JP2015155652A - Screw fluid machine and refrigeration cycle apparatus - Google Patents

Screw fluid machine and refrigeration cycle apparatus Download PDF

Info

Publication number
JP2015155652A
JP2015155652A JP2014030174A JP2014030174A JP2015155652A JP 2015155652 A JP2015155652 A JP 2015155652A JP 2014030174 A JP2014030174 A JP 2014030174A JP 2014030174 A JP2014030174 A JP 2014030174A JP 2015155652 A JP2015155652 A JP 2015155652A
Authority
JP
Japan
Prior art keywords
refrigerant
working chamber
rotor
fluid machine
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014030174A
Other languages
Japanese (ja)
Other versions
JP6259309B2 (en
Inventor
土屋 豪
Takeshi Tsuchiya
豪 土屋
紘太郎 千葉
Kotaro Chiba
紘太郎 千葉
龍一郎 米本
Ryuichiro Yonemoto
龍一郎 米本
泰成 飯塚
Yasunari Iizuka
泰成 飯塚
浦新 昌幸
Masayuki Urashin
昌幸 浦新
楠本 寛
Hiroshi Kusumoto
寛 楠本
笹尾 桂史
Yoshifumi Sasao
桂史 笹尾
野崎 務
Tsutomu Nozaki
務 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2014030174A priority Critical patent/JP6259309B2/en
Publication of JP2015155652A publication Critical patent/JP2015155652A/en
Application granted granted Critical
Publication of JP6259309B2 publication Critical patent/JP6259309B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a screw fluid machine capable of suppressing a temperature increase in an injection section to enable injection of a necessary refrigerant quantity, and reducing oscillation and pipe pulsation by injecting refrigerant into an operation chamber small in pressure fluctuation.
SOLUTION: A screw fluid machine of the present invention comprises: a male rotor and a female rotor rotating while engaging with each other; a casing storing therein the male rotor and the female rotor; a plurality of operation chambers constituted by the male rotor, the female rotor, and the casing; an injection port formed in the operation chambers for injecting refrigerant into the operation chambers; and pivotal support means rotatably, pivotally supporting the male rotor and the female rotor, the operation chambers being each configured to have a constant capacity after completion to draw in the refrigerant, and the injection port being open to the operation chambers having the constant capacity after completion to draw in the refrigerant and being closed before a compression stroke of each operation chamber.
COPYRIGHT: (C)2015,JPO&INPIT

Description

本発明は、スクリュー流体機械及びこのスクリュー流体機械を備えた冷凍サイクル装置に関する。   The present invention relates to a screw fluid machine and a refrigeration cycle apparatus including the screw fluid machine.

スクリュー流体機械は、冷凍空調用圧縮機や空気圧縮機として広く普及している。空調機やチラー、冷凍機を始めとするヒートポンプ機器の主要構成機器であることから、省エネであることへの社会的な要求は極めて強く、高効率、高能力であることがますます重要になっている。   Screw fluid machines are widely used as refrigeration and air-conditioning compressors and air compressors. Because it is a major component of heat pump equipment such as air conditioners, chillers, and refrigerators, social demands for energy saving are extremely strong, and high efficiency and high capacity are becoming increasingly important. ing.

