JP2011011258A - Method for estimating surface layer state of slab and slab surface layer state estimating device - Google Patents

Method for estimating surface layer state of slab and slab surface layer state estimating device Download PDF

Info

Publication number
JP2011011258A
JP2011011258A JP2010066961A JP2010066961A JP2011011258A JP 2011011258 A JP2011011258 A JP 2011011258A JP 2010066961 A JP2010066961 A JP 2010066961A JP 2010066961 A JP2010066961 A JP 2010066961A JP 2011011258 A JP2011011258 A JP 2011011258A
Authority
JP
Japan
Prior art keywords
molten steel
inclusions
bubbles
flow velocity
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010066961A
Other languages
Japanese (ja)
Other versions
JP5617293B2 (en
Inventor
Atsushi Kubota
淳 久保田
Hideki Yokoyama
英樹 横山
Hiroki Fujita
浩起 藤田
Kenji Hatori
賢治 羽鳥
Yoshiharu Kusumoto
義治 楠本
Koichi Tsutsumi
康一 堤
Tetsuya Sugawara
哲也 菅原
Hiroki Kurooka
裕樹 黒岡
Kenji Nakatani
憲司 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010066961A priority Critical patent/JP5617293B2/en
Publication of JP2011011258A publication Critical patent/JP2011011258A/en
Application granted granted Critical
Publication of JP5617293B2 publication Critical patent/JP5617293B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To correctly estimate whether inclusions and bubbles which can be made into surface defects are present or not in a slab.SOLUTION: This estimating device includes: a temperature acquiring part 101 where the temperature of a measurement position is obtained through thermocouples 10 arranged at a mold 1; a molten steel flow velocity operating part 102 where the flow velocity of a molten steel in the boundary of a solidified shell is calculated from the temperature obataned by the temperature acquiring part 101; a sticking degree deriving part 103 where, in the case the flow velocity of the molten steel is calculated by the molten steel flow velocity operating part 102, based on a beforehand set sticking degree curve expressing the relation between the flow velocity of the molten steel and the sticking degree of inclusions and bubbles, the sticking degree of the inclusions and bubbles corresponding to the flow velocity of the molten steel is derived; and a sticking determination part 104 where the sticking degree of the inclusions and bubbles derived by the sticking degree deriving part 103 and beforehand set threshold are compared, and, in the case the sticking degree of the inclusions and bubbles exceeds the threshold, it is determined that the inclusions and bubbles which can be made into surface defects in the solidified shell corresponding to the measurement position are present.

Description

本発明は、鋳型に溶鋼を吐出することにより鋳型の下端からスラブを連続して生成するスラブ連鋳機を適用対象とし、薄板鋼板製品を成形した際に表面欠陥となり得る介在物・気泡がスラブに存在するか否かを予測するスラブの表層状態予測方法及びスラブの表層状態予測装置に関する。   The present invention is applied to a slab continuous casting machine that continuously generates a slab from the lower end of a mold by discharging molten steel into the mold, and inclusions and bubbles that may become surface defects when forming a thin steel plate product are slabs. The present invention relates to a slab surface state prediction method and a slab surface state prediction apparatus for predicting whether or not a slab exists.

鋳型に溶鋼を吐出してスラブを連続生成するスラブ連鋳機では、脱酸生成物等の介在物や、浸漬ノズルから溶鋼流に吹き込んだアルゴンガス等の気泡が凝固シェルに付着する場合がある。介在物や気泡が凝固シェルに付着した状態でこれを圧延した場合、成形された薄板鋼板製品にヘゲ、スリバー、ブリスター等の表面欠陥が発生する虞れがある。昨今のように、薄板鋼板製品、特に薄板材の表面品質に対する要求が厳しくなる状況下にあっては、表面欠陥の発生をスラブの段階で適確に推定して処置することが望まれている。   In a slab continuous casting machine that continuously generates slab by discharging molten steel into the mold, inclusions such as deoxidation products and bubbles such as argon gas blown into the molten steel flow from the immersion nozzle may adhere to the solidified shell . When this is rolled with inclusions and bubbles adhering to the solidified shell, surface defects such as heges, slivers and blisters may occur in the formed sheet steel product. As in recent years, it is desirable to accurately estimate and treat the occurrence of surface defects at the slab stage in situations where demands on the surface quality of sheet steel products, particularly sheet materials, become severe. .

気泡や介在物の分布がスラブの品質に影響を与える点については、既に、特許文献1や特許文献2に開示されている。このため、これらの従来技術では、鋳型に配置した測温素子によって取得される温度に基づいて溶鋼の流速を算出し、あるいは鋳型内部全域の流速ベクトル分布を算出し、介在物・気泡の拡散分布を求めること、つまりスラブの品質を推定することが行われている。   The point that the distribution of bubbles and inclusions affects the quality of the slab has already been disclosed in Patent Document 1 and Patent Document 2. For this reason, in these conventional techniques, the flow velocity of molten steel is calculated based on the temperature acquired by the temperature measuring element arranged in the mold, or the flow velocity vector distribution in the entire mold interior is calculated, and the diffusion distribution of inclusions / bubbles is calculated. In other words, estimating the quality of the slab.

特許第3598078号公報Japanese Patent No. 3598078 特許第3607882号公報Japanese Patent No. 3607882

しかしながら、溶鋼の流速や流速ベクトル分布のみからは、気泡や介在物が実際に凝固シェルに付着するか否かを判断することはできず、薄板鋼板製品を成形した際に表面欠陥となり得る介在物・気泡がスラブに存在するか否かを予測することも困難である。   However, it is not possible to judge whether bubbles or inclusions actually adhere to the solidified shell from the flow rate or flow velocity vector distribution of the molten steel, and inclusions that can cause surface defects when forming thin steel plate products. It is also difficult to predict whether bubbles will be present in the slab.

本発明は、上記実情に鑑みて、スラブに表面欠陥となり得る介在物・気泡が存在するか否かを適確に予測することのできる方法及び装置を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a method and an apparatus capable of accurately predicting whether or not inclusions / bubbles that may become surface defects exist in a slab.

上記目的を達成するため、本発明は、鋳型に溶鋼を吐出することにより鋳型の下端からスラブを連続して生成するスラブ連鋳機を適用対象とし、生成されるスラブに表面欠陥となり得る介在物・気泡が存在するか否かを予測するスラブの表層状態予測方法であって、鋳型に配設した測温素子を通じて計測位置の温度を取得し、該取得した温度から凝固シェル界面における溶鋼の流速を算出する流速算出工程と、予め設定した介在物・気泡の洗い流し臨界流速と前記流速算出工程で算出した溶鋼の流速とを比較し、算出した溶鋼の流速が洗い流し臨界流速を下回ったことを条件に、計測位置に対応する凝固シェルに表面欠陥となり得る介在物・気泡が存在すると判断する付着判断工程とを含むことを特徴とする。   In order to achieve the above object, the present invention is directed to a slab continuous casting machine that continuously generates a slab from the lower end of a mold by discharging molten steel into the mold, and inclusions that can cause surface defects in the generated slab. A method for predicting the state of the surface layer of a slab that predicts whether or not bubbles are present, the temperature at the measurement position being acquired through a temperature measuring element disposed in the mold, and the flow rate of the molten steel at the solidified shell interface from the acquired temperature The flow velocity calculation step for calculating the flow rate is compared with the pre-set critical flow velocity for washing of inclusions / bubbles and the flow velocity of the molten steel calculated in the flow velocity calculation step, and the condition that the calculated molten steel flow velocity is less than the critical flow velocity is washed away. And an adhesion determination step for determining that inclusions / bubbles that may become surface defects exist in the solidified shell corresponding to the measurement position.

また、本発明は、上述したスラブの表層状態予測方法において、溶鋼湯面を起点として凝固シェルが予め設定した厚さとなるまでの間に複数の測温素子を鋳造方向に沿って配設し、これら複数の測温素子を通じて凝固シェルの同一箇所が通過した際の温度を取得し、該取得した温度からそれぞれ溶鋼の流速を算出するとともに、算出したそれぞれの溶鋼の流速に基づいて表面欠陥となり得る介在物・気泡が存在するか否かを判断することを特徴とする。   Further, the present invention provides a method for predicting a surface layer state of a slab as described above, wherein a plurality of temperature measuring elements are disposed along the casting direction until the solidified shell reaches a preset thickness starting from the molten steel surface, The temperature when the same portion of the solidified shell passes through the plurality of temperature measuring elements is acquired, and the flow rate of the molten steel is calculated from the acquired temperature, and surface defects can be caused based on the calculated flow rates of the molten steel. It is characterized by determining whether inclusions or bubbles are present.

また、本発明は、上述したスラブの表層状態予測方法において、溶鋼流速が洗い流し臨界流速を下回った場合にのみ正の値を持つように溶鋼流速と介在物・気泡付着度との関係を付着度曲線として予め設定し、前記付着判断工程は、前記付着度曲線に基づき、流速算出工程で算出した溶鋼の流速に対応した付着度を導出する工程と、導出した付着度が予め設定した閾値を超えた場合に表面欠陥となり得る介在物・気泡が存在すると判断する工程とを含むことを特徴とする。   Further, the present invention relates to the above-described method for predicting the surface layer state of a slab. Predetermined as a curve, the adhesion determination step is a step of deriving an adhesion degree corresponding to the flow rate of the molten steel calculated in the flow rate calculation step based on the adhesion degree curve, and the derived adhesion degree exceeds a preset threshold value. And a step of determining that inclusions / bubbles that may become surface defects are present.

