JP2015156407A - Semiconductor device, transistor, method of manufacturing semiconductor device, and method of manufacturing transistor - Google Patents

Semiconductor device, transistor, method of manufacturing semiconductor device, and method of manufacturing transistor Download PDF

Info

Publication number
JP2015156407A
JP2015156407A JP2012124901A JP2012124901A JP2015156407A JP 2015156407 A JP2015156407 A JP 2015156407A JP 2012124901 A JP2012124901 A JP 2012124901A JP 2012124901 A JP2012124901 A JP 2012124901A JP 2015156407 A JP2015156407 A JP 2015156407A
Authority
JP
Japan
Prior art keywords
lattice
transistor
heterojunction
semiconductor device
band edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012124901A
Other languages
Japanese (ja)
Inventor
田邊 顕人
Akito Tanabe
顕人 田邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2012124901A priority Critical patent/JP2015156407A/en
Priority to PCT/JP2013/054484 priority patent/WO2013179700A1/en
Publication of JP2015156407A publication Critical patent/JP2015156407A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0676Nanowires or nanotubes oriented perpendicular or at an angle to a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66469Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with one- or zero-dimensional channel, e.g. quantum wire field-effect transistors, in-plane gate transistors [IPG], single electron transistors [SET], Coulomb blockade transistors, striped channel transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7391Gated diode structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/775Field effect transistors with one dimensional charge carrier gas channel, e.g. quantum wire FET

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve a heterojunction TFET having steep switching characteristics.
SOLUTION: By adjusting a composition of at least one of a first material and a second material having lattice constants that match each other, an energy difference between a conduction band edge of the first material and a valence band edge of the second material is consecutively changed while keeping the lattice constants at a certain level, and a transistor including a tunnel barrier consisting of such a heterojunction that the energy difference becomes a predetermined value is designed. Thereby, a transistor consisting of a heterojunction formed of the lattice-matched first material and second material, including a tunnel barrier whose carrier tunnels between a conduction band of the first material and a valence band of the second material, and having an energy difference ΔEc-v between the conduction band Ec of the first material and the valence band edge Ev of the second material is 0.2 eV or less, is achieved.
COPYRIGHT: (C)2015,JPO&INPIT

Description

本発明は、半導体装置、トランジスタ、半導体装置の製造方法、及び、トランジスタの製造方法に関する。   The present invention relates to a semiconductor device, a transistor, a method for manufacturing a semiconductor device, and a method for manufacturing a transistor.

高いオン電流と、急峻なスイッチング特性を得るために、ソース−チャネル間にIII−V族化合物を用いたヘテロ接合TFET(TUNNELING FIELD EFFECT TRANSISTOR)が有望と考えられている。ソースとチャネル間の価電子帯端と伝導帯端のエネルギー差が重要なパラメータであり、最適値に設計することが望まれる。   In order to obtain a high on-current and steep switching characteristics, a heterojunction TFET (TUNNELING FIELD EFFECT TRANSISTOR) using a III-V group compound between the source and the channel is considered promising. The energy difference between the valence band edge and the conduction band edge between the source and the channel is an important parameter, and it is desired to design to an optimum value.

Rita Magri,外2名, "Evolution of the band-gap and band-edge energies of the lattice-matched GaInAsSb/GaSb and GaInAsSb/InAs alloys as a function of composition", Journal of Applied Physics 98, 043701(2005); doi: 10.1063/1.2010621, published by the American Institute of PhysicsRita Magri, 2 others, "Evolution of the band-gap and band-edge energies of the lattice-matched GaInAsSb / GaSb and GaInAsSb / InAs alloys as a function of composition", Journal of Applied Physics 98, 043701 (2005); doi: 10.1063 / 1.2010621, published by the American Institute of Physics Sadao Adachi, "Band gaps and refractive indices of AlGaAsSb, GaInAsSb, and InPAsSb: Key properties for a variety of the 2-4μm optoelectronic device applications ", Journal of Applied Physics 61, 4869(1987); doi: 10.1063/1.338352, published by the American Institute of PhysicsSadao Adachi, "Band gaps and refractive indices of AlGaAsSb, GaInAsSb, and InPAsSb: Key properties for a variety of the 2-4μm optoelectronic device applications", Journal of Applied Physics 61, 4869 (1987); doi: 10.1063 / 1.338352, published by the American Institute of Physics Handbook series on semiconductor parameters, vol.2, edited by M. Levinshtein, S. Rumyantsev, and M. Shur, World Scientific, Singapore, 1999, pp. 181-184Handbook series on semiconductor parameters, vol.2, edited by M. Levinshtein, S. Rumyantsev, and M. Shur, World Scientific, Singapore, 1999, pp. 181-184 Joachim Knoch and Joerg Appenzeller, "Modeling of high-performance p-type III-V heterojunction tunnel FETs," IEEE Electron Device Letters 31, 305(2010)Joachim Knoch and Joerg Appenzeller, "Modeling of high-performance p-type III-V heterojunction tunnel FETs," IEEE Electron Device Letters 31, 305 (2010) D. K. Mohata, 外10名, "Demonstration of MOSFET-like on-current performance in arsenide/antimonide tunnel FETs with staggered hetero-junctions for 300mV logic applications," IEEE IEDM Technical Digest 781(2011)D. K. Mohata, 10 others, "Demonstration of MOSFET-like on-current performance in arsenide / antimonide tunnel FETs with staggered hetero-junctions for 300mV logic applications," IEEE IEDM Technical Digest 781 (2011)

例えば、InAs/AlGa1−xSbヘテロ接合TFETにおいて、S値に対してx=0.6が最適であることが非特許文献4にシミュレーションで示されている。しかし、InAsとAlGa1−xSbの格子定数が異なるため、ヘテロ接合界面にミスフィット転位等の欠陥が形成される。このためトラップアシスト電流が支配的となり、実際のデバイスではS値が悪いという問題がある。 For example, non-patent document 4 shows that x = 0.6 is optimal for the S value in an InAs / Al x Ga 1-x Sb heterojunction TFET. However, since the lattice constants of InAs and Al x Ga 1-x Sb are different, defects such as misfit dislocations are formed at the heterojunction interface. For this reason, the trap assist current becomes dominant, and there is a problem that the S value is bad in an actual device.

これに対し、非特許文献5にGaAs0.5Sb0.5/In0.53Ga0.47AsやGaAs0.35Sb0.65/In0.7Ga0.3Asヘテロ接合が、格子整合する接合として示されている。この場合には、ミスフィット転位は形成されないが、重要なパラメータであるソースとチャネル間の価電子帯端と伝導帯端のエネルギー差ΔEc−vは、それぞれ0.5eV、0.25eVに固定された値である。非特許文献4によると、S値及びオン電流に対して最適のΔEc−vが、それぞれ0.094eV、0.074eVであることが示されている。この値を外れると、S値の増大やオン電流の低下となる。この最適値に比べ、非特許文献5での0.5eV、0.25eVというΔEc−vの値は大きく、S値やオン電流の特性が悪いという不都合がある。 On the other hand, Non-Patent Document 5 discloses GaAs 0.5 Sb 0.5 / In 0.53 Ga 0.47 As and GaAs 0.35 Sb 0.65 / In 0.7 Ga 0.3 As heterojunction, Shown as a lattice matched junction. In this case, misfit dislocations are not formed, but the energy difference ΔEc-v between the valence band edge and the conduction band edge between the source and the channel, which is an important parameter, is fixed to 0.5 eV and 0.25 eV, respectively. Value. Non-Patent Document 4 shows that the optimal ΔEc-v for the S value and the on-current is 0.094 eV and 0.074 eV, respectively. If this value is deviated, the S value increases and the on-current decreases. Compared to this optimum value, the values of ΔEc-v of 0.5 eV and 0.25 eV in Non-Patent Document 5 are large, and there is a disadvantage that the S value and on-current characteristics are poor.