非特許文献1は、ガスインジェクションを開示する。ガスインジェクションは、冷凍サイクルの減圧手段を二段階に構成し、その中間に気液分離器を設けてガス冷媒と液冷媒に分離し、ガス冷媒のみを中間圧力で圧縮行程途中のシリンダ内に直接導くインジェクション回路を設けた方式である。蒸発器側でエンタルピ差(冷凍効果)を増加させることができ、冷房能力を増加することができる。また、単段圧縮2段膨張サイクルに比べて2段圧縮2段膨張サイクルは理想的なインジェクションが可能である。また、エコノマイザシステムは、凝縮した高圧の液冷媒を中間冷却器に導き、その一部を膨張弁を介して減圧しガス化させることで、蒸発器へ送る液冷媒を冷却して冷凍能力を向上させ、中間冷却器で蒸発したガス冷媒は圧縮機に設けたエコノマイザポート(ガス冷媒をインジェクションするポート)から、作動室へインジェクションされる。   Non-Patent Document 1 discloses gas injection. Gas injection consists of two stages of decompression means for the refrigeration cycle, and a gas-liquid separator is provided in the middle to separate it into gas refrigerant and liquid refrigerant, and only the gas refrigerant is directly put into the cylinder in the middle of the compression stroke at intermediate pressure. This is a system provided with a guiding injection circuit. The enthalpy difference (refrigeration effect) can be increased on the evaporator side, and the cooling capacity can be increased. In addition, compared with a single-stage compression two-stage expansion cycle, an ideal injection is possible in a two-stage compression two-stage expansion cycle. In addition, the economizer system leads the condensed high-pressure liquid refrigerant to the intercooler and partially decompresses it through the expansion valve to gasify it, thereby cooling the liquid refrigerant sent to the evaporator and improving the refrigerating capacity. The gas refrigerant evaporated in the intermediate cooler is injected into the working chamber from an economizer port (port for injecting the gas refrigerant) provided in the compressor.

特許文献1は、冷凍サイクルの成績係数(圧縮機入力に対する冷凍能力の比)を高くする目的で、冷凍サイクルに気液分離器を設け、気液分離器で分離されたガス冷媒を圧縮機にガスインジェクションすることを開示する。設計圧縮比以上では、ガスインジェクションポートを成績係数向上を目的としたガスインジェクションに利用し、設計圧縮比以下では吐出バイパスポートとして切替利用することで、圧縮機の広い運転範囲において、圧縮動作における動力損失を低減させた冷凍サイクル装置を得ることができる。   Patent Document 1 provides a gas-liquid separator in the refrigeration cycle for the purpose of increasing the coefficient of performance of the refrigeration cycle (ratio of refrigeration capacity to the compressor input), and uses the gas refrigerant separated by the gas-liquid separator as a compressor. Disclosed is gas injection. If the compression ratio is higher than the design compression ratio, the gas injection port is used for gas injection for the purpose of improving the coefficient of performance, and if the compression ratio is lower than the design compression ratio, it is used as a discharge bypass port. A refrigeration cycle apparatus with reduced loss can be obtained.

特許文献2は、スクリューロータとエコノマイザポートを有するシリンダとを備え、このエコノマイザポートはスクリューロータとシリンダとの間の圧縮室が密閉される前に、この圧縮機に連通させるスクリュー流体機械を開示する。エコノマイザポートを圧縮室の内圧が低いときに圧縮室に連通させることができて、エコノマイザポートから噴出される冷媒の量を多くすることができるから、この冷媒による冷却効果を高めることができる。   Patent Document 2 discloses a screw fluid machine that includes a screw rotor and a cylinder having an economizer port, and the economizer port communicates with the compressor before the compression chamber between the screw rotor and the cylinder is sealed. . Since the economizer port can be communicated with the compression chamber when the internal pressure of the compression chamber is low, and the amount of refrigerant ejected from the economizer port can be increased, the cooling effect by this refrigerant can be enhanced.

特開2012−127565号公報JP 2012-127565 A 特許4140488号公報Japanese Patent No. 4140488

「冷媒圧縮機」日本冷凍空調学会 2013年"Refrigerant compressor" Japan Society of Refrigeration and Air Conditioning 2013

