JP2015157331A - 研磨装置 - Google Patents

研磨装置 Download PDF

Info

Publication number
JP2015157331A
JP2015157331A JP2014032669A JP2014032669A JP2015157331A JP 2015157331 A JP2015157331 A JP 2015157331A JP 2014032669 A JP2014032669 A JP 2014032669A JP 2014032669 A JP2014032669 A JP 2014032669A JP 2015157331 A JP2015157331 A JP 2015157331A
Authority
JP
Japan
Prior art keywords
workpiece
thickness
polishing
light
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014032669A
Other languages
English (en)
Other versions
JP6232311B2 (ja
Inventor
真司 吉田
Shinji Yoshida
真司 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Abrasive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Abrasive Systems Ltd filed Critical Disco Abrasive Systems Ltd
Priority to JP2014032669A priority Critical patent/JP6232311B2/ja
Publication of JP2015157331A publication Critical patent/JP2015157331A/ja
Application granted granted Critical
Publication of JP6232311B2 publication Critical patent/JP6232311B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

【課題】研磨中の板状ワークの厚さを正確に計測することにより、板状ワークを所望の厚さになるまで研磨する。
【解決手段】第1のワークと第2のワークとの少なくとも2層で形成された板状ワークを研磨する研磨装置10において、第1の厚さ算出部531は、第1のワークの上面及び下面で反射した光の光路長差から第1のワークの厚さを算出し、第2の厚さ算出部532は、第2のワークの上面及び下面で反射した光の光路長差から第2のワークの厚さを算出し、温度算出部533は、第2の厚さ算出部532が算出した厚さに基づいて第2のワークの温度を算出し、厚さ補正部534は、温度算出部533が算出した温度に基づいて第1のワークの屈折率を算出し、算出した屈折率に基づいて、第1の厚さ算出部531が算出した厚さを補正する。板状ワークの厚さの測定と補正を行いながら板状ワークを研磨することで、板状ワークを所望の厚さになるまで研磨する。
【選択図】図1

