去せずに圧延した場合には、圧延後の鋼板製品においてヘゲ・スリバーなどと呼ばれる表面疵欠陥となり、鋼板製品の歩留まりを低下させる。
In recent years, quality requirements for high-grade steel products have become stricter, and there is a demand for higher quality from the slab stage, that is, from the continuous casting stage.
One of the surface defects at the product stage is that caused by mold powder spread on the molten steel surface in the mold. For example, when the surface flow velocity of the molten steel surface in the mold is too fast, it is known that mold powder is caught in the molten steel, and this mold powder causes surface defects. Further, even when the amount of fluctuation of the molten steel surface in the mold is large, the mold powder is trapped in the molten steel and causes surface defects as described above.
Alternatively, deoxidation products such as alumina (Al 2 O 3 ), Ar gas bubbles, or other foreign substances present in the molten steel may be trapped in the solidified shell as a cause of surface defects. When rolling without removing the mold powder or the like captured by these solidified shells, a surface flaw defect called “hege sliver” or the like occurs in the steel sheet product after rolling, and the yield of the steel sheet product is reduced.

そこで、連続鋳造工程では、このような欠陥発生を防止するために、鋳型内の溶鋼に磁場を印加して鋳型内溶鋼流動を制御し、モールドパウダー等の巻き込み・トラップを防止することが一般的に行われている(例えば、特許文献1参照)。   Therefore, in the continuous casting process, in order to prevent the occurrence of such defects, it is common to apply a magnetic field to the molten steel in the mold to control the molten steel flow in the mold and prevent entrapment and trapping of mold powder and the like. (For example, refer to Patent Document 1).

しかしながら、溶鋼に磁場を印加して鋳型内溶鋼流動を制御しても、操業変動などに起因してモールドパウダー等の巻き込み・トラップが生ずるため、上記鋳片表面欠陥を完全に抑制することは困難である。
そのため、鋳型内溶鋼流動の変化を鋳型銅板に埋め込まれた熱電対の温度変化で捉えることで、鋳片表面の欠陥発生の有無を判定し、この判定結果に基づいて連続鋳造工程で何らかの措置を講じたり、あるいは鋳片手入れを行う技術が提案されている。
However, even if the molten steel flow is controlled by applying a magnetic field to the molten steel, it is difficult to completely suppress the above slab surface defects because entrainment and trapping of mold powder, etc. occur due to operational fluctuations. It is.
Therefore, by detecting the change in the molten steel flow in the mold with the temperature change of the thermocouple embedded in the mold copper plate, the presence or absence of defects on the surface of the slab is determined, and based on the determination result, some measures are taken in the continuous casting process. Techniques for taking or slab care have been proposed.

例えば、特許文献2には、連続鋳造用鋳型の鋳型長辺銅板背面の幅方向に複数の測温素子を配置して鋳型長辺銅板幅方向の温度分布を測定し、測定された温度分布の最大値と最小値との差が12℃以下となるように、鋳型に取り付けた磁場発生装置の磁場強度、鋳造速度、浸漬ノズルの浸漬深さ、浸漬ノズル内へのAr吹き込み量のうち何れか1つまたは2つ以上を調整することが開示されている。   For example, in Patent Document 2, a plurality of temperature measuring elements are arranged in the width direction on the back side of the long-side copper plate of a continuous casting mold to measure the temperature distribution in the width direction of the long-side copper plate, and the measured temperature distribution Any of the magnetic field strength of the magnetic field generator attached to the mold, the casting speed, the immersion depth of the immersion nozzle, and the amount of Ar blown into the immersion nozzle so that the difference between the maximum value and the minimum value is 12 ° C. or less. Adjusting one or more is disclosed.

また、特許文献3には、連続鋳造用鋳型の幅方向各点における鋳型銅板温度または熱流束を測定するとともに鋳型幅方向のこれらの分布を監視し、これらの鋳型幅方向の分布状態が時間的に大きく変化した場合に、鋳片表面に縦割れが発生したと判定する表面欠陥検出方法が開示されている。   Further, in Patent Document 3, the mold copper plate temperature or the heat flux at each point in the width direction of the continuous casting mold is measured and the distribution in the mold width direction is monitored, and the distribution state in the mold width direction is temporal. A surface defect detection method for determining that vertical cracks have occurred on the surface of a slab when there has been a significant change to the above is disclosed.

更に、特許文献4では、鋳型内溶鋼を水平方向に旋回させる移動磁場を印加しつつ、鋳型長辺銅板背面に埋設した測温素子を用いて銅板温度を測定し、鋳型空間の軸心線を対称軸として対称位置に配置された、それぞれの測温素子同士の測定結果を比較し、両者のうちの高い方の測定温度に対する低い方の測定温度の比が0.85よりも小さくなった場合に鋳片表面に欠陥が発生したと判定する方法が開示されている。   Furthermore, in Patent Document 4, while applying a moving magnetic field that causes the molten steel in the mold to turn in the horizontal direction, the copper plate temperature is measured using a temperature measuring element embedded in the back side of the long copper plate, and the axis of the mold space is When the measurement results of the respective temperature measuring elements arranged at the symmetrical positions as the symmetry axis are compared, and the ratio of the lower measured temperature to the higher measured temperature of both becomes smaller than 0.85 Discloses a method for determining that a defect has occurred on the surface of a slab.

特許文献5には、多数(多種類)の操業データを少数(少種類)の変数(特徴量と称する)で表現できるように変換し、その代表値となる特徴量と品質データとの対応についての実績データベースを用いて製品の品質を予測する技術が開示されている。   In Patent Document 5, a large number (many types) of operation data is converted so that it can be expressed by a small number (small types) of variables (referred to as feature amounts), and the correspondence between the feature amounts that are representative values and the quality data is disclosed. A technology for predicting the quality of a product using a performance database is disclosed.

特開平10−305353号公報JP-A-10-305353 国際公開第2000/51763号International Publication No. 2000/51763 特開平2−151356号公報Japanese Patent Laid-Open No. 2-151356 特開2009−214150号公報JP 2009-214150 A 特許第5169096号公報Japanese Patent No. 5169096

しかしながら、上記従来技術には以下の問題点がある。
即ち、特許文献2及び特許文献3では、鋳型の幅方向の温度分布に基づいて表面欠陥の発生を判定しているが、移動磁場を用いて鋳型内の溶鋼を水平旋回させた場合には、鋳型銅板温度の分布は鋳型の軸中心に対して基本的に幅方向左右で非対称となり、しかも、鋳造速度、鋳片幅、磁場強度などに応じて鋳型幅方向の銅板温度分布パターンが変化するので、単純な銅板温度の高低や最大値と最小値の差などからは、鋳片表面の欠陥発生を判定できない。つまり、特許文献2及び特許文献3は、鋳型幅方向の温度分布がほぼ均一な鋳造条件を前提としており、鋳型内の溶鋼を水平旋回させるような場合には適用ができない。
However, the above prior art has the following problems.
That is, in Patent Document 2 and Patent Document 3, the occurrence of surface defects is determined based on the temperature distribution in the width direction of the mold, but when the molten steel in the mold is horizontally swung using a moving magnetic field, The mold copper plate temperature distribution is basically asymmetrical in the width direction with respect to the mold axis center, and the copper plate temperature distribution pattern in the mold width direction changes depending on the casting speed, slab width, magnetic field strength, etc. The occurrence of defects on the surface of the slab cannot be determined from the level of simple copper plate temperature or the difference between the maximum and minimum values. In other words, Patent Document 2 and Patent Document 3 are based on casting conditions in which the temperature distribution in the mold width direction is substantially uniform, and cannot be applied to the case where the molten steel in the mold is swirled horizontally.

一方、特許文献4は鋳型内流動変化に伴う銅板温度変化をとらえ、欠陥判定を行うものである。この方法では、流速低下領域が欠陥が生ずる領域であると判定されるが、その領域に欠陥要因となる脱酸生成物やAr気泡、モールドパウダーやその他異物が存在しない場合には、凝固シェルには何も捕捉されないため製品欠陥とはならない。即ち、この方法では欠陥発生を過剰に検知・判定してしまう可能性がある。   On the other hand, Patent Document 4 captures a change in the temperature of a copper plate accompanying a change in flow in a mold and performs defect determination. In this method, it is determined that the flow velocity reduction region is a region where defects occur, but if there are no deoxidation products, Ar bubbles, mold powder, or other foreign substances that cause defects in the region, the solidified shell Is not a product defect because nothing is captured. That is, this method may detect and determine the occurrence of defects excessively.

特許文献5はデータベースを用いた製品品質予測技術であるが、データベースの保管・管理・読み出しのための設備・制御システムが必要となり設備投資費の高騰化が懸念される。また、特許文献5の実施例では、モールド銅板温度を用いた製品品質予測例が提示されているが、品質予測に必要な銅板温度データ数(銅板に埋設する熱電対の本数)に関して言及されていない。   Patent Document 5 is a product quality prediction technique using a database, but a facility / control system for storing / managing / reading the database is required, and there is a concern that the capital investment cost will rise. Moreover, in the Example of patent document 5, although the product quality prediction example using a mold copper plate temperature is shown, it is mentioned regarding the number of copper plate temperature data required for quality prediction (the number of thermocouples embedded in a copper plate). Absent.

本発明は、上記のような課題を解決するためになされたものであり、設備投資費を高騰化させることなく、高品質なスラブを製造可能な連続鋳造スラブの表面欠陥判定方法及び装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and obtains a surface defect determination method and apparatus for a continuous cast slab capable of producing a high-quality slab without increasing capital investment costs. For the purpose.

(1)本発明に係る連続鋳造スラブの表面欠陥判定方法は、鋳型長辺に埋設した測温素子によって鋳型銅板温度を測定し、該測温値に基づいてスラブ表面欠陥の判定を行う連続鋳造スラブの表面欠陥判定方法であって、
鋳型長辺に埋設する前記測温素子の配置を、
鋳造方向については、最上段の測温素子の位置を湯面制御レベルから250mm以内、最下段の測温素子の位置を湯面制御レベルから500mm以上離れた位置、隣り合う測温素子間の間隔を250mm以下とし、
鋳型幅方向については、両短辺に最も近い箇所に設置された測温素子の位置を測定対象のスラブ幅の短辺面と長辺面の交線の位置から、鋳型幅中央に向かう方向に沿って250mm以内、隣り合う測温素子間の間隔を250mm以下とし、
上記のように配置された前記測温素子によって測定された鋳型銅板温度を取得する鋳型銅板温度取得工程と、
該取得された鋳型銅板温度に基づいて主成分分析を行って主成分スコアを算出する主成分分析工程と、
該算出された主成分スコアに基づいて鋳片表面の欠陥発生の有無を判定する主成分スコア判定工程とを備えたことを特徴とするものである。
(1) A method for determining surface defects of a continuous cast slab according to the present invention is a continuous casting in which a mold copper plate temperature is measured by a temperature measuring element embedded in the long side of the mold, and a slab surface defect is determined based on the measured temperature value. A method for determining surface defects of a slab,
The arrangement of the temperature measuring element embedded in the long side of the mold,
Regarding the casting direction, the position of the top temperature sensor is within 250 mm from the molten metal surface control level, the position of the bottom temperature sensor is 500 mm or more away from the molten metal surface control level, and the distance between adjacent temperature sensors. Is 250 mm or less,
Regarding the mold width direction, the position of the temperature measuring element installed at the location closest to both short sides is changed from the position of the intersection of the short side surface and long side surface of the slab width to be measured toward the mold width center. Within 250 mm, and the interval between adjacent temperature measuring elements is 250 mm or less,
A mold copper plate temperature acquisition step of acquiring a mold copper plate temperature measured by the temperature measuring element arranged as described above,
A principal component analysis step of calculating a principal component score by performing a principal component analysis based on the acquired mold copper plate temperature;
And a principal component score determining step for determining whether or not a defect has occurred on the surface of the slab based on the calculated principal component score.