また、本発明は、上述したスラブの表層状態予測方法において、前記付着度曲線は、圧延後の製品の表面欠陥となり得る介在物・気泡の表面欠陥化臨界粒径に対応した洗い流し臨界流速を導出し、溶鋼流速がこの導出した洗い流し臨界流速を上回った場合には凝固シェルに付着する介在物・気泡の総数をゼロとし、一方、溶鋼流速が前記洗い流し臨界流速を下回った場合には、前記溶鋼流速及び前記洗い流し臨界流速に対応する凝固シェルに付着する介在物・気泡の臨界粒径を求め、溶鋼中に含まれる介在物・気泡の粒径の分布関数を用いて凝固シェルに付着する介在物・気泡の総数を算出することにより作成することを特徴とする。   In the method for predicting the surface state of a slab as described above, the adhesion curve derives a critical flow velocity for washing corresponding to a critical particle size of inclusions / bubbles which may become surface defects of a product after rolling. When the molten steel flow rate exceeds the derived washing critical flow velocity, the total number of inclusions / bubbles adhering to the solidified shell is set to zero, whereas when the molten steel flow velocity is less than the washing critical flow velocity, the molten steel Determine the critical particle size of inclusions and bubbles adhering to the solidified shell corresponding to the flow velocity and the washing critical flow velocity, and use the distribution function of the inclusion and bubble particle size contained in the molten steel to include the inclusions adhering to the solidified shell. -Created by calculating the total number of bubbles.

また、本発明は、上述したスラブの表層状態予測方法において、溶鋼湯面を起点として凝固シェルが予め設定した厚さとなるまでの間に複数の測温素子を鋳造方向に沿って配設し、かつ測温素子の配設位置に応じて付着度曲線を設定し、これら複数の測温素子を通じて凝固シェルの同一箇所が通過した際の温度を取得し、該取得した温度からそれぞれ溶鋼の流速を算出するとともに、計測位置に対応する付着度曲線に基づき、算出したそれぞれの溶鋼の流速から介在物・気泡の付着度を導出し、導出したいずれかの付着度が予め設定した閾値を超えた場合に、計測位置に対応する部位に表面欠陥となり得る介在物・気泡が存在すると判断することを特徴とする。   Further, the present invention provides a method for predicting a surface layer state of a slab as described above, wherein a plurality of temperature measuring elements are disposed along the casting direction until the solidified shell reaches a preset thickness starting from the molten steel surface, And the adhesion curve is set according to the arrangement position of the temperature measuring element, the temperature when the same portion of the solidified shell passes through these temperature measuring elements is acquired, and the flow rate of the molten steel is respectively calculated from the acquired temperature. When calculating the degree of adhesion of inclusions / bubbles from the calculated flow velocity of each molten steel based on the adhesion curve corresponding to the measurement position, and any of the derived degrees of adhesion exceeds a preset threshold In addition, it is determined that inclusions / bubbles that may become surface defects exist in a portion corresponding to the measurement position.

また、本発明は、上述したスラブの表層状態予測方法において、前記複数の測温素子は、溶鋼湯面を起点として下方50mmから凝固シェルの厚さが10mmとなるまでの間に複数配設することを特徴とする。   In the slab surface layer state prediction method according to the present invention, a plurality of the temperature measuring elements are arranged from the bottom 50 mm to the thickness of the solidified shell 10 mm starting from the molten steel surface. It is characterized by that.

また、本発明は、鋳型に溶鋼を吐出することにより鋳型の下端からスラブを連続して生成するスラブ連鋳機を適用対象とし、生成されるスラブに表面欠陥となり得る介在物・気泡が存在するか否かを予測するスラブの表層状態予測装置であって、鋳型に配設した測温素子を通じて計測位置の温度を取得する温度取得部と、前記温度取得部が取得した温度から凝固シェル界面における溶鋼の流速を算出する溶鋼流速演算部と、前記溶鋼流速演算部によって溶鋼の流速が算出された場合、予め設定した溶鋼流速と介在物・気泡付着度との関係を表す付着度曲線に基づいて、溶鋼の流速に対応した介在物・気泡の付着度を導出する付着度導出部と、前記付着度導出部が導出した介在物・気泡の付着度と予め設定した閾値と比較し、介在物・気泡の付着度が前記閾値を超えた場合に、計測位置に対応する凝固シェルに表面欠陥となり得る介在物・気泡が存在すると判断する付着判断部とを備えたことを特徴とする。   The present invention is also applicable to a slab continuous casting machine that continuously generates a slab from the lower end of the mold by discharging molten steel into the mold, and there are inclusions / bubbles that can become surface defects in the generated slab. A surface layer state prediction device for a slab that predicts whether or not a temperature acquisition unit that acquires a temperature at a measurement position through a temperature measuring element disposed in a mold, and at a solidified shell interface from the temperature acquired by the temperature acquisition unit Based on an adhesion curve representing the relationship between a preset molten steel flow rate and inclusion / bubble adhesion, when the molten steel flow rate calculation unit calculates the flow rate of molten steel and the molten steel flow rate calculation unit calculates the molten steel flow rate The adhesion degree deriving part for deriving the adhesion degree of inclusions / bubbles corresponding to the flow rate of the molten steel, and comparing the inclusion / bubble adhesion degree derived by the adhesion degree deriving part with a preset threshold value, With bubbles If the degree exceeds the threshold value, characterized in that the inclusions, bubbles can become surface defects in the solidified shell corresponding to the measurement position and a deposition determining section for determining that there.

本発明によれば、凝固シェルに付着した介在物・気泡を洗い流すのに必要となる洗い流し臨界流速を指標として適用し、この洗い流し臨界流速と算出した凝固シェル界面における溶鋼の流速とを比較することによって表面欠陥となり得る介在物・気泡が存在するか否かを判断しているため、スラブに表面欠陥となり得る介在物・気泡が存在するか否かを適確に予測することができるようになる。これにより、鋳造後のスラブに対する表面手入れの要否や引き当てグレードの変更を効率よく行うことが可能となる。また、凝固シェルに対して介在物・気泡が付着し難いような鋳造条件への変更を行い、薄板鋼板製品に表面欠陥が発生するのを未然に防止することも可能となる。   According to the present invention, the washing critical flow velocity required to wash away inclusions and bubbles adhering to the solidified shell is applied as an index, and the flush critical flow velocity is compared with the calculated molten steel flow velocity at the solidified shell interface. Since it is judged whether there are inclusions / bubbles that can become surface defects, it is possible to accurately predict whether inclusions / bubbles that can become surface defects exist in the slab. . This makes it possible to efficiently change the necessity of the surface care for the slab after casting and the change of the assigned grade. It is also possible to prevent the occurrence of surface defects in the thin steel plate product by changing the casting conditions so that inclusions and bubbles are less likely to adhere to the solidified shell.

図1は、本発明の適用対象となるスラブ連鋳機の鋳型を概念的に示した断面図である。FIG. 1 is a sectional view conceptually showing a mold of a slab continuous casting machine to which the present invention is applied. 図2は、薄板鋼板製品に発生した表面欠陥を計測することにより求めたスラブの表面から介在物・気泡までの最小距離と鋳造速度との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the casting distance and the minimum distance from the surface of the slab to the inclusions / bubbles obtained by measuring the surface defects generated in the thin steel plate product. 図3は、図1に示した鋳型に対する測温素子の配設位置を示す概念図である。FIG. 3 is a conceptual diagram showing the arrangement positions of the temperature measuring elements with respect to the mold shown in FIG. 図4は、本発明で適用する付着度曲線を示すグラフである。FIG. 4 is a graph showing an adhesion curve applied in the present invention. 図5は、図4に示した付着度曲線を生成するために必要となる介在物・気泡の粒径と凝固シェル界面の溶鋼流速との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the particle size of inclusions / bubbles required to generate the adhesion curve shown in FIG. 4 and the molten steel flow velocity at the solidified shell interface. 図6は、図4に示した付着度曲線を生成するために必要となる介在物・気泡の粒径と個数比率との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the particle size and number ratio of inclusions / bubbles necessary for generating the adhesion curve shown in FIG. 図7は、鋳型に配設した測温素子の配設位置と適用する付着度曲線との対応関係を示す図である。FIG. 7 is a diagram illustrating a correspondence relationship between the position of the temperature measuring element disposed on the mold and the adhesion curve to be applied. 図8は、本発明による表面欠陥有無の判断と実際のコイルの表面欠陥との関係を示す図表である。FIG. 8 is a chart showing the relationship between the determination of the presence or absence of surface defects according to the present invention and the actual surface defects of the coil. 図9は、図1に示したスラブ連鋳機においてスラブの表層状態を予測するための装置を示したブロック図である。FIG. 9 is a block diagram showing an apparatus for predicting the surface layer state of the slab in the slab continuous casting machine shown in FIG. 図10は、実施例の試験を行ったスラブ連鋳機の仕様を示す図表である。FIG. 10 is a chart showing the specifications of the slab continuous casting machine in which the test of the example was performed. 図11は、実施例の試験を行った鋳造条件を示す図表である。FIG. 11 is a chart showing casting conditions in which tests of the examples were conducted. 図12は、実施例の試験を行った鋼の成分範囲を示す図表である。FIG. 12 is a chart showing the component ranges of steel subjected to the tests of the examples. 図13は、実施例における表面欠陥有無の判断と実際のコイルの表面欠陥との関係を示す図表である。FIG. 13 is a chart showing the relationship between the determination of the presence or absence of surface defects and the actual surface defects of the coil in the example.