従来の単段圧縮におけるインジェクションでは、ガスインジェクションであれ、エコノマイザシステムであれ、インジェクション先の作動室が圧縮行程中にあるため、作動室に圧力上昇が発生して、必要な冷媒量をインジェクションすることができなくなる。これにより、ガスインジェクションであれば十分な冷房能力の増加や成績係数の向上を得ることができず、また、エコノマイザシステムであれば飽和温度を低くできずにエコノマイザ効果(冷凍能力向上)を十分に得ることができなくなる。さらに、このように圧力変動のある作動室へインジェクションを行うために、振動や配管脈動を引き起こすといった問題が発生する。   In conventional single-stage compression injection, whether it is a gas injection or an economizer system, the working chamber at the injection destination is in the compression stroke, so the pressure rises in the working chamber and the required amount of refrigerant is injected. Can not be. As a result, it is not possible to obtain a sufficient increase in cooling capacity and improvement in the coefficient of performance with gas injection, and with the economizer system, the saturation temperature cannot be lowered and the economizer effect (increase in refrigeration capacity) is sufficient. You can't get it. Furthermore, injecting into the working chamber having such pressure fluctuations causes problems such as vibration and piping pulsation.

本発明は、インジェクション部の圧力上昇を抑制して必要な冷媒量のインジェクションを可能にするとともに、圧力変動の小さな作動室にインジェクションすることにより振動や配管脈動を低減したスクリュー流体機械を提供することを課題とする。   The present invention provides a screw fluid machine that enables injection of a necessary amount of refrigerant by suppressing an increase in pressure in an injection unit, and that reduces vibration and piping pulsation by injecting into a working chamber having a small pressure fluctuation. Is an issue.

本発明のスクリュー流体機械は、互いに噛合いながら回転する雄ロータ及び雌ロータと、吸込端面、吐出端面、及び、ボアを有し、雄ロータ及び雌ロータを収納するケーシングと、雄ロータ、雌ロータ、及び、ケーシングにより構成された複数の作動室と、作動室に形成され、作動室に冷媒をインジェクションするためのインジェクションポートと、ケーシングに設けた吸込ポートと、ケーシングに設けた吐出ポートと、雄ロータ及び雌ロータを回転自在に軸支する軸支手段と、を備え、冷媒吸込完了後に容積が一定となる作動室を構成し、インジェクションポートは、冷媒吸込完了後の容積が一定となる作動室に開口し、作動室の圧縮行程前に閉口する。   A screw fluid machine according to the present invention includes a male rotor and a female rotor that rotate while meshing with each other, a suction end face, a discharge end face, and a bore, and a casing that houses the male rotor and the female rotor, and a male rotor and a female rotor. And a plurality of working chambers configured by a casing, an injection port formed in the working chamber for injecting refrigerant into the working chamber, a suction port provided in the casing, a discharge port provided in the casing, a male And a support means for rotatably supporting the rotor and the female rotor, and constitutes a working chamber whose volume is constant after completion of refrigerant suction, and the injection port is a working chamber whose volume after completion of refrigerant suction is constant And closed before the compression stroke of the working chamber.

本発明によれば、インジェクション部の圧力上昇を抑制して必要な冷媒量のインジェクションを可能にするとともに、圧力変動の小さな作動室にインジェクションすることにより振動や配管脈動を低減したスクリュー流体機械を提供することができる。   According to the present invention, there is provided a screw fluid machine that enables injection of a necessary amount of refrigerant by suppressing an increase in pressure in an injection section, and that reduces vibration and piping pulsation by injecting into a working chamber having a small pressure fluctuation. can do.

第1の実施の形態におけるスクリュー流体機械の断面図Sectional drawing of the screw fluid machine in 1st Embodiment 図1のA部断面拡大図Section A cross-sectional enlarged view of FIG. 図2のB部斜視図B perspective view of FIG. ケーシングボアの展開図Casing bore development 吸込完了後から圧縮開始までの作動室とインジェクションポート、吸込ポート、吐出ポートとの関係図Relationship diagram between the working chamber from the completion of suction to the start of compression and the injection port, suction port, and discharge port 第3の実施の形態における冷凍サイクル装置の冷媒回路図Refrigerant circuit diagram of the refrigeration cycle apparatus in the third embodiment 第4の実施の形態における冷凍サイクル装置の冷媒回路図Refrigerant circuit diagram of the refrigeration cycle apparatus in the fourth embodiment