(2)また、上記(1)に記載のものにおいて、最下段の測温素子の位置を湯面制御レベルから鋳造方向に750mm以内としたことを特徴とするものである。 (2) Further, in the device described in (1) above, the position of the lowest temperature measuring element is within 750 mm in the casting direction from the molten metal surface control level.

(3)また、上記(1)又は(2)に記載のものにおいて、主成分スコア判定工程が、主成分スコアが所定の閾値を超えた場合に、欠陥発生と判定することを特徴とするものである。 (3) In the above (1) or (2), the principal component score determining step determines that a defect has occurred when the principal component score exceeds a predetermined threshold value. It is.

(4)本発明に係る連続鋳造スラブの表面欠陥判定装置は、鋳型長辺に埋設した測温素子によって鋳型銅板温度を測定し、該測温値に基づいて連続鋳造スラブ表面欠陥を判定する連続鋳造スラブの表面欠陥判定装置であって、
鋳型長辺に埋設された測温素子群と、該測温素子群の各測温素子によって測定された鋳型銅板温度を取得する鋳型銅板温度取得手段と、該取得された鋳型銅板温度に基づいて主成分分析を行って主成分スコアを算出する主成分分析手段と、該算出された主成分スコアに基づいて鋳片表面の欠陥発生の有無を判定する主成分スコア判定手段とを備え、
前記測温素子群を構成する測温素子の配置を、
鋳造方向については、最上段の測温素子の位置を湯面制御レベルから250mm以内、最下段の測温素子の位置を湯面制御レベルから500mm以上離れた位置、隣り合う測温素子間の間隔を250mm以下とし、
鋳型幅方向については、両短辺に最も近い箇所に設置された測温素子の位置を測定対象のスラブ幅の短辺面と長辺面の交線の位置から、鋳型幅中央に向かう方向に沿って250mm以内、隣り合う測温素子間の間隔を250mm以下としたことを特徴とするものである。
(4) The continuous casting slab surface defect determination device according to the present invention measures the mold copper plate temperature with a temperature measuring element embedded in the long side of the mold, and continuously determines the continuous casting slab surface defect based on the measured temperature value. A device for determining surface defects of a cast slab,
A temperature measuring element group embedded in the mold long side, a mold copper plate temperature acquisition means for acquiring a mold copper plate temperature measured by each temperature measuring element of the temperature measuring element group, and based on the acquired mold copper plate temperature A principal component analysis means for calculating a principal component score by performing a principal component analysis, and a principal component score determination means for determining the presence or absence of defects on the slab surface based on the calculated principal component score,
The arrangement of the temperature measuring elements constituting the temperature measuring element group,
Regarding the casting direction, the position of the top temperature sensor is within 250 mm from the molten metal surface control level, the position of the bottom temperature sensor is 500 mm or more away from the molten metal surface control level, and the distance between adjacent temperature sensors. Is 250 mm or less,
Regarding the mold width direction, the position of the temperature measuring element installed at the location closest to both short sides is changed from the position of the intersection of the short side surface and long side surface of the slab width to be measured toward the mold width center. The distance between adjacent temperature measuring elements is 250 mm or less.

(5)また、上記(4)に記載のものにおいて、最下段の測温素子の位置を湯面制御レベルから鋳造方向に750mm以内としたことを特徴とするものである。 (5) Further, in the device described in (4) above, the position of the lowest temperature measuring element is within 750 mm in the casting direction from the molten metal surface control level.

(6)また、上記(4)又は(5)に記載のものにおいて、主成分スコア判定手段が、主成分スコアが所定の閾値を超えた場合に、欠陥発生と判定することを特徴とするものである。 (6) In the above (4) or (5), the principal component score determining means determines that a defect has occurred when the principal component score exceeds a predetermined threshold. It is.

本発明においては、測温素子の配置を、鋳造方向については、最上段の測温素子の位置が湯面制御レベルから250mm以内、最下段の測温素子の位置が湯面制御レベルから500mm以上離れた位置、隣り合う測温素子間の間隔が250mm以下とし、鋳型幅方向については、両短辺に最も近い箇所に設置された測温素子の位置が測定対象のスラブ幅の短辺面と長辺面の交線の位置から鋳型幅中央に向かう方向に沿って250mm以内、隣り合う測温素子間の間隔が250mm以下とし、上記のように配置された測温素子によって測定された鋳型銅板温度を取得する鋳型銅板温度取得工程と、取得された鋳型銅板温度に基づいて主成分分析を行って主成分スコアを算出する主成分分析工程と、該算出された主成分スコアに基づいてスラブ表面の欠陥発生の有無を判定する主成分スコア判定工程とを備えたことにより、設備投資費を高騰化させることなく、測定温度に基づいた欠陥発生の有無を高精度で判定可能である。また、判定結果に基づいてスラブ表面の欠陥を適切に処置することで、高品質なスラブを製造可能となる。   In the present invention, with regard to the arrangement of the temperature measuring elements, in the casting direction, the position of the uppermost temperature measuring element is within 250 mm from the molten metal surface control level, and the position of the lowermost temperature measuring element is 500 mm or more from the molten metal surface control level. The distance between adjacent temperature measuring elements is 250 mm or less, and in the mold width direction, the position of the temperature measuring element installed at a location closest to both short sides is the short side surface of the slab width to be measured. The copper plate of the mold measured by the temperature measuring elements arranged as described above, within 250 mm along the direction from the position of the intersecting line of the long side surface to the center of the mold width, and the interval between the adjacent temperature measuring elements is 250 mm or less. A mold copper plate temperature acquisition step for acquiring temperature, a principal component analysis step for calculating a principal component score by performing principal component analysis based on the acquired mold copper plate temperature, and a slab table based on the calculated principal component score By having a main component score determination step of determining whether the occurrence of defects, without rising the capital expenditure can determine presence of defects based on the measured temperature with high accuracy. Moreover, a high quality slab can be manufactured by appropriately treating defects on the surface of the slab based on the determination result.

本発明の一実施の形態に係る連続鋳造スラブの表面欠陥判定装置の説明図である。It is explanatory drawing of the surface defect determination apparatus of the continuous casting slab which concerns on one embodiment of this invention. 本発明に至った経緯を説明するための実験における測温素子の配置の説明図である。It is explanatory drawing of arrangement | positioning of the temperature measuring element in the experiment for demonstrating the process which led to this invention. 本発明に至った経緯を説明するための実験に係る鋳型銅板温度と鋳造時間との関係を示すグラフである(その1)。It is a graph which shows the relationship between the mold copper plate temperature which concerns on the experiment for demonstrating the process which led to this invention, and casting time (the 1). 本発明に至った経緯を説明するための実験に係る鋳型銅板温度と鋳造時間との関係を示すグラフである(その2)。It is a graph which shows the relationship between the mold copper plate temperature which concerns on the experiment for demonstrating the process which led to this invention, and casting time (the 2). 本発明に至った経緯を説明するための実験に係る鋳型銅板温度と鋳造時間との関係を示すグラフである(その3)。It is a graph which shows the relationship between the mold copper plate temperature which concerns on the experiment for demonstrating the process which led to this invention, and casting time (the 3). 本発明に至った経緯を説明するための実験に係る主成分分析結果を表すグラフである。It is a graph showing the principal component analysis result which concerns on the experiment for demonstrating the process which led to this invention. 本発明の一実施の形態に係る連続鋳造スラブの表面欠陥判定方法のフローチャートである。It is a flowchart of the surface defect determination method of the continuous casting slab which concerns on one embodiment of this invention. 本発明の実施例2に係る実験結果のグラフである。It is a graph of the experimental result which concerns on Example 2 of this invention.

以下、本発明の実施の形態に係る連続鋳造スラブの表面欠陥判定方法及び装置を詳細に説明する前に、まず本発明に至った経緯について説明する。   Before explaining in detail the surface defect determination method and apparatus for a continuous cast slab according to an embodiment of the present invention, the background to the present invention will be described first.

<本発明に至った経緯>
本発明者らは、スラブ連続鋳造機での種々の鋳造条件下において、鋳型内鋳造方向及び鋳型幅方向の鋳型長辺面銅板温度のプロファイルを調査した。その場合に、相対する鋳型長辺銅板には、向かい合ったほぼ同一の箇所に、測温素子として熱電対5を埋め込み(図1参照)、それぞれの鋳型長辺銅板の温度を測定した。
<Background to the Present Invention>
The inventors of the present invention investigated the profile of the mold long side copper plate temperature profile in the mold casting direction and the mold width direction under various casting conditions in a slab continuous casting machine. In that case, the thermocouple 5 was embedded as a temperature measuring element in the almost identical location facing each other in the opposite mold long side copper plates (see FIG. 1), and the temperature of each of the mold long side copper plates was measured.

鋳型長辺銅板における熱電対5の配置について、図2に基づいて説明する。
鋳造方向については、図2に示すように、湯面制御レベルからの距離が50mmの点を始点として100mmピッチで、A段からI段までの合計9段となるように熱電対5を設けた。湯面制御レベルとは、タンディッシュから溶鋼を鋳型に注入する際、注入量自動制御の目標とする湯面レベルのことである。
鋳型幅方向については、130mmピッチで第1列から第16列までの16列の熱電対5を設けた。なお、鋳型銅板上面から湯面制御レベルまでの距離は50mmである。このように鋳型長辺面のほぼ全域にわたって熱電対5を埋設することで、鋳型全体の銅板温度プロファイルを測定することができる。
このような熱電対群を有する鋳型3を用いて種々の鋳造条件において銅板温度分布の測定を行いつつ、スラブを製造した。更に、製造したスラブを圧延して、オンライン表面欠陥計にて表面欠陥を連続的に測定し、製品における表面欠陥発生位置と鋳型銅板温度の測定結果を対比調査した。
The arrangement of the thermocouple 5 on the long side copper plate will be described with reference to FIG.
As for the casting direction, as shown in FIG. 2, the thermocouple 5 was provided so that there were a total of 9 stages from the A stage to the I stage at a pitch of 100 mm starting from the point where the distance from the molten metal level control level was 50 mm. . The molten metal surface control level is a molten metal surface level targeted for automatic injection amount control when molten steel is poured from a tundish into a mold.
In the mold width direction, 16 rows of thermocouples 5 from the first row to the 16th row were provided at a pitch of 130 mm. The distance from the upper surface of the mold copper plate to the hot water level control level is 50 mm. Thus, by embedding the thermocouple 5 over almost the entire long side surface of the mold, the copper plate temperature profile of the entire mold can be measured.
Using the mold 3 having such a thermocouple group, a slab was manufactured while measuring the copper plate temperature distribution under various casting conditions. Furthermore, the manufactured slab was rolled, surface defects were continuously measured with an on-line surface defect meter, and the measurement results of the surface defect occurrence position in the product and the mold copper plate temperature were compared and investigated.