以下、添付図面を参照しながら本発明に係るスラブの表層状態予測方法及びスラブの表層状態予測装置の好適な実施の形態について詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of a slab surface state prediction method and a slab surface state prediction apparatus according to the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の適用対象となるスラブ連鋳機の鋳型1を示したものである。スラブ連鋳機の鋳型1は、相対向する一対の鋳型長辺1aと、鋳型長辺1aの間に内装された相対向する一対の鋳型短辺1bとを備えて構成したもので、浸漬ノズル2を介して内部に溶鋼Yが注入される。鋳型1に注入された溶鋼Yは、鋳型1の内部で冷却されて凝固シェルSHを形成し、鋳型1の下方に引き抜かれてスラブとなる。鋳型長辺1a及び鋳型短辺1bは、いずれも銅板によって構成されたものである。   FIG. 1 shows a mold 1 of a slab continuous casting machine to which the present invention is applied. A mold 1 of a slab continuous casting machine is configured to include a pair of opposed mold long sides 1a and a pair of opposed mold short sides 1b installed between the mold long sides 1a. The molten steel Y is injected into the inside through 2. The molten steel Y injected into the mold 1 is cooled inside the mold 1 to form a solidified shell SH, and is drawn out below the mold 1 to form a slab. Both the mold long side 1a and the mold short side 1b are made of a copper plate.

この鋳型1には、鋳型長辺1aに温度を検出するための測温素子、例えば熱電対10(図3参照)が配設してある。鋳型1に熱電対10を配設するのは、鋳型1を構成する銅板の温度から凝固シェル界面の溶鋼流速を算出し、算出した溶鋼流速に基づいて、薄板鋼板製品を成形した際に表面欠陥となり得る介在物・気泡が、生成されたスラブに存在するか否かを予測するためである。以下、薄板鋼板製品に発生する表面欠陥の原因となる介在物・気泡の付着を予測するためには、熱電対10を鋳型1のどの位置に配設するのが最適であるかについて説明する。   The mold 1 is provided with a temperature measuring element, for example, a thermocouple 10 (see FIG. 3) for detecting the temperature on the mold long side 1a. The thermocouple 10 is disposed in the mold 1 because the molten steel flow velocity at the solidified shell interface is calculated from the temperature of the copper plate constituting the mold 1 and surface defects are formed when the thin steel plate product is formed based on the calculated molten steel flow velocity. This is to predict whether inclusions / bubbles that can be present are present in the generated slab. Hereinafter, in order to predict the adhesion of inclusions / bubbles that cause surface defects occurring in the thin steel plate product, it will be described where the thermocouple 10 is optimally disposed in the mold 1.

まず、本発明者らは、実際に薄板鋼板製品に発生したヘゲ、スリバー等の表面欠陥を多数採取した。欠陥を含む位置で鋼板の厚み断面を顕微鏡観察し、鋼板表面から介在物・気泡までの深さを計測した。鋼板の板厚とスラブの板厚との比率を考慮し、鋼板表面から介在物・気泡までの深さを、スラブの表面から介在物・気泡までの距離に換算した。換算結果を図2に示す。   First, the present inventors collected a large number of surface defects such as baldness and sliver that were actually generated in a sheet steel product. The thickness cross section of the steel sheet was observed with a microscope at a position including the defect, and the depth from the steel sheet surface to inclusions / bubbles was measured. Considering the ratio of the steel plate thickness to the slab thickness, the depth from the steel plate surface to inclusions / bubbles was converted to the distance from the slab surface to inclusions / bubbles. The conversion result is shown in FIG.

図2の横軸は鋳造速度であり、縦軸はスラブの表面から介在物・気泡までの最小距離である。図2からも明らかなように、薄板鋼板製品において表面欠陥となる介在物・気泡は、スラブの表面から1〜10mmの範囲内に分布していることが判明した。従って、凝固シェルSHの厚さが10mmとなるまでの範囲について溶鋼流速を取得すれば良い。   The horizontal axis in FIG. 2 is the casting speed, and the vertical axis is the minimum distance from the surface of the slab to the inclusions / bubbles. As is clear from FIG. 2, it was found that inclusions / bubbles that become surface defects in the thin steel plate products are distributed within a range of 1 to 10 mm from the surface of the slab. Therefore, what is necessary is just to acquire the molten steel flow velocity about the range until the thickness of the solidification shell SH becomes 10 mm.

但し、実際の鋳型湯面は、鋳型1自体の振動、浸漬ノズル2から吐出される溶鋼Yと引き抜き速度との関係等々、種々の影響によって変動するものである。また、実際の計測によれば、鋳型湯面から下方100mmは同じ流速で溶鋼Yが流れていることが分かった。このため、熱電対10を配設する場合、鋳型湯面を上限位置として設けるのではなく、湯面変動の影響が少ない鋳型湯面から下方50mmを最適上限位置とした。   However, the actual mold surface varies depending on various effects such as the vibration of the mold 1 itself, the relationship between the molten steel Y discharged from the immersion nozzle 2 and the drawing speed. Moreover, according to actual measurement, it was found that the molten steel Y was flowing at the same flow rate 100 mm below the mold surface. For this reason, when the thermocouple 10 is disposed, the mold hot water surface is not provided as the upper limit position, but the lower limit of 50 mm from the mold hot water surface where the influence of the molten metal surface fluctuation is small is set as the optimum upper limit position.

これらの条件を考慮し、鋳型長辺1aにおいて熱電対10を配設する位置は、鋳型湯面を起点として下方50mmから下式(1)で決まる位置の間の複数点とする。
y=V×(10/k)…(1)
Considering these conditions, the positions where the thermocouple 10 is disposed on the long mold side 1a are a plurality of points between the position determined by the following formula (1) from the lower 50 mm starting from the mold surface.
y = V × (10 / k) 2 (1)

ここで、yは鋳型湯面を起点として熱電対10を配設する位置までの距離(m)、Vは鋳造速度(m/min)、kは鋳型1内の凝固係数(mm/min1/2)である。凝固係数kは、連鋳機によって異なるが、通常は15〜23である。 Here, y is a distance (m) from the mold surface to the position where the thermocouple 10 is disposed, V is a casting speed (m / min), k is a solidification coefficient in the mold 1 (mm / min 1 / 2 ). The solidification coefficient k varies depending on the continuous casting machine, but is usually 15 to 23.

上式(1)は、凝固シェルSHの厚さdを表す下式(2)においてd=10として導き出したものである。
d=k√t…(2) 但し、t=y/V(min)
The above formula (1) is derived as d = 10 in the following formula (2) representing the thickness d of the solidified shell SH.
d = k√t (2) where t = y / V (min)

最下段の熱電対10は、yの位置にあるのが好ましいが、設備の取り合い上、熱電対10を配設することが困難な場合、それよりも上方に配設しても良い。   The lowermost thermocouple 10 is preferably in the y position, but if it is difficult to dispose the thermocouple 10 due to equipment, it may be disposed above the thermocouple 10.

データを計測したスラブ連鋳機の鋳型1内での凝固係数は19.3mm/min1/2であった。この凝固係数とスラブ表面から介在物・気泡までの距離とを用いて鋳型湯面からの下方への距離を逆算し、縦軸に記した。この結果、図2に示した例では、薄板鋼板製品の表面欠陥の原因となる介在物・気泡が鋳型湯面から下方へ500mmの範囲内で付着していることが分かった。従って、凝固シェル界面での溶鋼流速は、鋳型湯面の下方50mmから下方500mmの範囲内で知ればよいことが分かる。 The solidification coefficient in the mold 1 of the slab continuous casting machine for which the data was measured was 19.3 mm / min 1/2 . Using this solidification coefficient and the distance from the slab surface to the inclusions / bubbles, the distance from the mold surface to the lower side was calculated backwards and indicated on the vertical axis. As a result, in the example shown in FIG. 2, it was found that inclusions / bubbles that cause surface defects of the thin steel plate products were adhered to the lower side of the mold surface within a range of 500 mm. Therefore, it is understood that the molten steel flow velocity at the solidified shell interface should be known within a range from 50 mm below the mold hot metal surface to 500 mm below.

一方、薄板鋼板製品の板幅方向では、表面欠陥がランダムに存在し、特に表面欠陥の分布に偏りはなかった。従って、鋳型1の幅方向、つまり鋳型長辺1aでは、その全域で溶鋼流速を知る必要がある。   On the other hand, in the sheet width direction of the thin steel plate product, surface defects existed randomly, and the distribution of surface defects was not particularly biased. Therefore, in the width direction of the mold 1, that is, in the mold long side 1 a, it is necessary to know the molten steel flow velocity in the entire region.

熱電対10の鋳型幅方向間隔は、鋳型1内の溶鋼流速の空間変動がどの程度の空間波長を持っているかによって決まる。溶鋼流速の空間変動について本発明者らは、既に特許第3386051号公報に開示している。すなわち、一端を鋳型湯面に浸漬させた耐火物製の棒が溶鋼流から受ける力をロードセルによって実測し、鋳型湯面近傍の鋳型幅方向に沿った溶鋼流速プロファイルを測定した結果、鋳型1内の溶鋼流速分布の空間波長が800〜1800mm程度であることを突き止めた。従って、この空間変動を検知するためには、熱電対10を200〜450mmの間隔、あるいはそれ以下の間隔で鋳型幅方向に配設すれば良いとした。但し、鋳型湯面に近い位置においては、初期凝固シェルSHの厚さに鋳型幅方向の揺らぎがある。このため、鋳型湯面に近い位置については、上述の間隔よりも小さい間隔で熱電対10を配設し、空間変動平均をとることによって初期凝固シェルSHの厚みの鋳型幅方向の揺らぎの影響を排除することとした。   The interval in the mold width direction of the thermocouple 10 is determined by how much spatial wavelength the spatial fluctuation of the molten steel flow velocity in the mold 1 has. The present inventors have already disclosed in Japanese Patent No. 3386051 regarding the spatial fluctuation of the molten steel flow velocity. That is, the force received from the molten steel flow by the refractory rod with one end immersed in the mold surface is measured by the load cell, and the molten steel flow velocity profile along the mold width direction in the vicinity of the mold surface is measured. The spatial wavelength of the molten steel flow velocity distribution was determined to be about 800 to 1800 mm. Therefore, in order to detect this spatial variation, the thermocouple 10 may be disposed in the mold width direction at intervals of 200 to 450 mm or less. However, at a position close to the mold surface, the thickness of the initial solidified shell SH has fluctuations in the mold width direction. For this reason, about the position close to the mold surface, the thermocouple 10 is arranged at an interval smaller than the above-mentioned interval, and the influence of fluctuation in the mold width direction of the thickness of the initial solidified shell SH is obtained by taking the spatial variation average. It was decided to eliminate.