また、上記値を変化させるためには、(As,Sb)の組成の組と(In,Ga)の組成の組を調整する必要があるが、格子定数も変わってしまう。GaAs0.5Sb0.5/In0.53Ga0.47Asヘテロ接合は、InPと格子整合するためInP基板上に形成可能であるが、これ以外の組成の組合せ、例えばGaAs0.35Sb0.65/In0.7Ga0.3Asヘテロ接合は、InPと格子定数が異なるため、InP基板上に形成するためには、格子緩和バッファ層(非特許文献5ではAl1−xInAsを使用)の形成が必要である。格子緩和バッファ層を用いた格子定数の制御性は、2元化合物基板より当然低いため、格子定数の設計値とのずれによる格子歪みが導入され易い。歪みの導入により半導体のバンド構造が変化するため、ソースとチャネル間の価電子帯端と伝導帯端のエネルギー差も変化する。つまり、GaAsx1Sb1−x1/Inx2Ga1−x2Asのヘテロ接合において、ソースとチャネル間の価電子帯端と伝導帯端のエネルギー差の連続的制御には、ヘテロ接合を形成する2種類の半導体の組成制御以外に、格子緩和バッファ層の格子定数制御が必要であり、制御が難しい。また、格子緩和バッファ層を形成することによる、コスト増大の問題もある。 Further, in order to change the above value, it is necessary to adjust the composition set of (As, Sb) and the composition set of (In, Ga), but the lattice constant also changes. A GaAs 0.5 Sb 0.5 / In 0.53 Ga 0.47 As heterojunction can be formed on an InP substrate because of lattice matching with InP, but other combinations of compositions such as GaAs 0.35 The Sb 0.65 / In 0.7 Ga 0.3 As heterojunction has a lattice constant different from that of InP. Therefore, in order to form it on an InP substrate, a lattice relaxation buffer layer (Al 1-x in Non-Patent Document 5). In x As) is required. Since the controllability of the lattice constant using the lattice relaxation buffer layer is naturally lower than that of the binary compound substrate, lattice distortion due to deviation from the design value of the lattice constant is likely to be introduced. Since the band structure of the semiconductor changes due to the introduction of strain, the energy difference between the valence band edge and the conduction band edge between the source and the channel also changes. In other words, in the heterojunction of GaAs x1 Sb 1-x1 / In x2 Ga 1-x2 As, for the continuous control of the energy difference between the valence band edge and the conduction band edge between the source and the channel, the heterojunction is formed 2 In addition to controlling the composition of various types of semiconductors, it is necessary to control the lattice constant of the lattice relaxation buffer layer, which makes control difficult. There is also a problem of an increase in cost due to the formation of the lattice relaxation buffer layer.

本発明によれば、格子整合した第1の材料及び第2の材料により形成されたヘテロ接合からなり、キャリアが前記第1の材料の伝導帯と、前記第2の材料の価電子帯の間でトンネルするトンネル障壁を含み、前記第1の材料の伝導帯端Ecと、前記第2の材料の価電子帯端Evのエネルギー差ΔEc−vは、0.2eV以下であるトランジスタを有する半導体装置が提供される。   According to the present invention, the heterojunction is formed of a lattice-matched first material and a second material, and carriers are between the conduction band of the first material and the valence band of the second material. A semiconductor device including a transistor that includes a tunnel barrier that tunnels at a point where an energy difference ΔEc-v between a conduction band edge Ec of the first material and a valence band edge Ev of the second material is 0.2 eV or less Is provided.

また、本発明によれば、格子整合した第1の材料及び第2の材料により形成されたヘテロ接合からなり、キャリアが前記第1の材料の伝導帯と、前記第2の材料の価電子帯の間でトンネルするトンネル障壁を含み、前記第1の材料の伝導帯端Ecと、前記第2の材料の価電子帯端Evのエネルギー差ΔEc−vは、0.2eV以下であるトランジスタが提供される。   In addition, according to the present invention, the carrier includes a heterojunction formed of a lattice-matched first material and a second material, and carriers are the conduction band of the first material and the valence band of the second material. Provided is a transistor that includes a tunnel barrier that tunnels between them, and an energy difference ΔEc−v between a conduction band edge Ec of the first material and a valence band edge Ev of the second material is 0.2 eV or less Is done.

また、本発明によれば、格子整合した材料により形成されたヘテロ接合からなるトンネル障壁を含むトランジスタを設計する工程を有し、
前記工程では、格子定数が一致する第1の材料と第2の材料の少なくとも一方の材料の組成を調整することにより、格子定数を一定に保ったまま、前記第1の材料の伝導帯端と前記第2の材料の価電子帯端のエネルギー差を連続的に変化させ、前記第1の材料の伝導帯端と前記第2の材料の価電子帯端のエネルギー差が所定の値となるヘテロ接合からなるトンネル障壁を含むトランジスタを設計する半導体装置の製造方法が提供される。
Further, according to the present invention, the method includes designing a transistor including a tunnel barrier formed of a heterojunction formed of a lattice-matched material.
In the step, by adjusting the composition of at least one of the first material and the second material having the same lattice constant, the conduction band edge of the first material is maintained while keeping the lattice constant constant. The energy difference between the valence band edges of the second material is continuously changed so that the energy difference between the conduction band edge of the first material and the valence band edge of the second material becomes a predetermined value. A method of manufacturing a semiconductor device for designing a transistor including a tunnel barrier formed of a junction is provided.

また、本発明によれば、格子整合した材料により形成されたヘテロ接合からなるトンネル障壁を含むトランジスタを設計する工程を有し、
前記工程では、格子定数が一致する第1の材料と第2の材料の少なくとも一方の材料の組成を調整することにより、格子定数を一定に保ったまま、前記第1の材料の伝導帯端と前記第2の材料の価電子帯端のエネルギー差を連続的に変化させ、前記第1の材料の伝導帯端と前記第2の材料の価電子帯端のエネルギー差が所定の値となるヘテロ接合からなるトンネル障壁を含むトランジスタを設計するトランジスタの製造方法が提供される。
Further, according to the present invention, the method includes designing a transistor including a tunnel barrier formed of a heterojunction formed of a lattice-matched material.
In the step, by adjusting the composition of at least one of the first material and the second material having the same lattice constant, the conduction band edge of the first material is maintained while keeping the lattice constant constant. The energy difference between the valence band edges of the second material is continuously changed so that the energy difference between the conduction band edge of the first material and the valence band edge of the second material becomes a predetermined value. A method of manufacturing a transistor is provided for designing a transistor including a tunnel barrier comprising a junction.

本発明によれば、急峻なスイッチング特性を有するヘテロ接合TFETが得られる。   According to the present invention, a heterojunction TFET having steep switching characteristics can be obtained.