表面欠陥測定では、図2における熱電対5の2列目の位置に対応する位置において製品にヘゲが発生しているのを発見した。そして、発見したヘゲ発生位置から欠陥の原因を有するスラブ位置が鋳造された時間帯を調べたところ、ヘゲが発生したのは鋳造開始から1100〜1250秒の時間帯であることが分かった。   In the surface defect measurement, it was found that scabs were generated in the product at a position corresponding to the position of the second row of the thermocouple 5 in FIG. And, when the time zone in which the slab position having the cause of the defect was cast was examined from the found hege occurrence position, it was found that the hege was generated in the time zone from 1100 to 1250 seconds from the start of casting. .

この時間帯を含む2列目位置でのA段〜I段の銅板温度の測定結果を図3〜図5に示す。図3〜図5において、縦軸は鋳型銅板温度(℃)を表し、横軸は鋳造開始からの鋳造時間(sec.:秒)を表しており、図3(a)は2列目A段、図3(b)は2列目B段、図3(c)は2列目C段、図4(d)は2列目D段、図4(e)は2列目E段、図4(f)は2列目F段、図5(g)は2列目G段、図5(h)は2列目H段、図5(i)は2列目I段の銅板温度の測定結果をそれぞれ表している。   The measurement results of the A-stage to I-stage copper plate temperatures at the second row position including this time zone are shown in FIGS. 3 to 5, the vertical axis represents the mold copper plate temperature (° C.), the horizontal axis represents the casting time (sec .: second) from the start of casting, and FIG. 3 (b) is the second row B stage, FIG. 3 (c) is the second row C stage, FIG. 4 (d) is the second row D stage, FIG. 4 (e) is the second row E stage, FIG. 4 (f) is the second row F stage, FIG. 5 (g) is the second row G stage, FIG. 5 (h) is the second row H stage, and FIG. 5 (i) is the second row I stage copper plate temperature. Each measurement result is shown.

本発明者らは、まず、単純に鋳型銅板温度変化挙動をとらえることで欠陥判定ができないかを検討した。
しかしながら、図3〜図5に示すとおり、ヘゲ発生時間帯において、いくつかの熱電対5の温度挙動に若干の変化が見られるものの、同様の温度変化挙動はヘゲ発生の無い時間帯においても観察されるため、単純に鋳型銅板温度変化挙動からのみでは、欠陥判定は困難であると考えられる。
また、埋設された多数の熱電対5の中から、わずかな温度変化挙動を見極めるのはデータ処理の観点からも容易ではない。
The inventors first examined whether a defect could be determined by simply capturing the temperature change behavior of the mold copper plate.
However, as shown in FIG. 3 to FIG. 5, although some changes are observed in the temperature behavior of some thermocouples 5 in the time period when the shave is generated, the same temperature change behavior is observed in the time period when there is no shave. Therefore, it is considered that the defect determination is difficult only from the temperature change behavior of the mold copper plate.
In addition, it is not easy from the viewpoint of data processing to determine a slight temperature change behavior among a large number of embedded thermocouples 5.

そこで、本発明者らは、ヘゲ発生時間帯における鋳型銅板温度の特異性を見出すために様々な解析を試み、主成分分析を用いた判定手法を見出した。主成分分析とは、多くの観測変数から、特徴を表す新たな変数を合成する統計解析手法であり、特異点を見出すのに適した手法である。
以下、主成分分析の具体的な方法について、鋳型銅板に埋設した熱電対5の本数が72本であった場合を例に挙げて説明する。
1秒毎に72本の熱電対5から温度データが取得できるとした場合、t秒間分の温度の時系列データXは下式(1)で表される。ただし、式(1)においてTは温度を表している。
Therefore, the present inventors tried various analyzes in order to find the peculiarities of the mold copper plate temperature in the time of occurrence of the beard, and found a determination method using principal component analysis. Principal component analysis is a statistical analysis method that synthesizes new variables representing features from many observed variables, and is a method suitable for finding singular points.
Hereinafter, a specific method of principal component analysis will be described by taking as an example the case where the number of thermocouples 5 embedded in the mold copper plate is 72.
When it is assumed that temperature data can be acquired from 72 thermocouples 5 per second, time series data X of temperature for t seconds is expressed by the following equation (1). However, in formula (1), T represents temperature.

この温度の時系列データXは、例えば3つの主成分(第1主成分〜第3主成分)に重み付けし、それらを組み合わせることによって、近似することができる。ここで、第1主成分〜第3主成分とは温度の時系列データを表現するための代表的なパターン(時間に対する値の変化)である。
なお、主成分の数は任意に設定する事が可能であるが、変数がむやみに増加するだけで傾向に大差が無いこともあるため、今回は第1主成分〜第3主成分までとした。
第1主成分〜第3主成分は、下式(2)に示す72次元ベクトル(y1、y2、y3)で表される(基底ベクトル)。
The time series data X of temperature can be approximated by, for example, weighting three main components (first to third main components) and combining them. Here, the first principal component to the third principal component are representative patterns (changes in value with respect to time) for expressing time series data of temperature.
Although the number of principal components can be set arbitrarily, there may be no significant difference in the trend only because the variables increase unnecessarily. .
The first principal component to the third principal component are represented by 72-dimensional vectors (y 1 , y 2 , y 3 ) represented by the following formula (2) (basic vectors).

これらに対して、温度の時系列データ毎に主成分スコアai jが計算される。主成分スコアai jとは、上述した第1主成分〜第3主成分への重み付けの値であり、この3つの主成分スコアai jに着目することで、温度の時系列データの中から特異点を抽出することが可能となる。
式(1)で表される温度の時系列データXは、第1主成分〜第3主成分(y1、y2、y3)と主成分スコアai jを用いて下式(3)で近似できる。
In contrast, a principal component score a i j is calculated for each time-series data of temperature. The principal component score a i j is a weighting value for the first to third principal components described above. By paying attention to these three principal component scores a i j , It is possible to extract singular points from
The time series data X of the temperature expressed by the equation (1) is expressed by the following equation (3) using the first to third principal components (y 1 , y 2 , y 3 ) and the principal component score a i j. Can be approximated by

なお、主成分分析については汎用の統計解析ソフトを用いることで瞬時に解析を行い、主成分スコアを算出することが可能である。図3〜図5に示したものと同一チャージの鋳造期間中の長辺面の全測定温度データ(即ち、「1−A」〜「16−I」)に対して主成分分析を行った結果を主成分毎に図6に示す。
図6において、縦軸は主成分スコアの絶対値を表し、横軸は鋳造時間(sec.:秒)を表しており、図6(a)は第1主成分スコア、図6(b)は第2主成分スコア、図6(c)は第3主成分スコアのグラフである。
上述したとおり、主成分スコアとは、第1主成分〜第3主成分のそれぞれの重みに相当し、多数の温度データを特徴付ける新たな変数であり、この値が大きいほど平均的な測定値に対して特異性があることを示している。
また、主成分スコアに関してはマイナスの値が出ることもあるが、今回はその変動を調査するのが目的であるため、主成分スコアの絶対値をとって評価を行った。
The principal component analysis can be performed instantaneously by using general-purpose statistical analysis software, and the principal component score can be calculated. Results of principal component analysis on all measured temperature data (ie, “1-A” to “16-I”) of the long side surface during the casting period of the same charge as shown in FIGS. Is shown in FIG. 6 for each main component.
In FIG. 6, the vertical axis represents the absolute value of the principal component score, the horizontal axis represents the casting time (sec .: second), FIG. 6 (a) is the first principal component score, and FIG. The second principal component score, FIG. 6C, is a graph of the third principal component score.
As described above, the principal component score is a new variable that characterizes a large number of temperature data, corresponding to the respective weights of the first principal component to the third principal component. It shows that there is specificity.
In addition, although a negative value may appear for the principal component score, this time the purpose is to investigate the variation, so the evaluation was performed by taking the absolute value of the principal component score.

図6によると、ヘゲ発生時間帯である1100秒〜1250秒付近において第1主成分〜第3主成分スコアのいずれもが大きく変動していることが明らかに分かる。このように、測定した温度データに対して主成分分析を行い、主成分スコアの変動を監視することで、表面欠陥判定が可能となることを本発明者らは突き止めた。
なお、主成分分析の対象となる銅板温度データは同一チャージ内のデータに限定した方が好ましい。これは、例えば、当該チャージと次のチャージで溶鋼成分や溶鋼温度が異なる場合に、銅板温度挙動が異なるケースが発生するためである。
FIG. 6 clearly shows that all of the first principal component to the third principal component score greatly fluctuate in the vicinity of 1100 seconds to 1250 seconds, which is the time of occurrence of the beard. Thus, the present inventors have found that surface defect determination can be performed by performing principal component analysis on the measured temperature data and monitoring fluctuations in the principal component score.
It is preferable that the copper plate temperature data to be subjected to principal component analysis is limited to data within the same charge. This is because, for example, when the molten steel component and the molten steel temperature are different between the charge and the next charge, a case where the copper plate temperature behavior is different occurs.

次に本発明者らは、上述の主成分分析による判定を行うにあたり、鋳型長辺面に埋設する熱電対5の最適な配置について、鋳造方向及び鋳型幅方向のそれぞれの方向ごとに検討を行ったので以下これについて説明する。   Next, the present inventors have examined the optimal arrangement of the thermocouple 5 embedded in the mold long side surface for each of the casting direction and the mold width direction in making the determination by the principal component analysis described above. This will be described below.

<熱電対の鋳造方向の配置に関して>
熱電対5の鋳造方向の配置に関して設置範囲と熱電対間隔について検討し、以下の知見(知見i及び知見ii)を得られた。
なお、以下の説明において「位置」とは湯面制御レベルから鋳造方向の位置を表している。
<Regarding the arrangement of the thermocouple in the casting direction>
Regarding the arrangement of the thermocouple 5 in the casting direction, the installation range and the thermocouple interval were examined, and the following findings (knowledge i and knowledge ii) were obtained.
In the following description, “position” represents a position in the casting direction from the molten metal level control level.