次に、熱電対10を通じて取得した銅板温度から溶鋼流速に換算した後、どのような処理を施せば介在物・気泡の付着状態を適確に検知できるかについて検討した。   Next, after converting the copper plate temperature acquired through the thermocouple 10 to the molten steel flow velocity, what kind of treatment was performed to examine whether the adhesion state of inclusions / bubbles could be accurately detected.

薄板鋼板製品の表面欠陥に起因する介在物・気泡の大きさ(粒径)については、本発明者らが調査した結果、約300μm以上であることが分かった。一方、これらの介在物・気泡の凝固シェル界面への付着を防止するために必要となる洗い流し臨界流速についてはモデル計算によって文献(山田ら:材料とプロセス、12(1999)、682)に示されている。両者の知見から、凝固シェル界面の溶鋼流速が洗い流し臨界流速(=0.1m/s)を下回ると薄板鋼板製品の表面欠陥となり得る介在物・気泡が凝固シェルSHに付着し易くなるとした。   As a result of investigation by the present inventors, it was found that the size (particle size) of inclusions / bubbles due to surface defects of the thin steel plate product was about 300 μm or more. On the other hand, the washing critical flow velocity required to prevent the inclusions / bubbles from adhering to the solidified shell interface is shown in the literature (Yamada et al .: Materials and Processes, 12 (1999), 682) by model calculation. ing. From both findings, it was assumed that inclusions / bubbles that could become surface defects of the thin steel plate product were likely to adhere to the solidified shell SH when the molten steel flow velocity at the solidified shell interface was less than the critical flow velocity (= 0.1 m / s).

以上、2点の検討結果から、鋳型1内に二次元的に配設した熱電対10の計測温度に基づいて凝固シェル界面の溶鋼流速を算出し、この溶鋼流速に基づいて凝固シェルSHへの介在物・気泡の付着状態を以下のようにして予測することとした。   As described above, the molten steel flow velocity at the solidified shell interface is calculated based on the measured temperature of the thermocouple 10 arranged two-dimensionally in the mold 1 from the examination results of the two points, and the molten steel flow rate to the solidified shell SH is calculated based on the molten steel flow velocity. The state of inclusion / bubble adhesion was predicted as follows.

図3に示すように、鋳型長辺1aを構成する銅板に熱電対10を配設した。第2段目及び第3段目は、熱電対10を200〜450mmの間隔で配設し、第1段目は、上述したように、初期凝固シェルSHの厚さの鋳型幅方向の揺らぎの影響を排除するため、熱電対10の鋳型幅方向間隔を細かくしている。これらの熱電対10によって計測した銅板温度から下式(3)及び(4)により凝固シェル界面での溶鋼流速を算出する。

Figure 2011011258

Figure 2011011258
As shown in FIG. 3, the thermocouple 10 was arrange | positioned to the copper plate which comprises the casting_mold | template long side 1a. In the second and third stages, the thermocouples 10 are arranged at intervals of 200 to 450 mm, and as described above, the first stage is the fluctuation of the thickness of the initial solidified shell SH in the mold width direction. In order to eliminate the influence, the interval in the mold width direction of the thermocouple 10 is made fine. From the copper plate temperature measured by these thermocouples 10, the molten steel flow velocity at the solidified shell interface is calculated by the following equations (3) and (4).
Figure 2011011258

Figure 2011011258

算出した溶鋼流速が上述した洗い流し臨界流速を下回っている場合、その熱電対10を中心として、溶鋼流速の空間変動波長の1/2を半径とする範囲では同様に洗い流し臨界流速を下回っている可能性があるものとした。具体的には、図3に示すように、鋳型幅方向に第2段及び第3段の熱電対10を幅方向中心として複数の鋳型幅方向区間の計測列に分け、それぞれの計測列の中で洗い流し臨界流速を下回っている熱電対10があれば、その計測列に介在物・気泡の付着による表面欠陥の可能性が有ると判断する。これは、薄板鋼板製品のコイルでは、コイルの幅方向での表面欠陥が存在するか否かは判断することができるが、欠陥を生じさせている介在物・気泡がコイルの板表面からどのくらいの深さに位置するのかは欠陥一つ一つについてコイルの厚み断面を調べない限り分からないためである。   When the calculated molten steel flow velocity is lower than the above-described critical flow velocity for washing, it is possible for the molten steel flow rate to be less than the critical flow velocity in the same manner in the range having a radius of 1/2 of the spatial fluctuation wavelength of the molten steel flow velocity with the thermocouple 10 as the center. It was supposed to have a sex. Specifically, as shown in FIG. 3, the thermocouples 10 of the second and third stages are divided into measurement columns in a plurality of mold width direction sections with the second and third stage thermocouples 10 as the center in the width direction. If there is a thermocouple 10 that is washed away with a flow velocity lower than the critical flow velocity, it is determined that there is a possibility of surface defects due to the inclusion of inclusions / bubbles in the measurement row. It is possible to judge whether or not there is a surface defect in the width direction of the coil in the coil of the thin steel plate product, but how much inclusions / bubbles causing the defect are from the surface of the coil plate. This is because the depth is not known unless the thickness cross section of the coil is examined for each defect.

ここで、介在物・気泡の付着による表面欠陥の可能性があるか否かの判断を行うため、本実施の形態では、溶鋼流速と介在物・気泡付着度との関係を表す付着度曲線を予め判断基準として設定するようにしている。   Here, in order to determine whether or not there is a possibility of a surface defect due to inclusion / bubble adhesion, in the present embodiment, an adhesion curve representing the relationship between the molten steel flow velocity and the inclusion / bubble adhesion is shown. It is set in advance as a judgment criterion.

図4は、付着度曲線を示すグラフであり、溶鋼流速を横軸とし、凝固シェルSHへの介在物・気泡の付着する度合い(付着度)を縦軸として両者の関係を示している。この付着度曲線は、図5に示した溶鋼流速ごとの凝固シェルSHに付着する介在物・気泡の限界粒径と、図6に示した溶鋼Y中に含まれる介在物・気泡のロジンラムラー分布とから設定したものである。ここで、図6の縦軸の数値は、ロジンラムラー分布での個数分布の計算式に基づいて求めた値である。   FIG. 4 is a graph showing the adhesion curve, and shows the relationship between the molten steel flow velocity on the horizontal axis and the degree of adhesion of inclusions / bubbles to the solidified shell SH (adhesion degree) on the vertical axis. This adhesion curve shows the limit particle size of inclusions / bubbles adhering to the solidified shell SH for each molten steel flow rate shown in FIG. 5, and the rosin Ramler distribution of inclusions / bubbles contained in the molten steel Y shown in FIG. It is set from. Here, the numerical value on the vertical axis in FIG. 6 is a value obtained based on the calculation formula of the number distribution in the Rosin-Rammler distribution.

以下、図4に示した付着度曲線の作成方法について説明する。尚、圧延後の製品の表面欠陥となり得る介在物・気泡の最も小さい粒径、すなわち表面欠陥化臨界粒径は140μmであることから、図5より、表面欠陥化臨界粒径140μmに対応する洗い流し臨界流速(以下、「表面欠陥化の洗い流し臨界流速」という)を求めると、0.2m/sとなる。溶鋼流速がこの表面欠陥化の洗い流し臨界流速を上回った場合と下回った場合とに分けて考える必要がある。   Hereinafter, a method of creating the adhesion curve shown in FIG. 4 will be described. Since the smallest particle size of inclusions / bubbles that can be a surface defect of the product after rolling, that is, the critical particle size for surface defect is 140 μm, the flushing corresponding to the critical particle size for surface defect is 140 μm from FIG. When the critical flow velocity (hereinafter referred to as “washing critical flow velocity for surface defects”) is obtained, it is 0.2 m / s. It is necessary to consider separately when the molten steel flow velocity exceeds the critical flow velocity for washing away the surface defects.

まず、溶鋼流速が表面欠陥化の洗い流し臨界流速を上回った場合、介在物・気泡は凝固シェルSHには付着しない。従って、この場合には、凝固シェルSHに付着する介在物・気泡の総数をゼロとして付着度曲線にプロットする。   First, when the molten steel flow rate exceeds the critical flow rate for washing away surface defects, inclusions / bubbles do not adhere to the solidified shell SH. Therefore, in this case, the total number of inclusions / bubbles adhering to the solidified shell SH is plotted as zero and plotted on the adhesion curve.