Description

本発明は、板状ワークを研磨する研磨装置に関する。
半導体ウェーハなどの板状ワークを所望の厚さになるまで薄化する研磨装置では、板状ワークに研磨パッドを当接させ、スラリーを供給しながら板状ワークを研磨している。
板状ワークを所望の厚さに仕上げるために、特許文献1においては、過去の研磨結果をデータベース化しておくことにより、板状ワークを所望の厚さにするための最適な研磨時間などの研磨条件を算出する研磨装置が提案されている。また、特許文献2においては、研磨を中断して板状ワークの厚さを測定し、測定結果に基づいて最適な研磨条件を算出し、算出した研磨条件に基づいて仕上げ研磨をする研磨装置が提案されている。さらに、特許文献3においては、板状ワークに光を照射し、上面で反射した光と下面で反射した光との干渉を測定することにより光路長差を求め、板状ワークの厚さを計測する計測装置が提案されている。
特開2005−203729号公報 特開2011−224758号公報 特開2012−189507号公報
しかし、過去の研磨結果などに基づいて最適な研磨条件を算出する特許文献1に記載された方式では、必ずしも板状ワークが所望の厚さに仕上がるとは限らず、研磨不足や研磨過多が発生する可能性がある。また、研磨を中断して板状ワークの厚さを測定する特許文献2に記載された方式では、板状ワークの厚さを測定するたびに研磨を中断しなければならないため、生産性が低下するという問題がある。さらに、特許文献3に記載された干渉光を用いて研磨中に板状ワークの厚さを計測する方式では、誤差があり、板状ワークの厚さを正確に計測することができないという問題がある。
本発明は、このような問題にかんがみなされたもので、研磨中の板状ワークの厚さを正確に計測することにより、板状ワークを所望の厚さになるまで研磨し、研磨不足や研磨過多の発生を防ぐことを目的とする。
本発明に係る研磨装置は、第1のワークと、該第1のワークよりも厚く該第1のワークに貼り合わせ部材で貼り合わされた第2のワークと、の少なくとも2層で形成された板状ワークを研磨する研磨装置であって、該板状ワークを該第2のワークの側から保持するチャックテーブルと、該板状ワークの該第1のワークを研磨する研磨パッドが回転可能に装着される研磨手段と、該研磨手段を該チャックテーブルに対して接近及び離間する方向に移動させる研磨送り手段と、該研磨パッドと該第1のワークとが接触する接触面にスラリーを供給するスラリー供給手段と、該チャックテーブルに保持された該板状ワークが、該研磨手段によって研磨されている状態で、該第1のワークの厚さと、該第2のワークの厚さとを測定する厚さ測定手段と、を備え、該研磨手段は、スピンドルと、該スピンドルの一端に連結され、該研磨パッドが装着されるマウントと、該スピンドルを回転させる回転手段と、を備え、該厚さ測定手段は、該チャックテーブルに保持された該板状ワークに対して測定光を放射する発光部と、該発光部が放射した測定光が該板状ワークにおいて反射した反射光を受光する受光部と、該受光部が受光した反射光に基づいて、該第1のワークの上面で反射した光と、該第1のワークの下面で反射した光との光路長差を算出することにより、該第1のワークの厚さを算出する第1の厚さ算出部と、該受光部が受光した反射光に基づいて、該第2のワークの上面で反射した光と、該第2のワークの下面で反射した光との光路長差を算出することにより、該第2のワークの厚さを算出する第2の厚さ算出部と、該第2の厚さ算出部が算出した厚さに基づいて、該第2のワークの温度を算出する温度算出部と、該温度算出部が算出した温度に基づいて、該第1のワークの屈折率を算出し、算出した屈折率に基づいて、該第1の厚さ算出部が算出した厚さを補正する厚さ補正部と、を備え、該厚さ測定手段で該第1のワークの厚さを測定しながら該板状ワークを研磨する。
前記温度算出部で算出される温度が、あらかじめ設定された設定温度になるよう、前記研磨送り手段を制御して、前記研磨手段を前記チャックテーブルに対して接近又は離間する方向に移動させ、前記研磨パッドが前記板状ワークに押し付けられる圧力を変化させる制御手段を備えることが好ましい。
本発明に係る研磨装置では、第1のワークの温度変化により屈折率も変化することに着目し、第1のワークの屈折率を算出し、その屈折率に基づき第1の厚さ算出部が算出した厚さを補正するので、研磨中の第1のワークの厚さを正確に計測することができる。研磨中の第1のワークの厚さを正確に計測できるので、板状ワークを所望の厚さになるまで研磨することができ、研磨不足や研磨過多の発生を防ぐことができる。
第1のワークと異なり、第2のワークの厚さは、研磨中も変化しない。一方、第2の厚さ算出部が算出する厚さは、第2のワークの温度変化による屈折率の変化に伴って変化する。このため、第2の厚さ算出部が算出した厚さから、第2のワークの温度を求めることができる。これにより、第1のワークの温度を求めることができるので、研磨中の第1のワークの厚さを正確に計測することができる。
また、温度算出部で算出される温度が所定の設定温度になるように研磨圧力を制御すれば、第2のワークの温度がほぼ一定となるので、第1のワークの温度もほぼ一定となる。これにより、第1のワークの温度を正確に求めることができるので、研磨中の第1のワークの厚さを正確に計測することができる。
研磨装置を示す斜視図。 板状ワークを示す斜視図。 研磨装置を示す斜視図。 厚さ測定手段を示す側面視断面図。 スラリー供給手段を示す側面視断面図。 第2のワークの温度とワークの厚さの実測値との関係を示すグラフ。 第1のワークの温度と屈折率との関係を示すグラフ。