本実施形態の半導体装置の一例を示す断面模式図である。It is a cross-sectional schematic diagram which shows an example of the semiconductor device of this embodiment. GaSbと格子整合するGaIn1−xAsSb1−yのx、y組成の関係を示す図である。 Ga x In 1-x As y Sb 1-y of x GaSb lattice matching is a diagram showing the relationship between y composition. InAsと格子整合するGaIn1−xAsSb1−yのx、y組成の関係を示す図である。 Ga x In 1-x As y Sb 1-y of x InAs lattice matching is a diagram showing the relationship between y composition. AlSbと格子整合するGaIn1−xAsSb1−yのx、y組成の関係を示す図である。 Ga x In 1-x As y Sb 1-y of x AlSb lattice matching is a diagram showing the relationship between y composition. GaSbと格子整合するAlGa1−xAsSb1−yのx、y組成の関係を示す図である。 Al x Ga 1-x As y Sb 1-y of x GaSb lattice matching is a diagram showing the relationship between y composition. InAsと格子整合するAlGa1−xAsSb1−yのx、y組成の関係を示す図である。 Al x Ga 1-x As y Sb 1-y of x InAs lattice matching is a diagram showing the relationship between y composition. GaSbと格子整合するInPAsSb1−x−yのx、y組成の関係を示す図である。 InP x As y Sb 1-x -y of x GaSb lattice matching is a diagram showing the relationship between y composition. InAsと格子整合するInPAsSb1−x−yのx、y組成の関係を示す図である。 InP x As y Sb 1-x -y of x InAs lattice matching is a diagram showing the relationship between y composition. AlSbと格子整合するInPAsSb1−x−yのx、y組成の関係を示す図である。 InP x As y Sb 1-x -y of x AlSb lattice matching is a diagram showing the relationship between y composition. ヘテロ接合TFETのソース、チャネルのバンド設計を示す図である。It is a figure which shows the band design of the source | sauce and channel of heterojunction TFET. N型チャネルのId−Vg特性のΔEc−v依存を示す図である。It is a figure which shows (DELTA) Ec-v dependence of the Id-Vg characteristic of an N-type channel. GaSbと格子整合するGaIn1−xAsSb1−yのEc、Evとx組成の関係を示す図である。 Ga x In 1-x As y Sb 1-y of Ec of GaSb lattice matching is a diagram showing the relationship between Ev and x composition. InAsと格子整合するGaIn1−xAsSb1−yのEc、Evとx組成の関係を示す図である。 Ga x In 1-x As y Sb 1-y of Ec of InAs and lattice matching is a diagram showing the relationship between Ev and x composition. AlSbと格子整合するGaIn1−xAsSb1−yのEc、Evとx組成の関係を示す図である。 Ga x In 1-x As y Sb 1-y of Ec of AlSb lattice matching is a diagram showing the relationship between Ev and x composition. GaSbと格子整合するAlGa1−xAsSb1−yのEc、Evとx組成の関係を示す図である。 Al x Ga 1-x As y Sb 1-y of Ec of GaSb lattice matching is a diagram showing the relationship between Ev and x composition. InAsと格子整合するAlGa1−xAsSb1−yのEc、Evとx組成の関係を示す図である。 Al x Ga 1-x As y Sb 1-y of Ec of InAs and lattice matching is a diagram showing the relationship between Ev and x composition. GaSbと格子整合するInPAsSb1−x−yのEc、Evとx組成の関係を示す図である。 InP x As y Sb 1-x -y of Ec of GaSb lattice matching is a diagram showing the relationship between Ev and x composition. InAsと格子整合するInPAsSb1−x−yのEc、Evとx組成の関係を示す図である。Ec of InP x As y Sb 1-x -y for InAs and lattice matching is a diagram showing the relationship between Ev and x composition. AlSbと格子整合するInPAsSb1−x−yのEc、Evとx組成の関係を示す図である。 InP x As y Sb 1-x -y of Ec of AlSb lattice matching is a diagram showing the relationship between Ev and x composition. 本実施形態の半導体装置の製造方法の一例を示す工程断面図である。It is process sectional drawing which shows an example of the manufacturing method of the semiconductor device of this embodiment. 本実施形態の半導体装置の製造方法の一例を示す工程断面図である。It is process sectional drawing which shows an example of the manufacturing method of the semiconductor device of this embodiment. 本実施形態の半導体装置の製造方法の一例を示す工程断面図である。It is process sectional drawing which shows an example of the manufacturing method of the semiconductor device of this embodiment.

以下、本発明のトランジスタおよび当該トランジスタを有する半導体装置の実施形態について図面を用いて説明する。なお、図はあくまで発明の構成を説明するための概略図であり、各部材の大きさ、形状、数、異なる部材の大きさの比率などは図示するものに限定されない。   Hereinafter, embodiments of a transistor of the present invention and a semiconductor device having the transistor will be described with reference to the drawings. The drawings are only schematic diagrams for explaining the configuration of the invention, and the size, shape, number, and ratio of different member sizes are not limited to those shown in the drawings.

図1に、本実施形態の半導体装置が有する縦型ヘテロ接合TFETの断面模式図を示す。図1は、N型チャネルを示している。図示するように、ソースは高濃度PGaSb領域、チャネルはGaIn1−xAsSb1−yで形成されている。GaIn1−xAsSb1−y(チャネル)は、組成yを調整することで、任意の組成xに対してGaSbと格子整合させることができる。そして、本実施形態においては、GaIn1−xAsSb1−y(チャネル)は、GaSb(ソース)と格子整合するよう組成x及び組成yが調整されている。すなわち、GaIn1−xAsSb1−y(チャネル)と、GaSb(ソース)との間には、ミスフィット転位が発生しない。 FIG. 1 is a schematic cross-sectional view of a vertical heterojunction TFET included in the semiconductor device of this embodiment. FIG. 1 shows an N-type channel. As shown in the drawing, the source is formed of a high concentration P + GaSb region, and the channel is formed of Ga x In 1-x As y Sb 1 -y . Ga x In 1-x As y Sb 1-y (channel) can be lattice-matched with GaSb for an arbitrary composition x by adjusting the composition y. In this embodiment, the composition x and the composition y of the Ga x In 1-x As y Sb 1-y (channel) are adjusted so as to lattice match with the GaSb (source). That is, the Ga x In 1-x As y Sb 1-y ( channel) between the GaSb (source), misfit dislocations are not generated.

格子整合しているとは、積層された2つの結晶層において、その界面を形成するそれぞれの結晶層の面で、格子定数が等しくなっている状態をいう。歪が緩和しない臨界膜厚以下の場合、格子が歪むことで下位面での格子定数に一致するが、当該状態は、本実施形態でいうソースとチャネルが格子整合した状態に含まない。例えば、本実施形態のチャネルの膜厚は10nm以上300nm以下、ドレインの膜厚は50nm以上300nm以下であるが、無歪であるので、臨界膜厚の制約はなく、必要に応じて任意の膜厚にすることが出来る。   Lattice matching refers to a state in which the lattice constants are equal in the planes of the crystal layers forming the interface in the two stacked crystal layers. When the thickness is equal to or less than the critical film thickness at which strain is not relaxed, the lattice is distorted to match the lattice constant on the lower surface. For example, the channel thickness of this embodiment is 10 nm or more and 300 nm or less, and the drain thickness is 50 nm or more and 300 nm or less. However, since there is no distortion, there is no restriction on the critical thickness, and any film can be used as necessary. Can be thick.

また、本実施形態では、GaIn1−xAsSb1−y(チャネル)と、GaSb(ソース)とは、タイプII型のバンドアライメントとなっており、TFET動作に重要なGaIn1−xAsSb1−yの伝導帯端EcとGaSbの価電子帯端Evのエネルギー差ΔEc−vは、組成x、yで調整できる。本実施形態では、ΔEc−vが0.2eV以下、好ましくは0.15eV以下、さらに好ましくは0.1eV以下となるように調整する。また、ΔEc−vが0eVより大きく、好ましくはΔEc−vのばらつきの標準偏差をσとすると3σ以上、さらに好ましくは6σ以上となるように調整する。タイプII型ヘテロ接合とは、接合を形成する2つの半導体のバンドアライメントにおいて、一方の半導体のEcとEvのエネルギー位置が、もう一方の半導体のEcとEvから、それぞれ同じ方向にずれ、かつ2つの半導体のバンドギャップに重なりがある状態の接合のことである。 Further, in this embodiment, Ga x an In and 1-x As y Sb 1- y ( channel), and the GaSb (source), and a type II band alignment, important Ga x an In the TFET operation 1-x As y Sb The energy difference ΔEc-v between the conduction band edge Ec of 1-y and the valence band edge Ev of GaSb can be adjusted by the composition x, y. In the present embodiment, ΔEc−v is adjusted to be 0.2 eV or less, preferably 0.15 eV or less, and more preferably 0.1 eV or less. Further, ΔEc-v is adjusted to be larger than 0 eV, preferably 3σ or more, more preferably 6σ or more, where σ is a standard deviation of variation of ΔEc-v. In type II heterojunction, in the band alignment of two semiconductors forming a junction, the energy positions of Ec and Ev of one semiconductor are shifted in the same direction from Ec and Ev of the other semiconductor, respectively, and 2 It is a junction where there is an overlap in the band gap of two semiconductors.