≪熱電対の鋳造方向の設置範囲(熱電対5の最上段及び最下段の位置)に関する知見≫
熱電対5の最上段の位置が湯面制御レベルから250mmより下にある場合には、鋳片のごく表層における鋳造欠陥の発生を見落とすケースが見られた。従って熱電対5の最上段は湯面制御レベルから250mmの範囲内とすることが望ましい(知見i-1)。
≪Knowledge about installation range of thermocouple in casting direction (position of uppermost and lowermost stages of thermocouple 5) ≫
When the uppermost position of the thermocouple 5 was below 250 mm from the molten metal surface control level, there was a case in which the occurrence of casting defects in the very surface layer of the slab was overlooked. Therefore, it is desirable that the uppermost stage of the thermocouple 5 be within a range of 250 mm from the level control level (Knowledge i-1).

熱電対5の最下段の位置が500mm以下であれば、浸漬ノズルからの吐出流による溶鋼流動を十分に捉えることができ、かつ、製品の表面欠陥の原因となる鋳造欠陥(介在物、気泡)のうち、鋳片表面から8〜12mm程度の比較的深い位置の鋳造欠陥の発生を見逃すこともない。従って、熱電対5の最下段の位置の上限値は500mm以下であることが望ましい(知見i-2)。   If the lowermost position of the thermocouple 5 is 500 mm or less, the molten steel flow due to the discharge flow from the immersion nozzle can be sufficiently captured, and casting defects (inclusions, bubbles) that cause surface defects of the product Of these, the occurrence of casting defects in a relatively deep position of about 8 to 12 mm from the slab surface is not overlooked. Therefore, it is desirable that the upper limit value of the lowest position of the thermocouple 5 is 500 mm or less (knowledge i-2).

もっとも、熱電対5の最下段の位置は下限値を750mmとすることが望ましい(知見i-3)。その理由は以下の通りである。
湯面制御レベルから750mmより下方の位置においては既に凝固シェルが十分に形成されており、この位置で表面欠陥起因となるモールドパウダーや脱酸生成物を捕捉しても銅板温度に反映されにくいこと、及び湯面制御レベルから750mmより下方の位置で捕捉されたモールドパウダーや脱酸生成物は比較的スラブ内部にあるので圧延されても表面欠陥となりにくいことが考えられる。
従って熱電対5の最下段の位置の下限値は750mmとすることが望ましい。つまり、湯面制御レベル〜鋳造方向750mmの範囲に熱電対5を埋設すれば足り、それより下方に熱電対5を埋設することは必ずしも必要ではなく、埋設しても熱電対コストの増加を招くことになる。
However, it is desirable that the lowermost position of the thermocouple 5 has a lower limit value of 750 mm (Knowledge i-3). The reason is as follows.
At a position below 750 mm from the molten metal level control level, a solidified shell has already been sufficiently formed, and even if mold powder and deoxidation products resulting from surface defects are captured at this position, it is difficult to reflect on the copper plate temperature. In addition, since the mold powder and deoxidation product captured at a position below 750 mm from the molten metal level control level are relatively inside the slab, it is considered that surface defects are less likely to occur even when rolled.
Therefore, it is desirable that the lower limit value of the lowest position of the thermocouple 5 is 750 mm. In other words, it is sufficient to embed the thermocouple 5 in the range of the molten metal surface control level to the casting direction 750 mm, and it is not always necessary to embed the thermocouple 5 below that, and even if embedded, the thermocouple cost increases. It will be.

上記の知見i-1〜知見i-3より、熱電対5の鋳造方向の配置は、最上段を湯面制御レベルから250mmの範囲内、最下段を500mmから750mmの範囲内とすることが望ましい(知見i)。   From the above findings i-1 to i-3, it is desirable that the thermocouple 5 be arranged in the casting direction so that the uppermost level is within the range of 250 mm from the molten metal surface control level and the lowermost level is within the range of 500 mm to 750 mm. (Findings i).

≪熱電対の鋳造方向の間隔に関する知見≫
上述した湯面制御レベル〜鋳造方向750mmの範囲内での隣り合う熱電対間隔が250mm以下であれば、表面欠陥を十分に判定できることが明らかとなった(知見ii)。鋳造方向の熱電対間隔が250mmより大きくなると、ヘゲ発生の挙動を見落とすケースが見られた。
≪Knowledge about interval of thermocouple casting direction≫
It has been clarified that surface defects can be sufficiently determined if the distance between adjacent thermocouples in the range of the above-described molten metal surface control level to 750 mm in the casting direction is 250 mm or less (Knowledge ii). When the distance between the thermocouples in the casting direction was larger than 250 mm, there was a case in which the behavior of generation of scabs was overlooked.

<熱電対の鋳型幅方向の配置に関して>
上記の熱電対5の鋳造方向の配置と同様に、熱電対5の鋳型幅方向の配置に関して設置範囲と間隔について検討し、以下の知見(知見iii及び知見iv)が得られたので順に説明する。
<Regarding the arrangement of thermocouples in the mold width direction>
Similar to the arrangement of the thermocouple 5 in the casting direction, the installation range and the interval of the thermocouple 5 in the mold width direction were examined, and the following findings (knowledge iii and knowledge iv) were obtained. .

≪熱電対の鋳型幅方向の設置範囲に関する知見≫
鋳型幅方向で両短辺に近い箇所に設置された熱電対5が、短辺面と長辺面の交線から鋳型幅方向に250mm以下の範囲にあることが望ましい(知見iii)。前記の範囲に熱電対5がないと、鋳型短辺近傍での鋳造欠陥発生の挙動を見落とすケースが見られたからである。
≪Knowledge about installation range of thermocouple in mold width direction≫
It is desirable that the thermocouple 5 installed at a location near both short sides in the mold width direction is within a range of 250 mm or less from the intersection of the short side surface and the long side surface in the mold width direction (knowledge iii). This is because when the thermocouple 5 is not in the above range, a case of overlooking the behavior of casting defect generation in the vicinity of the mold short side was observed.

≪熱電対の鋳型幅方向の間隔に関する知見≫
連続鋳造においては製品の要求寸法に応じて鋳造幅が変化する。今回調査した条件における鋳造幅は1000mm〜2100mmであったが、この場合、鋳型幅方向での隣り合う熱電対間隔が250mm以下であれば、表面欠陥を十分に判定できることが分かった(知見iv)。鋳型幅方向の熱電対間隔が250mmより大きくなると、ヘゲ発生の挙動を見落とすケースが見られた。
なお、上記の知見i〜知見ivについては、後述の実施例で実証している。
≪Knowledge about the interval in the mold width direction of thermocouple≫
In continuous casting, the casting width changes according to the required dimensions of the product. The casting width under the conditions investigated this time was 1000 mm to 2100 mm. In this case, it was found that the surface defects can be sufficiently determined if the distance between adjacent thermocouples in the mold width direction is 250 mm or less (knowledge iv). . When the distance between thermocouples in the mold width direction was larger than 250 mm, there was a case where the behavior of hege generation was overlooked.
In addition, said knowledge i-knowledge iv are demonstrated in the below-mentioned Example.

次に本発明者らは主成分スコアの閾値に着目した。一般的に、表面欠陥にも重大なものと軽微なものがあり、鋼板製品を扱う需要家によっては軽微な表面欠陥であれば使用可能な場合があるため、製造する品種によって表面欠陥判定の閾値を設定し、その閾値を超えた場合に欠陥発生の判定を行うことで鋼板製品の歩留まりを高めることができる。今回の調査においては、第1主成分スコア〜第3主成分スコアのいずれかが2.5以上である場合においては、比較的重大な表面欠陥である傾向にあった。   Next, the present inventors paid attention to the threshold value of the principal component score. In general, there are serious and minor surface defects, and depending on the customer who handles steel sheet products, there are cases where minor surface defects can be used. And the yield of steel sheet products can be increased by determining the occurrence of defects when the threshold value is exceeded. In this investigation, when any of the first principal component score to the third principal component score is 2.5 or more, it tends to be a relatively serious surface defect.

以上のことを踏まえて、本発明の実施の形態に係る連続鋳造スラブの表面欠陥判定装置1(以下、単に「表面欠陥判定装置1」という)について、図1に基づいて説明する。   Based on the above, a surface defect determination device 1 (hereinafter simply referred to as “surface defect determination device 1”) for a continuous cast slab according to an embodiment of the present invention will be described with reference to FIG.

<表面欠陥判定装置>
表面欠陥判定装置1は、図1に示すように、鋳型3に埋設する測温素子としての熱電対5と、熱電対5による測温値に基づいて表面欠陥を判定するための演算装置7を備えている。
以下、熱電対5の配置と演算装置7の構成について詳細に説明する。
<Surface defect determination device>
As shown in FIG. 1, the surface defect determination device 1 includes a thermocouple 5 as a temperature measuring element embedded in the mold 3 and an arithmetic device 7 for determining a surface defect based on a temperature measurement value by the thermocouple 5. I have.
Hereinafter, the arrangement of the thermocouple 5 and the configuration of the arithmetic unit 7 will be described in detail.

≪熱電対の配置≫
熱電対5の鋳造方向の配置については、上述したとおり、最上段が湯面制御レベルから250mmの範囲内、最下段が湯面制御レベルから500mm以上離れた位置(知見iより)、鋳造方向の隣り合う熱電対5の間隔が250mm以下(知見ii)とした。
また、熱電対5の鋳型幅方向の配置についても、上述したとおり、両短辺に最も近い箇所に設置された測温素子の位置が測定対象のスラブ幅の短辺面と長辺面の交線の位置から、鋳型幅中央に向かう方向に沿って250mm以内(知見iii)、隣り合う熱電対5の間隔が250mm以下(知見iv)とした。
つまり、鋳造方向については、湯面制御レベルから250mmの範囲には少なくとも一段の熱電対5が配置され、同様に500mm以上離れた位置に熱電対5の最下段が配置され、また、鋳型幅方向については、鋳型短辺から250mmの範囲には少なくとも一列の熱電対5が配置される。
このように配置した熱電対群によって測温することで、鋳型3全体の銅板温度プロファイルを測定することができる。また、鋳型3の長辺面に湯面制御レベルから鋳造方向に向かって750mmの範囲内(知見iより)で測温素子としての熱電対5を配置することが望ましい。
≪Thermocouple arrangement≫
Regarding the arrangement of the thermocouple 5 in the casting direction, as described above, the uppermost stage is within a range of 250 mm from the molten metal level control level, and the lowermost stage is located at a distance of 500 mm or more from the molten metal surface control level (from Knowledge i). The interval between adjacent thermocouples 5 was set to 250 mm or less (knowledge ii).
In addition, regarding the arrangement of the thermocouple 5 in the mold width direction, as described above, the position of the temperature measuring element installed at the location closest to both short sides is the intersection of the short side surface and the long side surface of the slab width to be measured. From the position of the line, the distance between adjacent thermocouples 5 was 250 mm or less (knowledge iv) within 250 mm along the direction toward the center of the mold width (knowledge iii).
That is, with respect to the casting direction, at least one thermocouple 5 is arranged in the range of 250 mm from the molten metal level control level, and similarly, the lowest stage of the thermocouple 5 is arranged at a position 500 mm or more apart, and the mold width direction As for, at least one row of thermocouples 5 is arranged in a range of 250 mm from the short side of the mold.
By measuring the temperature with the thermocouple group arranged in this manner, the copper plate temperature profile of the entire mold 3 can be measured. Moreover, it is desirable to arrange the thermocouple 5 as a temperature measuring element on the long side surface of the mold 3 within a range of 750 mm from the molten metal surface control level toward the casting direction (from knowledge i).