図1に示す研磨装置10は、基台11と、板状ワークを保持するチャックテーブル12と、チャックテーブル12に保持された板状ワークを研磨する研磨手段13と、研磨手段13をチャックテーブル12に対して接近及び離間する±Z方向に移動させる研磨送り手段14と、チャックテーブル12に保持された板状ワークの厚さを計測する厚さ測定手段15と、研磨送り手段14などを制御する制御手段17とを備えている。
チャックテーブル12は、XY平面に平行な保持面121を備えており、保持面121に載置された板状ワークを吸引保持し、回転することにより、保持した板状ワークを回転させる。
研磨手段13は、スピンドルの下端に連結されたマウント32と、マウント32に装着された研磨パッド70とを備えており、スピンドルを回転させることにより、研磨パッド70を回転させることができる。
研磨送り手段14は、±Z方向に平行なねじ軸42をモータ41が回転させることにより、ねじ軸42に係合した移動部43がガイド44に案内されて±Z方向に移動する構成となっている。研磨手段13は、移動部43に固定されており、移動部43の移動に伴って±Z方向に移動する。
チャックテーブル12が板状ワークを回転させ、研磨手段13が研磨パッド70を回転させた状態で、研磨送り手段14が研磨手段13を−Z方向に移動させ、研磨パッド70の研磨面を板状ワークの上面に接触させることにより、研磨装置10は、板状ワークを研磨することができる。
厚さ測定手段15は、板状ワークに測定光を照射して反射光を受光する測定部51と、測定部51が受光した反射光に基づいて板状ワークの厚さを算出する算出部53とを備えている。算出部53は、第1の厚さ算出部531と、第2の厚さ算出部532と、温度算出部533と、厚さ補正部534とを備える。算出部53の詳細については、後述する。
制御手段17は、研磨手段13や研磨送り手段14を制御する。例えば、厚さ測定手段15が測定した板状ワークの厚さが、あらかじめ設定された所定の厚さに達したら、制御手段17は、研磨送り手段14を制御して研磨手段13を+Z方向に移動させ、研磨手段13を制御して研磨パッド70の回転を停止させることにより、研磨を終了する。
図2に示すように、研磨装置10で研磨される板状ワーク90は、上層の第1のワーク91と、第1のワーク91に貼り合わせ部材93で張り合わされた下層の第2のワーク92とを備えた2層で形成されている。第1のワーク91は、研磨装置10で研磨されるよりも前に、研削装置で薄く研削されている。このため、研磨装置10で研磨を開始する時点では、第1のワーク91が第2のワーク92よりも薄くなっている。
第1のワーク91の材質と、第2のワーク92の材質とは、同じであってもよいし、異なっていてもよい。例えば、第1のワーク91及び第2のワーク92がともにシリコン、第1のワーク91が窒化ガリウムで第2のワーク92がシリコン、第1のワーク91がシリコンで第2のワーク92が樹脂などの組み合わせがある。
図3に示すように、研磨手段13は、±Z方向に平行な回転軸31と、回転軸31の下端に固定されたマウント32と、回転軸31を囲むスピンドル33と、回転軸31を回転させる回転手段であるモータ34とを備えている。研磨パッド70は、円板状の円板部71と、板状ワークに接触して研磨する研磨部72とを備え、研磨部72を下に向けた状態でマウント32に装着されている。マウント32に装着された研磨パッド70の研磨面は、XY平面に平行であり、回転軸31に対して垂直である。モータ34が駆動源となって回転軸31を回転させると、回転軸31の回転に伴って、マウント32及びマウント32に装着された研磨パッド70が回転する。また、回転軸31の上方には、研磨パッド70の研磨面にスラリーを供給するスラリー供給手段16を備えている。
厚さ測定手段15は、図1に示した測定部51及び算出部53に加えて、測定部51が放射した測定光を平行光に変換するコリメータレンズ52を備えている。厚さ測定手段15の測定部51は、図4に示すように、板状ワーク90に対して測定光591を放射する発光部511と、発光部511が放射した測定光591を−Z方向へ反射するミラー512と、測定光591を透過するセンサーヘッド513と、測定光591が板状ワーク90に反射した反射光596を分光する回折格子514と、回折格子514で分光された光597を受光するイメージセンサー515とを備えている。
発光部511は、例えばスーパールミネッセントダイオード(SLD)であり、発光部511が放射する測定光591は、比較的広いスペクトル幅を有する。測定光591の波長領域は、板状ワーク90の材質に応じて、第1のワーク91、第2のワーク92及び貼り合わせ部材93を透過する波長が選択される。例えば第1のワーク91及び第2のワーク92の材質がシリコンである場合は、測定光591として、赤外線領域の光を用いる。