本実施形態の構造では、欠陥を発生させず、ΔEc−vを所望の値にすることができ、急峻なスイッチング特性を有するヘテロ接合TFETが実現される。   In the structure of the present embodiment, a heterojunction TFET having a steep switching characteristic can be realized without causing a defect and making ΔEc-v a desired value.

なお、ヘテロ接合は、上記例の他、GaIn1−xAsSb1−y、AlGa1−xAsSb1−y、InPAsSb1−x−yの中の何れか2種類の材料で構成することができる。ヘテロ接合を構成する2種類の材料のxの値は異なっていてもよいし、同じであってもよい。また、ヘテロ接合を構成する2種類の材料のyの値は異なっていてもよいし、同じであってもよい。例えば、GaSbとGaIn1−xAsSb1−yの組み合わせ、InAsとGaIn1−xAsSb1−yの組み合わせ、AlSbとGaIn1−xAsSb1−yの組み合わせ、GaSbとAlGa1−xAsSb1−yの組み合わせ、InAsとAlGa1−xAsSb1−yの組み合わせ、AlSbとAlGa1−xAsSb1−yの組み合わせ、GaSbとInPAsSb1−x−yの組み合わせ、InAsとInPAsSb1−x−yの組み合わせ、または、AlSbとInPAsSb1−x−yの組み合わせであってもよい。また、GaSbと格子整合する3元化合物として、InAs0.91Sb0.09、AlAs0.08Sb0.92、InP0.63Sb0.37があり、InAsと格子整合する3元化合物として、GaAs0.08Sb0.92、AlAs0.16Sb0.84、InP0.69Sb0.31があり、AlSbと格子整合する3元化合物として、InAs0.82Sb0.18、Ga0.9In0.1Sb、InP0.56Sb0.44があり、これらと、GaIn1−xAsSb1−y、AlGa1−xAsSb1−y、InPAsSb1−x−yとの組み合わせであってもよい。なお、これらの組み合わせに限定されない。但し、課題の欄で説明した様に、格子定数を基板に用いる材料の値にした方が、格子緩和バッファが不要なことから、格子定数の制御性が高く、歪導入によるバンドアライメント変調の影響が抑制され、ΔEc−vを高精度に制御できるという利点がある。 Incidentally, heterojunction, in addition to the above example, Ga x In 1-x As y Sb 1-y, Al x Ga 1-x As y Sb 1-y, in the InP x As y Sb 1-x -y Any two kinds of materials can be used. The values of x of the two types of materials constituting the heterojunction may be different or the same. Also, the y values of the two types of materials constituting the heterojunction may be different or the same. For example, GaSb and Ga x In 1-x As y combination of Sb 1-y, a combination of InAs and Ga x In 1-x As y Sb 1-y, AlSb and Ga x In 1-x As y Sb 1-y combination, GaSb and Al x Ga 1-x as y Sb combination of 1-y, a combination of InAs and Al x Ga 1-x as y Sb 1-y, AlSb and Al x Ga 1-x as y Sb 1- y combination, GaSb and InP x As y Sb 1-xy combination, InAs and InP x As y Sb 1-xy combination, or AlSb and InP x As y Sb 1-xy combination It may be. As ternary compounds lattice-matched with GaSb, there are InAs 0.91 Sb 0.09 , AlAs 0.08 Sb 0.92 , and InP 0.63 Sb 0.37 , and ternary compounds lattice-matched with InAs , GaAs 0.08 Sb 0.92 , AlAs 0.16 Sb 0.84 , InP 0.69 Sb 0.31 , and InAs 0.82 Sb 0.18 , Ga as ternary compounds lattice-matched with AlSb. 0.9 In 0.1 Sb, InP 0.56 Sb 0.44 , Ga x In 1-x As y Sb 1-y , Al x Ga 1-x As y Sb 1-y , InP A combination with x As y Sb 1-xy may be used. In addition, it is not limited to these combinations. However, as explained in the section of the problem, the lattice constant is set to the value of the material used for the substrate, and the lattice relaxation buffer is unnecessary, so the control of the lattice constant is higher, and the influence of band alignment modulation due to strain introduction. Is suppressed, and ΔEc-v can be controlled with high accuracy.

次に、本実施形態の半導体装置の製造方法、及び、トランジスタの製造方法について説明する。いずれの製造方法も、格子整合した材料により形成されたヘテロ接合からなるトンネル障壁を含むトランジスタを設計する工程を有する。   Next, a method for manufacturing a semiconductor device and a method for manufacturing a transistor according to the present embodiment will be described. Each manufacturing method includes a step of designing a transistor including a tunnel barrier made of a heterojunction formed of a lattice-matched material.

当該工程では、格子定数が一致する第1の材料と第2の材料の少なくとも一方の材料の組成を調整することにより、格子定数を一定に保ったまま、第1の材料の伝導帯端と第2の材料の価電子帯端のエネルギー差を連続的に変化させ、第1の材料の伝導帯端と第2の材料の価電子帯端のエネルギー差が所定の値となるヘテロ接合からなるトンネル障壁を含むトランジスタを設計する。以下、詳細に説明する。   In this step, by adjusting the composition of at least one of the first material and the second material having the same lattice constant, the conduction band edge of the first material and the second material are maintained while keeping the lattice constant constant. A tunnel composed of a heterojunction in which the energy difference between the conduction band edge of the first material and the energy band edge of the second material becomes a predetermined value by continuously changing the energy difference between the valence band edges of the two materials. Design transistors with barriers. Details will be described below.

非特許文献1に記載されている通り、Vegard則により、任意の(x、y)の組の4元化合物の格子定数を求めることができ(非特許文献1に記載の式(1)参照)、格子整合させる材料の格子定数を与えれば、xとyの関係式を求めることができる。   As described in Non-Patent Document 1, the lattice constant of an arbitrary (x, y) quaternary compound can be obtained by the Vegard rule (see Formula (1) described in Non-Patent Document 1). If the lattice constant of the material to be lattice matched is given, the relational expression of x and y can be obtained.

図2乃至9に、GaSb、InAs及びAlSb各々と格子整合するGaIn1−xAsSb1−y、AlGa1−xAsSb1−y、又は、InPAsSb1−x−yのx、y組成の関係を示す。当該x、y組成の関係は、Vegard則により求めた。本実施形態では、このような関係に基づき、x及びyの値を調整することで、特にGaSb基板、InAs基板及びAlSb基板と、格子整合した材料により形成されたヘテロ接合を実現する。 2 to 9, Ga x In 1-x As y Sb 1-y , Al x Ga 1-x As y Sb 1-y , or InP x As y Sb 1 lattice-matched with GaSb, InAs, and AlSb, respectively. -x-y of x, illustrating the relationship between y composition. The relationship between the x and y compositions was determined according to the Vegard law. In the present embodiment, by adjusting the values of x and y based on such a relationship, in particular, a heterojunction formed of a lattice-matched material with a GaSb substrate, an InAs substrate, and an AlSb substrate is realized.

ここで、x及びyの値の調整について一例を説明する。   Here, an example of adjusting the values of x and y will be described.

まず、図10を用いて、ヘテロ接合TFETでのバンド設計について説明する。図10(a)、(b)はN型チャネル、図10(c)、(d)はP型チャネルを示す。また、図10(a)、(c)は、ソース、チャネル、ドレインを接続しない材料そのもののEc、Ev(従って、Ecは電子親和力X、EvはX+バンドギャップEgとなる)、図10(b)、(d)は、それらを接続したデバイス構造でのEc、Evのエネルギー位置を示す。ここで、Eはフェルミエネルギーを示す。図10(b)、(d)は、ドレイン−ソース間に電圧Vdsを印加し、ゲート電圧にオン電圧を印加した状態とオフ電圧を印加した状態をそれぞれ示す。 First, band design in a heterojunction TFET will be described with reference to FIG. FIGS. 10A and 10B show an N-type channel, and FIGS. 10C and 10D show a P-type channel. 10A and 10C show Ec and Ev of the material itself that does not connect the source, channel, and drain (therefore, Ec is electron affinity X and Ev is X + band gap Eg), and FIG. ) And (d) show the energy positions of Ec and Ev in the device structure to which they are connected. Here, E f represents Fermi energy. FIGS. 10B and 10D show a state in which a voltage Vds is applied between the drain and source, an on-voltage is applied to the gate voltage, and an off-voltage is applied.

