JP6358199B2 - Method and apparatus for determining surface defects of continuous cast slab, and method for producing steel slab using the surface defect determination method - Google Patents

Method and apparatus for determining surface defects of continuous cast slab, and method for producing steel slab using the surface defect determination method Download PDF

Info

Publication number
JP6358199B2
JP6358199B2 JP2015172781A JP2015172781A JP6358199B2 JP 6358199 B2 JP6358199 B2 JP 6358199B2 JP 2015172781 A JP2015172781 A JP 2015172781A JP 2015172781 A JP2015172781 A JP 2015172781A JP 6358199 B2 JP6358199 B2 JP 6358199B2
Authority
JP
Japan
Prior art keywords
measurement data
mold
temperature measurement
surface defect
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015172781A
Other languages
Japanese (ja)
Other versions
JP2017047453A (en
Inventor
裕美 吉冨
裕美 吉冨
佳也 橋本
佳也 橋本
津田 和呂
和呂 津田
則親 荒牧
則親 荒牧
章敏 松井
章敏 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015172781A priority Critical patent/JP6358199B2/en
Publication of JP2017047453A publication Critical patent/JP2017047453A/en
Application granted granted Critical
Publication of JP6358199B2 publication Critical patent/JP6358199B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、鋳型に溶鋼を吐出して鋳型の下端からスラブ(鋳片)を引き抜くことにより連続してスラブを製造する連続鋳造に関し、特に、スラブ自体又は製品における表面欠陥発生の有無を判定する連続鋳造スラブの表面欠陥判定方法及び装置、該表面欠陥判定方法を用いた鋼鋳片の製造方法に関する。   The present invention relates to continuous casting in which molten steel is discharged into a mold and a slab (slab) is continuously drawn out from the lower end of the mold, and in particular, the presence or absence of surface defects in the slab itself or a product is determined. The present invention relates to a method and apparatus for determining a surface defect of a continuous cast slab, and a method for producing a steel slab using the surface defect determination method.

従来、連続鋳造用鋳型に複数の熱電対を設置して、操業トラブルや品質異常を検知することが行われている。
例えば、特許文献1や2では、鋳型の湯面近傍に3段(行)の熱電対を設置し、凝固シェル厚が10mm程度になる鋳型範囲における温度測定値から鋳型内の溶鋼流動を予測し、表面欠陥の起因となる介在物や気泡の存在有無を判定する方法が開示されている。
また、特許文献3や4では、同様に鋳型に熱電対を設置して、温度測定値からスラブの縦割れを検知する方法が開示されている。
さらに、特許文献5では、多数(多種類)の操業データを少数(少種類)の変数(特徴量と称する)で表現できるように変換し、その代表値となる特徴量と品質データとの対応についての実績データベースを用いて製品品質を予測する技術が開示されている。
Conventionally, operation troubles and quality abnormalities are detected by installing a plurality of thermocouples in a continuous casting mold.
For example, in Patent Documents 1 and 2, a three-stage thermocouple is installed near the mold surface, and the molten steel flow in the mold is predicted from the temperature measurement in the mold range where the solidified shell thickness is about 10 mm. A method for determining the presence or absence of inclusions and bubbles that cause surface defects is disclosed.
Patent Documents 3 and 4 similarly disclose a method of detecting a vertical crack of a slab from a temperature measurement value by installing a thermocouple in a mold.
Further, in Patent Document 5, a large number (many types) of operation data is converted so that it can be expressed by a small number (small types) of variables (referred to as feature amounts), and the correspondence between the feature amounts as the representative values and the quality data. A technology for predicting product quality using a performance database of the above is disclosed.

特開2011−11258号公報JP 2011-11258 A 特開2012−66278号公報JP 2012-66278 A 特開2011−206810号公報JP 2011-206810 A 特開2011−522704号公報JP 2011-522704 A 特許第5169096号公報Japanese Patent No. 5169096

しかしながら、上記従来技術には以下の問題点がある。
特許文献1や2に開示された方法では、鋳型に設置した熱電対から間接的にスラブ温度を測定しても、溶鋼内部温度を予測し、さらには溶鋼流動を予測することは実際には難しい。また、たとえうまく予測できたとしても、実際のスラブ表面欠陥は気泡や介在物等、溶鋼流動の異常によるものだけでなく、例えばフラックスの巻込み(噛込み)や流れ落ちといった不均一流入、オシレーション割れ、或いは鋳型直下の冷却異常による冷却斑等に起因するものも多いのが事実であり、これらの発生をスラブの温度測定により予測するのは困難である。
However, the above prior art has the following problems.
In the methods disclosed in Patent Documents 1 and 2, even if the slab temperature is indirectly measured from the thermocouple installed in the mold, it is actually difficult to predict the molten steel internal temperature and further to predict the molten steel flow. . Even if it can be predicted well, actual slab surface defects are not only due to abnormalities in the flow of molten steel, such as bubbles and inclusions, but also, for example, uneven inflow such as flux entrainment (flowing) and runoff, oscillation It is true that many of them are caused by cracks or cooling spots due to abnormal cooling immediately under the mold, and it is difficult to predict these occurrences by measuring the temperature of the slab.

特許文献3は、鋳型幅方向の温度分布を数値処理し、ある閾値を超えるものを温度分布異常として検出する方法であるが、この方法では縦割れの検知はできても、他の表面欠陥の原因となる異常の検知は難しい。また、鋳型幅方向の温度分布は重要な情報であるが、実際には鋳型内の浸漬ノズルの深さ変更や、特に電磁制御している場合等においては内部の溶鋼流動が複雑かつ非対称になるため、温度分布異常を誤検知しやすい。   Patent Document 3 is a method of numerically processing the temperature distribution in the mold width direction and detecting a temperature distribution exceeding a certain threshold value as an abnormal temperature distribution, but this method can detect vertical cracks but does not detect other surface defects. It is difficult to detect the cause of the abnormality. In addition, the temperature distribution in the mold width direction is important information, but in reality, the molten steel flow inside becomes complicated and asymmetric when changing the depth of the immersion nozzle in the mold, especially when electromagnetically controlled. Therefore, it is easy to misdetect temperature distribution abnormality.

特許文献4は、割れのない状態で求めた温度測定値に基づいて、鋳型内に配置された熱電対によって測定された実際の温度値を計算に入れて、縦割れのブレークアウトが生じるリスクに関する統計的評価を行うものであるが、実際の製造現場では、溶鋼温度(出鋼温度)の違い(ばらつき含む)や、操業中における浸漬ノズルや鋳造速度等の連続的な変化があるため、リファレンスとなる「割れのない状態で求めた温度測定値」との数値的比較評価は難しい。   Patent Document 4 relates to a risk of causing a breakout of vertical cracks by calculating an actual temperature value measured by a thermocouple arranged in a mold based on a temperature measurement value obtained without a crack. This is a statistical evaluation. However, in actual manufacturing sites, there are continuous changes such as the difference in molten steel temperature (outgoing steel temperature) (including variations) and the immersion nozzle and casting speed during operation. It is difficult to make a numerical comparison evaluation with the “temperature measurement value obtained without cracks”.

特許文献5は、データベースを用いた製品品質予測技術であるが、データベースの保管・管理・読出しのための設備や制御システムが必要となり、設備投資費の高騰化が懸念される。また、特許文献5の実施例では、鋳型銅板温度を用いた製品品質予測例が提示されているが、品質予測に必要な銅板温度データ数(銅板に埋設する熱電対の本数)に関する言及や、欠陥発生位置の特定はされていない。   Patent Document 5 is a product quality prediction technique using a database, but requires equipment and a control system for storing, managing, and reading the database, and there is a concern that the capital investment cost will rise. Moreover, in the Example of patent document 5, although the product quality prediction example using a mold copper plate temperature is presented, the reference regarding the copper plate temperature data number (the number of thermocouples embed | buried in a copper plate) required for quality prediction, The defect occurrence position is not specified.

本発明は、上記課題を解決するためになされたものであり、連続鋳造で製造されたスラブ自体又は製品における表面欠陥発生の有無の判定及びその発生位置の特定を行う連続鋳造スラブの表面欠陥判定方法及び装置、該表面欠陥判定方法を用いた鋼鋳片の製造方法を提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problems, and it is possible to determine the presence or absence of surface defects in a slab itself or product produced by continuous casting and to determine the position of the occurrence of surface defects in a continuous casting slab. It aims at providing the manufacturing method of the steel slab using the method and apparatus and this surface defect determination method.

(1)本発明に係る連続鋳造スラブの表面欠陥判定方法は、鋳型の長辺面銅板に埋設した測温素子の測温データを取得し、該測温データに基づいてスラブにおける表面欠陥発生の有無を判定するものであって、前記長辺面銅板に埋設する前記測温素子の配置を、鋳造方向については、最上段の前記測温素子の位置を湯面制御レベルから下方に200mm以内、最下段の前記測温素子の位置を湯面制御レベルから下方に500mm以上離れた位置、隣り合う前記測温素子間の間隔を250mm以下、段数を4段以上とし、鋳型幅方向については、前記鋳型の短辺面銅板に最も近い位置に埋設された前記測温素子の位置を前記長辺面銅板と前記短辺面銅板の交線から鋳型幅中央に向かう方向に沿って250mm以内、隣り合う前記測温素子間の間隔を200mm以下、列数を8列以上とし、上記のように配置された前記測温素子の測温データを所定の時間間隔で取得する測温データ取得工程と、該測温データ取得工程で前記長辺面銅板毎に取得された前記測温データの各時間における平均値を算出し、該平均値に基づいて前記測温データを規格化する測温データ規格化工程と、該測温データ規格化工程で規格化された前記測温データの主成分分析を行う主成分分析工程と、該主成分分析工程で算出された主成分及び主成分スコアにより表される温度と前記測温データとの残差を算出する残差算出工程と、該残差算出工程で算出された残差の自乗和に基づいて前記スラブにおける表面欠陥発生の有無を判定する表面欠陥発生判定工程を備えたことを特徴とするものである。 (1) The method for determining surface defects of a continuous cast slab according to the present invention acquires temperature measurement data of a temperature measuring element embedded in a long side copper plate of a mold, and generates surface defects in the slab based on the temperature measurement data. The determination of the presence or absence, the placement of the temperature measuring element embedded in the long side copper plate, for the casting direction, the position of the temperature measuring element in the uppermost stage is within 200 mm downward from the hot water level control level, The position of the temperature measuring element at the lowest level is 500 mm or more downward from the molten metal surface control level, the interval between adjacent temperature measuring elements is 250 mm or less, the number of stages is 4 or more, and the mold width direction is The position of the temperature measuring element embedded in the position closest to the short-side copper plate of the mold is adjacent to within 250 mm along the direction from the intersection of the long-side copper plate and the short-side copper plate to the center of the mold width. The distance between the temperature measuring elements is 200mm or less, and the number of rows is 8 or more. And the temperature measurement data acquisition step of acquiring the temperature measurement data of the temperature measuring element arranged as described above at a predetermined time interval, and the long side surface copper plate acquired in the temperature measurement data acquisition step A temperature measurement data normalization step of calculating an average value of the temperature measurement data at each time and normalizing the temperature measurement data based on the average value, and the temperature measurement standardized in the temperature measurement data normalization step A principal component analysis step for performing principal component analysis of data, and a residual calculation step for calculating a residual between the temperature measured by the principal component and the principal component score calculated in the principal component analysis step and the temperature measurement data. A surface defect occurrence determination step of determining whether or not a surface defect has occurred in the slab based on the square sum of the residuals calculated in the residual calculation step is provided.

(2)上記(1)に記載のものにおいて、最下段の前記測温素子の位置は、湯面制御レベルから鋳造方向に900mm以内とすることを特徴とするものである。 (2) In the device described in (1) above, the position of the temperature measuring element in the lowermost stage is within 900 mm in the casting direction from the molten metal surface control level.

(3)上記(1)又は(2)に記載のものにおいて、前記表面欠陥発生判定工程は、前記残差の自乗和が予め定めた所定の閾値を超えた場合に前記スラブにおいて表面欠陥の発生有りと判定することを特徴とするものである。 (3) In the above-described (1) or (2), the surface defect occurrence determining step includes generating a surface defect in the slab when the sum of squares of the residual exceeds a predetermined threshold value. It is characterized by determining that there is.

(4)上記(1)乃至(3)のいずれかに記載のものにおいて、前記表面欠陥発生判定工程は、鋳造方向に配置された前記測温素子の列毎に判定することを特徴とするものである。 (4) In the device according to any one of (1) to (3), the surface defect occurrence determining step determines for each row of the temperature measuring elements arranged in the casting direction. It is.