熱電対5の配置の一例を示すと、例えば、鋳造方向については、湯面制御レベルから50mmの位置に一段目の熱電対5を配置し、鋳造方向の隣り合う熱電対5の間隔が100mmとなるように8段配置する(図2のH段まで)。また、鋳型幅方向については、鋳型幅方向の隣り合う熱電対5の間隔が130mmとなるように15列配置する。
なお、鋳造方向及び鋳型幅方向の熱電対5の間隔は上記の範囲内であればよく、等間隔に配置してもよく、必ずしも等間隔でなくてもよく、鋳型3の構造や大きさ等に応じて適宜調整してもよい。
なお、上記の説明では、測温素子として熱電対5を用いた例を示したが、例えば光ファイバー方式のセンサーなど、銅板温度を正確に測定できる手法であればどのような測温素子であっても構わない。
As an example of the arrangement of the thermocouples 5, for example, in the casting direction, the first stage thermocouple 5 is arranged at a position of 50 mm from the molten metal surface control level, and the interval between adjacent thermocouples 5 in the casting direction is 100 mm. Eight stages are arranged in such a way (up to the H stage in FIG. 2). In the mold width direction, 15 rows are arranged so that the interval between adjacent thermocouples 5 in the mold width direction is 130 mm.
The intervals between the thermocouples 5 in the casting direction and the mold width direction need only be within the above ranges, and may be arranged at equal intervals, not necessarily at equal intervals, the structure and size of the mold 3, etc. It may be appropriately adjusted according to the above.
In the above description, an example in which the thermocouple 5 is used as the temperature measuring element is shown. However, any temperature measuring element can be used as long as it can accurately measure the copper plate temperature, such as an optical fiber sensor. It doesn't matter.

≪演算装置≫
演算装置7は、コンピュータによって構成され、熱電対5によって測定された鋳型銅板温度を取得する鋳型銅板温度取得手段9と、該取得された鋳型銅板温度に基づいて主成分分析を行って主成分スコアを算出する主成分分析手段11と、該算出された主成分スコアに基づいて鋳片表面の欠陥発生の有無を判定する主成分スコア判定手段13とを備えている。
≪Calculation device≫
The arithmetic unit 7 is constituted by a computer, and obtains a mold copper plate temperature acquisition means 9 for acquiring the mold copper plate temperature measured by the thermocouple 5, and performs a principal component analysis based on the acquired template copper plate temperature to perform a principal component score. And a principal component score determining means 13 for determining the presence or absence of defects on the surface of the slab based on the calculated principal component score.

鋳型銅板温度取得手段9は所定の測定時間間隔で鋳型銅板温度を取得可能になっている。
所定時間間隔は、1秒以上10秒以下の間隔であることが望ましい。この理由は次の通りである。温度変動を検知するには、1秒以上10秒以下でも十分であり、1秒よりも短い間隔で温度を取得する場合には、鋳型振動などの外乱影響を拾いやすくなる。また、10秒を超える間隔での測定では異常発生による変動を見落とすリスクが高まる。
また、鋳型内の溶鋼流動の周期的な変化(例えば、浸漬ノズルから左右の吐出口からの溶鋼吐出流速が交互に周期的に揺らぐことなど)の周期を実測すると、およそ10秒から30秒の周期となっており、この周期の最小値である10秒よりも短い測定時間間隔で測定することで、溶鋼流動の周期的な変化に起因する温度変化を捉えることができ、この点からも測定時間間隔を10秒以下とすることが好ましい。
The mold copper plate temperature acquisition means 9 can acquire the mold copper plate temperature at predetermined measurement time intervals.
The predetermined time interval is desirably an interval of 1 second to 10 seconds. The reason is as follows. In order to detect the temperature fluctuation, 1 second or more and 10 seconds or less are sufficient, and when the temperature is acquired at an interval shorter than 1 second, it becomes easy to pick up the influence of disturbance such as mold vibration. In addition, measurement at intervals exceeding 10 seconds increases the risk of overlooking fluctuations due to the occurrence of abnormalities.
Moreover, when the period of the periodic change of the molten steel flow in the mold (for example, the molten steel discharge flow rate from the left and right discharge ports alternately fluctuates alternately) is measured, it is about 10 to 30 seconds. By measuring at a measurement time interval shorter than the minimum value of 10 seconds, which is the minimum value of this cycle, it is possible to capture temperature changes caused by periodic changes in molten steel flow. The time interval is preferably 10 seconds or less.

主成分分析手段11としては、例えば、汎用の統計解析ソフトを用いるようにすればよい。
主成分スコア判定手段13における判定方法としては、例えば、所定の閾値を設定しておき、主成分スコアが該閾値を超えた場合に、欠陥発生と判定するようにする。
As the principal component analysis means 11, for example, general-purpose statistical analysis software may be used.
As a determination method in the principal component score determination means 13, for example, a predetermined threshold value is set, and when the principal component score exceeds the threshold value, it is determined that a defect has occurred.

上記のような表面欠陥判定装置1は、特許文献5の技術のようにデータベースを用いていないため、設備投資費が高騰化することがなく、大量の操業データも不要のため簡便である。   Since the surface defect determination apparatus 1 as described above does not use a database as in the technique of Patent Document 5, the capital investment cost does not increase, and a large amount of operation data is not required, which is simple.

以上のように構成された表面欠陥判定装置1を用いた連続鋳造スラブの表面欠陥判定方法(以下、単に「表面欠陥判定方法」という場合がある)について具体例を挙げて、表面欠陥判定装置1の動作と共に、図7のフローチャートに基づいて他の図を適宜参照しながら説明する。   A surface defect determination apparatus 1 using a specific example of a surface defect determination method (hereinafter, simply referred to as “surface defect determination method”) of a continuous casting slab using the surface defect determination apparatus 1 configured as described above. Along with this operation, description will be made with reference to other figures as appropriate based on the flowchart of FIG.

<連続鋳造スラブの表面欠陥判定方法>
本発明の実施の形態に係る連続鋳造スラブの表面欠陥判定方法は、図7に示すように、熱電対5によって測定された鋳型銅板温度を取得する鋳型銅板温度取得工程(S1)と、該取得された鋳型銅板温度に基づいて主成分分析を行って主成分スコアを算出する主成分分析工程(S3)と、該算出された主成分スコアに基づいて鋳片表面の欠陥発生の有無を判定する主成分スコア判定工程(S5)とを備えている。
各工程について以下に説明する。
<Surface defect judgment method for continuous casting slab>
As shown in FIG. 7, the method for determining surface defects of a continuous cast slab according to an embodiment of the present invention includes a mold copper plate temperature acquisition step (S1) for acquiring a mold copper plate temperature measured by a thermocouple 5, and the acquisition. A principal component analysis step (S3) for calculating a principal component score by performing a principal component analysis based on the obtained mold copper plate temperature, and determining the presence or absence of defects on the slab surface based on the calculated principal component score And a principal component score determination step (S5).
Each step will be described below.

≪鋳型銅板温度取得工程≫
まず、鋳型銅板温度取得工程において、熱電対5によって測定された鋳型銅板温度を、鋳型銅板温度取得手段9を用いて取得する(S1)。
鋳型銅板温度データは、鋳型3に埋設された熱電対5から1秒以上10秒以下の間隔で取得される(図3〜図5参照)。
≪Mold copper plate temperature acquisition process≫
First, in the mold copper plate temperature acquisition step, the mold copper plate temperature measured by the thermocouple 5 is acquired using the mold copper plate temperature acquisition means 9 (S1).
The mold copper plate temperature data is acquired from the thermocouple 5 embedded in the mold 3 at intervals of 1 second to 10 seconds (see FIGS. 3 to 5).

≪主成分分析工程≫
次に、鋳型銅板温度取得工程で取得された鋳型銅板温度に基づいて、主成分分析手段11を用いて主成分分析を行って主成分スコアを算出する(S3)。
上述したとおり、主成分の数は任意に設定する事が可能であるが、変数が増加するだけで傾向に大差が無いこともあるため、本例では第1主成分〜第3主成分までとした。また、主成分スコアに関してはマイナスの値が出ることもあるが、主成分スコアの変動を把握できるように絶対値を算出した(図6参照)。
図6に示す通り、ヘゲ発生時間帯である1100秒〜1250秒において、主成分スコアは大きく変動しており、主成分スコアに基づけば鋳片表面の欠陥発生が判定可能である。
≪Principal component analysis process≫
Next, based on the mold copper plate temperature acquired in the mold copper plate temperature acquisition step, a principal component analysis is performed using the principal component analysis means 11 to calculate a principal component score (S3).
As described above, the number of principal components can be arbitrarily set. However, since there may be no significant difference in the trend only by increasing the variables, in this example, from the first principal component to the third principal component. did. Moreover, although a negative value may appear regarding the principal component score, the absolute value was calculated so that the fluctuation of the principal component score can be grasped (see FIG. 6).
As shown in FIG. 6, the principal component score fluctuates greatly in the period of 1100 seconds to 1250 seconds, which is the time of occurrence of betting, and it is possible to determine the occurrence of defects on the slab surface based on the principal component score.

≪主成分スコア判定工程≫
次に、主成分分析工程で算出された主成分スコアに基づいて、主成分スコア判定手段13を用いて鋳片表面の欠陥発生の有無を判定する(S5)。
判定方法としては、例えば、閾値を設定し、第1〜第3主成分スコアのいずれかが該閾値を超えた場合に、欠陥発生と判定するものとする。閾値を2.5として、図6に示した主成分スコアについて判定を行うと次のようになる。
ヘゲ発生時間帯である1100秒〜1250秒において、第2主成分スコア(図6(b)参照)では閾値2.5を超えなかったものの、第1主成分スコア及び第3主成分スコア(図6(a)及び図6(b)参照)では超えたため、欠陥発生「有」と判定される。
≪Principal component score determination process≫
Next, based on the principal component score calculated in the principal component analysis step, the presence or absence of defects on the slab surface is determined using the principal component score determination means 13 (S5).
As a determination method, for example, a threshold value is set, and when any of the first to third principal component scores exceeds the threshold value, it is determined that a defect has occurred. When the threshold value is set to 2.5 and the principal component score shown in FIG. 6 is determined, the determination is as follows.
Although the threshold value 2.5 was not exceeded in the second principal component score (see FIG. 6B) in the time range of 1100 seconds to 1250 seconds, which is the time of occurrence of the shave, the first principal component score and the third principal component score ( In FIG. 6 (a) and FIG. 6 (b)), the defect occurrence is determined to be “present”.