ここで重要な特性値が、ソースとチャネルの伝導帯端エネルギーEcと価電子帯端エネルギーEvの差ΔEc−vである。ΔEc−vは、N型チャネルの場合はソースのEvとチャネルのEcの差となり、P型チャネルの場合はチャネルのEvとソースのEcの差となる。ここでΔEc−vの値は、N型チャネル、P型チャネルとも、図10の状態のタイプII型の時に正とする。   An important characteristic value here is the difference ΔEc−v between the conduction band edge energy Ec and the valence band edge energy Ev of the source and channel. ΔEc−v is the difference between the source Ev and the channel Ec for the N-type channel, and the difference between the channel Ev and the source Ec for the P-type channel. Here, the value of ΔEc−v is positive when the N-type channel and the P-type channel are in the type II state shown in FIG.

ゲート電圧にしきい値電圧を越える電圧を印加したオン状態(実線)では、図10の矢印で示したトンネルが発生し、そのトンネル電流を、ゲート電圧で制御する。一方、ゲート電圧にしきい値電圧を下回る電圧を印加したオフ状態(点線)では、このようなトンネルは発生しない。白抜きの丸印は正孔を、黒塗りの丸印は電子を示し、N型チャネルの場合は、ソースの価電子帯の電子が、チャネルの伝導帯にトンネルする(ソースの価電子帯には正孔が形成される)ことを表している。   In the ON state (solid line) in which a voltage exceeding the threshold voltage is applied to the gate voltage, a tunnel indicated by an arrow in FIG. 10 is generated, and the tunnel current is controlled by the gate voltage. On the other hand, such a tunnel does not occur in the off state (dotted line) in which a voltage lower than the threshold voltage is applied to the gate voltage. Open circles indicate holes, and black circles indicate electrons. In the case of an N-type channel, electrons in the valence band of the source tunnel to the conduction band of the channel (into the valence band of the source). Indicates that holes are formed.

図11にN型チャネルのId−Vg特性を示すが、ΔEc−vが0.08eVの方が0.16eVよりも、ドレイン電流Idが大きくなっている。これは、ΔEc−vが大きいほどしきい値電圧Vtが大きく、しきい値印加時点で、チャネルと接するソースのバンドの曲がりが大きくなるため、ソース−ドレイン間電圧Vdsの内チャネルに配分される電位差が小さくなっており、Vg>Vtでのゲート電圧に対するチャネル電位の変化が小さくなるためと考えられる。つまり、しきい値印加時点では、トンネル距離は同じであるが、Vg>VtではVg−Vtが同じでも、ΔEc−vが小さい方がチャネル電位の変化が大きく、トンネル距離が小さいため、ドレイン電流が高くなる。ΔEc−vは小さい方が、ドレイン電流が大きくなるが、ΔEc−vが負になると、タイプIII型ヘテロ接合となり、障壁がなくなり、トンネル接合ではなくなるので、ΔEc−vのばらつきも考慮して、ばらついてもΔEc−vが正となるように、最適なΔEc−vを設計する必要がある。従って、ΔEc−vは任意の所望の値に設計出来ることが望まれる。本実施形態では、ΔEc−vが0.2eV以下、好ましくは0.15eV以下、さらに好ましくは0.1eV以下となるように設計する。また、ΔEc−vが0eVより大きく、好ましくはΔEc−vのばらつきの標準偏差をσとすると3σ以上、さらに好ましくは6σ以上となるように設計する。   FIG. 11 shows the Id-Vg characteristics of the N-type channel. When ΔEc-v is 0.08 eV, the drain current Id is larger than 0.16 eV. This is because the threshold voltage Vt increases as ΔEc-v increases, and the bending of the source band in contact with the channel increases when the threshold is applied, so that the source-drain voltage Vds is distributed to the inner channel. This is probably because the potential difference is small and the change in channel potential with respect to the gate voltage when Vg> Vt is small. That is, when the threshold is applied, the tunnel distance is the same, but when Vg> Vt, even if Vg−Vt is the same, the smaller the ΔEc−v, the larger the channel potential change and the smaller the tunnel distance. Becomes higher. When ΔEc-v is smaller, the drain current becomes larger. However, if ΔEc-v becomes negative, it becomes a type III heterojunction, there is no barrier, and it is no longer a tunnel junction. It is necessary to design an optimal ΔEc-v so that ΔEc-v is positive even if it varies. Therefore, it is desirable that ΔEc−v can be designed to an arbitrary desired value. In this embodiment, it is designed such that ΔEc−v is 0.2 eV or less, preferably 0.15 eV or less, more preferably 0.1 eV or less. Further, ΔEc-v is designed to be larger than 0 eV, preferably 3σ or more, more preferably 6σ or more, where σ is a standard deviation of variation of ΔEc-v.

図12乃至19に、GaSb、InAs及びAlSbと格子整合するGaIn1−xAsSb1−y、AlGa1−xAsSb1−y、及び、InPAsSb1−x−yにおける、x組成とEc(電子親和力X)、Ev(Eg+X)の関係をそれぞれ示す。ここで、Ec、Evは真空準位からのエネルギーの値として示し、図面上EcがEvの上に来る軸の向きで示してある。これらの材料のEc、Evの図の左右にある図は、GaSbまたはInAsまたはAlSbと格子整合する2元および3元化合物の一例のEc、Evを示す図である。図12及び図13に示したGaIn1−xAsSb1−yは、文献値(非特許文献3参照)を表示しているが、図14乃至図19に示したGaIn1−xAsSb1−y、AlGa1−xAsSb1−y、及び、InPAsSb1−x−yは、図4乃至9で示した線の両端の材料(図中黒丸で示した、名称を記載した化合物)の、Ec、Evを内挿した線を示している。 12 to 19, GaSb, Ga x In 1 -x As y Sb 1-y that is lattice matched with InAs and AlSb, Al x Ga 1-x As y Sb 1-y, and, InP x As y Sb 1- The relationship between x composition, Ec (electron affinity X), and Ev (Eg + X) in xy is shown, respectively. Here, Ec and Ev are shown as values of energy from the vacuum level, and Ec in the drawing is shown in the direction of the axis on Ev. The diagrams on the left and right of the Ec and Ev diagrams of these materials are examples of Ec and Ev of binary and ternary compounds that lattice match with GaSb, InAs, or AlSb. Ga x In 1-x As y Sb 1-y shown in FIG. 12 and FIG. 13 displays literature values (see Non-Patent Document 3), but Ga x In 1 shown in FIG. 14 to FIG. -x As y Sb 1-y, Al x Ga 1-x As y Sb 1-y, and, InP x As y Sb 1- x-y , the material (FIG across the line indicated in FIG. 4 to 9 A line in which Ec and Ev are interpolated is shown for the compound indicated by the name indicated by a solid black circle).