測定光591は、第1のワーク91の上面911で反射する光592と、第1のワーク91の中へ入射する光とに分かれる。第1のワーク91の中へ入射した光は、第1のワーク91の下面912で反射する光593と、貼り合わせ部材93の中へ入射する光とに分かれる。貼り合わせ部材93の中へ入射した光は、第2のワーク92の上面921で反射する光594と、第2のワーク92の中へ入射する光とに分かれる。第2のワーク92の中へ入射した光のうち少なくとも一部は、第2のワーク92の下面922で反射する。したがって、板状ワーク90で反射した反射光596は、第1のワーク91の上面911で反射した光592と、第1のワーク91の下面912で反射した光593と、第2のワーク92の上面921で反射した光594と、第2のワーク92の下面922で反射した光595とが合成された光であり、光592〜595は、光路長が異なるので、位相が異なる。光592〜595の位相が揃う場合は、振幅が大きくなり、光592〜595の位相がずれる場合は、振幅が小さくなる。光路長差が同じでも波長が異なると位相差が異なるので、反射光596は波長によって振幅が異なる。したがって、反射光596のスペクトルを解析することにより、光592〜595の光路長差を求め、第一のワーク91及び第2のワーク92の厚さを算出することができる。
回折格子514は、波長によって異なる方向に反射光596を反射させることにより、反射光596を分光する。イメージセンサー515は、複数の受光部が直線状に配置されて構成されており、反射光596が回折格子514によって反射し分光された光597を受光する。受光部の位置により、回折格子514で反射光596が反射する反射点に対する角度が異なるので、各受光部は、反射光596のうち特定の波長の成分を受光する。イメージセンサー515は、各受光部が受光した光の強さを示す信号を出力する。すなわち、イメージセンサー515が出力する信号は、反射光596のスペクトルを解析した結果を示す。
図3に示すように、研磨手段13の回転軸31は、パイプ状の直管であり、中央には、±Z方向に貫通する空洞311が形成されている。また、研磨パッド70は、中央を±Z方向に貫通する円孔73を備えている。マウント32に装着された研磨パッド70の円孔73は、回転軸31の空洞311と連通している。測定部51が放射する測定光は、−Z方向へ進み、回転軸31の空洞311及び研磨パッド70の円孔73を通って、チャックテーブル12に保持された板状ワーク90に到達する。板状ワーク90に測定光が到達して反射した反射光は、+Z方向へ進み、研磨パッド70の円孔73及び回転軸31の空洞311を通って、測定部51に戻る。コリメータレンズ52が測定光を平行光に変換するので、板状ワーク90の厚さを測定することができる。
このように、厚さ測定手段15は、研磨パッド70の円孔73と回転軸31の内側の空洞311とを介して、チャックテーブル12に保持された板状ワーク90の第1のワーク91と第2のワーク92との厚さを計測する。これにより、板状ワーク90の上面が、研磨パッド70の外側に露出していなくても、板状ワーク90の厚さを計測することができる。また、測定光の照射によって板状ワーク90の厚さを計測するので、空洞311及び円孔73は、スラリーの間を光が通れるだけの大きさがあればよい。空洞311及び円孔73を大きくする必要がないので、研磨力の低下を防ぐことができる。
算出部53は、第1のワーク91を研磨手段13が研磨するのと並行して、研磨中の第1のワーク91を所定の間隔で繰返し算出する。これにより、研磨効率を低下させることなく、研磨する板状ワークの厚さを管理することができる。算出部53が算出した第1のワーク91の厚さが、あらかじめ設定された仕上げ厚さに達したら、制御手段17は、研磨を終了する。これにより、確実に板状ワークを所望の厚さに仕上げることができる。
図5に示すように、スラリー供給手段16は、有底円筒状の接続部61と、スラリー供給源80に接続されるスラリー供給管62と、スラリー供給管62を介してスラリー供給源80から供給されるスラリー81を接続部61の内側に噴射するスラリー供給ノズル63とを備えている。接続部61は、底面611の中央に開口612を備え、回転軸31に固定され、回転軸31とともに回転する。開口612は、回転軸31の空洞311と連通している。
板状ワーク90の第2のワーク92側がチャックテーブル12の保持面121に載置されると、吸引源122の吸引力によって、載置された板状ワーク90の第2のワーク92が保持面121において保持される。そして、図2に示したモータ34がスピンドル33を回転させることにより研磨パッド70を回転させながら、図1に示した研磨送り手段14が研磨手段13を下降させることにより、板状ワーク90の上面91に研磨部72を接触させる。本実施形態では、図4に示すように、研磨パッド70は、板状ワーク90より大径に形成されており、板状ワーク90の上面91の全面に研磨パッド70の研磨部72が当接する。
一方、図4に示すように、スラリー供給手段16は、スラリー供給ノズル63からスラリー81を噴出させる。噴出されたスラリーは、回転による遠心力を受けつつ、開口612から回転軸31の空洞311内に流れ込む。空洞311内に流れ込んだスラリー81も、回転による遠心力を受け、回転軸31の内壁に沿って流れる。回転軸31の下端まで達したスラリー81は、円孔73の内壁に沿って流れ、円孔73の下端から放出され、研磨部72の研磨面とチャックテーブル12に保持された板状ワーク90の上面91との間に供給される。研磨面と板状ワーク90との間に供給されたスラリー81は、やはり回転による遠心力を受けて、外側へ広がる。そして、板状ワーク90の上面91と研磨パッド70の研磨部72との間にスラリーが入り込み、板状ワーク90の上面91が研磨される。