(5)本発明に係る連続鋳造スラブの表面欠陥判定装置は、鋳型の長辺面銅板に埋設した測温素子の測温データを取得し、該測温データに基づいてスラブにおける表面欠陥発生の有無を判定するものであって、前記長辺面銅板に埋設する前記測温素子の配置を、鋳造方向については、最上段の前記測温素子の位置を湯面制御レベルから下方に200mm以内、最下段の前記測温素子の位置を湯面制御レベルから下方に500mm以上離れた位置、隣り合う前記測温素子間の間隔を250mm以下、段数を4段以上とし、鋳型幅方向については、前記鋳型の短辺面銅板に最も近い位置に埋設された前記測温素子の位置を前記長辺面銅板と前記短辺面銅板の交線から鋳型幅中央に向かう方向に沿って250mm以内、隣り合う前記測温素子間の間隔を200mm以下、列数を8列以上とし、上記のように配置された前記測温素子の測温データを所定の時間間隔で取得する測温データ取得手段と、該測温データ取得手段で前記長辺面銅板毎に取得された前記測温データの各時間における平均値を算出し、該平均値に基づいて前記測温データを規格化する測温データ規格化手段と、該測温データ規格化手段で規格化された前記測温データの主成分分析を行う主成分分析手段と、該主成分分析手段で算出された主成分及び主成分スコアにより表される温度と前記測温データとの残差を算出する残差算出手段と、
該残差算出手段で算出された残差の自乗和に基づいて前記スラブにおける表面欠陥発生の有無を判定する表面欠陥発生判定手段を備えたことを特徴とするものである。
(5) The continuous defect slab surface defect determination apparatus according to the present invention acquires temperature measurement data of a temperature measuring element embedded in a long side copper plate of a mold, and surface defect occurrence in the slab based on the temperature measurement data. The determination of the presence or absence, the placement of the temperature measuring element embedded in the long side copper plate, for the casting direction, the position of the temperature measuring element in the uppermost stage is within 200 mm downward from the hot water level control level, The position of the temperature measuring element at the lowest level is 500 mm or more downward from the molten metal surface control level, the interval between adjacent temperature measuring elements is 250 mm or less, the number of stages is 4 or more, and the mold width direction is The position of the temperature measuring element embedded in the position closest to the short-side copper plate of the mold is adjacent to within 250 mm along the direction from the intersection of the long-side copper plate and the short-side copper plate to the center of the mold width. The distance between the temperature measuring elements is 200mm or less, and the number of rows is 8 or more. And temperature measurement data acquisition means for acquiring temperature measurement data of the temperature measuring element arranged as described above at a predetermined time interval, and the temperature measurement data acquisition means acquired for each of the long side copper plates A temperature measurement data normalization unit that calculates an average value of the temperature measurement data at each time , normalizes the temperature measurement data based on the average value, and the temperature measurement data normalized by the temperature measurement data normalization unit Principal component analysis means for performing principal component analysis of data, and residual calculation means for calculating a residual between the temperature measured by the principal component and the principal component score calculated by the principal component analysis means and the temperature measurement data. ,
Surface defect occurrence determination means for determining whether or not surface defects have occurred in the slab based on the sum of squares of the residuals calculated by the residual calculation means is provided.

(6)上記(5)に記載のものにおいて、最下段の前記測温素子の位置は、湯面制御レベルから鋳造方向に900mm以内であることを特徴とするものである。 (6) In the device described in (5) above, the position of the temperature measuring element at the bottom is within 900 mm in the casting direction from the molten metal surface control level.

(7)上記(5)又は(6)に記載のものにおいて、前記表面欠陥発生判定手段は、前記残差の自乗和が予め定めた所定の閾値を超えた場合に前記スラブにおいて表面欠陥の発生有りと判定するものであることを特徴とするものである。 (7) In the above-described (5) or (6), the surface defect occurrence determination means generates a surface defect in the slab when the sum of squares of the residual exceeds a predetermined threshold value. It is characterized in that it is determined to be present.

(8)上記(5)乃至(7)に記載のものにおいて、前記表面欠陥発生判定手段は、鋳造方向に配置された前記測温素子の列毎に判定するものであることを特徴とするものである。 (8) In the above (5) to (7), the surface defect occurrence determining means determines for each row of the temperature measuring elements arranged in the casting direction. It is.

(9)本発明に係る表面欠陥判定方法を用いた鋼鋳片の製造方法は、上記(4)に記載の連続鋳造スラブの表面欠陥判定方法を用いたものであって、前記表面欠陥発生判定工程において表面欠陥発生有りと判定された前記測温素子の列に対応する鋳型内相対位置を特定する鋳型内相対位置特定工程と、該鋳型内相対位置に基づいて鋳型内における溶鋼流動異常を推定し、該推定された溶鋼流動異常を解消するように溶鋼流動を制御する溶鋼流動制御工程とを備えたことを特徴とするものである。 (9) A method for manufacturing a steel slab using the surface defect determination method according to the present invention uses the surface defect determination method for a continuously cast slab described in (4) above, and determines the occurrence of the surface defect. The relative position in the mold for identifying the relative position in the mold corresponding to the row of temperature measuring elements determined to have surface defects in the process, and the abnormal flow of molten steel in the mold is estimated based on the relative position in the mold And a molten steel flow control step for controlling the molten steel flow so as to eliminate the estimated molten steel flow abnormality.

本発明においては、鋳型の長辺面銅板内の鋳造方向及び鋳型幅方向の比較的広い範囲に埋設した測温素子の測温データを取得する測温データ取得工程と、該取得された測温データの平均値を鋳型の長辺面銅板毎に算出し、該平均値を用いて前記各測温データを規格化する測温データ規格化工程と、該測温データ規格化工程で規格化された前記測温データの主成分分析を行う主成分分析工程と、該主成分分析工程で算出された主成分及び主成分スコアにより表される温度と前記測温データとの残差を算出する残差算出工程と、該残差算出工程で算出された残差の自乗和が予め定めた所定の閾値を超えた場合に表面欠陥の発生有りと判定する表面欠陥発生判定工程を備えたことにより、種々条件で鋳造されたスラブに対して溶鋼流動の異常に起因する介在物や気泡の存在、フラックスの不均一流れ込み(パウダー巻込み・噛み込み等)や冷却斑といったスラブ自体又は製品における表面欠陥発生の有無の判定及びその発生位置の特定を的確に行うことができるようになる。
これにより、鋳造後のスラブに対する表面手入れの要否や引当てグレードの変更を効率良く行うことが可能となる
In the present invention, a temperature measurement data acquisition step of acquiring temperature measurement data of a temperature measurement element embedded in a relatively wide range in the casting direction and the mold width direction in the long side surface copper plate of the mold, and the acquired temperature measurement An average value of the data is calculated for each long side copper plate of the mold, and the temperature measurement data normalization process for normalizing each temperature measurement data using the average value, and the temperature measurement data normalization process is normalized. A principal component analysis step for performing principal component analysis of the temperature measurement data, and a residual for calculating the residual between the temperature measured by the principal component and the principal component score calculated in the principal component analysis step and the temperature measurement data. By providing a difference calculation step and a surface defect occurrence determination step for determining that a surface defect has occurred when the sum of squares of the residual calculated in the residual calculation step exceeds a predetermined threshold value, Due to abnormalities in molten steel flow for slabs cast under various conditions The presence or absence of surface defects in the slab itself or product, such as the presence of inclusions and bubbles, non-uniform flux flow (powder entrainment, biting, etc.) and cooling spots, and the exact location become able to.
As a result, it is possible to efficiently change the necessity or provision of the surface for the slab after casting and the provisional grade.

本発明の一実施の形態に係る連続鋳造スラブの表面欠陥判定装置の説明図である。It is explanatory drawing of the surface defect determination apparatus of the continuous casting slab which concerns on one embodiment of this invention. 本発明の一実施の形態に係る測温素子の配置例の説明図である。It is explanatory drawing of the example of arrangement | positioning of the temperature measuring element which concerns on one embodiment of this invention. 本発明の一実施の形態に係る連続鋳造スラブの表面欠陥判定方法のフローチャートである。It is a flowchart of the surface defect determination method of the continuous casting slab which concerns on one embodiment of this invention. 本発明の実施例1に係る逸脱度(残差の自乗和)の時系列的変化の結果である(その1)。It is a result of the time-sequential change of the deviation degree (the sum of squares of a residual) which concerns on Example 1 of this invention (the 1). 本発明の実施例に係る残差の逸脱度(残差の自乗和)の時系列的変化の結果である(その2)。It is a result of the time-sequential change of the deviation degree (the sum of the squares of a residual) of the residual which concerns on the Example of this invention (the 2). 本発明の実施例に係る残差の逸脱度(残差の自乗和)の時系列的変化の結果である(その3)。It is a result of the time-sequential change of the deviation degree (the sum of the squares of a residual) of the residual which concerns on the Example of this invention (the 3). 本発明の実施例に係る残差の逸脱度(残差の自乗和)の時系列的変化の結果である(その4)。It is a result of the time-sequential change of the deviation degree (the sum of the squares of a residual) of the residual which concerns on the Example of this invention (the 4). 本発明の他の実施の形態に係る鋼鋳片の製造方法のフローチャートである。It is a flowchart of the manufacturing method of the steel slab which concerns on other embodiment of this invention. 本発明の他の実施の形態に係る測温素子のグループ分けの例を示す図である。It is a figure which shows the example of grouping of the temperature sensing element which concerns on other embodiment of this invention.

[実施の形態1]
本発明の一実施の形態に係る連続鋳造スラブの表面欠陥判定装置(以下、単に「表面欠陥判定装置1」という)は、図1に示すように、鋳型3の長辺面銅板3aに埋設された熱電対5と、熱電対5の測温データを取得して主成分分析を行い、スラブ(図示なし)の表面欠陥発生の有無を判定するための演算装置10を備えている。
以下、本実施の形態1に係る熱電対5の配置及び演算装置10の構成について説明するに前に、まず、本実施の形態1に係る測温データの主成分分析の概要を説明する。
[Embodiment 1]
A continuous defect slab surface defect determination apparatus (hereinafter simply referred to as “surface defect determination apparatus 1”) according to an embodiment of the present invention is embedded in a long-side copper plate 3a of a mold 3 as shown in FIG. The thermocouple 5 and the arithmetic device 10 for acquiring the temperature measurement data of the thermocouple 5 and performing principal component analysis to determine the presence or absence of surface defects in the slab (not shown) are provided.
Hereinafter, before describing the arrangement of the thermocouple 5 and the configuration of the arithmetic device 10 according to the first embodiment, first, an outline of principal component analysis of temperature measurement data according to the first embodiment will be described.

<主成分分析>
主成分分析とは、多くの観測変数から特徴を表す新たな変数を合成する統計的解析手法であり、本願発明のように多くの測温データにおける特異点を見出すのに適した手法である。測温データの時系列情報に対して主成分分析を行うと、複数の基底及び基底係数が求められる。
<Principal component analysis>
Principal component analysis is a statistical analysis method for synthesizing new variables representing features from many observed variables, and is a method suitable for finding singular points in many temperature measurement data as in the present invention. When principal component analysis is performed on time series information of temperature measurement data, a plurality of bases and basis coefficients are obtained.

主成分分析の解析手法について、鋳型3の長辺面銅板3aに埋設した熱電対5の本数が100本、すなわち、100点の測定地点において得られる時系列データに対して主成分分析を行う場合を例として説明する。
1秒間隔で100本の熱電対5から測温データを取得する場合、t秒間分の温度の時系列データXは下式(1)のように表すことができる。式(1)において、Tは温度を表し、下付き数字は熱電対番号、上付き数字は時間を表す。
Regarding the analysis method of principal component analysis, when the number of thermocouples 5 embedded in the long side copper plate 3a of the mold 3 is 100, that is, when principal component analysis is performed on time series data obtained at 100 measurement points. Will be described as an example.
When acquiring temperature measurement data from 100 thermocouples 5 at intervals of 1 second, time series data X of temperature for t seconds can be expressed as the following equation (1). In formula (1), T represents temperature, the subscript number represents a thermocouple number, and the superscript number represents time.

また上記の時系列データをまとめて、次式のように行列Xと記す。   In addition, the above time-series data is collectively expressed as a matrix X as in the following equation.

この行列Xに対する主成分yは、下式で求められる共分散行列の固有ベクトルとして求めることができる。   The principal component y for the matrix X can be obtained as an eigenvector of a covariance matrix obtained by the following equation.

ここでは、求めた固有ベクトルの中から固有値の大きい順に3つのベクトルを選択した。これらのベクトルをy1、y2、y3とする。
ベクトルy1、y2、y3の要素数は熱電対の本数と等しい100である。また、y1、y2、y3はノルムが1に正規化されているとする。
Here, three vectors are selected from the obtained eigenvectors in descending order of eigenvalues. Let these vectors be y 1 , y 2 , y 3 .
The number of elements of the vectors y 1 , y 2 and y 3 is 100, which is equal to the number of thermocouples. In addition, it is assumed that norms of y 1 , y 2 , and y 3 are normalized to 1.

このように温度の時系列データXに対し、主成分分析により例えば3つの基底を計算した場合、下式(2)に示す3種類の100次元ベクトルy1、y2及びy3(基底1〜基底3)が得られる。この基底1〜基底3は、温度の時系列データXを表現するための代表的なパターン(時間に対する値の変化)であり、これら3つの基底それぞれに重み付けをし、それらを組み合わせることによって温度の時系列データXを表現しようとするものである。 In this way, when, for example, three bases are calculated for the time series data X of temperature by principal component analysis, three types of 100-dimensional vectors y 1 , y 2 and y 3 (bases 1 to 2) shown in the following equation (2) are used. A basis 3) is obtained. These bases 1 to 3 are typical patterns (changes in value with respect to time) for expressing the temperature time-series data X. Each of these three bases is weighted and combined to combine the temperature. The time series data X is to be expressed.

このy1、y2、y3を「基底」と称する。
主成分分析においては、基底1〜基底3に対してt秒間分の温度の時系列データ(X1、X2〜Xt)毎に基底係数ai jが計算される。基底係数ai jとは、上述の基底1〜基底3への重み付けの値である。
基底1〜基底3それぞれに対する基底係数ai jを用いることで、温度の時系列データのパターン(時間に対する値の変化する形態)を特徴づけることが可能となり、特異点を抽出することができるようになる。
式(1)で表される温度の時系列データは、基底1〜基底3(y1、y2、y3)と基底係数ai jを用いて下式(3)で近似できる。
These y 1 , y 2 and y 3 are called “bases”.
In the principal component analysis, basis coefficients a i j are calculated for each time series data (X 1 , X 2 to X t ) of temperature for t seconds with respect to the bases 1 to 3. The basis coefficient a i j is a weighting value for the above-described bases 1 to 3.
By using the basis coefficients a i j for each of the bases 1 to 3, it becomes possible to characterize the time-series data pattern of temperature (a form in which the value changes with time) and extract singular points. become.
The time-series data of the temperature represented by the equation (1) can be approximated by the following equation (3) using the basis 1 to basis 3 (y 1 , y 2 , y 3 ) and the basis coefficient a i j .

式(3)を行列で記述すると、次のように表される。   When Expression (3) is described in a matrix, it is expressed as follows.