まず、N型チャネルの場合を説明する。図12に示す例の場合、GaSbとGaIn1−xAsSb1−y(0.1<x<0.6)はタイプII型のヘテロ接合を形成し、N型チャネルのそれぞれソースとチャネルに使用出来る。高いドレイン電流を得るために、例えばΔEc−v=0.1eVとするには、x=0.23が良いことになる。また、GaIn1−xAsSb1−y(x>0.6)のEvはGaSbのEvと同程度であるので、これをソースにすることもできる。一方、GaIn1−xAsSb1−y(0<x<0.4)とInAs0.91Sb0.09がタイプII型のヘテロ接合を形成し、それぞれソースとチャネルに使用できる。高いドレイン電流を得るために、例えばΔEc−v=0.1eVとするためには、x=0.23が良いことになる。x≧0.8を除き、少しだけ異なるx組成同士はタイプII型のヘテロ接合となるので、タイプII型を形成するだけなら、ソースとチャネルのx組成の組は無限に存在する。但し、高いドレイン電流を得るために、例えばΔEc−v=0.1eVとするためには、GaIn1−xAsSb1−y(x≧0.23)をソースにすれば、GaIn1−xAsSb1−yをチャネルにできる組成xの範囲が存在する。このx=0.23は、Ecの最大値(x=0でのEc)+0.1eVに一致するEvを有する組成xとして求められる。この組成xの範囲は、当然、ΔEc−vの設計値に依存する。 First, the case of an N-type channel will be described. In the example shown in FIG. 12, GaSb and Ga x In 1-x As y Sb 1-y (0.1 <x <0.6) forms a heterojunction type II, respectively the source of N-type channel And can be used for channels. In order to obtain a high drain current, for example, Δ = 0.23 is good for ΔEc−v = 0.1 eV. Further, Ev of Ga x In 1-x As y Sb 1-y (x> 0.6) is because it is comparable to the Ev of GaSb, it is also possible to do this source. On the other hand, Ga x In 1-x As y Sb 1-y (0 <x <0.4) and InAs 0.91 Sb 0.09 form a type II heterojunction and can be used for the source and channel, respectively. . In order to obtain a high drain current, for example, in order to set ΔEc−v = 0.1 eV, x = 0.23 is good. Except for x ≧ 0.8, slightly different x compositions form a type II heterojunction. Therefore, if only a type II type is formed, there are infinite combinations of source and channel x compositions. However, in order to obtain a high drain current, for example, ΔEc-v = 0.1 eV, Ga x In 1-x As y Sb 1-y (x ≧ 0.23) is used as a source, and Ga range of composition x as possible x in 1-x As y Sb 1-y on the channel exists. This x = 0.23 is calculated | required as a composition x which has Ev which corresponds to the maximum value (Ec in x = 0) + 0.1eV of Ec. The range of the composition x naturally depends on the design value of ΔEc−v.

一方、P型チャネルの場合には、ソースとチャネルの材料が、上述のN型チャネルの場合と逆になる。InAsまたはAlSbと格子整合するGaIn1−xAsSb1−yの場合(図13及び図14参照)は、同様であるので、説明を省略する。 On the other hand, in the case of a P-type channel, the source and channel materials are reversed from those in the case of the N-type channel described above. In the case of Ga x In 1-x As y Sb 1-y lattice-matched with InAs or AlSb (see FIGS. 13 and 14), the description is omitted.

GaIn1−xAsSb1−yと異なり、AlGa1−xAsSb1−yとInPAsSb1−x−yは、EcとEvのx組成に対する傾きが互いに逆になるので、少しだけx組成の異なるものの組合せはタイプI型のヘテロ接合となる。従って、GaSbと格子整合するAlGa1−xAsSb1−yの場合(図15参照)、タイプII型となる組合せは、一例としてInAs0.91Sb0.09とAlGa1−xAsSb1−y(0.2<x<0.89)がある。高いドレイン電流を得るために、例えばΔEc−v=0.1eVとするためには、AlGa1−xAsSb1−y(x=0.43)となる。このx組成の値は、当然、ΔEc−vの設計値に依存するが、前述した通り、Ec、Evの図面は単純な内挿であり、実際とは異なっている可能性があるため、あくまでx組成の値は参考値である。N型チャネルの場合には、AlGa1−xAsSb1−y(0.2<x<0.89)をソースとし、InAs0.91Sb0.09をチャネルとする。P型チャネルの場合には、ソースとチャネルの材料が、N型チャネルの場合と逆になる。なお、InAsと格子整合するAlGa1−xAsSb1−yの場合(図16参照)は、同様であるので、説明を省略する。 Unlike Ga x In 1-x As y Sb 1-y, Al x Ga 1-x As y Sb 1-y and InP x As y Sb 1-x -y , the inclination with respect to x composition of Ec and Ev are mutually Since the opposite is true, a combination of materials having slightly different x compositions becomes a type I heterojunction. Therefore, in the case of Al x Ga 1-x As y Sb 1-y lattice-matched with GaSb (see FIG. 15), the type II type combination is, for example, InAs 0.91 Sb 0.09 and Al x Ga 1. there is -x As y Sb 1-y ( 0.2 <x <0.89). In order to obtain a high drain current, for example, ΔEc−v = 0.1 eV, Al x Ga 1−x As y Sb 1−y (x = 0.43). The value of this x composition naturally depends on the design value of ΔEc−v. However, as described above, the drawings of Ec and Ev are simple interpolations and may differ from actual ones. The value of x composition is a reference value. In the case of an N-type channel, Al x Ga 1-x As y Sb 1-y (0.2 <x <0.89) is used as a source, and InAs 0.91 Sb 0.09 is used as a channel. In the case of a P-type channel, the source and channel materials are the opposite of those for an N-type channel. Note that the case of Al x Ga 1-x As y Sb 1-y that lattice matches with InAs (see FIG. 16) is the same, and the description thereof is omitted.

一方、GaSbと格子整合するInPAsSb1−x−yの場合(図17参照)、タイプII型となる組合せは、一例としてGaSbとInPAsSb1−x−y(0.13<x<0.63)がある。高いドレイン電流を得るために、例えばΔEc−v=0.1eVとするためには、InPAsSb1−x−y(x=0.28)となる。このx組成の値は、当然、ΔEc−vの設計値に依存するが、前述した通り、Ec、Evの図面は単純な内挿であり、実際とは異なっている可能性があるため、あくまでx組成の値は参考値である。N型チャネルの場合には、GaSbをソースとし、InPAsSb1−x−y(0.13<x<0.63)をチャネルとする。P型チャネルの場合には、ソースとチャネルの材料が、N型チャネルの場合と逆になる。なお、InAsまたはAlSbと格子整合するInPAsSb1−x−yの場合(図18及び図19参照)は、同様であるので、説明を省略する。 On the other hand, in the case of InP x As y Sb 1- xy that lattice-matches with GaSb (see FIG. 17), the type II type combination is GaSb and InP x As y Sb 1-xy (0. 13 <x <0.63). In order to obtain a high drain current, for example in order to .DELTA.Ec-v = 0.1 eV is a InP x As y Sb 1-x -y (x = 0.28). The value of this x composition naturally depends on the design value of ΔEc−v. However, as described above, the drawings of Ec and Ev are simple interpolations and may differ from actual ones. The value of x composition is a reference value. In the case of an N-type channel, GaSb is used as a source, and InP x As y Sb 1-xy (0.13 <x <0.63) is used as a channel. In the case of a P-type channel, the source and channel materials are the opposite of those for an N-type channel. In the case of InP x As y Sb 1- xy that lattice matches with InAs or AlSb (see FIGS. 18 and 19), the description is omitted.

また、図12、15、17に示したGaSbと格子整合する、GaIn1−xAsSb1−y、AlGa1−xAsSb1−y、InPAsSb1−x−yの内、任意の2種類の材料をヘテロ接合に用いることも可能であり、図13、16、18に示したInAsと格子整合する、GaIn1−xAsSb1−y、AlGa1−xAsSb1−y、InPAsSb1−x−yの内、任意の2種類の材料をヘテロ接合に用いることも可能であり、図14、19に示したAlSbと格子整合する、GaIn1−xAsSb1−y、InPAsSb1−x−yの内、任意の2種類の材料をヘテロ接合に用いることも可能である。これらの材料は、全てGaSb又はInAs又はAlSbと格子整合するので、それらを用いたヘテロ接合にはミスフィット転位等の欠陥が形成されない。これらのヘテロ接合をタイプII型にする設計方法や、所望のΔEc−vの値にする設計方法は、図12乃至19を用いて説明した方法と同様であるので、説明を省略する。 Further, the GaSb lattice-matched that shown in FIG. 12,15,17, Ga x In 1-x As y Sb 1-y, Al x Ga 1-x As y Sb 1-y, InP x As y Sb 1- Any two kinds of materials among x-y can be used for the heterojunction, and Ga x In 1-x As y Sb 1-y is lattice-matched with InAs shown in FIGS. , Al x Ga 1-x As y Sb 1-y , and InP x As y Sb 1-xy can be used for any two kinds of materials for the heterojunction, as shown in FIGS. It is also possible to use any two kinds of materials of Ga x In 1-x As y Sb 1-y and InP x As y Sb 1- xy that lattice match with AlSb for the heterojunction. All of these materials lattice match with GaSb, InAs, or AlSb, so that defects such as misfit dislocations are not formed in the heterojunction using them. The design method for making these heterojunctions type II and the design method for making the desired ΔEc-v value are the same as the method described with reference to FIGS.