スラリー81は、回転による遠心力を受けて回転軸31の内壁に沿って供給されるので、空洞311の中央には、光が通る通り道が確保され、厚さ測定手段15が放射する測定光が板状ワーク90に到達することができる。また、研磨面に到達したスラリー81が、回転による遠心力で外側に広がるので、測定光が当たる部分には、波が立たない。これにより、板状ワーク90の厚さを正確に測定することができる。
図1に示した厚さ算出部53は、研磨手段13がチャックテーブル12に保持された板状ワーク90を研磨している状態で、図3に示したイメージセンサー515が出力した信号をフーリエ変換するなどして、光592と光593との光路差、光594と光595との光路長差を算出する。以下、算出部53の詳細について説明する。
第1の厚さ算出部531は、光592と光593との光路長差に基づいて、第1のワーク91の厚さを算出する。光592と光593との光路長差は、第1のワーク91の厚さの2倍である。なお、反射光596は、4つの光592〜595の合成光であるため、算出部53は、4つの中から2つを選ぶ組み合わせの数である6個の光路長差を算出する。したがって、6個の光路長差のなかから、光592と光593との光路長差を選び出す必要がある。
第1のワーク91が研磨されるにつれて、第1のワーク91が薄くなっていくので、光592と光593との光路長差は、徐々に短くなっていく。光592と光594との光路長差及び光592と光595との光路長差も同様に短くなっていく。第1の厚さ算出部531は、6個の光路長差のなかから、研磨速度のほぼ2倍の速さで徐々に短くなっていく光路長差を抽出する。抽出される光路長差は3つある。第1の厚さ算出部531は、その中から最も短い光路長差を選択する。第1の厚さ算出部531は、選択した光路長差から、第1のワーク91の厚さを算出する。
第2の厚さ算出部532は、光594と光595との光路長差に基づいて、第2のワーク92の厚さを算出する。光594と光595との光路長差は、第2のワーク92の厚さの2倍である。第1の厚さ算出部531と同様、第2の厚さ算出部532は、6個の光路長差の中から、光594と光595との光路長差を選び出す必要がある。第1のワーク91が研磨されても、第2のワーク92の厚さは変わらないので、光594と光595との光路長差は、変わらない。光593と光594との光路長差及び光593と光595との光路長差も同様に変わらない。第2の厚さ算出部532は、6個の光路長差の中から、ほぼ変化しない光路長差を抽出する。抽出される光路長差は3つある。第2のワーク92が貼り合わせ部材93よりも厚い場合、第2の厚さ算出部532は、その中から真ん中の光路長差を選択する。第2の厚さ算出部532は、選択した光路長差から、第2のワーク92の厚さを算出する。
光の波長は、光が通る物質の屈折率によって変化する。すなわち、真空中で波長がλである光が絶対屈折率nの物質に入射すると、波長はλ/nになる。このため、光路長差が同じでも、板状ワーク90の屈折率が異なると、位相差が異なる。したがって、板状ワーク90の屈折率によって、受光部が受光した干渉光のスペクトル分布と、板状ワーク90の厚さとの間の関係が変化する。第1の厚さ算出部531は、第1のワーク91の屈折率が、第1のワーク91の材質に基づいてあらかじめ設定された屈折率nであるとの前提に基づいて、第1のワーク91の厚さを算出する。同様に、第2の厚さ算出部532は、第2のワーク92の屈折率が、第2のワーク92の材質に基づいてあらかじめ設定された屈折率nであるとの前提に基づいて、第2のワーク92の厚さを算出する。
しかし、物質の屈折率は、温度によって変化する。研磨開始時には、第1のワーク91及び第2のワーク92の温度は、常温(例えば20℃)であるのに対し、研磨がある程度進行した後は、板状ワーク90の第1のワーク91と研磨パッド70との接触面に供給されるスラリー81の摩擦による加工熱で、例えば60℃まで温度が上昇する。この温度上昇による屈折率の変化が、干渉光を使う計測装置で研磨中の板状ワークの厚さを正確に計測できない原因であることが判明した。このため、温度上昇による屈折率の変化を考慮すれば、研磨中の板状ワークの厚さを正確に計測することができる。
温度算出部533は、第2の厚さ算出部532が算出した第2のワーク92の厚さに基づいて、第2のワーク92の温度を算出する。第2のワーク92の厚さは、既知であり、研磨中も変化しない。したがって、第2の厚さ算出部532が算出する第2のワーク92の厚さdは、測定時における第2のワーク92の屈折率n’の影響を受けている。屈折率n’は、測定時における第2のワーク92の温度Tの関数であるから、厚さdも温度Tの関数となり、例えば図6に示すような関係を有する。そこで、実験などにより、厚さdと温度Tとの間の関係を求め、温度算出部533にあらかじめ記憶させておく。温度算出部533は、例えば、厚さdと温度Tとの間の関係を表す関係式の係数を記憶したり、厚さdと温度Tとの間の関係を表すテーブルを記憶したりする。
温度算出部533は、あらかじめ記憶した厚さdと温度Tとの間の関係に基づいて、第2の厚さ算出部532が算出した厚さdから、温度Tを算出する。そして、厚さ補正部534は、温度算出部533が算出した温度Tに基づいて、測定時における第1のワーク91の屈折率n’を推定する。
第1のワーク91の温度Tと、第1のワーク91の屈折率n’とは、例えば図7に示すように、第1のワーク91の材質によって定まる所定の関係を有する。そこで、温度Tと屈折率n’との間の関係を、厚さ補正部534にあらかじめ記憶させておく。厚さ補正部534は、例えば、温度Tと屈折率n’との間の関係を表す関係式の係数を記憶する。あるいは、厚さ補正部534は、温度Tと屈折率n’との間の関係を表すテーブルを記憶する構成であってもよい。