次に、溶鋼流速が表面欠陥化の洗い流し臨界流速を下回った場合について考える。例えば、溶鋼流速が0.15m/sの場合、図5より溶鋼流速0.15m/sに対応する粒径が180μmであり、粒径180μm以下の介在物・気泡が凝固シェルSHに付着することが分かる。   Next, let us consider the case where the molten steel flow velocity is less than the critical flow velocity for washing out surface defects. For example, when the molten steel flow rate is 0.15 m / s, the particle size corresponding to the molten steel flow rate of 0.15 m / s is 180 μm from FIG. 5, and inclusions / bubbles with a particle size of 180 μm or less adhere to the solidified shell SH. I understand.

次いで、図6から粒径が140μm以上で180μm以下の範囲(図6中の斜線部分)に分布する介在物・気泡の個数を積分して求める。さらに、溶鋼流速を変えてそれぞれの溶鋼流速ごとに介在物・気泡の積分値を算出し、付着度曲線にプロットする。上記の方法により、図4に示す付着度曲線を得ることができる。   Next, the number of inclusions / bubbles distributed in the range of 140 μm or more and 180 μm or less (shaded portion in FIG. 6) is obtained from FIG. Further, the integrated value of inclusions and bubbles is calculated for each molten steel flow rate by changing the molten steel flow rate, and plotted on the adhesion curve. By the above method, the adhesion curve shown in FIG. 4 can be obtained.

凝固シェルSHに付着する介在物・気泡の臨界粒径や溶鋼Yに含まれる介在物・気泡の分布は、鋳型湯面からの位置に応じて異なる。従って、付着度曲線に関しては、図7に示すように、熱電対10による鋳型銅板の計測位置に応じた個別のものを設定するようにした。いずれの付着度曲線においても、付着度は、凝固シェル界面の溶鋼流速(凝固界面流速)が洗い流し臨界流速を下回った場合に正の値を持つ。   The critical particle size of inclusions and bubbles adhering to the solidified shell SH and the distribution of inclusions and bubbles contained in the molten steel Y differ depending on the position from the mold surface. Accordingly, as shown in FIG. 7, the adhesion curve is set individually according to the measurement position of the mold copper plate by the thermocouple 10. In any adhesion curve, the adhesion has a positive value when the molten steel flow velocity (solidification interface flow velocity) at the solidified shell interface is washed away and falls below the critical flow velocity.

ここで、第1段よりも第2段、第3段の方が、介在物・気泡付着度の洗い流し臨界流速が低いのは、第1段よりも第2段、第3段に配設した熱電対10の計測位置が鋳型湯面から下方への距離が大きいため、すなわち、スラブ表面から凝固シェル界面までの距離が大きいため、薄板鋼板製品の表面欠陥を生じる介在物・気泡の粒径についてもその臨界値が第1段に比べて第2段、第3段の計測位置の方が大きくなる。従って、文献(山田ら:材料とプロセス、12(1999)、682)によれば、介在物・気泡の粒径が大きく、かつ凝固シェル界面での凝固速度が小さくなると、介在物・気泡の洗い流しに必要となる臨界流速も小さくなる。   Here, the second stage and the third stage have a lower washing critical flow velocity of inclusions / bubble adhesion than the first stage because they are disposed in the second stage and the third stage rather than the first stage. Since the measurement position of the thermocouple 10 has a large distance from the mold surface to the bottom, that is, the distance from the slab surface to the solidified shell interface is large, the particle size of inclusions / bubbles that cause surface defects in thin steel plate products However, the critical value is larger at the measurement positions of the second stage and the third stage than the first stage. Therefore, according to the literature (Yamada et al .: Materials and Processes, 12 (1999), 682), when inclusions / bubbles have a large particle size and the solidification rate at the solidified shell interface decreases, the inclusions / bubbles are washed away. The critical flow velocity required for this is also reduced.

鋳型銅板において第1段、第2段、第3段のそれぞれに配設した熱電対10により凝固シェルSHの同一箇所が通過した際の温度を計測し、各計測温度から算出される溶鋼流速に対応した介在物・気泡の付着度を求める。これら3つの付着度の最大値を計測列の付着度とする。この付着度が予め設定した閾値を上回った場合、その計測列に対応する鋳型幅方向区間には、介在物・気泡の付着による表面欠陥の可能性があると判断する。   The temperature when the same portion of the solidified shell SH passes is measured by the thermocouple 10 disposed in each of the first stage, the second stage, and the third stage in the mold copper plate, and the molten steel flow velocity calculated from each measured temperature is obtained. Find the degree of adhesion of the corresponding inclusions / bubbles. The maximum value of these three adhesion degrees is defined as the adhesion degree of the measurement row. When the degree of adhesion exceeds a preset threshold value, it is determined that there is a possibility of a surface defect due to inclusion / bubble adhesion in the mold width direction section corresponding to the measurement sequence.

上述した銅板温度の計測、溶鋼流速の算出、付着度の導出、表面欠陥の可能性判断といった一連の処理を鋳造方向に沿った一定の周期、例えば1秒ごとに行い、それぞれの計測位置に対する表面欠陥の可能性判断と、実際に成形した薄板鋼板コイルの表面欠陥検査結果とを突き合わせて集計した。集計結果を図8に示す。   A series of processes such as the above-described copper plate temperature measurement, molten steel flow velocity calculation, adhesion degree derivation, and surface defect possibility determination are performed at a constant cycle along the casting direction, for example, every second, and the surface for each measurement position. Judgment of the possibility of defects and the surface defect inspection results of the actually formed thin steel sheet coil were put together and counted. The tabulation results are shown in FIG.

図8においてN1は、欠陥可能性無しと判断し、実際の薄板鋼板コイルにも表面欠陥が無かった場合である。N4は、欠陥可能性有りと判断し、実際の薄板鋼板コイルにも表面欠陥があった場合である。   In FIG. 8, N1 is a case where it is determined that there is no possibility of a defect, and the actual thin steel plate coil has no surface defect. N4 is a case where it is determined that there is a possibility of a defect, and the actual thin steel sheet coil also has a surface defect.

一方、図8中のN2は、欠陥可能性無しと判断したが、実際の薄板鋼板コイルには表面欠陥があった「見逃し」の場合である。但し、欠陥の有無の突き合わせに薄板鋼板コイルの表面検査結果を用いているため、鋳造よりも下流の工程で圧延性の表面欠陥が混入している可能性もある。従って、多数の薄板鋼板コイルについて突き合わせを行い、N2/(N2+N4)が、薄板鋼板コイルの表面欠陥に占める圧延性欠陥の割合と同等であれば、鋳造性、すなわち介在物・気泡の凝固シェルSHへの付着に起因した表面欠陥の見逃しは少ないといえる。また、N2/(N2+N4)が薄板鋼板コイルの表面欠陥に占める圧延性欠陥の割合と大きく異なるようであれば、N2/(N2+N4)が薄板鋼板コイルの表面欠陥に占める圧延性欠陥の割合と同等となるように上述の閾値を調整すれば良い。また、薄板鋼板コイルの表面欠陥検査の代わりにスラブ表層部の介在物・気泡を直接計測する手段、例えば超音波探傷装置を用いれば、N2がほぼゼロとなるように閾値を調整することにより対応することができる。   On the other hand, N2 in FIG. 8 is a case of “missing” in which it is determined that there is no possibility of a defect, but the actual thin steel plate coil has a surface defect. However, since the surface inspection result of the thin steel plate coil is used for the presence / absence of defects, there is a possibility that rollable surface defects are mixed in a process downstream of casting. Therefore, if a large number of sheet steel coils are matched, and N2 / (N2 + N4) is equal to the ratio of the rollability defect to the surface defects of the sheet steel coil, the castability, that is, the inclusion / bubble solidified shell SH It can be said that there are few missed surface defects due to adhesion to the surface. Further, if N2 / (N2 + N4) is significantly different from the ratio of rolling defects in the surface defects of the thin steel sheet coil, N2 / (N2 + N4) is equivalent to the ratio of rolling defects in the surface defects of the thin steel sheet coil. The above threshold value may be adjusted so that In addition, if a means for directly measuring inclusions / bubbles in the slab surface layer instead of surface defect inspection of a thin steel plate coil, for example, an ultrasonic flaw detector is used, the threshold value is adjusted so that N2 becomes almost zero. can do.

図9は、上述した方法により、スラブ連鋳機においてスラブの表層状態を予測するための装置を示したものである。図9において制御手段100は、熱電対10から検出信号が与えられた場合に予め設定したプログラムやデータに基づき、スラブ連鋳機によって生成されるスラブに表面欠陥となり得る介在物・気泡が存在するか否かを判断するもので、温度取得部101、溶鋼流速演算部102、付着度導出部103及び付着判断部104を有している。   FIG. 9 shows an apparatus for predicting the surface layer state of a slab in a slab continuous casting machine by the method described above. In FIG. 9, the control means 100 includes inclusions / bubbles that may cause surface defects in a slab generated by a slab continuous casting machine based on a preset program and data when a detection signal is given from the thermocouple 10. It has a temperature acquisition unit 101, a molten steel flow rate calculation unit 102, an adhesion degree derivation unit 103, and an adhesion determination unit 104.