しかしながら、有限個数の基底(上記の例ではy1、y2及びy3の3個)では実際に測定された温度の時系列データXを厳密に表すことはできず、基底と基底係数により近似された温度と実際に測定された温度との間に誤差が生じる。
そこで、本発明者らは、下式(4)に示すように残差αをさらに用いて温度の時系列データXを表すことを考えた。
However, a finite number of bases ( three in the above example, y 1 , y 2 and y 3 ) cannot accurately represent the time series data X of the actually measured temperature, and are approximated by bases and basis coefficients. There is an error between the measured temperature and the actually measured temperature.
Therefore, the present inventors considered to express the temperature time-series data X by further using the residual α as shown in the following equation (4).

これを複数の熱電対温度について行列で表すと、αはxt resに対応し、以下のように表される。 If this represents a matrix for a plurality of thermocouple temperature, alpha corresponds to x t res, are expressed as follows.

このベクトルxt resの要素数は熱電対本数100である。また、残差は鋳型3の長辺面銅板3aに2次元的に埋設された熱電対の各列に由来した成分に分解することができる。すなわち、通常の変動からの逸脱度を、鋳造方向に配置した熱電対の列毎に定義できる。
例えば、A列の熱電対の熱電対番号を1、21、41、61、81とした場合、ベクトルxt resは次式のように表される。
The number of elements in the vector x t res are thermocouples number 100. Further, the residual can be decomposed into components derived from each row of thermocouples embedded two-dimensionally in the long side copper plate 3a of the mold 3. That is, the degree of deviation from normal fluctuations can be defined for each row of thermocouples arranged in the casting direction.
For example, when the 1,21,41,61,81 thermocouples number of thermocouples A column vector x t res is expressed by the following equation.

また、この残差の自乗和によりA列に関する逸脱度Qt(A)を次式のように定義できる。他の列についても同様である。 Further, the deviation degree Q t (A) relating to the A column can be defined by the following equation using the square sum of the residuals. The same applies to the other columns.

この逸脱度Qtの時系列的な変化を図示したのが図4〜図7である。図4〜図7において、横軸はmin、縦軸はK2(K:絶対温度)である。 The illustrated time-series changes in the deviation of Q t is 4-7. 4 to 7, the horizontal axis is min, and the vertical axis is K 2 (K: absolute temperature).

残差αは基底(y1、y2、y3、…)と基底係数ai jだけでは近似できない誤差であり、通常の状態からの逸脱度を表すものと捉えることができる。ここで、通常の状態とは、「製品の表面欠陥が発生していない場合」の鋳型内溶鋼流動状態であり、鋳造時間の大半を占める。
すなわち、残差の自乗和の変化をモニタリングすることで、非定常的かつ局所的な温度挙動を検知することができ、その結果、スラブにおける表面欠陥発生の有無が判定可能になると考えられる。
なお、以降の説明において、基底1〜基底3を「第1主成分」〜「第3主成分」、基底係数を「主成分スコア(主成分得点)」と表記する。
The residual α is an error that cannot be approximated only by the base (y 1 , y 2 , y 3 ,...) And the base coefficient a i j , and can be regarded as representing the degree of deviation from the normal state. Here, the normal state is the molten steel flow state in the mold when “a surface defect of the product has not occurred” and occupies most of the casting time.
That is, by monitoring the change in the sum of squares of the residuals, it is possible to detect non-stationary and local temperature behavior, and as a result, it can be determined whether or not surface defects have occurred in the slab.
In the following description, the bases 1 to 3 are referred to as “first principal component” to “third principal component”, and the base coefficient is referred to as “principal component score (principal component score)”.

<熱電対の配置>
鋳型3の長辺面銅板3a内の鋳造方向及び鋳型幅方向に埋設する熱電対5の好適な配置について、鋳造方向、鋳型幅方向のそれぞれの方向毎に精査した。その結果、以下に示す知見(知見i〜知見vi)を得た。以下、各知見について順に説明する。
<Arrangement of thermocouple>
The preferred arrangement of the thermocouple 5 embedded in the casting direction and the mold width direction in the long side surface copper plate 3a of the mold 3 was examined in each of the casting direction and the mold width direction. As a result, the following findings (knowledge i to knowledge vi) were obtained. Hereinafter, each knowledge is demonstrated in order.

≪鋳造方向の配置≫
熱電対5の鋳造方向に配置する範囲及び間隔について以下の知見が得られた(知見i、知見ii、知見iii)。なお、以下の説明において「位置」とは、湯面制御レベルを基点とした鋳造方向の位置を表しており、湯面制御レベルとは、タンディッシュから溶鋼を鋳型3に注入する際、注入量制御の目標とする湯面レベルのことである。
≪Arrangement in casting direction≫
The following knowledge was acquired about the range and space | interval which arrange | position in the casting direction of the thermocouple 5 (knowledge i, knowledge ii, knowledge iii). In the following description, “position” represents the position in the casting direction with the molten metal level control level as a base point, and the molten metal surface control level refers to the amount injected when pouring molten steel from the tundish into the mold 3. It is the hot water level that is the target of control.

湯面制御レベルから鋳造方向に200mmまでの範囲ではスラブに表面欠陥が発生しやすく、熱電対5の最上段の位置が湯面制御レベルから200mmの範囲外にある場合、スラブの極表層における鋳造欠陥の発生を見落とすケースが見られた。従って、熱電対5の最上段位置は、湯面制御レベルから200mmの範囲内、より好ましくは湯面制御レベルから180mmの範囲内とすることが望ましい(知見i-1)。   In the range from the molten metal level control level to 200 mm in the casting direction, surface defects are likely to occur in the slab, and when the uppermost position of the thermocouple 5 is outside the range of 200 mm from the molten metal level control level, casting at the extreme surface layer of the slab Some cases overlooked the occurrence of defects. Therefore, it is desirable that the uppermost position of the thermocouple 5 is within a range of 200 mm from the molten metal level control level, and more preferably within a range of 180 mm from the molten metal level control level (Knowledge i-1).

熱電対5の最下段位置については、湯面制御レベルから500mmより下方であれば、浸漬ノズルからの吐出流による溶鋼流動を十分に捉えることができ、かつ、製品の表面欠陥の原因となる鋳造欠陥(介在物、気泡)のうち、スラブ表面から8〜12mm程度の深い位置での構造欠陥の発生を見逃すことはない。従って、熱電対5の最下段位置の上限は湯面制御レベルから500mmより下方とすることが望ましい(知見i-2)。   If the lowermost position of the thermocouple 5 is below 500 mm from the molten metal surface control level, the molten steel flow due to the discharge flow from the immersion nozzle can be sufficiently captured, and casting that causes surface defects of the product. Of the defects (inclusions, bubbles), the occurrence of structural defects at a depth of about 8 to 12 mm from the slab surface is not overlooked. Therefore, it is desirable that the upper limit of the lowermost position of the thermocouple 5 is lower than 500 mm from the hot water level control level (Knowledge i-2).

もっとも、熱電対5の最下段位置の下限を湯面制御レベルから900mmまでの範囲内とすることが望ましい(知見i-3)。この理由は以下のとおりである。
湯面制御レベルから900mm以上の位置においては既に凝固シェルが十分に形成されており、この位置において表面欠陥の起因となるモールドパウダーや脱酸生成物を補足してもスラブ温度に反映されにくいこと、及び湯面制御レベルから900mmより下方の位置で捉えられたモールドパウダーや脱酸生成物は比較的スラブ内部にあるので、圧延されても表面欠陥となりにくいことが考えられる。
However, it is desirable that the lower limit of the lowermost position of the thermocouple 5 be within a range from the molten metal surface control level to 900 mm (Knowledge i-3). The reason for this is as follows.
The solidified shell has already been sufficiently formed at a position of 900 mm or more from the molten metal level control level, and it is difficult to reflect the mold powder and deoxidation products that cause surface defects at this position even in the slab temperature. In addition, since the mold powder and deoxidation product captured at a position lower than 900 mm from the molten metal level control level are relatively inside the slab, it is considered that surface defects are less likely to occur even when rolled.

従って、熱電対5の最下段位置の下限は900mmとすることが望ましい。つまり、湯面制御レベルから鋳造方向に900mmの範囲に熱電対5を埋設すれば足り、それより下方に熱電対5を埋設することは、鋳型直下の冷却異常を検知するのに有効な場合はあるものの、スラブに発生した表面欠陥の検知という観点からは必ずしも必要ではなく、仮に900mmより下方に熱電対5を埋設しても熱電対コストの増加及びデータ処理の負荷増加を招くのみである。   Therefore, the lower limit of the lowest position of the thermocouple 5 is desirably 900 mm. In other words, it is sufficient to embed the thermocouple 5 within the range of 900 mm in the casting direction from the molten metal level control level, and burying the thermocouple 5 below it is effective in detecting cooling abnormality directly under the mold. However, it is not always necessary from the viewpoint of detecting surface defects generated in the slab. Even if the thermocouple 5 is buried below 900 mm, it only increases the thermocouple cost and the data processing load.

上記の知見(i-1)〜知見(i-3)より、熱電対5を鋳造方向に配置する範囲は、最上段を湯面制御レベルから200mmまでの範囲内、最下段を500mmから900mmの範囲内とすることが望ましい(知見i)。   From the above findings (i-1) to (i-3), the range in which the thermocouple 5 is arranged in the casting direction is within the range from the molten metal level control level to 200 mm, and the bottom is between 500 mm and 900 mm. It is desirable to be within the range (Knowledge i).

熱電対5を鋳造方向に配置する間隔としては、前記湯面制御レベルを基点として、鋳造方向に50mmから900mmの範囲内に熱電対5を配置する間隔が250mm以下であれば、表面欠陥を十分に判定できることが明らかとなった(知見ii)。
熱電対5を配置する間隔が250mmより大きくなると、ヘゲ発生の挙動を見落とすケースが見られた。
The interval at which the thermocouples 5 are arranged in the casting direction is sufficient if the interval at which the thermocouples 5 are arranged within the range of 50 mm to 900 mm in the casting direction is 250 mm or less based on the level control level. It was clarified that it can be determined (Knowledge ii).
When the interval between the thermocouples 5 was larger than 250 mm, there was a case where the behavior of the generation of scabs was overlooked.

熱電対5を鋳造方向に配置する段数については、熱電対5の測温データを主成分分析するにあたって十分な解析対象データ数を確保する観点から、4段以上とすることが望ましい(知見iii)。   The number of stages in which the thermocouple 5 is arranged in the casting direction is preferably four or more from the viewpoint of securing a sufficient number of data to be analyzed for principal component analysis of the temperature measurement data of the thermocouple 5 (knowledge iii). .

≪鋳型幅方向の配置≫
上記の熱電対5の鋳造方向の配置と同様に、熱電対5を鋳型幅方向に配置する範囲、間隔及び列数について検討した。その結果、以下の知見(知見iv、知見v及び知見vi)が得られたので、順に説明する。
≪Arrangement in the mold width direction≫
Similar to the arrangement of the thermocouple 5 in the casting direction, the range, interval, and number of rows in which the thermocouple 5 is arranged in the mold width direction were examined. As a result, the following findings (knowledge iv, knowledge v, and knowledge vi) were obtained and will be described in order.

まず、長辺面銅板3aの鋳型幅方向において短辺面銅板3bに最も近い位置に配置される熱電対5は、短辺面銅板3bと長辺面銅板3aの交線から鋳型幅方向に250mm以下の範囲にあることが望ましく、より好ましくは240mm以下の範囲にあることが望ましい(知見iv)。
当該範囲に熱電対5が配置されていない場合、短辺面銅板3b近傍における鋳造欠陥発生の挙動を見落とすケースが見られた。
First, the thermocouple 5 disposed at a position closest to the short side copper plate 3b in the mold width direction of the long side copper plate 3a is 250 mm in the mold width direction from the intersection of the short side copper plate 3b and the long side copper plate 3a. It is desirable to be in the following range, more preferably in the range of 240 mm or less (knowledge iv).
When the thermocouple 5 was not arranged in the range, there was a case where the behavior of casting defect generation in the vicinity of the short side copper plate 3b was overlooked.

連続鋳造においては、製品の要求寸法に応じて鋳造幅を変更して操業することが行われている。今回調査した操業条件における鋳造幅は概ね700mm〜2100mmであったが、この場合、鋳型幅方向における熱電対5の間隔が200mm以下、より好ましくは180mm以下であれば、表面欠陥発生の有無を十分に判定できることが分かった(知見v)。
鋳型幅方向に熱電対5を配置する間隔が200mmより大きくなると、ヘゲ発生の挙動を見落とすケースが見られた。
In continuous casting, operation is performed by changing the casting width according to the required dimensions of the product. The casting width under the operating conditions investigated this time was approximately 700 mm to 2100 mm. In this case, if the distance between the thermocouples 5 in the mold width direction is 200 mm or less, more preferably 180 mm or less, the presence or absence of surface defects is sufficient. (Knowledge v).
When the interval between the thermocouples 5 in the mold width direction was larger than 200 mm, there was a case in which the behavior of shave generation was overlooked.

鋳型幅方向に配置する熱電対5の列数に関しては、8列より少なくなると、主成分分析を行う際に解析対象データの元となる測温データを十分に確保できなくなったため、鋳型幅方向に配置する熱電対5の列数は8列以上とすることが望ましい(知見vi)。   Regarding the number of thermocouples 5 arranged in the mold width direction, if the number is less than 8, the temperature measurement data that is the basis of the analysis target data cannot be secured when performing principal component analysis. It is desirable that the number of rows of thermocouples 5 to be arranged is 8 or more (knowledge vi).