鋳造されたスラブは、判定結果に基づいたスラブ処置(S7)が施された後、圧延工程(S9)へ搬送される。
ここでスラブ処置としては、例えば、欠陥発生「有」と判定された場合、その部分の表面をスカーフやグラインダーなどで手入れして表面欠陥を除去してからスラブを圧延工程へ搬送し、一方、欠陥発生「無」と判定された場合、表面手入れせずに圧延工程へ搬送することが挙げられる。
The cast slab is transported to the rolling step (S9) after being subjected to a slab treatment (S7) based on the determination result.
Here, as a slab treatment, for example, if it is determined that there is a defect occurrence, the surface of the part is cared with a scarf or a grinder to remove the surface defect, and then the slab is conveyed to the rolling process, When it is determined that there is no defect occurrence, it may be conveyed to the rolling process without surface maintenance.

以上のように、本実施の形態においては、測温素子としての熱電対5の配置を、鋳造方向については、最上段の測温素子の位置が湯面制御レベルから250mm以内、最下段の測温素子の位置が湯面制御レベルから500mm以上離れた位置、隣り合う測温素子間の間隔が250mm以下とし、鋳型幅方向については、両短辺に最も近い箇所に設置された測温素子の位置が測定対象のスラブ幅の短辺面と長辺面の交線の位置から鋳型幅中央に向かう方向に沿って250mm以内、隣り合う測温素子間の間隔が250mm以下とし、鋳型銅板温度取得工程と、主成分分析工程と、主成分スコア判定工程とを行うことにより、設備投資費を高騰化させることなくスラブ表面欠陥発生を高精度で判定可能となり、判定結果に基づいて適切なスラブ処置を施すことで優れた表面品質のスラブを効率良く製造することができる。   As described above, in the present embodiment, the thermocouple 5 as the temperature measuring element is arranged in the casting direction, the position of the uppermost temperature measuring element is within 250 mm from the molten metal surface control level, and the lowest level measuring element is measured. The position of the temperature element is 500 mm or more away from the molten metal surface control level, the distance between adjacent temperature measurement elements is 250 mm or less, and in the mold width direction, the temperature measurement element installed at the location closest to both short sides Obtain the temperature of the mold copper plate by setting the position within 250 mm along the direction from the intersection of the short side and long side of the slab width to be measured to the center of the mold width, and the interval between adjacent temperature measuring elements is 250 mm or less. By performing the process, the principal component analysis process, and the principal component score determination process, it is possible to determine the occurrence of slab surface defects with high accuracy without increasing capital investment costs, and an appropriate slab process based on the determination result. It can be produced efficiently excellent surface quality of the slab by the applied.

本発明の連続鋳造スラブの表面欠陥判定方法における熱電対5の配置の効果について確認するための具体的な実験を行ったので、その結果について以下に説明する。
実験は、図1に示す表面欠陥判定装置1を用いて、熱電対5の配置を変えて表面欠陥判定を行い、実際の表面欠陥的中率を評価するというものである。
熱電対5は、本発明例1〜本発明例9のいずれも上記実施の形態で説明した知見(i)〜知見(iv)を満たすように配置した。具体的な配置については後述する。
A specific experiment for confirming the effect of the arrangement of the thermocouple 5 in the method for determining surface defects of a continuous cast slab according to the present invention was performed, and the results will be described below.
In the experiment, the surface defect determination apparatus 1 shown in FIG. 1 is used to determine the surface defect by changing the arrangement of the thermocouple 5 and evaluate the actual surface defect probability.
The thermocouple 5 was arranged so that all of Invention Example 1 to Invention Example 9 satisfied the findings (i) to (iv) described in the above embodiment. Specific arrangement will be described later.

熱電対5としてJIS−T型熱電対を用い、その設置は、鋳型長辺銅板の鋳型フレームに接触する面から溶鋼に接触する面に向かって穿孔し、穿孔した先端底部に温接点が接触するように埋設した。先端底部から銅板の溶鋼に接触する面までの距離は13mmとした。
このように熱電対5を設置した連続鋳造鋳型を用いて、アルミキルド溶鋼を鋳造した。鋳造厚みは220〜300mm、鋳造幅1000〜2100mm、溶鋼スループットを3.0〜7.5ton/minとした。浸漬ノズルの溶鋼吐出孔の溶鋼吐出角度は下向き5°以上45°以下とし、浸漬深さ(但し、メニスカスから溶鋼吐出孔上端までの距離)は180mm以上300mm未満の条件とした。浸漬ノズルからの吹き込み不活性ガスにはArガスを使用した。
A JIS-T type thermocouple is used as the thermocouple 5, and its installation is performed by drilling from the surface contacting the mold frame of the long copper plate to the surface contacting the molten steel, and the hot junction contacts the bottom of the drilled tip. So buried. The distance from the bottom of the tip to the surface of the copper plate contacting the molten steel was 13 mm.
Thus, the aluminum killed molten steel was cast using the continuous casting mold in which the thermocouple 5 was installed. The casting thickness was 220 to 300 mm, the casting width was 1000 to 2100 mm, and the molten steel throughput was 3.0 to 7.5 ton / min. The molten steel discharge angle of the molten steel discharge hole of the immersion nozzle was set to 5 ° to 45 ° downward, and the immersion depth (however, the distance from the meniscus to the upper end of the molten steel discharge hole) was 180 mm to less than 300 mm. Ar gas was used as the inert gas blown from the immersion nozzle.

また、磁場発生装置から、相対する鋳型長辺銅板に沿ってそれぞれ相反する向きの移動磁場を印加し鋳型内の溶鋼に凝固シェル界面に沿って水平方向に旋回する流動を付与した。   Moreover, the magnetic field generator applied the moving magnetic field of the direction which opposes each along the mold long side copper plate which opposes, and provided the flow which turns in the horizontal direction along the solidification shell interface to the molten steel in a casting_mold | template.

鋳造したスラブは表面をスカーフやグラインダーで処置することなく、無手入れの状態で圧延工程へと搬送し、熱間圧延、冷間圧延等を施して、表面欠陥をオンライン表面欠陥計で連続的に測定し、欠陥発生位置をスラブ位置と対応させ、測定した銅板温度の主成分分析結果との対比を行い、表面欠陥的中率を評価した。   The cast slab is transported to the rolling process without being treated with a scarf or grinder, and is subjected to hot rolling, cold rolling, etc., and surface defects are continuously detected with an on-line surface defect meter. Measured, the defect occurrence position was made to correspond to the slab position, the measured copper plate temperature was compared with the result of principal component analysis, and the surface defect probability was evaluated.

主成分分析は同一チャージの全ての銅板温度測定値を対象とし、チャージ毎に主成分分析を1回実施した(複数チャージの銅板温度測定値をまとめて主成分分析することはしない。)。また、ここでは第1主成分スコア〜第3主成分スコアのいずれか1つでも2.5以上となる変動があった場合を表面欠陥「有」として判定し、表面欠陥「有」として判定した箇所数を、実製品の表面欠陥発生数で除したものを表面欠陥的中率として評価した。なお、発明例及び比較例ともに、それぞれ200チャージ(1チャージあたり約300トン)の鋳造量を対象として評価している。   The principal component analysis was performed on all copper plate temperature measurement values of the same charge, and the principal component analysis was performed once for each charge (a plurality of charge copper plate temperature measurement values were not collectively analyzed.) Further, here, when any one of the first principal component score to the third principal component score has a variation of 2.5 or more, it is determined as the surface defect “present”, and is determined as the surface defect “present”. A value obtained by dividing the number of points by the number of surface defect occurrences of the actual product was evaluated as a surface defect probability. In addition, both the inventive example and the comparative example are evaluated for a casting amount of 200 charges (about 300 tons per charge).

比較のために、熱電対5の配置を、知見(i)、知見(ii)、知見(iv)で示したいずれかで範囲外となるようにして同様の評価を行った(比較例1〜比較例6)。
比較例1は、熱電対5の配置を本発明例4と同じ間隔で配置するが、知見(i)の範囲外となるように、湯面制御レベル〜鋳造方向750mmの範囲を超えた位置に1段多く配置(9段×16列)したものである。
比較例2及び比較例3は、知見(ii)の範囲外となるように、鋳造方向の熱電対間隔を250mmより大きくしたものである。
比較例4は、知見(iv)の範囲外となるように、鋳型幅方向の熱電対間隔を250mmより大きくしたものである。
比較例5は、知見(i)の範囲外となるように、最上段の熱電対を、湯面制御レベルから250mmの範囲外となる、280mm位置に設置したものである。
比較例6は、知見(i)の範囲外となるように、最下段の熱電対を、湯面制御レベルから500〜750mmの範囲外となる、450mm位置に設置したものである。
なお、本発明例1〜本発明例9及び、比較例1〜比較例6のいずれの場合においても、配置した熱電対5による測定時間間隔は5秒とした。
本発明例1〜本発明例9及び、比較例1〜比較例6の熱電対5の配置と表面欠陥的中率(%)をまとめたものを表1に示す。
For comparison, the same evaluation was performed so that the arrangement of the thermocouple 5 was out of the range in any of the findings (i), (ii), and (iv) (Comparative Examples 1 to 2). Comparative Example 6).
In Comparative Example 1, the thermocouples 5 are arranged at the same intervals as in Example 4 of the present invention, but at a position exceeding the range of the molten metal surface control level to the casting direction 750 mm so as to be outside the range of the knowledge (i). One stage is arranged more (9 stages × 16 columns).
In Comparative Example 2 and Comparative Example 3, the interval between thermocouples in the casting direction is made larger than 250 mm so that it is outside the range of the knowledge (ii).
In Comparative Example 4, the interval between thermocouples in the mold width direction is made larger than 250 mm so that it is outside the range of knowledge (iv).
In Comparative Example 5, the uppermost thermocouple is installed at a position of 280 mm, which is outside the range of 250 mm from the molten metal surface control level, so that it is outside the range of the knowledge (i).
In Comparative Example 6, the lowermost thermocouple is installed at a position of 450 mm, which is outside the range of 500 to 750 mm from the molten metal surface control level, so as to be outside the range of knowledge (i).
In any case of Invention Example 1 to Invention Example 9 and Comparative Examples 1 to 6, the measurement time interval by the arranged thermocouple 5 was set to 5 seconds.
Table 1 shows the arrangement of the thermocouples 5 of the present invention example 1 to the present invention example 9 and the comparative example 1 to the comparative example 6 and the surface defect ratio (%).