本発明のスクリュー流体機械は、本発明のスクリュー流体機械は、互いに噛合いながら回転する雄ロータ及び雌ロータと、雄ロータ及び雌ロータを収納するケーシングと、吸込端面、吐出端面、及び、ボアを有するケーシングと、雄ロータ、雌ロータ、及び、ケーシングにより構成された複数の作動室と、作動室に形成され、作動室に冷媒をインジェクションするためのインジェクションポートと、ケーシングに設けた吸込ポートと、ケーシングに設けた吐出ポートと、雄ロータ及び雌ロータを回転自在に軸支する軸支手段と、を備え、冷媒吸込完了後に容積が一定となる作動室を構成し、インジェクションポートは、冷媒吸込完了後の容積が一定となる作動室に開口し、作動室の圧縮行程前に閉口する。冷媒吸込完了後に容積が一定となる作動室を形成し、インジェクションポートは冷媒吸込完了後の容積が一定となる作動室に開口し作動室の圧縮行程前に閉口するので、インジェクション先の作動室における圧力上昇を抑制することができるので、必要な冷媒量をインジェクションすることが可能となり、ガスインジェクションであれば十分な冷房能力の増加や成績係数の向上が可能となり、エコノマイザシステムであれば飽和温度を低くできて十分なエコノマイザ効果(冷凍能力向上)を得ることが可能となる。また、圧力変動を抑制した(容積一定となる)作動室へインジェクションを行うので、振動や配管脈動を低減することが可能になる。さらに、吸込完了後から圧縮開始までの間に低温の冷媒インジェクションを行うので、圧縮開始前の冷媒温度を下げることができて圧縮行程における冷媒の状態変化を断熱圧縮へ近づけることが可能になるため、スクリュー流体機械のエネルギ効率を向上させることができる。   The screw fluid machine of the present invention includes a male rotor and a female rotor that rotate while meshing with each other, a casing that houses the male rotor and the female rotor, a suction end surface, a discharge end surface, and a bore. A casing having a male rotor, a female rotor, and a plurality of working chambers configured by the casing; an injection port formed in the working chamber for injecting refrigerant into the working chamber; and a suction port provided in the casing; A discharge port provided in the casing and a shaft supporting means for rotatably supporting the male rotor and the female rotor constitute a working chamber whose volume is constant after the refrigerant suction is completed, and the injection port is the refrigerant suction completed It opens to the working chamber where the volume afterwards becomes constant, and closes before the compression stroke of the working chamber. A working chamber whose volume is constant after completion of refrigerant suction is formed, and the injection port opens to the working chamber where the volume becomes constant after completion of refrigerant suction and closes before the compression stroke of the working chamber. Since the pressure rise can be suppressed, it becomes possible to inject the required amount of refrigerant. Gas injection can sufficiently increase the cooling capacity and improve the coefficient of performance, and the economizer system can reduce the saturation temperature. It is possible to obtain a sufficient economizer effect (improvement of refrigeration capacity). Further, since the injection is performed into the working chamber in which the pressure fluctuation is suppressed (the volume is constant), it becomes possible to reduce vibration and piping pulsation. Furthermore, since low-temperature refrigerant injection is performed between the completion of suction and the start of compression, the refrigerant temperature before the start of compression can be lowered, and the refrigerant state change in the compression stroke can be brought closer to adiabatic compression. The energy efficiency of the screw fluid machine can be improved.

以下に、本発明を実施するための第1の形態を示すスクリュー流体機械について、図1〜5を用いて説明する。   Below, the screw fluid machine which shows the 1st form for carrying out the present invention is explained using Drawings 1-5.