図2に、長辺面銅板3aに埋設した熱電対5の配置例を示す。図2において、鋳造方向における熱電対5の配置は、最上段位置が湯面制御レベルから50mm、最下段位置が湯面制御レベルから850mm、隣り合う熱電対5の間隔が120mm〜170mm、段数が7段であり、鋳型幅方向における熱電対5の配置は、短辺面銅板3bに最も近い熱電対5の位置が250mm、隣り合う熱電対5の間隔が133mm、列数がA列〜P列までの16列である。従って、鋳造方向と鋳型幅方向ともに、熱電対5の配置は上記知見i〜知見viを満たすものである。   In FIG. 2, the example of arrangement | positioning of the thermocouple 5 embed | buried under the long side surface copper plate 3a is shown. In FIG. 2, the thermocouple 5 is arranged in the casting direction so that the uppermost position is 50 mm from the molten metal level control level, the lowermost position is 850 mm from the molten metal surface control level, the interval between adjacent thermocouples 5 is 120 mm to 170 mm, and the number of stages is The arrangement of the thermocouples 5 in the mold width direction is 7 stages. The position of the thermocouple 5 closest to the short side copper plate 3b is 250 mm, the interval between the adjacent thermocouples 5 is 133 mm, and the number of rows is A row to P row. Up to 16 columns. Therefore, the arrangement of the thermocouples 5 satisfies the above findings i to vi in both the casting direction and the mold width direction.

なお、熱電対5は、長辺面銅板3aの鋳型フレーム(図示なし)に接触する面から溶鋼に接触する面に向かって穿孔し、穿孔した先端底部に熱電対5の温接点が接触するように埋設される。図2に示す配置例においては、前記先端底部から長辺面銅板3aの溶鋼に接触する面までの距離は15mmである。   The thermocouple 5 is drilled from the surface that contacts the mold frame (not shown) of the long side copper plate 3a toward the surface that contacts the molten steel, and the hot junction of the thermocouple 5 is in contact with the bottom of the drilled tip. Buried in In the arrangement example shown in FIG. 2, the distance from the bottom of the tip to the surface in contact with the molten steel of the long side copper plate 3a is 15 mm.

なお、本実施の形態1では、測温素子として熱電対5を用いているが、例えば、光ファイバー方式のセンサー等、温度を正確に測定できるものであればどのような方式の測温素子でも問題はない。   In the first embodiment, the thermocouple 5 is used as the temperature measuring element. However, any type of temperature measuring element can be used as long as it can accurately measure the temperature, such as an optical fiber sensor. There is no.

<演算装置>
演算装置10は、PC等のコンピュータによって構成され、長辺面銅板3aに埋設された熱電対5の測温データを取得する測温データ取得手段11と、該取得された測温データを規格化する測温データ規格化手段13と、該規格化された測温データの主成分分析を行う主成分分析手段15と、主成分分析手段15で算出された主成分と主成分スコアにより近似される温度と前記測温データとの残差を算出する残差算出手段17と、残差算出手段17で算出された残差の自乗和に基づいてスラブ表面における欠陥発生の有無を判定する表面欠陥発生判定手段19とを備えている。
<Calculation device>
The arithmetic unit 10 is constituted by a computer such as a PC, and a temperature measurement data acquisition unit 11 that acquires temperature measurement data of the thermocouple 5 embedded in the long-side copper plate 3a and normalizes the acquired temperature measurement data. Approximated by the principal component and principal component scores calculated by the principal component analysis means 15, the principal component analysis means 15 that performs principal component analysis of the normalized temperature measurement data, Residual calculation means 17 for calculating a residual between the temperature and the temperature measurement data, and surface defect occurrence for determining the presence or absence of a defect on the slab surface based on the sum of squares of the residual calculated by the residual calculation means 17 Determination means 19.

≪測温データ取得手段≫
測温データ取得手段11は、長辺面銅板3aに埋設された熱電対5(図1参照)からの測温データを所定の時間間隔で取得する手段である。
本実施の形態1において、前記測温データを取得する所定の時間間隔は、1秒以上30秒以下の間隔であることが望ましい。この理由は次の通りである。温度変動を検知するには、1秒以上30秒以下でも十分であり、1秒よりも短い間隔で温度を取得する場合には、鋳型振動等の外乱の影響を拾いやすくなる。また、30秒を超える間隔での測定では異常発生による温度変動を見落とすリスクが高まる。
≪Temperature measurement data acquisition means≫
The temperature measurement data acquisition means 11 is a means for acquiring temperature measurement data from the thermocouple 5 (see FIG. 1) embedded in the long side copper plate 3a at predetermined time intervals.
In the first embodiment, it is desirable that the predetermined time interval for acquiring the temperature measurement data is an interval of 1 second to 30 seconds. The reason is as follows. In order to detect the temperature fluctuation, 1 second or more and 30 seconds or less are sufficient, and when the temperature is acquired at intervals shorter than 1 second, it becomes easy to pick up the influence of disturbance such as mold vibration. In addition, measurement at intervals exceeding 30 seconds increases the risk of overlooking temperature fluctuations caused by abnormalities.

≪測温データ規格化手段≫
測温データ規格化手段13は、測温データ取得手段11で取得された測温データの長辺面銅板3a毎の平均値を各時間において算出し、前記各測温データから当該平均値を差し引くことにより前記各測温データを規格化するものである。
≪Temperature measurement data standardization means≫
The temperature measurement data standardization means 13 calculates the average value for each long side copper plate 3a of the temperature measurement data acquired by the temperature measurement data acquisition means 11 at each time, and subtracts the average value from each temperature measurement data. This standardizes each temperature measurement data.

実際の製造現場においては溶鋼温度(出鋼温度)の違いや、浸漬ノズル深さや鋳造速度等といった鋳造中の連続的な操業条件の変更があるため、測温データ取得手段11で取得された測温データをそのまま主成分分析手段15により主成分分析するだけでは、リファレンスとなる値との数値的比較評価は難しい。そのため、測温データ規格化手段13において、鋳型3の相対する2面の長辺面銅板3aのうち片面毎の平均値を各時間において算出し、各測温データから当該平均値を差し引く規格化をすることによって、測温データのバイアスが除去され、各熱電対位置における温度の相対変化が得られる。   In actual manufacturing sites, there are differences in molten steel temperature (steel temperature), continuous operation conditions during casting such as the immersion nozzle depth and casting speed, etc., so that the measurement data acquired by the temperature measurement data acquisition means 11 is used. If the temperature data is simply subjected to principal component analysis by the principal component analysis means 15, it is difficult to make a numerical comparison evaluation with a reference value. Therefore, the temperature measurement data normalization means 13 calculates an average value for each side of the two long side copper plates 3a facing each other of the mold 3 at each time, and normalizes by subtracting the average value from each temperature measurement data. By doing this, the bias of the temperature measurement data is removed, and a relative change in temperature at each thermocouple position is obtained.

≪主成分分析手段≫
主成分分析手段15は、測温データ規格化手段13で規格化された測温データの主成分分析を行って、主成分と主成分スコアを算出する手段である。主成分分析手段15には、例えば、汎用の統計解析ソフトを用いることができ、測温データ取得手段11による測温データの取得と同時に主成分分析を行うことで、主成分と主成分スコアをリアルタイムに算出することが可能である。
≪Principal component analysis means≫
The principal component analysis means 15 is a means for performing principal component analysis of the temperature measurement data normalized by the temperature measurement data normalization means 13 and calculating a principal component and a principal component score. For the principal component analysis means 15, for example, general-purpose statistical analysis software can be used. By performing principal component analysis simultaneously with the acquisition of temperature measurement data by the temperature measurement data acquisition means 11, the principal component and the principal component score are obtained. It is possible to calculate in real time.

≪残差算出手段≫
残差算出手段17は、主成分分析手段15で算出された主成分及び主成分スコアから近似される温度と熱電対5の測温データとの残差(式(4)中のα)を算出するものである。
残差の算出に際しては、少なくとも第2主成分以上の主成分を以って温度を近似することが望ましく、より好ましくは第3主成分までを用いて温度を近似することが望ましい。
≪Residual calculation means≫
The residual calculation means 17 calculates the residual (α in equation (4)) between the temperature approximated from the principal component and the principal component score calculated by the principal component analysis means 15 and the temperature measurement data of the thermocouple 5. To do.
In calculating the residual, it is desirable to approximate the temperature by using at least a second principal component or more, and it is more desirable to approximate the temperature using the third principal component.

≪表面欠陥発生判定手段≫
表面欠陥発生判定手段19は、残差算出手段17で算出された残差に基づいてスラブにおける表面欠陥発生の有無を判定するものであり、残差の自乗和が予め定めた所定の閾値を超えた場合、スラブに表面欠陥の発生「有」と判定する。
残差の自乗和に対する閾値を設定することにより、スラブの手入れによって救済可能な比較的軽微な欠陥や、製品として成立が困難な重篤な欠陥のいずれも高い確率で網羅して検出できる。
さらに、残差αの自乗和を、鋳造方向に配置された熱電対5の列毎に判定することで、表面欠陥の発生位置を特定し、後の工程におけるスラブ手入れの効率化を図ることができる。
≪Surface defect occurrence judging means≫
The surface defect occurrence determination unit 19 determines whether or not a surface defect has occurred in the slab based on the residual calculated by the residual calculation unit 17, and the sum of squares of the residual exceeds a predetermined threshold value. If it is determined that the surface defect is present in the slab.
By setting a threshold value for the sum of squares of the residuals, it is possible to detect and detect with high probability both relatively minor defects that can be relieved by slab care and serious defects that are difficult to establish as a product.
Furthermore, by determining the square sum of the residual α for each column of the thermocouples 5 arranged in the casting direction, it is possible to identify the occurrence position of surface defects and improve the efficiency of slab maintenance in the subsequent process. it can.

≪記憶装置、記録・出力装置≫
表面欠陥発生判定手段19により得られた判定結果は、メモリ等の記憶装置に格納及び/又はモニター、ディスプレイ又はプリンター等の記録・出力装置を介して出力される。当該出力された判定結果によってスラブは検品され、必要とあれば手入れ等の処置が施され、次工程、例えば熱間圧延や冷間圧延等を施す工程へと搬送される。
≪Storage device, recording / output device≫
The determination result obtained by the surface defect occurrence determination means 19 is stored in a storage device such as a memory and / or output via a recording / output device such as a monitor, display or printer. The slab is inspected according to the output determination result, and, if necessary, treatment such as care is performed, and the slab is conveyed to the next step, for example, a step of performing hot rolling or cold rolling.

従って、この判定結果の出力に基づいて、鋳造後のスラブに対する手入れの要否や引当てグレードの変更を効率良く行うことが可能となる。
ここで、スラブに対する手入れとしては、例えば、スラブ表面をスカーフマシーンやグラインダー等による欠陥除去が挙げられる。軽微な欠陥に関しては、この手入れ処理後、次工程へと搬送される。
一方、表面欠陥発生判定手段19において残差の自乗和が閾値以下で表面欠陥の発生「無」と判定された場合、上記手入れせずにスラブを次工程へと搬送することが可能となる。
Therefore, based on the output of the determination result, it is possible to efficiently change the necessity of the slab after casting and the allocation grade.
Here, examples of the care for the slab include removal of defects on the surface of the slab with a scarf machine, a grinder, or the like. Minor defects are transported to the next process after the care process.
On the other hand, when the surface defect occurrence determination means 19 determines that the occurrence of surface defects is “no” when the sum of squares of the residuals is equal to or less than the threshold value, the slab can be transported to the next process without taking the above care.

また、表面欠陥の発生有りと判定されたチャージに対しては、鋳造条件の変更を施すフィードバック制御により、これ以降に製造された鋳造スラブに欠陥が発生するのを未然に防止することも可能となる。
なお、この点に関する具体的な方法の一例については、後述する実施の形態2において説明する。
In addition, for charges determined to have surface defects, it is possible to prevent defects from occurring in subsequent cast slabs by feedback control that changes the casting conditions. Become.
An example of a specific method regarding this point will be described in a second embodiment described later.

上記のような表面欠陥判定装置1は、従来技術(例えば特許文献5)のようにデータベースを用いていないため、設備投資費が高騰化することがなく、大量の操業データも不要のため簡便である。   Since the surface defect determination apparatus 1 as described above does not use a database as in the prior art (for example, Patent Document 5), the capital investment cost does not increase, and a large amount of operation data is unnecessary, so that it is simple. is there.

以上のように構成された表面欠陥判定装置1を用いた連続鋳造スラブの表面欠陥判定方法(以下、単に「表面欠陥判定方法」という場合がある)について、表面欠陥判定装置1の動作と共に、図3に示すフローチャートに基づいて説明する。   Regarding the surface defect determination method of the continuous casting slab using the surface defect determination device 1 configured as described above (hereinafter, sometimes simply referred to as “surface defect determination method”), together with the operation of the surface defect determination device 1, FIG. This will be described based on the flowchart shown in FIG.

<連続鋳造スラブの表面欠陥判定方法>
本発明の実施の形態1に係る連続鋳造スラブの表面欠陥判定方法は、図3に示すように、長辺面銅板3aに埋設された熱電対5によって測定された鋳型3の測温データを取得する測温データ取得工程S1と、該取得された測温データを規格化する測温データ規格化工程S3と、該規格化された測温データの主成分分析を行う主成分分析工程S5と、該主成分分析工程で算出された主成分と主成分スコアにより表される温度と前記測温データとの残差を算出する残差算出工程S7と、残差算出工程S7で算出された残差の自乗和に基づいてスラブにおける表面欠陥発生の有無を判定する表面欠陥発生判定工程S9とを備えている。
以下、各工程について説明する。
<Surface defect judgment method for continuous casting slab>
As shown in FIG. 3, the method for determining surface defects of a continuous cast slab according to Embodiment 1 of the present invention obtains temperature measurement data of the mold 3 measured by the thermocouple 5 embedded in the long side copper plate 3a. A temperature measurement data acquisition step S1, a temperature measurement data normalization step S3 for normalizing the acquired temperature measurement data, a principal component analysis step S5 for performing a principal component analysis of the normalized temperature measurement data, A residual calculation step S7 for calculating a residual between the temperature measured data and the temperature represented by the principal component and the principal component score calculated in the principal component analysis step, and the residual calculated in the residual calculation step S7 And a surface defect occurrence determination step S9 for determining whether or not a surface defect is generated in the slab based on the square sum.
Hereinafter, each step will be described.