温度取得部101は、鋳型1に配設した熱電対10の検出結果に応じて鋳型1における計測位置の銅板温度を取得するものである。溶鋼流速演算部102は、温度取得部101によって銅板温度が取得された場合、上式(3)及び(4)に従って計測位置の凝固シェル界面における溶鋼Yの流速を算出するものである。算出した溶鋼流速は、銅板温度を計測した計測位置の情報とともに付着度導出部103に与えられる。付着度導出部103は、溶鋼流速演算部102から与えられた溶鋼流速と、銅板温度を計測した計測位置の情報とから、予めメモリ105に格納した溶鋼流速と介在物・気泡付着度との関係を表す付着度曲線に基づいて、溶鋼流速に対応した介在物・気泡の付着度を導出するものである。メモリ105には、熱電対10による鋳型銅板の計測位置に応じた個別の付着度曲線が設定してある。付着度導出部103は、計測位置の情報に従って該当する付着度曲線を選択し、選択した付着度曲線と溶鋼流速とに基づいて溶鋼流速に対応した介在物・気泡の付着度を導出する。付着判断部104は、付着度導出部103から与えられた付着度と予め設定した閾値とを比較し、この比較結果に基づいて計測位置に対応する凝固シェルSHに表面欠陥となり得る介在物・気泡が存在するか否かを判断するものである。   The temperature acquisition unit 101 acquires the copper plate temperature at the measurement position in the mold 1 according to the detection result of the thermocouple 10 disposed in the mold 1. When the temperature acquisition unit 101 acquires the copper plate temperature, the molten steel flow rate calculation unit 102 calculates the flow rate of the molten steel Y at the solidified shell interface at the measurement position according to the above equations (3) and (4). The calculated molten steel flow velocity is given to the adhesion degree deriving unit 103 together with information on the measurement position at which the copper plate temperature is measured. The degree-of-adhesion deriving unit 103 is based on the molten steel flow rate given from the molten steel flow rate calculating unit 102 and the information on the measurement position at which the copper plate temperature is measured, and the relationship between the molten steel flow rate stored in the memory 105 in advance and the inclusion / bubble adhesion degree. The adhesion degree of inclusions / bubbles corresponding to the molten steel flow velocity is derived based on the adhesion curve representing In the memory 105, an individual adhesion degree curve is set according to the measurement position of the mold copper plate by the thermocouple 10. The adhesion degree deriving unit 103 selects a corresponding adhesion degree curve in accordance with the measurement position information, and derives the adhesion degree of inclusions / bubbles corresponding to the molten steel flow rate based on the selected adhesion degree curve and the molten steel flow rate. The adhesion determination unit 104 compares the adhesion level given from the adhesion level deriving unit 103 with a preset threshold value, and based on the comparison result, inclusions / bubbles that may cause surface defects in the solidified shell SH corresponding to the measurement position. Whether or not exists.

具体的には、第1段、第2段、第3段に配設した熱電対10の検出結果から温度取得部101によりそれぞれの銅板温度が取得され、各銅板温度から溶鋼流速演算部102によってそれぞれの溶鋼流速が算出される。第1段〜第3段に配設した熱電対10を通じて温度取得部101が取得する銅板温度は、鋳造中において凝固シェルSHの同一箇所が通過した際のものである。溶鋼流速演算部102によって算出された溶鋼流速が与えられると、付着度導出部103は、それぞれの溶鋼流速に対応した付着度を導出する。付着度が与えられた付着判断部104は、凝固シェルSHの同一箇所に対して導出された複数の付着度から最大となるものを当該計測位置に対応した凝固シェルSHの最大付着度として設定し、この最大付着度が予め設定した閾値を超えている場合に表面欠陥となり得る介在物・気泡が存在すると判断する。尚、判断結果は、メモリ105に格納するとともに、ディスプレイやプリンタ等の出力手段106を介して出力されることになる。従って、この出力結果に基づいて鋳造後のスラブに対する表面手入れの要否や引き当てグレードの変更を効率よく行うことが可能となる。また、凝固シェルSHに対して介在物・気泡が付着し難いような鋳造条件への変更を行い、薄板鋼板製品に表面欠陥が発生するのを未然に防止することも可能となる。   Specifically, each copper plate temperature is acquired by the temperature acquisition unit 101 from the detection results of the thermocouples 10 arranged in the first stage, the second stage, and the third stage. Each molten steel flow velocity is calculated. The copper plate temperature acquired by the temperature acquisition unit 101 through the thermocouples 10 arranged in the first to third stages is that when the same portion of the solidified shell SH passes during casting. When the molten steel flow velocity calculated by the molten steel flow velocity calculation unit 102 is given, the adhesion degree deriving unit 103 derives the adhesion degree corresponding to each molten steel flow velocity. The adhesion determination unit 104 given the adhesion degree sets the maximum adhesion degree from the plurality of adhesion degrees derived for the same location of the solidified shell SH as the maximum adhesion degree of the solidified shell SH corresponding to the measurement position. When the maximum degree of adhesion exceeds a preset threshold, it is determined that there are inclusions / bubbles that can become surface defects. The determination result is stored in the memory 105 and is output via the output means 106 such as a display or a printer. Therefore, it is possible to efficiently change the necessity of surface care for the slab after casting and the change of the assigned grade based on the output result. In addition, it is possible to prevent the occurrence of surface defects in the thin steel plate product by changing the casting conditions such that inclusions and bubbles are less likely to adhere to the solidified shell SH.

試験を行ったスラブ連鋳機の仕様は、図10に示すとおりであり、図11に示す鋳造条件に従って試験を行った。試験時の鋼の成分範囲は図12に示すとおりである。   The specifications of the slab caster that was tested are as shown in FIG. 10, and the test was performed according to the casting conditions shown in FIG. The component range of the steel during the test is as shown in FIG.

熱電対10は、鋳型銅板の上端から第1段が187mm(=鋳型湯面から下方97mm)、第2段が272mm(=鋳型湯面から下方182mm)、第3段が502mm(=鋳型湯面から下方412mm)とした。鋳型1内での凝固係数が上述と同様19.3mm/min1/2であるとすれば、y=429.54mmであり、熱電対10の配設位置が上述した鋳型湯面を起点として下方50mmから上式(1)で決まる位置の間という条件を満足している。各熱電対10の測温部先端から鋳型銅板における凝固シェル側表面までの距離は21.6mmである。また、第1段に配設した熱電対10の鋳型幅方向の間隔は50mm、第2段及び第3段に配設した熱電対10の鋳型幅方向の間隔は100mmとした。使用した熱電対10の種類はJIS−Tである。 The thermocouple 10 has a first stage 187 mm (= 97 mm below the mold surface), a second stage 272 mm (= 182 mm below the mold surface), and a third stage 502 mm (= the mold surface) from the upper end of the mold copper plate. 412 mm below). Assuming that the solidification coefficient in the mold 1 is 19.3 mm / min 1/2 as described above, y = 429.54 mm, and the position where the thermocouple 10 is disposed is downward from the mold surface as described above. The condition between 50 mm and the position determined by the above equation (1) is satisfied. The distance from the tip of the temperature measuring part of each thermocouple 10 to the solidified shell side surface of the mold copper plate is 21.6 mm. The interval in the mold width direction of the thermocouple 10 disposed in the first stage was 50 mm, and the interval in the mold width direction of the thermocouple 10 disposed in the second and third stages was 100 mm. The type of the thermocouple 10 used is JIS-T.

以上の方法により、自動車外板用のスラブ100枚について計測位置に対する表面欠陥の可能性判断と、実際に成形した薄板鋼板コイルの表面欠陥検査とを行い、それぞれの結果を突き合わせて集計した。集計結果を図13に示す。尚、この実施例では、鋳型幅方向で15区間、鋳造方向では1秒ピッチで熱電対10により温度を検出しているため、スラブ100枚で合計562500個の評価セクションとなる。   By the above method, the possibility of surface defects with respect to the measurement position and surface defect inspection of the actually formed thin steel plate coil were determined for 100 slabs for automobile outer plates, and the results were compared and tabulated. The tabulation results are shown in FIG. In this embodiment, since the temperature is detected by the thermocouple 10 at 15 intervals in the mold width direction and at a pitch of 1 second in the casting direction, a total of 562,500 evaluation sections are obtained with 100 slabs.

本発明による表面欠陥の可能性判断において「介在物・気泡有り」と判断したものについて、実際の表面欠陥計で「表面欠陥有り」と判定されたものは3119個(=N4)となった。これに対して本発明による表面欠陥可能性判断において「介在物・気泡無し」と判断し、実際の表面欠陥計で「表面欠陥有り」と判定されたものは1832個(=N2)ある。但し、実際に計測した薄板鋼板がコイルであるため、圧延性の表面欠陥も含まれている。自動車外板用鋼板製造ラインの場合、コイル表面欠陥計で検出される表面欠陥の原因割合は、鋳造性が約60%、圧延性が約40%であることが統計的に知られている。本実施例の場合、N4/(N4+N2)=0.63である。つまり、N2として検出された表面欠陥は、圧延性のものが大半であり、鋳造性の表面欠陥についてはほとんど見逃しなく予測できていると判断できる。尚、表面欠陥可能性判断において「介在物・気泡有り」と判断し、実際の表面欠陥計で「表面欠陥無し」と判定されたものは16218個(=N3)があった。これは、凝固シェル界面の溶鋼流速は洗い流し臨界流速を割り込んで介在物・気泡が付着し易い環境下であったにも関わらず、薄板鋼板製品の表面欠陥になり得る大きさの介在物・気泡が凝固シェル界面近傍に存在していなかったことを意味するものと考えられる。   In the judgment of the possibility of surface defects according to the present invention, 3119 (= N4) were judged as “with surface defects” by the actual surface defect meter as judged as “inclusions / bubbles”. On the other hand, in the determination of the possibility of surface defects according to the present invention, there are 1832 (= N2) that are determined as “no inclusions / bubbles” and determined as “surface defects” in an actual surface defect meter. However, since the thin steel plate actually measured is a coil, it includes rolling surface defects. In the case of a steel plate production line for automobile outer plates, it is statistically known that the cause ratio of surface defects detected by a coil surface defect meter is about 60% for castability and about 40% for rollability. In this embodiment, N4 / (N4 + N2) = 0.63. That is, most of the surface defects detected as N2 are rollable, and it can be judged that the surface defects of castability can be predicted with almost no oversight. In the determination of the possibility of surface defects, there were 16218 (= N3) that were judged as “inclusions / bubbles” and judged as “no surface defects” by an actual surface defect meter. This is because the molten steel flow velocity at the solidified shell interface is washed away and the critical flow velocity is interrupted, so that inclusions and bubbles are in an environment where the inclusions and bubbles are likely to adhere. This is considered to mean that was not present in the vicinity of the solidified shell interface.