まず、図1、2を用いて、第1の形態を示すスクリュー流体機械の全体構造に関して説明する。図1は、スクリュー流体機械の断面図を示し、図2は、図1におけるA部の断面拡大図を示す。スクリュー流体機械1は、圧縮部2と駆動部3とをケーシング4内に収納して構成する。スクリュー流体機械1は、吸込口15からスクリュー流体機械1内に吸込んだガス冷媒を、モータ14を通過した後に作動室の吸込ポート10から作動室へと吸込む。そしてガス冷媒を圧縮し作動室の吐出ポート11を経由して吐出口16からスクリュー流体機械1外部へと吐出する。圧縮部2は、駆動部3に配設したモータ14により互いに噛合いながら回転する雄ロータ5及び雌ロータ6と、これら雄ロータ5及び雌ロータ6を収納するケーシング4と、雄ロータ5及び雌ロータ6を回転自在に軸支する軸支手段12a、12b、13a、13bを備える。雄ロータ5及び雌ロータ6の歯溝5a、6aとケーシングのボア(各ロータの径方向に相対する壁面)7、ケーシングの吸込端面8と、ケーシングの吐出端面9とで複数の作動室を形成する。   First, the overall structure of the screw fluid machine showing the first embodiment will be described with reference to FIGS. FIG. 1 shows a cross-sectional view of the screw fluid machine, and FIG. 2 shows an enlarged cross-sectional view of part A in FIG. The screw fluid machine 1 is configured by housing a compression unit 2 and a drive unit 3 in a casing 4. The screw fluid machine 1 sucks the gas refrigerant sucked into the screw fluid machine 1 from the suction port 15 into the working chamber from the suction port 10 of the working chamber after passing through the motor 14. Then, the gas refrigerant is compressed and discharged from the discharge port 16 to the outside of the screw fluid machine 1 via the discharge port 11 of the working chamber. The compression unit 2 includes a male rotor 5 and a female rotor 6 that rotate while being engaged with each other by a motor 14 disposed in the drive unit 3, a casing 4 that houses the male rotor 5 and the female rotor 6, a male rotor 5, and a female rotor. There are provided shaft support means 12a, 12b, 13a, 13b for rotatably supporting the rotor 6. The tooth grooves 5a and 6a of the male rotor 5 and the female rotor 6, the bore of the casing (wall surface facing each rotor in the radial direction) 7, the suction end face 8 of the casing, and the discharge end face 9 of the casing form a plurality of working chambers. To do.

圧縮行程について説明する。各ロータ5、6がモータ14により回転させられると作動室はロータの吸込側端部で生成されて軸方向に移動しながら内容積を拡大した後、縮小に転じてロータの吐出側端部で消滅する。作動室は内容積拡大中にケーシングに形成された吸込ポート10と連通してガス冷媒を吸込み、作動室容積がほぼ最大の時に吸込口の輪郭から外れて吸込口を閉口して吸込が完了する。その後の作動室容積の縮小により内部に閉じ込められたガス冷媒の圧縮が開始して作動室内圧が上昇し、さらに作動室が軸方向に移動して圧縮が進むと、作動室は吐出ポート11に開口して圧縮を終了し吐出を開始する。   The compression process will be described. When each of the rotors 5 and 6 is rotated by the motor 14, the working chamber is generated at the suction side end portion of the rotor and moves in the axial direction. Disappear. The working chamber communicates with the suction port 10 formed in the casing during expansion of the internal volume and sucks the gas refrigerant. When the working chamber volume is almost the maximum, the working chamber deviates from the outline of the suction port and the suction port is closed to complete the suction. . When the working chamber volume is subsequently reduced, compression of the gas refrigerant confined in the inside starts, the working chamber pressure rises, and when the working chamber moves in the axial direction and the compression proceeds, the working chamber moves to the discharge port 11. Open, finish compression and start dispensing.

インジェクション部17の構成について説明する。インジェクション部17は、ケーシングボア7壁面に配設した作動室との連通孔であるインジェクションポート17aと、インジェクションポート17aとの連通路であるインジェクション流路17bから構成される(図2には、インジェクションポート17aのみ表記)。インジェクション流路17bには、冷凍サイクルから供給される冷媒が通過する。   The configuration of the injection unit 17 will be described. The injection part 17 is composed of an injection port 17a which is a communication hole with a working chamber disposed on the wall surface of the casing bore 7 and an injection flow path 17b which is a communication path with the injection port 17a (in FIG. Only the port 17a is shown). The refrigerant supplied from the refrigeration cycle passes through the injection flow path 17b.