≪測温データ取得工程≫
測温データ取得工程S1は、測温データ取得手段11を用いて長辺面銅板3aに埋設した熱電対5からの測温データを所定の時間間隔で取得する工程である。
測温データを取得する時間間隔は1秒以上30秒以下が望ましい。
≪Temperature measurement data acquisition process≫
The temperature measurement data acquisition step S1 is a step of acquiring temperature measurement data from the thermocouple 5 embedded in the long side copper plate 3a using the temperature measurement data acquisition means 11 at a predetermined time interval.
The time interval for acquiring temperature measurement data is preferably 1 second or more and 30 seconds or less.

≪測温データ規格化工程≫
測温データ規格化工程S3は、測温データ規格化手段13を用い、測温データ取得工程S1で取得された測温データから各鋳造時間における長辺面銅板3a毎の平均値を算出し、各測温データと当該平均値との差を算出することで各測温データを規格化する工程である。
≪Temperature measurement data standardization process≫
The temperature measurement data normalization step S3 uses the temperature measurement data normalization means 13 to calculate the average value for each long side surface copper plate 3a at each casting time from the temperature measurement data acquired in the temperature measurement data acquisition step S1, This is a step of normalizing each temperature measurement data by calculating a difference between each temperature measurement data and the average value.

≪主成分分析工程≫
主成分分析工程S5は、主成分分析手段15を用い、測温データ規格化工程S3で規格化された各測温データの主成分分析を行い、各測温データの主成分と主成分スコアを算出する工程である。
≪Principal component analysis process≫
In the principal component analysis step S5, the principal component analysis of each temperature measurement data normalized in the temperature measurement data normalization step S3 is performed using the principal component analysis means 15, and the principal component and the principal component score of each temperature measurement data are obtained. It is a process of calculating.

≪残差算出工程≫
残差算出工程S7は、残差算出手段17を用い、主成分分析工程S5で算出された主成分及び主成分スコアにより近似される温度と実際の測温データとの残差(式(4)中のα)を算出する工程である。
≪Residual calculation process≫
Residual calculation step S7 uses residual calculation means 17 to calculate the residual between the temperature measured by the principal component and the principal component score calculated in principal component analysis step S5 and the actual temperature measurement data (formula (4)). This is a step of calculating α).

≪表面欠陥発生判定工程≫
表面欠陥発生判定工程S9は、表面欠陥発生判定手段19を用い、残差算出工程S7で算出された残差に基づいてスラブにおける表面欠陥発生の有無を判定する工程である。具体的には、残差の自乗和が予め定めた所定の閾値を超えた場合、スラブに表面欠陥の発生「有」と判定し、残差の自乗和が前記閾値以下の場合、表面欠陥の発生「無」と判定する。
≪Surface defect occurrence determination process≫
The surface defect occurrence determination step S9 is a step of using the surface defect occurrence determination means 19 to determine whether or not a surface defect has occurred in the slab based on the residual calculated in the residual calculation step S7. Specifically, when the residual sum of squares exceeds a predetermined threshold value, it is determined that surface defects have occurred in the slab, and when the residual sum of squares is less than or equal to the threshold value, It is determined that there is no occurrence.

表面欠陥発生の判定結果は、メモリ等の記憶装置に格納及び/又はモニター、ディスプレイ又はプリンター等の記録・出力装置により出力し、その判定結果に基づいてスラブを検品し、必要とあれば手入れ等の処置を施して、次工程へと搬送する。
ここで、残差の自乗和を熱電対5の列毎に判定することで、スラブを検品する際に表面欠陥が発生した位置を効率よく特定することができる。
The determination result of surface defect occurrence is stored in a storage device such as a memory and / or output by a recording / output device such as a monitor, display or printer, and the slab is inspected based on the determination result, and if necessary, maintained Then, it is transported to the next process.
Here, by determining the square sum of the residuals for each column of the thermocouples 5, it is possible to efficiently identify the position where the surface defect has occurred when inspecting the slab.

鋳造されたスラブは、表面欠陥発生の判定結果に基づいてスラブ処置工程S11においてスラブ処置を施した後、圧延工程S13へと搬送される。
スラブ処置としては、例えば、長辺面銅板3aに埋設された熱電対5の鋳造方向の列において表面欠陥の発生「有」と判定された場合、熱電対5の当該列の位置に対応するスラブ部位の表面をスカーフやグラインダー等による手入れが挙げられ、このような手入れによって表面欠陥を除去したスラブを圧延工程S13へ搬送する。
一方、表面欠陥の発生「無」と判定された場合、鋳造されたスラブは表面手入れせずに圧延工程S13へと搬送する。
The cast slab is subjected to a slab treatment in the slab treatment step S11 based on the determination result of the surface defect occurrence, and is then transferred to the rolling step S13.
As the slab treatment, for example, when it is determined that the occurrence of surface defects is “present” in the row in the casting direction of the thermocouple 5 embedded in the long side copper plate 3a, the slab corresponding to the position of the row of the thermocouple 5 The surface of the part may be cared for with a scarf, a grinder, etc., and the slab from which surface defects have been removed by such caring is conveyed to the rolling step S13.
On the other hand, when it is determined that the occurrence of surface defects is “no”, the cast slab is transported to the rolling step S13 without surface maintenance.

以上のように、本実施の形態1においては、鋳型3の長辺面銅板3aに埋設された測温素子(熱電対5)の配置を、鋳造方向については、最上段の測温素子の位置が湯面制御レベルから200mm以内、最下段の測温素子の位置が湯面制御レベルから500mm以上離れた位置、隣り合う測温素子間の間隔が250mm以下、段数を4段以上とし、鋳型幅方向については、両短辺に最も近い箇所に配置された測温素子の位置が測定対象のスラブ幅の短辺面と長辺面の交線の位置から鋳型幅中央に向かう方向に沿って250mm以内、隣り合う測温素子間の間隔が200mm以下、列数を8列以上とし、測温データ取得工程S1と、測温データ規格化工程S3と、主成分分析工程S5と、残差算出工程S7と、表面欠陥発生判定工程S9を経て、表面欠陥発生の判定結果をメモリに格納及び/又はプリンターやディスプレイ等に記録・出力することによって、設備投資費を高騰化させることなくスラブにおける表面欠陥発生の有無を良好に判定することが可能となり、判定結果に基づいて適切なスラブ処置を施すことで優れた表面品質のスラブを効率良く製造することができる。   As described above, in the first embodiment, the arrangement of the temperature measuring elements (thermocouples 5) embedded in the long side copper plate 3a of the mold 3 is the same as the position of the uppermost temperature measuring element in the casting direction. Within 200mm from the molten metal surface control level, the position of the bottom temperature sensor is 500mm or more away from the molten metal surface control level, the distance between adjacent temperature sensors is 250mm or smaller, the number of plates is 4 or more, and the mold width As for the direction, the position of the temperature measuring element arranged at the location closest to both short sides is 250 mm along the direction from the intersection of the short side surface and long side surface of the slab width to be measured toward the mold width center. The distance between adjacent temperature measuring elements is 200 mm or less, the number of columns is 8 or more, temperature measurement data acquisition step S1, temperature measurement data normalization step S3, principal component analysis step S5, and residual calculation step Through S7 and the surface defect occurrence determination step S9, the determination result of the surface defect occurrence is stored in the memory. By storing and / or recording / outputting to a printer, display, etc., it is possible to determine the presence or absence of surface defects in the slab without increasing capital investment costs, and appropriate slabs can be determined based on the determination results. By applying the treatment, a slab having excellent surface quality can be efficiently produced.

[実施の形態2]
本発明の他の実施の形態に係る表面欠陥判定方法を用いた鋼鋳片の製造方法は、本発明に係る実施の形態1で述べた鋼の連続鋳造時における連続鋳造スラブの表面欠陥判定方法を用いて表面欠陥発生の有無を判定し、表面欠陥発生有りと判定された場合、表面欠陥の発生位置から鋳型内における鋳型流動異常を推定し、該溶鋼流動異常を解消するように溶鋼流動を制御して鋼鋳片を製造するものであり、図8に示すように、鋳型3の測温データを取得する測温データ取得工程S1と、該取得された測温データを規格化する測温データ規格化工程S3と、該規格化された測温データの主成分分析を行う主成分分析工程S5と、該主成分分析工程で算出された主成分と主成分スコアにより表される温度と前記測温データとの残差を算出する残差算出工程S7と、残差算出工程S7で算出された残差の自乗和に基づいてスラブにおける表面欠陥発生の有無を熱電対5の列毎に判定する表面欠陥発生判定工程S9と、表面欠陥発生有りと判定された熱電対5の列に対応する鋳型幅方向の鋳型内相対位置を特定する鋳型内相対位置特定工程S15と、鋳型内相対位置特定工程S15で特定された鋳型内相対位置に基づいて溶鋼流動を制御する溶鋼流動制御工程S17とを備えたものである。
[Embodiment 2]
A method for manufacturing a steel slab using a surface defect determination method according to another embodiment of the present invention is a method for determining a surface defect of a continuous casting slab during continuous casting of steel described in Embodiment 1 according to the present invention. When the presence or absence of surface defects has been determined, the mold flow abnormality in the mold is estimated from the surface defect occurrence position, and the molten steel flow is performed so as to eliminate the molten steel flow abnormality. As shown in FIG. 8, a temperature measurement data acquisition step S1 for acquiring temperature measurement data of the mold 3 and a temperature measurement for normalizing the acquired temperature measurement data are performed. A data normalization step S3, a principal component analysis step S5 for performing a principal component analysis of the normalized temperature measurement data, a temperature represented by the principal component and the principal component score calculated in the principal component analysis step, and Residual calculation to calculate residual with temperature measurement data Step S7, surface defect occurrence determination step S9 for determining the presence or absence of surface defects in the slab for each column of thermocouples 5 based on the sum of squares of the residuals calculated in the residual calculation step S7, and occurrence of surface defects Based on the in-mold relative position specifying step S15 for specifying the relative position in the mold in the mold width direction corresponding to the row of the thermocouples 5 determined as follows, and the in-mold relative position specified in the in-mold relative position specifying step S15. And a molten steel flow control step S17 for controlling the molten steel flow.

測温データ取得工程S1、測温データ規格化工程S3、主成分分析工程S5、残差算出工程S7、表面欠陥発生判定工程S9は、本発明に係る実施の形態1に記載した内容と同一であるため、以下、鋳型内相対位置特定工程S15と、溶鋼流動制御工程S17の各工程について詳細に説明する。   The temperature measurement data acquisition step S1, the temperature measurement data normalization step S3, the principal component analysis step S5, the residual calculation step S7, and the surface defect occurrence determination step S9 are the same as the contents described in the first embodiment according to the present invention. Therefore, hereinafter, each of the in-mold relative position specifying step S15 and the molten steel flow control step S17 will be described in detail.

<鋳型内相対位置特定工程>
鋳型内相対位置特定工程S15は、表面欠陥発生判定工程S9で表面欠陥発生有りと判定された熱電対5の列に対応する鋳型幅方向の鋳型内相対位置を特定する工程である。
当該鋳型幅方向の鋳型内相対位置の特定方法の一例を以下に説明する。
<In-mold relative position identification process>
The relative position in the mold specifying step S15 is a process for specifying the relative position in the mold in the mold width direction corresponding to the row of the thermocouples 5 determined as having surface defects in the surface defect occurrence determining step S9.
An example of a method for specifying the relative position in the mold in the mold width direction will be described below.

まず、鋳型3の長辺面銅板3aに埋設された熱電対5について、鋳型幅方向に隣り合う2列以上の熱電対5を列単位で1グループとし、長辺面銅板3a毎に3グループ以上にグループ分けする。   First, with respect to the thermocouple 5 embedded in the long side copper plate 3a of the mold 3, two or more rows of thermocouples 5 adjacent to each other in the mold width direction are grouped into one group, and three or more groups are provided for each long side copper plate 3a. Divide into groups.

次に、グループ分けされた各グループの鋳型幅方向の鋳型内相対位置を定める。
そして、表面欠陥発生判定工程S9で表面欠陥発生有りと判定された熱電対5の列が含まれるグループの鋳型内相対位置に基づいて、表面欠陥発生有りと判定された熱電対5の列に対応する鋳型幅方向の鋳型内相対位置を特定する。
Next, a relative position in the mold in the mold width direction of each group divided is determined.
Then, based on the relative position in the mold of the group including the row of thermocouples 5 determined to have surface defect occurrence in the surface defect occurrence determination step S9, it corresponds to the row of thermocouples 5 determined to have surface defect occurrence. The relative position in the mold in the mold width direction is specified.

本実施の形態2で特定される前記鋳型内相対位置は、鋳型3の端部(鋳型3の短辺面付近)又は中央部付近とする。   The relative position in the mold specified in the second embodiment is the end of the mold 3 (near the short side surface of the mold 3) or near the center.

前記鋳型内相対位置が鋳型3の端部であるグループは、鋳型3の短辺面に最も近い1つ又は2つのグループ(鋳型3の両短辺面に対して2又は4つのグループ)とする。   The group whose relative position in the mold is the end of the mold 3 is one or two groups closest to the short side surface of the mold 3 (two or four groups with respect to both short side surfaces of the mold 3). .

一方、前記鋳型内相対位置が鋳型3の中央部付近であるグループは、奇数個のグループにグループ分けをした場合、3グループ分けでは鋳型幅方向において中央の1グループ、5グループ分け以上では前記中央の1グループ又は該中央の1グループの両隣のグループを含む3つのグループとし、偶数個のグループにグループ分けした場合、長辺面銅板3aの鋳型幅方向における中心線の両側にある2又は4つのグループとする。   On the other hand, when the group in which the relative position in the mold is near the center of the mold 3 is grouped into an odd number of groups, the center is one group in the mold width direction in the case of three groups, and the center in the group of five or more groups. Or three groups including both adjacent groups of the central group, and when grouped into an even number of groups, 2 or 4 on both sides of the center line in the mold width direction of the long side copper plate 3a Group.