以下、図20乃至22を参照して、本実施形態の半導体装置の製造方法に含まれるトランジスタ製造工程の流れの一例(N型チャネル)を説明する。   Hereinafter, an example (N-type channel) of a transistor manufacturing process included in the method for manufacturing a semiconductor device of this embodiment will be described with reference to FIGS.

まず、ドーピング制御したエピタキシャル成長法により、図20に示す様に、GaSb基板上に、順に、300〜500nm程度のGaSbバッファ領域、ソースとなる50〜300nm程度のPGaSb領域、チャネルとなる10〜300nm程度のノンドープGaIn1−xAsSb1−y領域、ドレインとなる50〜300nm程度のNGaIn1−xAsSb1−y領域を形成する。結晶成長方法としては、有機金属化学気相エピタキシー法(MOVPE)や分子線エピタキシー法(MBE)が用いられる。x、y組成の値は、Ga、In、As、Sb各元素の原料のフラックスの比率で制御し、ドーピング量はドーパント原料と各元素原料のフラックス比で制御する。 First, by doping-controlled epitaxial growth, as shown in FIG. 20, a GaSb buffer region of about 300 to 500 nm, a P + GaSb region of about 50 to 300 nm serving as a source, and 10 to 10 serving as a channel are sequentially formed on a GaSb substrate. A non-doped Ga x In 1-x As y Sb 1-y region of about 300 nm and an N + Ga x In 1-x As y Sb 1-y region of about 50 to 300 nm serving as a drain are formed. As a crystal growth method, a metal organic chemical vapor epitaxy method (MOVPE) or a molecular beam epitaxy method (MBE) is used. The values of the x and y compositions are controlled by the ratio of the raw material flux of each element of Ga, In, As, and Sb, and the doping amount is controlled by the flux ratio of the dopant raw material and each elemental material.

次に、図21に示す様に、ドライエッチング又はウェットエッチングにより、メサ構造を形成した後、ゲート絶縁膜として5nm程度のAl膜を原子層堆積法(ALD)で形成し、次いで、ゲート電極として100nm程度のTiNをスパッタ法で形成した後、リソグラフィ法とドライエッチング法で、ゲート電極をパターニングする。 Next, as shown in FIG. 21, after forming a mesa structure by dry etching or wet etching, an Al 2 O 3 film of about 5 nm is formed by atomic layer deposition (ALD) as a gate insulating film, After forming about 100 nm of TiN as a gate electrode by sputtering, the gate electrode is patterned by lithography and dry etching.

次に、図22に示す様に、層間膜として200nm程度のSiO膜を化学気相成長法(CVD)で形成した後、リソグラフィ法とドライエッチング法で、ソース領域とドレイン領域にコンタクトを開口する。次いで、金属をスパッタ法で堆積し、リソグラフィ法とドライエッチング法で、ソース電極とドレイン電極を形成する。 Next, as shown in FIG. 22, an SiO 2 film having a thickness of about 200 nm is formed as an interlayer film by chemical vapor deposition (CVD), and then contacts are opened in the source region and the drain region by lithography and dry etching. To do. Next, a metal is deposited by a sputtering method, and a source electrode and a drain electrode are formed by a lithography method and a dry etching method.

その他のヘテロ接合からなるトンネル障壁を含むトランジスタを有する半導体装置の製造方法は、上記と同様にして実現できる。なお、基板としては、GaSbと格子整合するヘテロ接合の場合にはGaSb基板を、InAsと格子整合するヘテロ接合の場合にはInAs基板を、AlSbと格子整合するヘテロ接合の場合にはAlSb基板をそれぞれ用いることができる。2元III−V族化合物基板と格子整合させることで、基板とヘテロエピタキシャル層との間に、格子緩和バッファ層を形成する必要がなく、格子定数の制御性が良く、プロセスが簡単なことから、高い歩留りと低コストで製造できる利点がある。   Other methods for manufacturing a semiconductor device having a transistor including a tunnel barrier made of a heterojunction can be realized in the same manner as described above. As the substrate, a GaSb substrate is used in the case of a heterojunction lattice-matched with GaSb, an InAs substrate is used in a heterojunction lattice-matched with InAs, and an AlSb substrate is used in a heterojunction lattice-matched with AlSb. Each can be used. Lattice matching with a binary III-V compound substrate eliminates the need to form a lattice relaxation buffer layer between the substrate and the heteroepitaxial layer, provides good control of the lattice constant, and simplifies the process. There is an advantage that it can be manufactured with high yield and low cost.

なお、上記実施形態では、タイプII型ヘテロ接合からなるトンネル障壁を含むトランジスタ、及び、当該トランジスタを有する半導体装置を説明したが、本実施形態は、その他、タイプI型ヘテロ接合からなるトンネル障壁を含むトランジスタ、及び、当該トランジスタを有する半導体装置とすることもできる。本発明で重要な点は、ソースとチャネル間の価電子帯端と伝導帯端のエネルギー差ΔEc−vを所望の値に設計することであり、その設計ができればタイプIであるかタイプIIであるかは関係がないからである。この製造方法は、上述したタイプII型ヘテロ接合からなるトンネル障壁を含むトランジスタ、及び、当該トランジスタを有する半導体装置の製造方法に準じて実現できる。   In the above embodiment, a transistor including a tunnel barrier formed of a type II heterojunction and a semiconductor device including the transistor have been described. However, in the present embodiment, a tunnel barrier formed of a type I heterojunction is additionally provided. A transistor including the transistor and a semiconductor device including the transistor can also be used. The important point in the present invention is to design the energy difference ΔEc−v between the valence band edge and the conduction band edge between the source and the channel to a desired value. If the design can be made, it is type I or type II. This is because there is no relationship. This manufacturing method can be realized according to the above-described method for manufacturing a transistor including a tunnel barrier formed of a type II heterojunction and a semiconductor device having the transistor.

Claims (10)