続いて、図3、4を用いて、作動室での圧縮動作とインジェクション動作を説明する。図3は、図2のB部斜視図であり、ロータのみを表示する。図3に示した矢印は、雄ロータ5と雌ロータ6の回転方向を示す。図4(a)は、図3の上面図を示す。図4(b)は、ケーシングボア7の展開図であり、代表回転位置において構成される複数の作動室22a〜22f、23a〜23gを示す。これら図3、図4において、雄ロータ5は4枚の歯20a〜20dを有し、雌ロータ6は6枚の歯21a〜21fを有しており、ケーシングの吸込端面8側にて雄ロータ5の歯20aが雌ロータ6の歯21f、21aの間の歯溝に噛合った状態を示す。   Subsequently, the compression operation and the injection operation in the working chamber will be described with reference to FIGS. FIG. 3 is a perspective view of part B of FIG. 2 and only the rotor is displayed. The arrows shown in FIG. 3 indicate the rotation directions of the male rotor 5 and the female rotor 6. FIG. 4A shows a top view of FIG. FIG. 4B is a development view of the casing bore 7 and shows a plurality of working chambers 22a to 22f and 23a to 23g configured at the representative rotational positions. 3 and 4, the male rotor 5 has four teeth 20a to 20d, the female rotor 6 has six teeth 21a to 21f, and the male rotor on the suction end face 8 side of the casing. 5 shows a state in which the fifth tooth 20a is engaged with the tooth gap between the teeth 21f and 21a of the female rotor 6.

作動室の構成について説明する。雄ロータ5側の作動室は、雄ロータ5の歯20a、20bの間の歯溝に形成され雄ロータ5及び雌ロータ6の噛合いで区切られた吸込側の作動室22aと、雄ロータ5の歯20b、20cの間の歯溝に形成され雄ロータ5及び雌ロータ6の噛合いで区切られた吸込側の作動室22bと、雄ロータ5の歯20c、20dの間の歯溝に形成され雄ロータ5及び雌ロータ6の噛合いで区切られた吸込側の作動室22cと、雄ロータ5の歯20d、20aの間の歯溝に形成され雄ロータ5及び雌ロータ6の噛合いで区切られた吐出側の作動室22dと、雄ロータ5の歯20a、20bの間の歯溝に形成され雄ロータ5及び雌ロータ6の噛合いで区切られた吐出側の作動室22eと、雄ロータ5の歯20b、20cの間の歯溝に形成され雄ロータ5及び雌ロータ6の噛合いで区切られた吐出側の作動室22fと、で構成される。雄ロータ5側の作動室22a、22b、22cは、吸込ポート10を介しガス冷媒を吸込み、雄ロータ5側の作動室22e、22fは、吐出ポート11を介してガス冷媒を吐出する。   The configuration of the working chamber will be described. The working chamber on the male rotor 5 side is formed in a tooth space between the teeth 20 a and 20 b of the male rotor 5, and is divided by the engagement of the male rotor 5 and the female rotor 6. The suction side working chamber 22b formed in the tooth gap between the teeth 20b and 20c and divided by the engagement of the male rotor 5 and the female rotor 6 and the tooth groove between the teeth 20c and 20d of the male rotor 5 are male. The suction side working chamber 22c divided by the engagement of the rotor 5 and the female rotor 6 and the discharge divided by the engagement of the male rotor 5 and the female rotor 6 are formed in the tooth gap between the teeth 20d and 20a of the male rotor 5. Side working chamber 22d, discharge side working chamber 22e formed in a tooth gap between teeth 20a, 20b of male rotor 5 and separated by engagement of male rotor 5 and female rotor 6, and teeth 20b of male rotor 5 , 20c, the male rotor 5 formed in the tooth gap A working chamber 22f of the discharge side, separated by engagement of the rotor 6, in constructed. The working chambers 22 a, 22 b and 22 c on the male rotor 5 side suck in the gas refrigerant through the suction port 10, and the working chambers 22 e and 22 f on the male rotor 5 side discharge the gas refrigerant through the discharge port 11.