そして、表面欠陥発生判定工程S9で表面欠陥発生有りと判定された熱電対5の列が、鋳型3の端部であるグループに属する場合、表面欠陥が発生した鋳型内相対位置は鋳型幅方向の端部であると特定する。
また、表面欠陥発生判定工程S9で表面欠陥発生有りと判定された熱電対5の列が鋳型3の中央部付近であるグループに属する場合、表面欠陥が発生した鋳型内相対位置は鋳型幅方向の中央部付近であると特定する。
If the row of thermocouples 5 determined to have surface defects in the surface defect occurrence determination step S9 belongs to a group that is an end of the mold 3, the relative position in the mold where the surface defects have occurred is in the mold width direction. Identifies the end.
Further, when the row of thermocouples 5 determined to have surface defect occurrence in the surface defect occurrence determination step S9 belongs to a group near the center of the mold 3, the relative position in the mold where the surface defect has occurred is in the mold width direction. Identify near the center.

上記の鋳型内相対位置の特定方法を、図9に示すように、熱電対5の列を6グループにグループ分けした場合について具体的に説明する。
図9に示すように、鋳型3の長辺面銅板3aにA列〜P列の16列埋設された熱電対5を、A−B列(グループ1)、C−E列(グループ2)、F−H列(グループ3)、I−K列(グループ4)、L−N列(グループ5)、O−P列(グループ6)の6つのグループに列単位でグループ分けした場合、鋳型3の短辺面に最も近いグループ1及びグループ6の鋳型内相対位置は鋳型3の端部とする。また、長辺面銅板3aの中心線Cの両側にあるグループ3及びグループ4の鋳型内相対位置は鋳型3の中央部付近とする。
The method for specifying the relative position in the mold will be specifically described in the case where the rows of the thermocouples 5 are grouped into 6 groups as shown in FIG.
As shown in FIG. 9, the thermocouples 5 embedded in the long side surface copper plate 3a of the casting mold 3 from the A row to the P row are connected to the AB row (group 1), the CE row (group 2), When the group is grouped into six groups of FH column (group 3), IK column (group 4), LN column (group 5), and OP column (group 6), mold 3 The relative position in the mold of the group 1 and the group 6 closest to the short side surface of the mold is the end of the mold 3. Further, the relative positions in the mold of the group 3 and the group 4 on both sides of the center line C of the long side copper plate 3 a are set near the center of the mold 3.

そして、表面欠陥発生判定工程S9においてB列に表面欠陥発生有りと判定された場合、B列は、鋳型内相対位置が鋳型3の端部であるグループ1に属するため、表面欠陥が発生した鋳型内相対位置は鋳型3の端部であると特定される。
また、表面欠陥発生判定工程S9においてF列に表面欠陥発生有りと判定された場合、F列は鋳型内相対位置が鋳型3の中央部付近であるグループ3に属するため、表面欠陥が発生した鋳型内相対位置は鋳型3の中央部付近であると特定される。
When it is determined in the surface defect occurrence determination step S9 that the surface defect has occurred in the B row, the B row belongs to the group 1 whose relative position in the mold is the end of the mold 3, and thus the mold in which the surface defect has occurred. The inner relative position is specified as the end of the mold 3.
Further, when it is determined in the surface defect occurrence determination step S9 that the surface defect has occurred in the F row, the F row belongs to the group 3 in which the relative position in the mold is near the center of the mold 3, and thus the mold in which the surface defect has occurred. The inner relative position is specified to be near the center of the mold 3.

なお、図9に示した例において、グループ2及びグループ5は鋳型3の端部又は中央部付近のいずれにも相当しない。   In the example shown in FIG. 9, the group 2 and the group 5 do not correspond to either the end portion or the central portion of the mold 3.

<溶鋼流動制御工程>
溶鋼流動制御工程S17は、鋳型内相対位置特定工程S15において表面欠陥発生有りと特定された鋳型内相対位置から鋳型3内における溶鋼流動異常を推定し、該推定された溶鋼流動異常を解消するように溶鋼流動を制御する工程である。
<Molten steel flow control process>
The molten steel flow control step S17 estimates the molten steel flow abnormality in the mold 3 from the relative position in the mold identified as having surface defects in the in-mold relative position specifying step S15, and eliminates the estimated molten steel flow abnormality. This is a process for controlling the flow of molten steel.

溶鋼流動制御工程S17において推定される溶鋼流動異常としては、溶鋼流動不足又は溶鋼流動過剰がある。
溶鋼流動不足の場合、鋳型3内において浸漬ノズル(図示なし)から吹き込まれる不活性ガスの気泡がスラブの凝固シェルに取り込まれて表面欠陥となり、溶鋼流動不足に起因する表面欠陥は、鋳型3の鋳型幅方向の端部に発生しやすい。
これに対し、溶鋼流動過剰の場合、鋳型3内の湯面に浮遊するパウダーがスラブに巻き込まれて表面欠陥となり、溶鋼流動過剰に起因する表面欠陥は、鋳型3の鋳型幅方向の中央部付近に発生しやすい。
The molten steel flow abnormality estimated in the molten steel flow control step S17 includes insufficient molten steel flow or excessive molten steel flow.
In the case of insufficient molten steel flow, the bubbles of inert gas blown from the immersion nozzle (not shown) in the mold 3 are taken into the solidified shell of the slab and become surface defects. It tends to occur at the end in the mold width direction.
On the other hand, in the case of excessive molten steel flow, powder floating on the molten metal surface in the mold 3 is caught in the slab and becomes a surface defect. The surface defect caused by excessive molten steel flow is near the center of the mold 3 in the mold width direction. It is easy to occur.

そこで、鋳型内相対位置特定工程S15において表面欠陥が鋳型3の端部に発生したと特定された場合、溶鋼流動制御工程S17においては、溶鋼流動不足であると推定し、溶鋼流動不足を解消するように溶鋼流動を制御する。具体的には、浸漬ノズル(図示なし)からの溶鋼の吹き込み量を増加することによって溶鋼流動を促進することができる。   Therefore, when it is determined that a surface defect has occurred at the end of the mold 3 in the in-mold relative position specifying step S15, in the molten steel flow control step S17, it is estimated that the molten steel flow is insufficient, and the insufficient molten steel flow is eliminated. To control the molten steel flow. Specifically, the molten steel flow can be promoted by increasing the amount of molten steel blown from an immersion nozzle (not shown).

一方、鋳型内相対位置特定工程S15において表面欠陥が鋳型3の中央部付近に発生したと特定された場合、溶鋼流動制御工程S17においては、溶鋼流動過剰であると推定し、溶鋼流動過剰を解消するように溶鋼流動を制御する。具体的には、浸漬ノズル(図示なし)からの溶鋼の吹き込み量を減少することによって溶鋼流動を抑制することができる。   On the other hand, when it is determined in the relative position specifying step S15 in the mold that a surface defect has occurred near the center of the mold 3, the molten steel flow control step S17 estimates that the molten steel flow is excessive and eliminates the molten steel flow excess. To control the flow of molten steel. Specifically, the molten steel flow can be suppressed by reducing the amount of molten steel blown from an immersion nozzle (not shown).

上記のように、溶鋼流動制御工程S17において溶鋼流動異常を解消するように溶鋼流動の制御条件を調節することにより、表面欠陥の発生有りと判定された後に製造されるスラブに表面欠陥が発生することを防ぐことができる。   As described above, by adjusting the control condition of the molten steel flow so as to eliminate the molten steel flow abnormality in the molten steel flow control step S17, a surface defect is generated in the slab manufactured after it is determined that the surface defect is generated. Can be prevented.

以上より、本発明に係る表面欠陥判定方法により表面欠陥発生有りと判定された場合、該判定された測温データを取得した熱電対5の列に基づいて表面欠陥が発生した鋳型内相対位置を特定し、該特定された鋳型内相対位置から鋳型3内の溶鋼流動異常を推定し、推定された溶鋼流動異常を解消するように溶鋼流動を制御するといった対策を施すことにより、当該対策が後続のスラブに反映されるため、同一チャージにおける表面欠陥発生を低減することができる。   From the above, when it is determined by the surface defect determination method according to the present invention that surface defect has occurred, the relative position in the mold where the surface defect has occurred is determined based on the column of the thermocouple 5 that has acquired the determined temperature measurement data. The countermeasure is followed by identifying and estimating a molten steel flow abnormality in the mold 3 from the identified relative position in the mold and controlling the molten steel flow so as to eliminate the estimated molten steel flow abnormality. Therefore, the occurrence of surface defects in the same charge can be reduced.

なお、上記の鋳型内相対位置特定工程S15においては、熱電対5を列単位でグループ分けし、該グループの鋳型幅方向における位置により表面欠陥が発生した鋳型内相対位置を特定するものであったが、熱電対5の列単位でグループ分けせず、熱電対5の列の鋳型幅方向位置に基づいて前記鋳型内相対位置(端部又は中央部)を特定するものであってもよい。   In the above-mentioned mold relative position specifying step S15, the thermocouples 5 are grouped in units of columns, and the relative position in the mold where the surface defect has occurred is specified by the position of the group in the mold width direction. However, the relative position (end portion or center portion) in the mold may be specified based on the position in the mold width direction of the rows of the thermocouples 5 without being grouped in units of rows of the thermocouples 5.

また、上記の溶鋼流動制御工程S17は前記浸漬ノズルからの溶鋼の吹き込み量によって鋳型内溶鋼流動を促進又は抑制といった制御を行うものであったが、電磁流動制御が可能な鋳造機の場合においては、鋳型3内における溶鋼流動を電磁流動制御することも可能である。そのため、本実施の形態2において、溶鋼流動制御工程S17は電磁流動制御を行うものであってもよい。なお、溶鋼流動の制御は、オンラインで行うことができる。   The molten steel flow control step S17 performs control such as promoting or suppressing molten steel flow in the mold by the amount of molten steel blown from the immersion nozzle. In the case of a casting machine capable of electromagnetic flow control, The flow of molten steel in the mold 3 can be controlled by electromagnetic flow. Therefore, in this Embodiment 2, molten steel flow control process S17 may perform electromagnetic flow control. In addition, control of molten steel flow can be performed online.

さらに、本実施の形態2では測温素子として熱電対5を用いているが、実施の形態1と同様に、例えば光ファイバー方式のセンサー等、温度を正確に測定できるものであればどのような方式の測温素子であっても問題はない。   Furthermore, although the thermocouple 5 is used as the temperature measuring element in the second embodiment, as in the first embodiment, any method can be used as long as the temperature can be accurately measured, such as an optical fiber sensor. There is no problem even with the temperature measuring element.

本発明の連続鋳造スラブの表面欠陥判定方法及び装置における熱電対5の配置の効果について確認するための具体的な実験を行ったので、その結果について以下に説明する。
実験は、図1に示す表面欠陥判定装置1を用いて、鋳型3の長辺面銅板3aに埋設する熱電対5の配置を変えて表面欠陥判定を行い、実際の表面欠陥的中率を評価するというものである。
熱電対5の配置は、表1に示すように、上記実施の形態1で説明した知見(i)〜知見(vi)を満たす範囲である本発明例1〜本発明例5と、比較例として本発明の範囲に含まれない比較例1〜比較例5について検討した。
A specific experiment for confirming the effect of the arrangement of the thermocouple 5 in the method and apparatus for determining surface defects of the continuous cast slab of the present invention was conducted, and the results will be described below.
In the experiment, the surface defect determination apparatus 1 shown in FIG. 1 is used to determine the surface defect by changing the arrangement of the thermocouple 5 embedded in the long-side copper plate 3a of the mold 3, and the actual surface defect probability is evaluated. It is to do.
As shown in Table 1, the thermocouples 5 are arranged in the range satisfying the findings (i) to (vi) described in the first embodiment, and Examples 1 to 5 of the present invention and Comparative Examples. Comparative Examples 1 to 5 that are not included in the scope of the present invention were examined.

熱電対5にはJIS-T型熱電対を用い、長辺面銅板3aの鋳型フレームに接触する面から溶鋼に接触する面に向かって穿孔し、穿孔した先端底部に熱電対5の温接点が接触するように埋設した。前記先端底部から長辺面銅板3aの溶鋼に接触する面までの距離は15mmとした。   The thermocouple 5 is a JIS-T type thermocouple, which is drilled from the surface contacting the mold frame of the long side copper plate 3a toward the surface contacting the molten steel, and the hot junction of the thermocouple 5 is provided at the bottom of the drilled tip. Buried in contact. The distance from the bottom of the tip to the surface of the long side copper plate 3a contacting the molten steel was 15 mm.

このように熱電対5を埋設した垂直曲げ形連続鋳造機を用いて、アルミキルド溶鋼を連続鋳造した。鋳造条件は、鋳造厚み220〜300mm、鋳造幅1900〜2200mm、溶鋼スループットを3.0〜7.5ton/minとした。
溶鋼は浸漬ノズルによりタンディッシュ(図示なし)から鋳型3内へと供給されるが、その浸漬ノズルにおける溶鋼吐出孔の溶鋼吐出角度は下向き15°以上45°以下とし、浸漬深さは湯面制御レベルから溶鋼吐出孔上端までの距離として180mm〜300mmの範囲とした。浸漬ノズルからの吹き込み不活性ガスにはArガスを使用した。鋳型3内の溶鋼には、磁場発生装置から相対する長辺面銅板3aに沿ってそれぞれ相反する向きの移動磁場を印加することにより、鋳型3内の溶鋼が凝固シェル界面に沿って水平方向に旋回する流動を付与した。
Using the vertical bending type continuous casting machine in which the thermocouple 5 was embedded in this way, aluminum killed molten steel was continuously cast. The casting conditions were a casting thickness of 220 to 300 mm, a casting width of 1900 to 2200 mm, and a molten steel throughput of 3.0 to 7.5 ton / min.
Molten steel is supplied from a tundish (not shown) into the mold 3 by a dipping nozzle. The molten steel discharge angle of the molten steel discharge hole in the dipping nozzle is downward 15 ° to 45 °, and the dipping depth is controlled by the molten metal surface. The distance from the level to the upper end of the molten steel discharge hole was in the range of 180 mm to 300 mm. Ar gas was used as the inert gas blown from the immersion nozzle. The molten steel in the mold 3 is applied with a moving magnetic field in the opposite direction along the opposing long side copper plate 3a from the magnetic field generator, so that the molten steel in the mold 3 is horizontally aligned along the solidified shell interface. A swirling flow was imparted.