表1に示す通り、本発明例1〜本発明例9においては、表面欠陥的中率はいずれも80%を超える成績であり、良好な結果となった。   As shown in Table 1, in Inventive Example 1 to Inventive Example 9, the surface defect middle ratio was a result exceeding 80%, and good results were obtained.

比較例1も表面欠陥的中率は91%と高いものの、熱電対5をほぼ同様に配置した本発明例4と同等の的中率であり、本発明例4に比べ熱電対コストが増加する点において不利である。このように、上記実施の形態の知見(i)で説明したように、湯面制御レベル〜鋳造方向750mmの範囲を超えて配置しても大差無いことから、当該範囲内に熱電対を配置することが好ましい。もっとも、鋳造方向で750mmの範囲を超えて熱電対を配置するものを排除するものではない。   Although the comparative example 1 also has a high surface defect ratio of 91%, it is the same ratio as that of the present invention example 4 in which the thermocouple 5 is arranged in substantially the same manner, and the thermocouple cost increases compared to the present invention example 4. It is disadvantageous in terms. Thus, as explained in the knowledge (i) of the above embodiment, since there is no great difference even if it is arranged beyond the range of the molten metal surface control level to the casting direction 750 mm, the thermocouple is arranged within the range. It is preferable. However, this does not exclude the case where the thermocouple is disposed beyond the range of 750 mm in the casting direction.

鋳造方向の熱電対間隔が250mmより大きい比較例2及び比較例3、鋳型幅方向の熱電対間隔が250mmより大きい比較例4においては的中率が46〜53%と低に値であった。これらのことから、知見(ii)及び知見(iv)が実証された。また、比較例5及び6においても的中率は64〜67%と本発明例と比較すると低位であった。
比較例2〜比較例6における、製品の表面欠陥位置を調査すると、熱電対と熱電対の間で発生した表面欠陥を見落としているケースがほとんどであった。
In Comparative Examples 2 and 3 where the thermocouple spacing in the casting direction was larger than 250 mm and in Comparative Example 4 where the thermocouple spacing in the mold width direction was larger than 250 mm, the hit ratio was a low value of 46 to 53%. From these, knowledge (ii) and knowledge (iv) were verified. In Comparative Examples 5 and 6, the hit ratio was 64 to 67%, which was lower than that of the present invention.
When the surface defect positions of the products in Comparative Examples 2 to 6 were investigated, most of the cases overlooked the surface defects generated between the thermocouples.

次に、表1の本発明例1の鋳型を用いて鋳造した際に得られた熱電対による温度データを用いた検証を実施した。具体的には、測定対象となるスラブの両端短辺から最外列の熱電対までの距離が250mmを超えるように、熱電対の温度データを省略した上で、主成分分析を行い、表面欠陥的中率への影響を調査した。その結果、表1の本発明例1では81%であった的中率が、56%まで低下した。スラブ両端短辺から最外列の熱電対までの距離が大きくなり過ぎて、表面欠陥を見落とす結果となった。すなわち、知見(iii)として説明したように、スラブ両端短辺から最外列の熱電対までの距離は250mm以下が好ましいことが分かった。   Next, the verification using the temperature data by the thermocouple obtained when casting using the mold of Invention Example 1 in Table 1 was performed. Specifically, the principal component analysis is performed after the temperature data of the thermocouple is omitted so that the distance from the short side of both ends of the slab to be measured to the outermost thermocouple exceeds 250 mm, and surface defects are detected. The impact on hit rate was investigated. As a result, the hit ratio, which was 81% in Invention Example 1 in Table 1, decreased to 56%. The distance from the short sides of the slab ends to the outermost thermocouples became too large, resulting in overlooking surface defects. That is, as explained as knowledge (iii), it was found that the distance from the short side of both ends of the slab to the outermost thermocouple is preferably 250 mm or less.

次に、図1に示す表面欠陥判定装置1を用いた表面欠陥判定方法による作用効果について確認するための具体的な実験を行ったので、その結果について以下に説明する。
実験は、表面欠陥判定装置1を用いて表面欠陥の有無を判定し、それに基づいて手入れ処置を行った場合(本発明例)と、表面欠陥判定装置1を導入せずにスラブを製造した場合(比較例)とで、製品の歩留りを比較するというものである。
Next, specific experiments for confirming the effects of the surface defect determination method using the surface defect determination apparatus 1 shown in FIG. 1 were performed, and the results will be described below.
In the experiment, the presence / absence of a surface defect is determined using the surface defect determination device 1 and a care procedure is performed based on the determination (invention example), and the slab is manufactured without introducing the surface defect determination device 1 In (Comparative Example), the product yield is compared.

本発明例における熱電対5の配置は、表1の本発明例1〜9に相当する配置とした。
また、主成分分析は、上記実施例1と同様に、同一チャージの全ての銅板温度測定値を対象とし、チャージ毎に主成分分析を1回実施した(複数チャージの銅板温度測定値をまとめて主成分分析することはしない。)。
表面欠陥判定に基づき、主成分スコアが閾値を超えたスラブに対しては、スラブ表面をスカーフ及び/又はグラインダーで手入れ処置して圧延工程へ搬送し、一方、主成分スコアが閾値未満のスラブに対してはスラブを無手入れの状態で圧延工程に搬送した。
The arrangement of the thermocouple 5 in the present invention example is an arrangement corresponding to the present invention examples 1 to 9 in Table 1.
In addition, the principal component analysis was performed on all copper plate temperature measurement values of the same charge as in the first embodiment, and the principal component analysis was performed once for each charge (collecting the copper plate temperature measurement values of a plurality of charges together). Do not do principal component analysis.)
Based on the surface defect determination, for slabs whose principal component score exceeds the threshold, the slab surface is treated with a scarf and / or grinder and conveyed to the rolling process, while the slab has a principal component score less than the threshold. On the other hand, the slab was conveyed to the rolling process in an uncleaned state.

実験で行った鋳造条件に関し、実施例1と同様にアルミキルド溶鋼の鋳造であり、鋳造厚み、鋳造幅、溶鋼スループット、浸漬ノズルの溶鋼吐出孔の溶鋼吐出角度、浸漬深さ、浸漬ノズルからの吹き込み不活性ガスの種類についても実施例1と同様とし、また、移動磁場を印加して流動の付与も同様に行った。   Regarding the casting conditions conducted in the experiment, the aluminum killed molten steel was cast in the same manner as in Example 1. The casting thickness, the casting width, the molten steel throughput, the molten steel discharge angle of the molten steel discharge hole of the immersion nozzle, the immersion depth, and the blowing from the immersion nozzle The kind of the inert gas was the same as in Example 1, and the flow was imparted in the same manner by applying a moving magnetic field.

スラブは、熱間圧延、冷間圧延等を施して、表面欠陥をオンライン表面欠陥計で連続的に測定し、製品段階で表面欠陥発生を検知した場合には、欠陥箇所の手入れや切り落としを行い(スラブ処置)、製品歩留を評価した。
なお、製品歩留は、製品として出荷できた製品重量を、鋳造重量で除した値で評価した。本発明例と比較例の製品歩留指数を比較するグラフを図8に示す。図8において、比較例の製品歩留指数を100とした。図8に示すように、本発明例の製品歩留指数は106であり、6%の向上が実現された。
The slab is subjected to hot rolling, cold rolling, etc., and surface defects are continuously measured with an on-line surface defect meter. When surface defects are detected at the product stage, the defect is cleaned and cut off. (Slab treatment), product yield was evaluated.
The product yield was evaluated by a value obtained by dividing the product weight that could be shipped as a product by the casting weight. FIG. 8 shows a graph for comparing the product yield indexes of the present invention example and the comparative example. In FIG. 8, the product yield index of the comparative example was set to 100. As shown in FIG. 8, the product yield index of the example of the present invention was 106, and an improvement of 6% was realized.

以上のように、本発明の表面欠陥判定方法を適用して連続鋳造を行うことで、圧延工程前に表面欠陥発生を検知してスラブ処置を施すことが可能となり、優れた表面品質のスラブを効率良く製造することができ製品歩留を向上可能であることが実証された。   As described above, by performing the continuous casting by applying the surface defect determination method of the present invention, it is possible to detect the occurrence of surface defects before the rolling process and perform slab treatment, and to achieve a slab with excellent surface quality. It was proved that it can be manufactured efficiently and the product yield can be improved.

1 表面欠陥判定装置
3 鋳型
5 熱電対
7 演算装置
9 鋳型銅板温度取得手段
11 主成分分析手段
13 主成分スコア判定手段
DESCRIPTION OF SYMBOLS 1 Surface defect determination apparatus 3 Mold 5 Thermocouple 7 Arithmetic apparatus 9 Mold copper plate temperature acquisition means 11 Principal component analysis means 13 Principal component score determination means

Claims (6)