厚さ補正部534は、温度算出部533が算出した第2のワーク92の温度Tから、第1のワーク91の温度Tを求める。第1のワーク91の上面911で発生した熱が第1のワーク91及び貼り合わせ部材93を介して第2のワーク92に伝わるため、例えば、第1のワーク91の温度Tが第2のワーク92の温度Tと等しいとみなし、温度算出部533が算出した温度Tを、そのまま第1のワーク91の温度Tとして使用する。厚さ補正部534は、あらかじめ記憶した温度Tと屈折率n’との間の関係に基づいて、第1のワーク91の温度Tから、屈折率n’を算出する。
更に、厚さ補正部534は、推定した屈折率n’に基づいて、第1の厚さ算出部531が算出した厚さdを補正する。具体的には、例えば、第1の厚さ算出部531に設定された屈折率nを、測定時における屈折率の推定値n’で割ることによって求められる補正率α(=n/n’)を、第1の厚さ算出部531が算出した厚さdに乗じることにより、補正された厚さd’(=α・d)を算出する。
制御手段17は、厚さ補正部534によって補正された厚さd’に基づいて、研磨手段13や研磨送り手段14を制御し、例えば、厚さd’があらかじめ設定された所望の厚さに達したら、研磨を終了する。
このように、リアルタイムで板状ワーク90の厚さを測定しながら板状ワーク90の研磨を行い、測定した厚さが所望の厚さに達したら研磨を終了することにより、研磨不足や研磨過多の発生を防ぐことができる。加工熱による板状ワーク90の温度上昇によって起こる屈折率の変化を考慮することにより、第1のワーク91の厚さを正確に測定することができる。
干渉光によって測定される第2のワーク92の厚さに基づいて板状ワーク90の温度を推定するので、板状ワーク90の温度を測定するための温度計などの装置が不要であり、研磨装置10の部品数の増加を抑えることができる。これにより、研磨装置10の製造コストを削減し、研磨装置10を小型化し、研磨装置10の信頼性を向上させることができる。
制御手段17は、温度算出部533が算出する温度Tがあらかじめ設定された設定温度Tになるよう、研磨送り手段14を制御して、研磨手段13をチャックテーブル12に接近又は離間する方向に移動させ、研磨パッド70が板状ワーク90に押し付けられる圧力を変化させることが望ましい。研磨中に、研磨送り手段14をチャックテーブル12に近づく−Z方向に移動させると、板状ワーク90に研磨パッド70が強く押し付けられ、研磨圧力が増加する。これにより、摩擦による加工熱が高くなり、板状ワーク90の温度が上昇する。逆に、研磨送り手段14をチャックテーブル12から遠ざかる+Z方向に移動させると、研磨圧力が減少する。これにより、摩擦による加工熱が低くなり、板状ワーク90の温度が低下する。
例えば、温度算出部533が算出した温度Tが設定温度Tより低い場合、制御手段17は、研磨送り手段14を−Z方向に移動させ、研磨圧力を増加させることにより、板状ワーク90の温度を上昇させる。逆に、温度算出部533が算出した温度Tが設定温度Tより高い場合、制御手段17は、研磨送り手段14を+Z方向に移動させ、研磨圧力を減少させることにより、板状ワーク90の温度を下降させる。これにより、板状ワーク90の温度がほぼ一定になる。
制御手段17は、加工条件に従って設定温度Tを変える構成であってもよい。例えば、加工速度を速くしたい場合は、設定温度Tを高くする。これにより、研磨圧力が高くなるので、加工速度が速くなる。また、被研磨面をきれいにしたい場合は、逆に、設定温度Tを低くする。これにより、研磨圧力が低くなるので、被研磨面がきれいになる。このように、加工温度を監視することで、加工条件を変えることができる。
なお、研磨パッドが板状ワークより小径に形成されており、研磨中に、板状ワークの上面が研磨パッドの外側に露出する場合は、厚さ測定手段が、研磨パッドの外側に露出した部分に測定光を当てて板状ワークの厚さを測定する構成であってもよい。その場合、研磨手段の回転軸に空洞を設けず、研磨パッドに円孔を設けない構成であってもよい。
第1のワーク91及び第2のワーク92の厚さの値は、あらかじめわかっているので、第1の厚さ算出部531及び第2の厚さ算出部532は、その厚さの値に対応する光路長差に最も近い光路長差を選び出すようにしてもよい。
10 研磨装置、11 基台、
12 チャックテーブル、121 保持面、122 吸引源、
13 研磨手段、31 回転軸、311 空洞、32 マウント、33 スピンドル、
34 モータ、
14 研磨送り手段、41 モータ、42 ねじ軸、43 移動部、44 ガイド、
15 厚さ測定手段、51 測定部、511 発光部、512 ミラー、
513 センサーヘッド、514 回折格子、515 イメージセンサー、
52 コリメータレンズ、
53 算出部、531 第1の厚さ算出部、532 第2の厚さ算出部、
533 温度算出部、534 厚さ補正部、591 測定光、
592〜595,597 光、596 反射光、
16 スラリー供給手段、61 接続部、611 底面、612 開口、
62 スラリー供給管、63 スラリー供給ノズル、
17 制御手段、
70 研磨パッド、71 円板部、72 研磨部、73 円孔、
80 スラリー供給源、81 スラリー、
90 板状ワーク、
91 第1のワーク、911 上面、912 下面、
92 第2のワーク、921 上面、922 下面、
93 貼り合わせ部材