鋳造したスラブは表面をスカーフやグラインダー等によって手入れ処置することなく(以下、無手入れと表記)、無手入れの状態で圧延する工程へと搬送し、熱間圧延、冷間圧延等を施し、圧延後に表面欠陥をオンライン表面欠陥計で連続的に測定した。そして、表面欠陥判定装置1により得られる表面欠陥発生の判定結果との対比を行い、表面欠陥的中率を評価した。   The cast slab is transported to the process of rolling without maintenance with the scarf or grinder etc. (hereinafter referred to as “uncleaned”), and subjected to hot rolling, cold rolling, etc. Later, surface defects were continuously measured with an on-line surface defect meter. And the comparison with the determination result of the surface defect generation | occurrence | production obtained by the surface defect determination apparatus 1 was performed, and the surface defect middle rate was evaluated.

主成分分析は同一チャージにおける全ての測温データを対象とし、チャージ毎に測温データに対して主成分分析を1回実施し、第1主成分〜第3主成分と主成分スコアを算出した。そして、主成分と主成分スコアにより近似される温度と実際の測温データとの残差を算出し、残差の自乗和が100K2を超えた場合、当該スラブの表面欠陥発生「有」と判定した。 Principal component analysis was performed on all temperature measurement data in the same charge, and the principal component analysis was performed once on the temperature measurement data for each charge, and the first to third principal components and the principal component score were calculated. . Then, it calculates a residual between the actual temperature measurement data with temperature which is approximated by the principal component and principal component score, if the square sum of residuals exceeds 100K 2, the surface defects of the slab and "present" Judged.

実施例1において測温データを取得する時間間隔は5秒とし、主成分分析の解析には、Mathworks社製の技術計算用コンピュータ言語MATLAB(登録商標)を用いた。   In Example 1, the time interval for acquiring the temperature measurement data was 5 seconds, and the computer language MATLAB (registered trademark) for technical calculation manufactured by Mathworks was used for the analysis of the principal component analysis.

図4〜図7に、熱電対5のA列からP列まで列毎に算出した残差αの自乗和の経時変化の例を示す。E列、G列、H列、M列、N列及びO列においては、残差αの自乗和が100K2を超える非定常的な挙動が見られ、表面欠陥の発生「有」と判定された。 4 to 7 show examples of changes over time of the square sum of the residual α calculated for each column from the A column to the P column of the thermocouple 5. In E column, G column, H column, M column, N column, and O column, unsteady behavior in which the sum of squares of the residual α exceeds 100K 2 is seen, and it is determined that surface defects are present. It was.

本実施例においては、残差αの自乗和に基づいて表面欠陥の発生「有」と判定したスラブ数(=X)、実際に圧延した後に表面欠陥が検知されたスラブ数(=Y)とし、検知率(的中)率Z=Y/X×100[%]を求めた。
さらに、表面欠陥の発生「有」と判定されなかったのに実際に表面欠陥が出た場合のスラブ数(=Q)を、実際に圧延して表面欠陥が発生したスラブ全数(=R)で除したものを非検知率(見逃し率)P=Q/R×100[%]として評価した。
なお、発明例1〜発明例5及び比較例1〜比較例5ともに、それぞれおよそ300チャージ(1チャージあたり約300トン前後)の鋳造量を対象として評価した。
In this example, the number of slabs determined to have surface defects “existence” based on the square sum of residual α (= X), the number of slabs in which surface defects were detected after actual rolling (= Y) The detection rate (target) rate Z = Y / X × 100 [%] was determined.
Furthermore, the number of slabs (= Q) when surface defects actually occurred even though it was not determined that surface defects were found to be “present” was the total number of slabs (= R) where surface defects were actually generated by rolling. What was divided was evaluated as a non-detection rate (missing rate) P = Q / R × 100 [%].
Each of Invention Examples 1 to 5 and Comparative Examples 1 to 5 was evaluated for a casting amount of about 300 charges (about 300 tons per charge).

表面欠陥の検知率及び非検知率の結果を前述の表1に示す。
本発明を満たす熱電対5の配置(発明例1〜発明例5)では、欠陥検知率は81%を超える高い値であり、スラブ表面における表面欠陥の発生を良好に判定できることが示された。また、非検知率は41%〜55%であった。
The results of the surface defect detection rate and non-detection rate are shown in Table 1 above.
In the arrangement of the thermocouple 5 satisfying the present invention (Invention Example 1 to Invention Example 5), the defect detection rate is a high value exceeding 81%, indicating that the occurrence of surface defects on the surface of the slab can be determined well. The non-detection rate was 41% to 55%.

比較例1は、熱電対5の段数が4段よりも少ない3段であり、検知率は47%と低く、非検知率は69%と高い値であった。
比較例2は、熱電対5の列数が8列よりも少ない7列であり、検知率は58%と低く、非検知率は80%と高い値であった。
比較例3は、熱電対5の鋳型幅方向における間隔が250mmよりも大きい257mmであり、検知率は57%と、非検知率は65%であり、本発明例よりも低位な結果であった。
比較例4は、熱電対5の鋳造方向の最上段位置が湯面制御レベルから200mmよりも大きい210mmであり、検知率は47%と低く、非検知率は85%と高い値であった。
比較例5は、熱電対5の鋳造方向の最下段位置が湯面制御レベルから500mm〜900mmの範囲外の480mmであり、検知率が67%であり、本発明例より低位な結果であった。
以上から、鋳型3の長辺面銅板3aに埋設された熱電対5が本発明の範囲に配置されていない場合、スラブにおける表面欠陥発生の有無を良好に判定できないことが示された。
In Comparative Example 1, the number of stages of the thermocouple 5 is three, which is less than four, the detection rate is as low as 47%, and the non-detection rate is as high as 69%.
In Comparative Example 2, the number of rows of the thermocouple 5 was 7 rows smaller than 8 rows, the detection rate was as low as 58%, and the non-detection rate was as high as 80%.
In Comparative Example 3, the interval in the mold width direction of the thermocouple 5 was 257 mm, which was larger than 250 mm, the detection rate was 57%, and the non-detection rate was 65%, which was a lower result than the present invention example. .
In Comparative Example 4, the uppermost position in the casting direction of the thermocouple 5 was 210 mm larger than 200 mm from the molten metal surface control level, the detection rate was as low as 47%, and the non-detection rate was as high as 85%.
In Comparative Example 5, the lowermost position in the casting direction of the thermocouple 5 is 480 mm outside the range of 500 mm to 900 mm from the molten metal surface control level, and the detection rate is 67%, which is a lower result than the example of the present invention. .
From the above, it was shown that when the thermocouple 5 embedded in the long-side copper plate 3a of the mold 3 is not disposed within the scope of the present invention, it is not possible to satisfactorily determine the occurrence of surface defects in the slab.

実施例2では、図1に示した表面欠陥判定装置1の適用有無による生産性を比較した。
なお、本実施例2では、鋳型3の長辺面銅板3aに埋設した熱電対5の配置は、表1に示した発明例4の場合と同様であり、実施例1と同様の鋳造条件とした。
In Example 2, productivity was compared depending on whether or not the surface defect determination apparatus 1 shown in FIG. 1 was applied.
In Example 2, the arrangement of the thermocouple 5 embedded in the long-side copper plate 3a of the mold 3 is the same as in the case of Invention Example 4 shown in Table 1, and the same casting conditions as in Example 1 are used. did.

スラブの鋳造開始から、その後の圧延等の処理を経て製品出荷されるまでの所要日数を比較した結果、表面欠陥判定装置1を適用しない場合の日数を規格化して100とした場合、本発明に係る表面欠陥判定装置1を適用した場合の所要日数は88となり、生産から出荷までのリードタイムが12%(=(100-88)/100×100)向上した。
これは、表面欠陥判定装置1を導入することにより、鋳造後のスラブに対する表面手入れの要否や引き当てグレードの変更を効率よく行うことが可能となったためである。
As a result of comparing the required days from the start of casting of the slab to the shipment of the product through subsequent processing such as rolling, when the number of days when the surface defect determination device 1 is not applied is normalized to 100, the present invention is applied. When the surface defect determination apparatus 1 is applied, the required number of days is 88, and the lead time from production to shipment is improved by 12% (= (100-88) / 100 × 100).
This is because the introduction of the surface defect determination apparatus 1 makes it possible to efficiently perform the necessity of surface maintenance for the slab after casting and change of the assigned grade.

以上のように、本発明に係る連続鋳造スラブの表面欠陥判定方法及び装置を適用して連続鋳造を行うことで、圧延工程前にスラブ表面の欠陥発生を検知し、鋳造後のスラブに対する表面手入れの要否や引当てグレードの変更を効率良く行うことで生産性を向上できることが実証された。   As described above, the continuous casting slab surface defect determination method and apparatus according to the present invention is applied to perform continuous casting, thereby detecting the occurrence of defects on the surface of the slab before the rolling process, and surface care for the slab after casting. It has been proved that productivity can be improved by efficiently changing the grades of the necessity and provision.

次に、本発明に係る表面欠陥判定方法を用いた鋼鋳片の製造方法により鋼鋳片を製造した場合のスラブ表面の欠陥発生率を比較する実験を行ったので、その結果について説明する。   Next, since the experiment which compares the defect incidence rate of the slab surface at the time of manufacturing a steel slab by the manufacturing method of the steel slab using the surface defect determination method concerning this invention is demonstrated, the result is demonstrated.

実験は、上記実施例1と同様とし、二つの別チャージのものに対し、本発明に係る表面欠陥発生判定方法を用いて得られた判定結果を基に溶鋼流動の制御を行った場合と、溶鋼流動の制御を行わなかった場合の二つの別チャージに対してスラブ欠陥が実際に発生した割合(欠陥発生率)を求め、両者を比較した。   The experiment is the same as in Example 1 described above, and when the flow of molten steel is controlled based on the determination result obtained by using the surface defect occurrence determination method according to the present invention for two different charges, The rate at which slab defects actually occurred (defect generation rate) was obtained for two separate charges when the molten steel flow was not controlled, and the two were compared.

本発明に係る鋼鋳片の製造方法を適用した場合、熱電対により得られた測温データの列毎に表面欠陥発生の有無の判定を行い、表面欠陥の発生有りと判定された場合、該表面欠陥が発生した鋳型内相対位置を特定し、該鋳型内相対位置に基づいて溶鋼流動を制御した。   When the steel slab manufacturing method according to the present invention is applied, the presence or absence of surface defects is determined for each column of temperature measurement data obtained by a thermocouple. The relative position in the mold where the surface defect occurred was specified, and the molten steel flow was controlled based on the relative position in the mold.

鋳型3に埋設した熱電対の配置及びグループ分けは、図9に示すように、鋳型幅方向に16列、6グループとし、グループ1(A−B列)及びグループ6(O−P列)の鋳型内相対位置は鋳型3の端部、グループ3(F−H列)及びグループ4(I−K列)の鋳型内相対位置は鋳型3の中央部付近とし、連続鋳造されたスラブに表面欠陥発生有りと判定された熱電対の列が属するグループの鋳型幅方向における鋳型内相対位置を特定した。   As shown in FIG. 9, the arrangement and grouping of the thermocouples embedded in the mold 3 are 16 rows and 6 groups in the mold width direction, and the groups 1 (AB row) and 6 (OP row) are arranged. The relative position in the mold is the end of the mold 3, the relative position in the mold of the group 3 (FH row) and the group 4 (I-K row) is near the center of the mold 3, and surface defects are found in the continuously cast slab. The relative position in the mold in the mold width direction of the group to which the thermocouple row determined to be generated belongs was specified.

本発明に係る表面欠陥判定方法による判定結果を用いて鋳型3内における溶鋼流動を制御しなかった場合において、手入れが必要な欠陥が発生したスラブの割合を100とすると、本発明に係る表面欠陥判定方法による表面欠陥発生の判定結果を用いて鋳型3内における溶鋼流動を制御した場合に手入れが必要な欠陥が発生したスラブの割合は60となり、欠陥発生率は大幅に改善された。   In the case where the molten steel flow in the mold 3 is not controlled using the determination result obtained by the surface defect determination method according to the present invention, the surface defect according to the present invention is assumed to be 100 when the ratio of slabs in which defects that need to be generated are generated. When the flow of molten steel in the mold 3 was controlled using the determination result of surface defect generation by the determination method, the ratio of slabs in which defects that needed to be generated occurred was 60, and the defect generation rate was greatly improved.

以上より、本発明に係る表面欠陥判定方法により得られた表面欠陥発生の判定結果を用い、表面欠陥が発生した鋳型内相対位置を特定し、該鋳型内相対位置に基づいて鋳型3内における溶鋼流動を制御することにより、溶鋼流動の制御後にスラブ表面に発生する欠陥を低減できることが実証された。   As described above, using the determination result of the surface defect generation obtained by the surface defect determination method according to the present invention, the relative position in the mold where the surface defect has occurred is specified, and the molten steel in the mold 3 is based on the relative position in the mold. It has been demonstrated that by controlling the flow, defects generated on the surface of the slab after the control of the molten steel flow can be reduced.