鋳型長辺に埋設した測温素子によって鋳型銅板温度を測定し、該測温値に基づいてスラブ表面欠陥の判定を行う連続鋳造スラブの表面欠陥判定方法であって、
鋳型長辺に埋設する前記測温素子の配置を、
鋳造方向については、最上段の測温素子の位置を湯面制御レベルから250mm以内、最下段の測温素子の位置を湯面制御レベルから500mm以上離れた位置、隣り合う測温素子間の間隔を250mm以下とし、
鋳型幅方向については、両短辺に最も近い箇所に設置された測温素子の位置を測定対象のスラブ幅の短辺面と長辺面の交線の位置から、鋳型幅中央に向かう方向に沿って250mm以内、隣り合う測温素子間の間隔を250mm以下とし、
上記のように配置された前記測温素子によって測定された鋳型銅板温度を取得する鋳型銅板温度取得工程と、
該取得された鋳型銅板温度に基づいて主成分分析を行って主成分スコアを算出する主成分分析工程と、
該算出された主成分スコアに基づいて鋳片表面の欠陥発生の有無を判定する主成分スコア判定工程とを備えたことを特徴とする連続鋳造スラブの表面欠陥判定方法。
A method for determining a surface defect of a continuous cast slab, in which a mold copper plate temperature is measured by a temperature measuring element embedded in the mold long side, and a slab surface defect is determined based on the temperature measurement value,
The arrangement of the temperature measuring element embedded in the long side of the mold,
Regarding the casting direction, the position of the top temperature sensor is within 250 mm from the molten metal surface control level, the position of the bottom temperature sensor is 500 mm or more away from the molten metal surface control level, and the distance between adjacent temperature sensors. Is 250 mm or less,
Regarding the mold width direction, the position of the temperature measuring element installed at the location closest to both short sides is changed from the position of the intersection of the short side surface and long side surface of the slab width to be measured toward the mold width center. Within 250 mm, and the interval between adjacent temperature measuring elements is 250 mm or less,
A mold copper plate temperature acquisition step of acquiring a mold copper plate temperature measured by the temperature measuring element arranged as described above,
A principal component analysis step of calculating a principal component score by performing a principal component analysis based on the acquired mold copper plate temperature;
A method for determining surface defects of a continuous cast slab, comprising: a principal component score determining step for determining whether or not a defect has occurred on a slab surface based on the calculated principal component score.
最下段の測温素子の位置を湯面制御レベルから鋳造方向に750mm以内としたことを特徴とする請求項1記載の連続鋳造スラブの表面欠陥判定方法。   2. The method for determining surface defects of a continuous cast slab according to claim 1, wherein the position of the lowest temperature measuring element is set within 750 mm in the casting direction from the level control level. 主成分スコア判定工程が、主成分スコアが所定の閾値を超えた場合に、欠陥発生と判定することを特徴とする請求項1又は2記載の連続鋳造スラブの表面欠陥判定方法。   3. The surface defect determination method for a continuous casting slab according to claim 1, wherein the principal component score determination step determines that a defect has occurred when the principal component score exceeds a predetermined threshold value. 鋳型長辺に埋設した測温素子によって鋳型銅板温度を測定し、該測温値に基づいて連続鋳造スラブ表面欠陥を判定する連続鋳造スラブの表面欠陥判定装置であって、
鋳型長辺に埋設された測温素子群と、該測温素子群の各測温素子によって測定された鋳型銅板温度を取得する鋳型銅板温度取得手段と、該取得された鋳型銅板温度に基づいて主成分分析を行って主成分スコアを算出する主成分分析手段と、該算出された主成分スコアに基づいて鋳片表面の欠陥発生の有無を判定する主成分スコア判定手段とを備え、
前記測温素子群を構成する測温素子の配置を、
鋳造方向については、最上段の測温素子の位置を湯面制御レベルから250mm以内、最下段の測温素子の位置を湯面制御レベルから500mm以上離れた位置、隣り合う測温素子間の間隔を250mm以下とし、
鋳型幅方向については、両短辺に最も近い箇所に設置された測温素子の位置を測定対象のスラブ幅の短辺面と長辺面の交線の位置から、鋳型幅中央に向かう方向に沿って250mm以内、隣り合う測温素子間の間隔を250mm以下としたことを特徴とする連続鋳造スラブの表面欠陥判定装置。
A surface defect determination device for a continuous casting slab that measures a mold copper plate temperature by a temperature measuring element embedded in the long side of the mold and determines a continuous casting slab surface defect based on the temperature measurement value,
A temperature measuring element group embedded in the mold long side, a mold copper plate temperature acquisition means for acquiring a mold copper plate temperature measured by each temperature measuring element of the temperature measuring element group, and based on the acquired mold copper plate temperature A principal component analysis means for calculating a principal component score by performing a principal component analysis, and a principal component score determination means for determining the presence or absence of defects on the slab surface based on the calculated principal component score,
The arrangement of the temperature measuring elements constituting the temperature measuring element group,
Regarding the casting direction, the position of the top temperature sensor is within 250 mm from the molten metal surface control level, the position of the bottom temperature sensor is 500 mm or more away from the molten metal surface control level, and the distance between adjacent temperature sensors. Is 250 mm or less,
Regarding the mold width direction, the position of the temperature measuring element installed at the location closest to both short sides is changed from the position of the intersection of the short side surface and long side surface of the slab width to be measured toward the mold width center. A surface defect determination device for a continuously cast slab, wherein the distance between adjacent temperature measuring elements is 250 mm or less.
最下段の測温素子の位置を湯面制御レベルから鋳造方向に750mm以内としたことを特徴とする請求項4記載の連続鋳造スラブの表面欠陥判定装置。   The surface defect determination device for a continuous cast slab according to claim 4, wherein the position of the lowest temperature measuring element is set within 750 mm in the casting direction from the level control level. 主成分スコア判定手段が、主成分スコアが所定の閾値を超えた場合に、欠陥発生と判定することを特徴とする請求項4又は5記載の連続鋳造スラブの表面欠陥判定装置。   6. The continuous defect slab surface defect determination apparatus according to claim 4, wherein the principal component score determination means determines that a defect has occurred when the principal component score exceeds a predetermined threshold.
JP2014037707A 2014-02-28 2014-02-28 Method and apparatus for determining surface defects in continuously cast slabs Active JP6119640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014037707A JP6119640B2 (en) 2014-02-28 2014-02-28 Method and apparatus for determining surface defects in continuously cast slabs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014037707A JP6119640B2 (en) 2014-02-28 2014-02-28 Method and apparatus for determining surface defects in continuously cast slabs

Publications (2)

Publication Number Publication Date
JP2015160239A true JP2015160239A (en) 2015-09-07
JP6119640B2 JP6119640B2 (en) 2017-04-26

Family

ID=54183703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014037707A Active JP6119640B2 (en) 2014-02-28 2014-02-28 Method and apparatus for determining surface defects in continuously cast slabs

Country Status (1)

Country Link
JP (1) JP6119640B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016041445A (en) * 2014-08-18 2016-03-31 Jfeスチール株式会社 Surface defect determination method and apparatus for continuous casting slab and method for manufacturing steel cast piece using surface defect determination method
JP2017060965A (en) * 2015-09-25 2017-03-30 Jfeスチール株式会社 Surface defect judgment method and apparatus for continuous casting piece and billet manufacturing method using surface defect judgment method
JP2020066026A (en) * 2018-10-24 2020-04-30 日本製鉄株式会社 Apparatus for visualizing flow of molten steel, method for visualizing flow of molten steel, and computer program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110523941B (en) * 2019-08-06 2023-03-17 中冶南方连铸技术工程有限责任公司 Continuous casting bonding bleed-out multistage risk control method and control device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003150234A (en) * 2001-11-16 2003-05-23 Nippon Steel Corp Operation analyzing device and method for manufacturing process and computer readable storage medium
US6885907B1 (en) * 2004-05-27 2005-04-26 Dofasco Inc. Real-time system and method of monitoring transient operations in continuous casting process for breakout prevention
JP2009061469A (en) * 2007-09-06 2009-03-26 Jfe Steel Kk Method and device for detecting break-out in continuous casting, continuous casting method of steel using the same device, and device for preventing break-out
JP2010279957A (en) * 2009-06-02 2010-12-16 Jfe Steel Corp Continuous casting machine and method for estimating generation of longitudinal crack of cast slab surface
JP2011011258A (en) * 2009-06-02 2011-01-20 Jfe Steel Corp Method for estimating surface layer state of slab and slab surface layer state estimating device
JP2011522704A (en) * 2008-06-13 2011-08-04 エスエムエス・ジーマーク・アクチエンゲゼルシャフト Method for predicting the occurrence of vertical cracks during continuous casting.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003150234A (en) * 2001-11-16 2003-05-23 Nippon Steel Corp Operation analyzing device and method for manufacturing process and computer readable storage medium
US6885907B1 (en) * 2004-05-27 2005-04-26 Dofasco Inc. Real-time system and method of monitoring transient operations in continuous casting process for breakout prevention
JP2009061469A (en) * 2007-09-06 2009-03-26 Jfe Steel Kk Method and device for detecting break-out in continuous casting, continuous casting method of steel using the same device, and device for preventing break-out
JP2011522704A (en) * 2008-06-13 2011-08-04 エスエムエス・ジーマーク・アクチエンゲゼルシャフト Method for predicting the occurrence of vertical cracks during continuous casting.
JP2010279957A (en) * 2009-06-02 2010-12-16 Jfe Steel Corp Continuous casting machine and method for estimating generation of longitudinal crack of cast slab surface
JP2011011258A (en) * 2009-06-02 2011-01-20 Jfe Steel Corp Method for estimating surface layer state of slab and slab surface layer state estimating device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016041445A (en) * 2014-08-18 2016-03-31 Jfeスチール株式会社 Surface defect determination method and apparatus for continuous casting slab and method for manufacturing steel cast piece using surface defect determination method
JP2017060965A (en) * 2015-09-25 2017-03-30 Jfeスチール株式会社 Surface defect judgment method and apparatus for continuous casting piece and billet manufacturing method using surface defect judgment method
JP2020066026A (en) * 2018-10-24 2020-04-30 日本製鉄株式会社 Apparatus for visualizing flow of molten steel, method for visualizing flow of molten steel, and computer program
JP7107160B2 (en) 2018-10-24 2022-07-27 日本製鉄株式会社 Molten steel flow visualization device, molten steel flow visualization method, and computer program

Also Published As

Publication number Publication date
JP6119640B2 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
JP5579709B2 (en) Method for predicting the occurrence of vertical cracks during continuous casting.
JP6358215B2 (en) Method and apparatus for determining surface defects of continuous cast slab, and method for manufacturing steel slab using the surface defect determination method
JP6119640B2 (en) Method and apparatus for determining surface defects in continuously cast slabs
JP3386051B2 (en) Method for estimating flow pattern of molten steel in continuous casting, temperature measuring device for mold copper plate, method for determining surface defects of continuous cast slab, method for detecting molten steel flow, method for evaluating non-uniformity of heat removal in mold, method for controlling molten steel flow, Quality control method in continuous casting, continuous casting method of steel, estimation method of molten steel flow velocity
Ye et al. Real-time quality prediction of casting billet based on random forest algorithm
JP5407987B2 (en) Method for detecting longitudinal cracks in slabs
KR20150033718A (en) Method for determining a stretch of casting line including the closing position of the liquid cone of a continuously cast metal product
JP6119807B2 (en) Method and apparatus for determining surface defects of continuous cast slab, and method for producing steel slab using the surface defect determination method
JP4802718B2 (en) Method for predicting surface defect occurrence risk region in continuous cast slab and method for producing continuous cast slab
KR101257261B1 (en) Evaluation method for quality of steel plate using level of molten steel
CN111421119A (en) Online prediction method for longitudinal cracks on surface of continuous casting slab
JP6859919B2 (en) Breakout prediction method
CN104849280A (en) Continuous casting plate billet surface longitudinal crack detection method
JP6358199B2 (en) Method and apparatus for determining surface defects of continuous cast slab, and method for producing steel slab using the surface defect determination method
JP5831118B2 (en) Method and apparatus for continuous casting of steel
JP4828366B2 (en) Longitudinal detection method and continuous casting method based on mold heat flux
JP5712572B2 (en) Defect detection method and defect detection device for continuous cast slab for thin steel sheet
JP6107770B2 (en) Method and apparatus for detecting transverse cracks in continuous cast slab, and method and apparatus for producing continuous cast slab using the detection method
JP5413054B2 (en) Method and apparatus for determining surface maintenance of slab during continuous casting
JPH0771726B2 (en) Continuous casting method
US6845286B2 (en) Detection of roller damage and/or misalignment in continuous casting of metals
JP4325451B2 (en) Method for detecting surface defect of continuous cast slab and removing method thereof
JP2011245497A (en) Method for continuously casting metal piece
JP5071025B2 (en) Method for evaluating high temperature embrittlement of continuous cast slab and continuous casting method of steel
RU2593802C2 (en) Method for diagnosis of longitudinal cracks in hardened shell slab in crystalliser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170313

R150 Certificate of patent or registration of utility model

Ref document number: 6119640

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250