Claims (2)

  1. 第1のワークと、該第1のワークよりも厚く該第1のワークに貼り合わせ部材で貼り合わされた第2のワークと、の少なくとも2層で形成された板状ワークを研磨する研磨装置であって、
    該板状ワークを該第2のワークの側から保持するチャックテーブルと、
    該板状ワークの該第1のワークを研磨する研磨パッドが回転可能に装着される研磨手段と、
    該研磨手段を該チャックテーブルに対して接近及び離間する方向に移動させる研磨送り手段と、
    該研磨パッドと該第1のワークとが接触する接触面にスラリーを供給するスラリー供給手段と、
    該チャックテーブルに保持された該板状ワークが該研磨手段によって研磨されている状態で、該第1のワークの厚さと、該第2のワークの厚さとを測定する厚さ測定手段と、
    を備え、
    該研磨手段は、
    スピンドルと、
    該スピンドルの一端に連結され、該研磨パッドが装着されるマウントと、
    該スピンドルを回転させる回転手段と、
    を備え、
    該厚さ測定手段は、
    該チャックテーブルに保持された該板状ワークに対して測定光を放射する発光部と、
    該発光部が放射した測定光が該板状ワークにおいて反射した反射光を受光する受光部と、
    該受光部が受光した反射光に基づいて、該第1のワークの上面で反射した光と、該第1のワークの下面で反射した光との光路長差を算出することにより、該第1のワークの厚さを算出する第1の厚さ算出部と、
    該受光部が受光した反射光に基づいて、該第2のワークの上面で反射した光と、該第2のワークの下面で反射した光との光路長差を算出することにより、該第2のワークの厚さを算出する第2の厚さ算出部と、
    該第2の厚さ算出部が算出した厚さに基づいて、該第2のワークの温度を算出する温度算出部と、
    該温度算出部が算出した温度に基づいて、該第1のワークの屈折率を算出し、算出した屈折率に基づいて、該第1の厚さ算出部が算出した厚さを補正する厚さ補正部と、
    を備え、
    該厚さ測定手段で該第1のワークの厚さを測定しながら該板状ワークを研磨する、研磨装置。
  2. 前記温度算出部で算出される温度が、あらかじめ設定された設定温度になるよう、前記研磨送り手段を制御して、前記研磨手段を前記チャックテーブルに対して接近又は離間する方向に移動させ、前記研磨パッドが前記板状ワークに押し付けられる圧力を変化させる制御手段を備える、
    請求項1記載の研磨装置。
JP2014032669A 2014-02-24 2014-02-24 研磨装置 Active JP6232311B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014032669A JP6232311B2 (ja) 2014-02-24 2014-02-24 研磨装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014032669A JP6232311B2 (ja) 2014-02-24 2014-02-24 研磨装置