1 表面欠陥判定装置
3 鋳型
3a 長辺面銅板
3b 短辺面銅板
5 熱電対
10 演算装置
11 測温データ取得手段
13 測温データ規格化手段
15 主成分分析手段
17 残差算出手段
19 表面欠陥発生判定手段
DESCRIPTION OF SYMBOLS 1 Surface defect determination apparatus 3 Mold 3a Long side copper plate 3b Short side copper plate 5 Thermocouple 10 Arithmetic device 11 Temperature measurement data acquisition means 13 Temperature measurement data normalization means 15 Principal component analysis means 17 Residual calculation means 19 Surface defect generation Judgment means

Claims (9)

鋳型の長辺面銅板に埋設した測温素子の測温データを取得し、該測温データに基づいてスラブにおける表面欠陥発生の有無を判定する連続鋳造スラブの表面欠陥判定方法であって、
前記長辺面銅板に埋設する前記測温素子の配置を、
鋳造方向については、最上段の前記測温素子の位置を湯面制御レベルから下方に200mm以内、最下段の前記測温素子の位置を湯面制御レベルから下方に500mm以上離れた位置、隣り合う前記測温素子間の間隔を250mm以下、段数を4段以上とし、
鋳型幅方向については、前記鋳型の短辺面銅板に最も近い位置に埋設された前記測温素子の位置を前記長辺面銅板と前記短辺面銅板の交線から鋳型幅中央に向かう方向に沿って250mm以内、隣り合う前記測温素子間の間隔を200mm以下、列数を8列以上とし、
上記のように配置された前記測温素子の測温データを所定の時間間隔で取得する測温データ取得工程と、
該測温データ取得工程で前記長辺面銅板毎に取得された前記測温データの各時間における平均値を算出し、該平均値に基づいて前記測温データを規格化する測温データ規格化工程と、
該測温データ規格化工程で規格化された前記測温データの主成分分析を行う主成分分析工程と、
該主成分分析工程で算出された主成分及び主成分スコアにより表される温度と前記測温データとの残差を算出する残差算出工程と、
該残差算出工程で算出された残差の自乗和に基づいて前記スラブにおける表面欠陥発生の有無を判定する表面欠陥発生判定工程を備えたことを特徴とする連続鋳造スラブの表面欠陥判定方法。
Obtaining temperature measurement data of the temperature measuring element embedded in the long side surface copper plate of the mold, and based on the temperature measurement data is a surface defect determination method of the continuous casting slab for determining the presence or absence of surface defects in the slab,
The arrangement of the temperature measuring element embedded in the long side copper plate,
Regarding the casting direction, the position of the temperature measuring element on the uppermost stage is within 200 mm below the molten metal level control level, and the position of the temperature measuring element on the lowermost stage is located at a position 500 mm or more below the molten metal surface control level, adjacent to each other. The interval between the temperature measuring elements is 250 mm or less, the number of steps is 4 or more,
Regarding the mold width direction, the position of the temperature measuring element embedded in the position closest to the short side copper plate of the mold is set in a direction from the intersection of the long side copper plate and the short side copper plate toward the center of the mold width. Within 250mm, the interval between the temperature measuring elements adjacent to each other is 200mm or less, the number of rows is 8 or more,
A temperature measurement data acquisition step of acquiring temperature measurement data of the temperature measurement element arranged as described above at a predetermined time interval ;
Normalization of temperature measurement data that calculates an average value of the temperature measurement data acquired for each of the long side surface copper plates at each time in the temperature measurement data acquisition step and normalizes the temperature measurement data based on the average value Process,
A principal component analysis step for performing a principal component analysis of the temperature measurement data normalized in the temperature measurement data normalization step;
A residual calculation step of calculating a residual between the temperature measured data and the temperature represented by the principal component and the principal component score calculated in the principal component analysis step;
A surface defect determination method for a continuous cast slab, comprising a surface defect occurrence determination step for determining whether or not a surface defect has occurred in the slab based on a sum of squares of the residuals calculated in the residual calculation step.
最下段の前記測温素子の位置は、湯面制御レベルから鋳造方向に900mm以内とすることを特徴とする請求項1記載の連続鋳造スラブの表面欠陥判定方法。   The method for determining a surface defect in a continuous cast slab according to claim 1, wherein the position of the temperature measuring element at the lowest level is within 900 mm in the casting direction from the level control level. 前記表面欠陥発生判定工程は、前記残差の自乗和が予め定めた所定の閾値を超えた場合に前記スラブにおいて表面欠陥の発生有りと判定することを特徴とする請求項1又は2に記載の連続鋳造スラブの表面欠陥判定方法。   The said surface defect generation | occurrence | production determination process determines with the generation | occurrence | production of a surface defect in the said slab, when the square sum of the said residual exceeds the predetermined threshold value determined beforehand, The surface defect generation | occurrence | production is characterized by the above-mentioned. Method for determining surface defects in continuous cast slabs. 前記表面欠陥発生判定工程は、鋳造方向に配置された前記測温素子の列毎に判定することを特徴とする請求項1乃至3のいずれか一項に記載の連続鋳造スラブの表面欠陥判定方法。   4. The surface defect determination method for a continuous cast slab according to claim 1, wherein the surface defect occurrence determination step is performed for each row of the temperature measuring elements arranged in a casting direction. 5. . 鋳型の長辺面銅板に埋設した測温素子の測温データを取得し、該測温データに基づいてスラブにおける表面欠陥発生の有無を判定する連続鋳造スラブの表面欠陥判定装置であって、
前記長辺面銅板に埋設する前記測温素子の配置を、
鋳造方向については、最上段の前記測温素子の位置を湯面制御レベルから下方に200mm以内、最下段の前記測温素子の位置を湯面制御レベルから下方に500mm以上離れた位置、隣り合う前記測温素子間の間隔を250mm以下、段数を4段以上とし、
鋳型幅方向については、前記鋳型の短辺面銅板に最も近い位置に埋設された前記測温素子の位置を前記長辺面銅板と前記短辺面銅板の交線から鋳型幅中央に向かう方向に沿って250mm以内、隣り合う前記測温素子間の間隔を200mm以下、列数を8列以上とし、
上記のように配置された前記測温素子の測温データを所定の時間間隔で取得する測温データ取得手段と、
該測温データ取得手段で前記長辺面銅板毎に取得された前記測温データの各時間における平均値を算出し、該平均値に基づいて前記測温データを規格化する測温データ規格化手段と、
該測温データ規格化手段で規格化された前記測温データの主成分分析を行う主成分分析手段と、
該主成分分析手段で算出された主成分及び主成分スコアにより表される温度と前記測温データとの残差を算出する残差算出手段と、
該残差算出手段で算出された残差の自乗和に基づいて前記スラブにおける表面欠陥発生の有無を判定する表面欠陥発生判定手段を備えたことを特徴とする連続鋳造スラブの表面欠陥判定装置。
It is a surface defect determination device for a continuous casting slab that acquires temperature measurement data of a temperature measuring element embedded in a long side surface copper plate of a mold, and determines the presence or absence of surface defect occurrence in the slab based on the temperature measurement data,
The arrangement of the temperature measuring element embedded in the long side copper plate,
Regarding the casting direction, the position of the temperature measuring element on the uppermost stage is within 200 mm below the molten metal level control level, and the position of the temperature measuring element on the lowermost stage is located at a position 500 mm or more below the molten metal surface control level, adjacent to each other. The interval between the temperature measuring elements is 250 mm or less, the number of steps is 4 or more,
Regarding the mold width direction, the position of the temperature measuring element embedded in the position closest to the short side copper plate of the mold is set in a direction from the intersection of the long side copper plate and the short side copper plate toward the center of the mold width. Within 250mm, the interval between the temperature measuring elements adjacent to each other is 200mm or less, the number of rows is 8 or more,
Temperature measurement data acquisition means for acquiring temperature measurement data of the temperature measurement element arranged as described above at a predetermined time interval ;
Normalization of temperature measurement data for calculating an average value of the temperature measurement data acquired for each of the long side surface copper plates by the temperature measurement data acquisition means at each time , and normalizing the temperature measurement data based on the average value Means,
Principal component analysis means for performing principal component analysis of the temperature measurement data normalized by the temperature measurement data normalization means;
Residual calculation means for calculating a residual between the temperature measured data and the temperature represented by the principal component and the principal component score calculated by the principal component analysis means;
A surface defect determination device for a continuous casting slab, comprising surface defect occurrence determination means for determining whether or not a surface defect has occurred in the slab based on a sum of squares of the residual calculated by the residual calculation means.
最下段の前記測温素子の位置は、湯面制御レベルから鋳造方向に900mm以内であることを特徴とする請求項5記載の連続鋳造スラブの表面欠陥判定装置。   6. The apparatus for determining surface defects of a continuous cast slab according to claim 5, wherein the position of the temperature measuring element at the lowest stage is within 900 mm in the casting direction from the level control level. 前記表面欠陥発生判定手段は、前記残差の自乗和が予め定めた所定の閾値を超えた場合に前記スラブにおいて表面欠陥の発生有りと判定するものであることを特徴とする請求項5又は6に記載の連続鋳造スラブの表面欠陥判定装置。   The surface defect occurrence determining means determines that a surface defect has occurred in the slab when the square sum of the residuals exceeds a predetermined threshold value. The surface defect determination apparatus of the continuous casting slab described in 1. 前記表面欠陥発生判定手段は、鋳造方向に配置された前記測温素子の列毎に判定するものであることを特徴とする請求項5乃至7のいずれか一項に記載の連続鋳造スラブの表面欠陥判定装置。   The surface of the continuously cast slab according to any one of claims 5 to 7, wherein the surface defect occurrence determining means determines for each row of the temperature measuring elements arranged in the casting direction. Defect determination device. 請求項4に記載の連続鋳造スラブの表面欠陥判定方法を用いた鋼鋳片の製造方法であって、
前記表面欠陥発生判定工程において表面欠陥発生有りと判定された前記測温素子の列に対応する鋳型内相対位置を特定する鋳型内相対位置特定工程と、
該鋳型内相対位置に基づいて鋳型内における溶鋼流動異常を推定し、該推定された溶鋼流動異常を解消するように溶鋼流動を制御する溶鋼流動制御工程とを備えたことを特徴とする鋼鋳片の製造方法。
A method for producing a steel slab using the method for determining surface defects of a continuously cast slab according to claim 4,
In-mold relative position identifying step for identifying a relative position in the mold corresponding to the row of temperature measuring elements determined to have surface defect occurrence in the surface defect occurrence determining step;
A steel casting comprising: a molten steel flow control step for estimating a molten steel flow abnormality in the mold based on the relative position in the mold and controlling the molten steel flow so as to eliminate the estimated molten steel flow abnormality. A manufacturing method of a piece.
JP2015172781A 2015-09-02 2015-09-02 Method and apparatus for determining surface defects of continuous cast slab, and method for producing steel slab using the surface defect determination method Active JP6358199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015172781A JP6358199B2 (en) 2015-09-02 2015-09-02 Method and apparatus for determining surface defects of continuous cast slab, and method for producing steel slab using the surface defect determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015172781A JP6358199B2 (en) 2015-09-02 2015-09-02 Method and apparatus for determining surface defects of continuous cast slab, and method for producing steel slab using the surface defect determination method

Publications (2)

Publication Number Publication Date
JP2017047453A JP2017047453A (en) 2017-03-09
JP6358199B2 true JP6358199B2 (en) 2018-07-18

Family

ID=58280825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015172781A Active JP6358199B2 (en) 2015-09-02 2015-09-02 Method and apparatus for determining surface defects of continuous cast slab, and method for producing steel slab using the surface defect determination method

Country Status (1)

Country Link
JP (1) JP6358199B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115415494B (en) * 2022-08-02 2024-06-07 首钢京唐钢铁联合有限责任公司 Slab cold tooth control method and device, electronic equipment and storage medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008028481B4 (en) * 2008-06-13 2022-12-08 Sms Group Gmbh Method for predicting the formation of longitudinal cracks in continuous casting
JP5617293B2 (en) * 2009-06-02 2014-11-05 Jfeスチール株式会社 Slab surface state prediction method and slab surface state prediction apparatus
JP5716333B2 (en) * 2010-09-24 2015-05-13 Jfeスチール株式会社 Slab surface quality prediction method and slab surface quality prediction apparatus

Also Published As

Publication number Publication date
JP2017047453A (en) 2017-03-09

Similar Documents

Publication Publication Date Title
JP6358215B2 (en) Method and apparatus for determining surface defects of continuous cast slab, and method for manufacturing steel slab using the surface defect determination method
JP5579709B2 (en) Method for predicting the occurrence of vertical cracks during continuous casting.
EP3100802B1 (en) Method, device and program for determining casting state in continuous casting
JP5169098B2 (en) Quality prediction apparatus, quality prediction method and manufacturing method
JP2009070227A (en) Quality prediction device, quality prediction method, and method for manufacturing product
JP5617293B2 (en) Slab surface state prediction method and slab surface state prediction apparatus
JP5673100B2 (en) Breakout prediction method
JP6119640B2 (en) Method and apparatus for determining surface defects in continuously cast slabs
JP6358199B2 (en) Method and apparatus for determining surface defects of continuous cast slab, and method for producing steel slab using the surface defect determination method
JP5716333B2 (en) Slab surface quality prediction method and slab surface quality prediction apparatus
CN108469313B (en) Copper plate of crystallizer temperature anomaly method for detecting area based on cellular automata
JP2020157333A (en) Learning model creation device, slab quality estimation device, learning model creation method, slab quality estimation method, and program
JP6119807B2 (en) Method and apparatus for determining surface defects of continuous cast slab, and method for producing steel slab using the surface defect determination method
CN111421119A (en) Online prediction method for longitudinal cracks on surface of continuous casting slab
CN117036797A (en) Continuous casting billet longitudinal crack prediction method based on feature extraction and random forest classification
JP2000317595A (en) Method for predicting surface flaw of continuously cast slab
JP4828366B2 (en) Longitudinal detection method and continuous casting method based on mold heat flux
CN114618999B (en) Method and device for measuring vibration marks of continuous casting blank
JP2022190572A (en) Slab defect detection method for continuous casting
JP6330740B2 (en) Apparatus and method for determining accuracy of measured temperature value
JP6107770B2 (en) Method and apparatus for detecting transverse cracks in continuous cast slab, and method and apparatus for producing continuous cast slab using the detection method
CN114850420A (en) Method and device for predicting longitudinal cracks of casting blank
EP3379217A1 (en) Method and device for determining a temperature distribution in a mould plate for a metal-making process
JP2024050265A (en) Mold, control equipment, and method for continuous casting of steel
CN116451158A (en) Online prediction method for transverse cracks of continuous casting slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180604

R150 Certificate of patent or registration of utility model

Ref document number: 6358199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250