雌ロータ6側の作動室は、雌ロータ6の歯21a、21bの間の歯溝に形成され雄ロータ5及び雌ロータ6の噛合いで区切られた吸込側の作動室23aと、雌ロータ5の歯21b、21cの間の歯溝に形成され雄ロータ5及び雌ロータ6の噛合いで区切られた吸込側の作動室23bと、雌ロータ5の歯21c、21dの間の歯溝に形成された吸込側の作動室23cと、雌ロータ6の歯21d、21eの間の歯溝に形成された作動室23dと、雌ロータ6の歯21e、21fの間の歯溝に形成され雄ロータ5及び雌ロータ6の噛合いで区切られた吐出側の作動室23eと、雌ロータ6の歯21f、21aの間の歯溝に形成され雄ロータ5及び雌ロータ6の噛合いで区切られた吐出側の作動室23fと、雌ロータ2の歯21a、21bの間の歯溝に形成され雄ロータ5及び雌ロータ6の噛合いで区切られた吐出側の作動室23gとで構成される。雌ロータ6側の作動室23a、23b、23cは、吸込ポート10を介しガス冷媒を吸込み、雌ロータ6側の作動室23f、23gは、吐出ポート11を介してガス冷媒を吐出する。   The working chamber on the female rotor 6 side is formed in a tooth gap between the teeth 21 a and 21 b of the female rotor 6, and is divided by the engagement of the male rotor 5 and the female rotor 6. The suction-side working chamber 23b formed in the tooth gap between the teeth 21b and 21c and divided by the engagement of the male rotor 5 and the female rotor 6 and the tooth gap between the teeth 21c and 21d of the female rotor 5 are formed. The working chamber 23c on the suction side, the working chamber 23d formed in the tooth groove between the teeth 21d and 21e of the female rotor 6, and the male rotor 5 formed in the tooth groove between the teeth 21e and 21f of the female rotor 6 and The discharge-side operation chamber 23e partitioned by the engagement of the female rotor 6 and the tooth-side groove between the teeth 21f and 21a of the female rotor 6 and the discharge-side operation partitioned by the engagement of the male rotor 5 and the female rotor 6 Tooth space between the chamber 23f and the teeth 21a, 21b of the female rotor 2 It is formed composed of the working chamber 23g of the separated discharge side meshing of the male rotor 5 and a female rotor 6. The working chambers 23 a, 23 b and 23 c on the female rotor 6 side suck in the gas refrigerant through the suction port 10, and the working chambers 23 f and 23 g on the female rotor 6 side discharge the gas refrigerant through the discharge port 11.