尚、上述した実施の形態では、鋳造方向に沿って測温素子を3段配設するようにしているが、2段以下であっても良いし、4段以上配設しても良い。この測温素子の数を増やせば、凝固シェルSHの板厚方向に沿って多数の溶鋼流速を取得することができ、表面欠陥有無の判断をより細かく判断することができるようになる。   In the above-described embodiment, three stages of temperature measuring elements are arranged along the casting direction, but may be two stages or less, or four stages or more. If the number of temperature measuring elements is increased, a large number of molten steel flow velocities can be acquired along the thickness direction of the solidified shell SH, and the determination of the presence or absence of surface defects can be made more finely.

1 鋳型
1a 鋳型長辺
1b 鋳型短辺
2 浸漬ノズル
10 熱電対
100 制御手段
101 温度取得部
102 溶鋼流速演算部
103 付着度導出部
104 付着判断部
105 メモリ
106 出力手段
SH 凝固シェル
Y 溶鋼
DESCRIPTION OF SYMBOLS 1 Mold 1a Mold long side 1b Mold short side 2 Immersion nozzle 10 Thermocouple 100 Control means 101 Temperature acquisition part 102 Molten steel flow velocity calculation part 103 Adhesion degree deriving part 104 Adhesion judgment part 105 Memory 106 Output means SH Solidified shell Y Molten steel

Claims (7)

鋳型に溶鋼を吐出することにより鋳型の下端からスラブを連続して生成するスラブ連鋳機を適用対象とし、生成されるスラブに表面欠陥となり得る介在物・気泡が存在するか否かを予測するスラブの表層状態予測方法であって、
鋳型に配設した測温素子を通じて計測位置の温度を取得し、該取得した温度から凝固シェル界面における溶鋼の流速を算出する流速算出工程と、
予め設定した介在物・気泡の洗い流し臨界流速と前記流速算出工程で算出した溶鋼の流速とを比較し、算出した溶鋼の流速が洗い流し臨界流速を下回ったことを条件に、計測位置に対応する凝固シェルに表面欠陥となり得る介在物・気泡が存在すると判断する付着判断工程と
を含むことを特徴とするスラブの表層状態予測方法。
For slab continuous casting machines that continuously generate slab from the lower end of the mold by discharging molten steel into the mold, predict whether inclusions or bubbles that may cause surface defects exist in the generated slab A method for predicting the surface state of a slab,
A flow rate calculation step of acquiring the temperature at the measurement position through a temperature measuring element arranged in the mold and calculating the flow rate of the molten steel at the solidified shell interface from the acquired temperature,
Compare the preset flow critical flow velocity of inclusions and bubbles with the flow velocity of the molten steel calculated in the flow velocity calculation step, and if the calculated molten steel flow velocity is less than the critical flow velocity, the solidification corresponding to the measurement position A method for predicting a surface state of a slab, comprising: an adhesion determination step for determining that inclusions / bubbles that may become surface defects exist in the shell.
溶鋼湯面を起点として凝固シェルが予め設定した厚さとなるまでの間に複数の測温素子を鋳造方向に沿って配設し、
これら複数の測温素子を通じて凝固シェルの同一箇所が通過した際の温度を取得し、該取得した温度からそれぞれ溶鋼の流速を算出するとともに、算出したそれぞれの溶鋼の流速に基づいて表面欠陥となり得る介在物・気泡が存在するか否かを判断することを特徴とする請求項1に記載のスラブの表層状態予測方法。
A plurality of temperature measuring elements are arranged along the casting direction until the solidified shell reaches a preset thickness starting from the molten steel surface,
The temperature when the same portion of the solidified shell passes through the plurality of temperature measuring elements is acquired, and the flow rate of the molten steel is calculated from the acquired temperature, and surface defects can be caused based on the calculated flow rates of the molten steel. The method for predicting a state of a surface layer of a slab according to claim 1, wherein it is determined whether or not inclusions / bubbles are present.
溶鋼流速が洗い流し臨界流速を下回った場合にのみ正の値を持つように溶鋼流速と介在物・気泡付着度との関係を付着度曲線として予め設定し、
前記付着判断工程は、
前記付着度曲線に基づき、流速算出工程で算出した溶鋼の流速に対応した付着度を導出する工程と、
導出した付着度が予め設定した閾値を超えた場合に表面欠陥となり得る介在物・気泡が存在すると判断する工程と
を含むことを特徴とする請求項1に記載のスラブの表層状態予測方法。
The relationship between the molten steel flow velocity and the inclusion / bubble adhesion degree is set in advance as an adhesion curve so as to have a positive value only when the molten steel flow velocity is washed away and below the critical flow velocity,
The adhesion determination step includes
A step of deriving an adhesion corresponding to the flow rate of the molten steel calculated in the flow rate calculation step based on the adhesion curve;
The method for predicting the surface layer state of a slab according to claim 1, further comprising: determining that there are inclusions / bubbles that may become surface defects when the derived adhesion degree exceeds a preset threshold value.
前記付着度曲線は、
圧延後の製品の表面欠陥となり得る介在物・気泡の表面欠陥化臨界粒径に対応した洗い流し臨界流速を導出し、
溶鋼流速がこの導出した洗い流し臨界流速を上回った場合には凝固シェルに付着する介在物・気泡の総数をゼロとし、
一方、溶鋼流速が前記洗い流し臨界流速を下回った場合には、前記溶鋼流速及び前記洗い流し臨界流速に対応する凝固シェルに付着する介在物・気泡の臨界粒径を求め、溶鋼中に含まれる介在物・気泡の粒径の分布関数を用いて凝固シェルに付着する介在物・気泡の総数を算出することにより作成することを特徴とする請求項3に記載のスラブの表層状態予測方法。
The adhesion curve is
Deriving the critical flow velocity for washing, which corresponds to the critical particle size of inclusions and bubbles, which can be surface defects of the product after rolling,
When the molten steel flow velocity exceeds the derived washing critical flow velocity, the total number of inclusions / bubbles adhering to the solidified shell is set to zero,
On the other hand, when the molten steel flow rate is lower than the flushing critical flow rate, the critical particle size of inclusions / bubbles attached to the solidified shell corresponding to the molten steel flow rate and the flushing critical flow rate is obtained, and the inclusions contained in the molten steel The method for predicting the state of the surface layer of a slab according to claim 3, wherein the surface layer state prediction method is created by calculating the total number of inclusions and bubbles adhering to the solidified shell using a distribution function of bubble particle size.
溶鋼湯面を起点として凝固シェルが予め設定した厚さとなるまでの間に複数の測温素子を鋳造方向に沿って配設し、かつ測温素子の配設位置に応じて付着度曲線を設定し、
これら複数の測温素子を通じて凝固シェルの同一箇所が通過した際の温度を取得し、該取得した温度からそれぞれ溶鋼の流速を算出するとともに、計測位置に対応する付着度曲線に基づき、算出したそれぞれの溶鋼の流速から介在物・気泡の付着度を導出し、導出したいずれかの付着度が予め設定した閾値を超えた場合に、計測位置に対応する部位に表面欠陥となり得る介在物・気泡が存在すると判断することを特徴とする請求項3に記載のスラブの表層状態予測方法。
Multiple temperature measuring elements are arranged along the casting direction until the solidified shell reaches the preset thickness starting from the molten steel surface, and the adhesion curve is set according to the position of the temperature measuring element. And
Obtain the temperature when the same location of the solidified shell has passed through the plurality of temperature measuring elements, calculate the flow rate of the molten steel from the acquired temperature, respectively, and calculated based on the adhesion curve corresponding to the measurement position, respectively When the degree of adhesion of inclusions / bubbles is derived from the flow rate of the molten steel, and any of the derived degrees of adhesion exceeds a preset threshold, inclusions / bubbles that may cause surface defects are found at the site corresponding to the measurement position. It is judged that it exists, The surface layer state prediction method of the slab of Claim 3 characterized by the above-mentioned.
前記複数の測温素子は、溶鋼湯面を起点として下方50mmから凝固シェルの厚さが10mmとなるまでの間に複数配設することを特徴とする請求項2または請求項5に記載のスラブの表層状態予測方法。   6. The slab according to claim 2, wherein a plurality of the temperature measuring elements are arranged from a lower side of 50 mm to a thickness of the solidified shell of 10 mm starting from the molten steel surface. Method for predicting the surface layer of 鋳型に溶鋼を吐出することにより鋳型の下端からスラブを連続して生成するスラブ連鋳機を適用対象とし、生成されるスラブに表面欠陥となり得る介在物・気泡が存在するか否かを予測するスラブの表層状態予測装置であって、
鋳型に配設した測温素子を通じて計測位置の温度を取得する温度取得部と、
前記温度取得部が取得した温度から凝固シェル界面における溶鋼の流速を算出する溶鋼流速演算部と、
前記溶鋼流速演算部によって溶鋼の流速が算出された場合、予め設定した溶鋼流速と介在物・気泡付着度との関係を表す付着度曲線に基づいて、溶鋼の流速に対応した介在物・気泡の付着度を導出する付着度導出部と、
前記付着度導出部が導出した介在物・気泡の付着度と予め設定した閾値と比較し、介在物・気泡の付着度が前記閾値を超えた場合に、計測位置に対応する凝固シェルに表面欠陥となり得る介在物・気泡が存在すると判断する付着判断部と
を備えたことを特徴とするスラブの表層状態予測装置。
For slab continuous casting machines that continuously generate slab from the lower end of the mold by discharging molten steel into the mold, predict whether inclusions or bubbles that may cause surface defects exist in the generated slab A slab surface state prediction device,
A temperature acquisition unit for acquiring the temperature of the measurement position through a temperature measuring element arranged in the mold;
A molten steel flow rate calculation unit for calculating a flow rate of the molten steel at the solidified shell interface from the temperature acquired by the temperature acquisition unit;
When the molten steel flow velocity is calculated by the molten steel flow velocity calculation unit, based on the adhesion curve representing the relationship between the molten steel flow velocity and the inclusion / bubble adhesion degree set in advance, the inclusion / bubble flow corresponding to the molten steel flow velocity is calculated. An adhesion degree deriving unit for deriving the degree of adhesion;
When the adhesion degree of inclusions / bubbles derived by the adhesion degree deriving unit is compared with a preset threshold value, and the adhesion degree of inclusions / bubbles exceeds the threshold value, surface defects in the solidified shell corresponding to the measurement position An apparatus for predicting a state of a surface layer of a slab, comprising: an adhesion determination unit that determines that inclusions / bubbles that can be formed are present.
JP2010066961A 2009-06-02 2010-03-23 Slab surface state prediction method and slab surface state prediction apparatus Active JP5617293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010066961A JP5617293B2 (en) 2009-06-02 2010-03-23 Slab surface state prediction method and slab surface state prediction apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009133128 2009-06-02
JP2009133128 2009-06-02
JP2010066961A JP5617293B2 (en) 2009-06-02 2010-03-23 Slab surface state prediction method and slab surface state prediction apparatus