Publications (2)

Publication Number Publication Date
JP2015157331A true JP2015157331A (ja) 2015-09-03
JP6232311B2 JP6232311B2 (ja) 2017-11-15

Family

ID=54181796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014032669A Active JP6232311B2 (ja) 2014-02-24 2014-02-24 研磨装置

Country Status (1)

Country Link
JP (1) JP6232311B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110039379A (zh) * 2019-03-20 2019-07-23 洛阳市精科主轴有限公司 一种超精密磨削温度补偿仪及磨削加工工艺

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01291107A (ja) * 1988-05-18 1989-11-22 Toshiba Mach Co Ltd プラスチックシートのプロファイル計測方法および装置
JPH09298176A (ja) * 1996-05-09 1997-11-18 Canon Inc 研磨方法及びそれを用いた研磨装置
JP2005203729A (ja) * 2003-12-19 2005-07-28 Ebara Corp 基板研磨装置
JP2005311246A (ja) * 2004-04-26 2005-11-04 Tokyo Seimitsu Co Ltd 化学機械研磨装置及び化学機械研磨方法
JP2006220461A (ja) * 2005-02-08 2006-08-24 Tokyo Electron Ltd 温度/厚さ測定装置,温度/厚さ測定方法,温度/厚さ測定システム,制御システム,制御方法
JP2011209223A (ja) * 2010-03-30 2011-10-20 Nagoya Univ 厚さ又は温度の干渉測定装置
JP2011224758A (ja) * 2010-04-22 2011-11-10 Disco Corp 研磨方法
JP2012078179A (ja) * 2010-09-30 2012-04-19 Tokyo Electron Ltd 温度測定方法、記憶媒体、プログラム
JP2012189507A (ja) * 2011-03-11 2012-10-04 Disco Abrasive Syst Ltd 計測装置
JP2013117507A (ja) * 2011-08-02 2013-06-13 Tokyo Electron Ltd 光干渉システム、基板処理装置及び測定方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01291107A (ja) * 1988-05-18 1989-11-22 Toshiba Mach Co Ltd プラスチックシートのプロファイル計測方法および装置
JPH09298176A (ja) * 1996-05-09 1997-11-18 Canon Inc 研磨方法及びそれを用いた研磨装置
JP2005203729A (ja) * 2003-12-19 2005-07-28 Ebara Corp 基板研磨装置
JP2005311246A (ja) * 2004-04-26 2005-11-04 Tokyo Seimitsu Co Ltd 化学機械研磨装置及び化学機械研磨方法
JP2006220461A (ja) * 2005-02-08 2006-08-24 Tokyo Electron Ltd 温度/厚さ測定装置,温度/厚さ測定方法,温度/厚さ測定システム,制御システム,制御方法
JP2011209223A (ja) * 2010-03-30 2011-10-20 Nagoya Univ 厚さ又は温度の干渉測定装置
JP2011224758A (ja) * 2010-04-22 2011-11-10 Disco Corp 研磨方法
JP2012078179A (ja) * 2010-09-30 2012-04-19 Tokyo Electron Ltd 温度測定方法、記憶媒体、プログラム
JP2012189507A (ja) * 2011-03-11 2012-10-04 Disco Abrasive Syst Ltd 計測装置
JP2013117507A (ja) * 2011-08-02 2013-06-13 Tokyo Electron Ltd 光干渉システム、基板処理装置及び測定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110039379A (zh) * 2019-03-20 2019-07-23 洛阳市精科主轴有限公司 一种超精密磨削温度补偿仪及磨削加工工艺

Also Published As

Publication number Publication date
JP6232311B2 (ja) 2017-11-15

Similar Documents

Publication Publication Date Title
JP6393489B2 (ja) 研磨装置
KR102131090B1 (ko) 연마 방법 및 연마 장치
US7409260B2 (en) Substrate thickness measuring during polishing
JP6230921B2 (ja) 研磨装置
TWI569318B (zh) Grinding apparatus and grinding method
KR20080042895A (ko) 스펙트럼을 기초로 하여 화학적 기계적 폴리싱을모니터링하기 위한 장치 및 방법
TW201910051A (zh) 基板研磨裝置及方法
TWI788383B (zh) 研磨裝置及研磨方法
JP6232311B2 (ja) 研磨装置
JP6721473B2 (ja) ウエーハの処理方法
US20090298387A1 (en) Polishing end point detection method
JP2004017229A (ja) 基板研磨装置
JP6624512B2 (ja) ウェーハ研削方法及びウェーハ研削装置
TW202319705A (zh) 研磨裝置及研磨方法
JP6262593B2 (ja) 研削装置
US20140224425A1 (en) Film thickness monitoring method, film thickness monitoring device, and semiconductor manufacturing apparatus
JP6275421B2 (ja) 研磨方法および研磨装置
TWI827805B (zh) 研磨方法及研磨裝置
TWI750444B (zh) 研磨裝置
US20230311267A1 (en) Polishing method and polishing apparatus for workpiece
TWI633969B (zh) 化學機械硏磨之方法及系統
JP6707292B2 (ja) 積層チップの製造方法
JP2012132776A (ja) 計測装置
JP2023121088A (ja) 研磨終点検出装置及びcmp装置
TW202337627A (zh) 硏磨終點檢出裝置及cmp裝置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171023

R150 Certificate of patent or registration of utility model

Ref document number: 6232311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250