格子整合した第1の材料及び第2の材料により形成されたヘテロ接合からなり、キャリアが前記第1の材料の伝導帯と、前記第2の材料の価電子帯の間でトンネルするトンネル障壁を含み、前記第1の材料の伝導帯端Ecと、前記第2の材料の価電子帯端Evのエネルギー差ΔEc−vは、0.2eV以下であるトランジスタを有する半導体装置。   A tunnel barrier is formed of a heterojunction formed of a lattice-matched first material and a second material, and carriers tunnel between the conduction band of the first material and the valence band of the second material. And a semiconductor device having a transistor in which an energy difference ΔEc−v between the conduction band edge Ec of the first material and the valence band edge Ev of the second material is 0.2 eV or less. 請求項1に記載の半導体装置において、
前記第1の材料及び前記第2の材料の格子定数が、GaSb、InAs又はAlSbと一致する半導体装置。
The semiconductor device according to claim 1,
A semiconductor device in which the lattice constants of the first material and the second material coincide with GaSb, InAs, or AlSb.
請求項1または2に記載の半導体装置において、
前記ヘテロ接合が、Gax1In1−x1Asy1Sb1−y1、Alx2Ga1−x2Asy2Sb1−y2、InPx3Asy3Sb1−x3−y3の中の何れか2種類の材料で構成されている半導体装置。
The semiconductor device according to claim 1 or 2,
The heterojunction, Ga x1 In 1-x1 As y1 Sb 1-y1, Al x2 Ga 1-x2 As y2 Sb 1-y2, InP x3 As y3 any two among Sb 1-x3-y3 material A semiconductor device composed of
請求項3に記載の半導体装置において、
前記第1の材料はGaSb、InAs又はAlSbであり、前記第2の材料は前記第1の材料と格子定数が一致する半導体装置。
The semiconductor device according to claim 3.
The first material is GaSb, InAs, or AlSb, and the second material is a semiconductor device having a lattice constant that matches that of the first material.
格子整合した第1の材料及び第2の材料により形成されたヘテロ接合からなり、キャリアが前記第1の材料の伝導帯と、前記第2の材料の価電子帯の間でトンネルするトンネル障壁を含み、前記第1の材料の伝導帯端Ecと、前記第2の材料の価電子帯端Evのエネルギー差ΔEc−vは、0.2eV以下であるトランジスタ。   A tunnel barrier is formed of a heterojunction formed of a lattice-matched first material and a second material, and carriers tunnel between the conduction band of the first material and the valence band of the second material. In addition, the energy difference ΔEc−v between the conduction band edge Ec of the first material and the valence band edge Ev of the second material is 0.2 eV or less. 請求項5に記載のトランジスタにおいて、
前記第1の材料及び前記第2の材料の格子定数が、GaSb、InAs又はAlSbと一致するトランジスタ。
The transistor of claim 5, wherein
A transistor in which the lattice constants of the first material and the second material match those of GaSb, InAs, or AlSb.
請求項5または6に記載のトランジスタにおいて、
前記ヘテロ接合が、Gax1In1−x1Asy1Sb1−y1、Alx2Ga1−x2Asy2Sb1−y2、InPx3Asy3Sb1−x3−y3の中の何れか2種類の材料で構成されているトランジスタ。
The transistor according to claim 5 or 6,
The heterojunction, Ga x1 In 1-x1 As y1 Sb 1-y1, Al x2 Ga 1-x2 As y2 Sb 1-y2, InP x3 As y3 any two among Sb 1-x3-y3 material A transistor composed of
請求項7に記載のトランジスタにおいて、
前記第1の材料はGaSb、InAs又はAlSbであり、前記第2の材料は前記第1の材料と格子定数が一致するトランジスタ。
The transistor of claim 7, wherein
The first material is GaSb, InAs, or AlSb, and the second material is a transistor whose lattice constant matches that of the first material.
格子整合した材料により形成されたヘテロ接合からなるトンネル障壁を含むトランジスタを設計する工程を有し、
前記工程では、格子定数が一致する第1の材料と第2の材料の少なくとも一方の材料の組成を調整することにより、格子定数を一定に保ったまま、前記第1の材料の伝導帯端と前記第2の材料の価電子帯端のエネルギー差を連続的に変化させ、前記第1の材料の伝導帯端と前記第2の材料の価電子帯端のエネルギー差が所定の値となるヘテロ接合からなるトンネル障壁を含むトランジスタを設計する半導体装置の製造方法。
Designing a transistor including a tunnel barrier composed of a heterojunction formed of a lattice-matched material;
In the step, by adjusting the composition of at least one of the first material and the second material having the same lattice constant, the conduction band edge of the first material is maintained while keeping the lattice constant constant. The energy difference between the valence band edges of the second material is continuously changed so that the energy difference between the conduction band edge of the first material and the valence band edge of the second material becomes a predetermined value. A method of manufacturing a semiconductor device for designing a transistor including a tunnel barrier formed of a junction.
格子整合した材料により形成されたヘテロ接合からなるトンネル障壁を含むトランジスタを設計する工程を有し、
前記工程では、格子定数が一致する第1の材料と第2の材料の少なくとも一方の材料の組成を調整することにより、格子定数を一定に保ったまま、前記第1の材料の伝導帯端と前記第2の材料の価電子帯端のエネルギー差を連続的に変化させ、前記第1の材料の伝導帯端と前記第2の材料の価電子帯端のエネルギー差が所定の値となるヘテロ接合からなるトンネル障壁を含むトランジスタを設計するトランジスタの製造方法。
Designing a transistor including a tunnel barrier composed of a heterojunction formed of a lattice-matched material;
In the step, by adjusting the composition of at least one of the first material and the second material having the same lattice constant, the conduction band edge of the first material is maintained while keeping the lattice constant constant. The energy difference between the valence band edges of the second material is continuously changed so that the energy difference between the conduction band edge of the first material and the valence band edge of the second material becomes a predetermined value. A transistor manufacturing method for designing a transistor including a tunnel barrier formed of a junction.
JP2012124901A 2012-05-31 2012-05-31 Semiconductor device, transistor, method of manufacturing semiconductor device, and method of manufacturing transistor Pending JP2015156407A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012124901A JP2015156407A (en) 2012-05-31 2012-05-31 Semiconductor device, transistor, method of manufacturing semiconductor device, and method of manufacturing transistor
PCT/JP2013/054484 WO2013179700A1 (en) 2012-05-31 2013-02-22 Semiconductor device, transistor, method for manufacturing semiconductor device, and method for manufacturing transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012124901A JP2015156407A (en) 2012-05-31 2012-05-31 Semiconductor device, transistor, method of manufacturing semiconductor device, and method of manufacturing transistor

Publications (1)

Publication Number Publication Date
JP2015156407A true JP2015156407A (en) 2015-08-27

Family

ID=49672916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012124901A Pending JP2015156407A (en) 2012-05-31 2012-05-31 Semiconductor device, transistor, method of manufacturing semiconductor device, and method of manufacturing transistor

Country Status (2)

Country Link
JP (1) JP2015156407A (en)
WO (1) WO2013179700A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103779418B (en) * 2014-02-08 2016-08-31 华为技术有限公司 A kind of tunneling field-effect transistor and preparation method thereof
CN105552120A (en) * 2015-12-15 2016-05-04 西安电子科技大学 Staggered heterojunction tunneling field effect transistor based on GaAsBi-Ga(In)AsN material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342742A (en) * 2003-05-14 2004-12-02 Matsushita Electric Ind Co Ltd Semiconductor device for communication apparatus
WO2011040012A1 (en) * 2009-09-30 2011-04-07 国立大学法人北海道大学 Tunnel field effect transistor and method for manufacturing same

Also Published As

Publication number Publication date
WO2013179700A1 (en) 2013-12-05

Similar Documents

Publication Publication Date Title
TWI700831B (en) Semiconductor device including resonant tunneling diode structure having a superlattice and related methods
JP5341020B2 (en) Tilted ternary or quaternary multi-gate transistor
KR101194465B1 (en) Methods of forming buffer layer architecture on silicon and structures formed thereby
EP2382667B1 (en) Tunnel field effect transistor and method of manufacturing same
US9064777B2 (en) Graphene switching device having tunable barrier
Memisevic et al. Vertical nanowire TFETs with channel diameter down to 10 nm and point S MIN of 35 mV/decade
TWI452693B (en) Semiconductor transistor
JP6317076B2 (en) Device having strained layer for confinement of quantum well and method for manufacturing the same
US9991172B2 (en) Forming arsenide-based complementary logic on a single substrate
TW201123444A (en) High electron mobility transistor and method for fabricating the same
KR102441728B1 (en) Vertical field effect device and method for fabricating the same
TWI604604B (en) Complementary-metal-oxide-semiconductor field-effect transistor and method thereof
US20220367176A1 (en) Epitaxies of a Chemical Compound Semiconductor
JP5451750B2 (en) Semiconductor device
WO2013179700A1 (en) Semiconductor device, transistor, method for manufacturing semiconductor device, and method for manufacturing transistor
JP6531243B2 (en) Tunnel field effect transistor and method of manufacturing field effect transistor
WO2020009020A1 (en) Tunnel field-effect transistor
JP2012043937A (en) Field effect transistor
JP2004342742A (en) Semiconductor device for communication apparatus
JP2513118B2 (en) Tunnel transistor and manufacturing method thereof
JP2006019378A (en) Semiconductor device
JP2004342743A (en) Semiconductor device for communication apparatus
JP2019009296A (en) Tunnel field effect transistor