Publications (2)

Publication Number Publication Date
JP2011011258A true JP2011011258A (en) 2011-01-20
JP5617293B2 JP5617293B2 (en) 2014-11-05

Family

ID=43590627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010066961A Active JP5617293B2 (en) 2009-06-02 2010-03-23 Slab surface state prediction method and slab surface state prediction apparatus

Country Status (1)

Country Link
JP (1) JP5617293B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101246207B1 (en) 2011-02-24 2013-03-21 현대제철 주식회사 Device for estimating a pin-hole defect of solidified shell in continuous casting process and method therefor
KR101388071B1 (en) * 2012-07-31 2014-04-25 현대제철 주식회사 Cooling method of mold for continuous casting
KR101400036B1 (en) 2012-01-31 2014-05-30 현대제철 주식회사 Separatimg method for slab of high clean steel
JP2015160239A (en) * 2014-02-28 2015-09-07 Jfeスチール株式会社 Method and apparatus for surface defect determination for continuously cast slab
JP2016041445A (en) * 2014-08-18 2016-03-31 Jfeスチール株式会社 Surface defect determination method and apparatus for continuous casting slab and method for manufacturing steel cast piece using surface defect determination method
JP2017047453A (en) * 2015-09-02 2017-03-09 Jfeスチール株式会社 Surface defect determination method and apparatus of continuously cast slab, and manufacturing method of steel cast piece using surface defect determination method
JP2017060965A (en) * 2015-09-25 2017-03-30 Jfeスチール株式会社 Surface defect judgment method and apparatus for continuous casting piece and billet manufacturing method using surface defect judgment method
US10710152B2 (en) 2014-11-19 2020-07-14 Posco Meniscus flow control device and meniscus flow control method using same
CN114850465A (en) * 2022-06-15 2022-08-05 北京科技大学 Molten steel castability prediction system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000246413A (en) * 1999-03-03 2000-09-12 Nkk Corp Method for estimating flowing speed of molten steel in mold for continuous casting
JP2003181609A (en) * 1999-03-02 2003-07-02 Jfe Engineering Kk Method and apparatus for estimating and controlling flow pattern of molten steel in continuous casting
JP2004306085A (en) * 2003-04-07 2004-11-04 Jfe Steel Kk Quality monitoring device and quality monitoring method for continuous cast cast slab
JP2005262305A (en) * 2004-03-22 2005-09-29 Jfe Steel Kk Method for detecting surface defect of cast billet in continuous casting, and method for removing the defect
JP2009066656A (en) * 2007-08-20 2009-04-02 Jfe Steel Kk Method for producing continuously cast slab

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003181609A (en) * 1999-03-02 2003-07-02 Jfe Engineering Kk Method and apparatus for estimating and controlling flow pattern of molten steel in continuous casting
JP2000246413A (en) * 1999-03-03 2000-09-12 Nkk Corp Method for estimating flowing speed of molten steel in mold for continuous casting
JP2004306085A (en) * 2003-04-07 2004-11-04 Jfe Steel Kk Quality monitoring device and quality monitoring method for continuous cast cast slab
JP2005262305A (en) * 2004-03-22 2005-09-29 Jfe Steel Kk Method for detecting surface defect of cast billet in continuous casting, and method for removing the defect
JP2009066656A (en) * 2007-08-20 2009-04-02 Jfe Steel Kk Method for producing continuously cast slab

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101246207B1 (en) 2011-02-24 2013-03-21 현대제철 주식회사 Device for estimating a pin-hole defect of solidified shell in continuous casting process and method therefor
KR101400036B1 (en) 2012-01-31 2014-05-30 현대제철 주식회사 Separatimg method for slab of high clean steel
KR101388071B1 (en) * 2012-07-31 2014-04-25 현대제철 주식회사 Cooling method of mold for continuous casting
JP2015160239A (en) * 2014-02-28 2015-09-07 Jfeスチール株式会社 Method and apparatus for surface defect determination for continuously cast slab
JP2016041445A (en) * 2014-08-18 2016-03-31 Jfeスチール株式会社 Surface defect determination method and apparatus for continuous casting slab and method for manufacturing steel cast piece using surface defect determination method
US10710152B2 (en) 2014-11-19 2020-07-14 Posco Meniscus flow control device and meniscus flow control method using same
JP2017047453A (en) * 2015-09-02 2017-03-09 Jfeスチール株式会社 Surface defect determination method and apparatus of continuously cast slab, and manufacturing method of steel cast piece using surface defect determination method
JP2017060965A (en) * 2015-09-25 2017-03-30 Jfeスチール株式会社 Surface defect judgment method and apparatus for continuous casting piece and billet manufacturing method using surface defect judgment method
CN114850465A (en) * 2022-06-15 2022-08-05 北京科技大学 Molten steel castability prediction system and method

Also Published As

Publication number Publication date
JP5617293B2 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
JP5617293B2 (en) Slab surface state prediction method and slab surface state prediction apparatus
JP6430467B2 (en) Slab quality prediction apparatus and method
JP3386051B2 (en) Method for estimating flow pattern of molten steel in continuous casting, temperature measuring device for mold copper plate, method for determining surface defects of continuous cast slab, method for detecting molten steel flow, method for evaluating non-uniformity of heat removal in mold, method for controlling molten steel flow, Quality control method in continuous casting, continuous casting method of steel, estimation method of molten steel flow velocity
CN1048672C (en) Prediction and control of quality of continuously cast article
JP5716333B2 (en) Slab surface quality prediction method and slab surface quality prediction apparatus
EP3100802B1 (en) Method, device and program for determining casting state in continuous casting
JP6358215B2 (en) Method and apparatus for determining surface defects of continuous cast slab, and method for manufacturing steel slab using the surface defect determination method
JP5673100B2 (en) Breakout prediction method
JP2003181609A (en) Method and apparatus for estimating and controlling flow pattern of molten steel in continuous casting
JP5092631B2 (en) Breakout detection method and apparatus in continuous casting, steel continuous casting method and breakout prevention apparatus using the apparatus
KR20120087523A (en) Method for evaluating steel plate quality using level of molten steel
JPH01210160A (en) Method for predicting longitudinal crack in continuous casting
KR101312526B1 (en) Method for measuring arc stability of electric furnaces and operating method of electric arc furnace using the same
JP6119807B2 (en) Method and apparatus for determining surface defects of continuous cast slab, and method for producing steel slab using the surface defect determination method
JP6358199B2 (en) Method and apparatus for determining surface defects of continuous cast slab, and method for producing steel slab using the surface defect determination method
KR100516028B1 (en) Method and device for estimating/controlling molten steel flowing pattern in continuous casting
JP6347236B2 (en) Breakout prediction method, breakout prediction apparatus, and continuous casting method
KR101228695B1 (en) Device and method for predicting nozzle clogging thickness of continuous casting process
JP2005205462A (en) Method for preventing longitudinal crack on continuously cast piece
Rout et al. Development and application of nozzle clogging index to improve the castabilty in continuous slab casting
JP5742692B2 (en) Breakout detection method in continuous casting
JPS62192243A (en) Detection of casting slab longitudinal cracking in continuous casting
JP2022007575A (en) Side guide member wear management system and side guide member wear management device
JP2007136480A (en) Method for detecting unsteady bulging in continuously cast slab
JP2009226480A (en) Method and apparatus for detecting breakout in continuous casting, continuous casting method for steel using the apparatus, and breakout prevention apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140901

R150 Certificate of patent or registration of utility model

Ref document number: 5617293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250