続いて、図5を用いて、吸込完了後から圧縮開始までの作動室とインジェクションポート17aの関係及び吸込ポート10、吐出ポート11との関係を説明する。なお、図5に示すm1〜m5及びf1〜f5は、図4のものと同一である。吸込ポート10は、雄ロータ5側の吸込ポート10a、雌ロータ6側の吸込ポート10b、吐出端面側の吸込ポート10cから構成される。吐出ポート11は、雄ロータ5側の吐出ポート11a、雌ロータ6側の吐出ポート11bから構成される。雄ロータ5側の作動室であって吸込を完了した作動室30は、ケーシングの吸込側端面8と吐出側端面9と雄ロータ5の歯溝のみで作動室を構成しており、作動室の端部32が吐出開始となるm5、f5に到達するまでは、容積一定で、他の作動室や吸込ポートと連通することはない。また、雌ロータ6側の作動室であって吸込を完了した作動室31aは、ケーシングの吸込側端面8と吐出側端面9と雌ロータ6の歯溝のみで作動室を構成しており、作動室の端部33aが吐出開始となるm5、f5に到達するまでは、容積一定で、他の作動室や吸込ポートと連通することはない。作動室の端部33aが吐出開始となるm5、f5に到達し、作動室の端部が33bになった際の雌ロータ側作動室を31bに示す。この構成によれば、雌側の吸込完了後作動室31a、31bは、モータの回転に伴って作動室が移動しても同一の容積を保ったままであり、かつ、雌側の吸込完了後作動室31a、31bは重なり合うことなく、非重合区間34を構成することができる。この非重合区間34にインジェクションポート17aを配設することで、吸込完了後から圧縮開始までの間であって容積が一定の雌ロータ6側作動室にインジェクションを行うことが可能になる。   Next, the relationship between the working chamber and the injection port 17a from the completion of suction to the start of compression and the relationship between the suction port 10 and the discharge port 11 will be described with reference to FIG. Note that m1 to m5 and f1 to f5 shown in FIG. 5 are the same as those in FIG. The suction port 10 includes a suction port 10a on the male rotor 5 side, a suction port 10b on the female rotor 6 side, and a suction port 10c on the discharge end face side. The discharge port 11 includes a discharge port 11a on the male rotor 5 side and a discharge port 11b on the female rotor 6 side. The working chamber 30 which is the working chamber on the side of the male rotor 5 and has completed the suction constitutes the working chamber only by the suction side end surface 8, the discharge side end surface 9 and the tooth groove of the male rotor 5 of the casing. Until the end portion 32 reaches m5 and f5 at which discharge starts, the volume is constant and it does not communicate with other working chambers or suction ports. The working chamber 31a, which is the working chamber on the female rotor 6 side and has completed the suction, constitutes the working chamber only by the suction side end surface 8, the discharge side end surface 9 and the tooth groove of the female rotor 6 of the casing, Until the chamber end 33a reaches m5 and f5 at which discharge starts, the volume is constant and the chamber does not communicate with other working chambers or suction ports. A female rotor side working chamber 31b when the working chamber end 33a reaches m5 and f5 at which discharge starts and the working chamber end 33b is shown is 31b. According to this configuration, the working chambers 31a and 31b after completion of the suction on the female side remain the same volume even when the working chamber moves as the motor rotates, and the operation chambers are operated after the suction on the female side is completed. The chambers 31a and 31b can constitute the non-polymerization section 34 without overlapping. By disposing the injection port 17a in the non-polymerization section 34, it is possible to perform injection into the female rotor 6 side working chamber having a constant volume from the completion of suction to the start of compression.

なお、図5に示した構成では、インジェクションは雌ロータ6側だけに行えば良い場合であるため、吸込完了後の雄ロータ5側作動室には、雌ロータ5側の作動室のような非重合区間34を構成していないが、必要に応じて構成しても良い。なお、図5からも分かるように、雄ロータ5の歯数が少ない場合は、雌ロータ6側作動室の非重合区間34に相当する非重合区間を吸込完了後から圧縮開始前の間で雄ロータ5側作動室に設けることは難しく、本実施の形態のように雌ロータ6側の作動室だけに非重合区間を設ける方が構成しやすくなるという利点がある。雌ロータ6側の作動室だけに非重合区間を設け、雄ロータ5側の作動室には非重合区間を設けない場合は、雄ロータ5側の作動室が吸込を完了した後、雄ロータ5の歯2枚に相当する雄ロータ回転角度以下の回転角度で、雄ロータ5側の作動室が圧縮行程を開始するように構成すれば良い。   In the configuration shown in FIG. 5, since it is only necessary to perform the injection only on the female rotor 6 side, the male rotor 5 side working chamber after the suction is completed has a non-removal like a working chamber on the female rotor 5 side. Although the superposition | polymerization area 34 is not comprised, you may comprise as needed. As can be seen from FIG. 5, when the number of teeth of the male rotor 5 is small, the non-polymerization section corresponding to the non-polymerization section 34 of the working chamber on the female rotor 6 side is set between the completion of suction and before the start of compression. It is difficult to provide in the working chamber on the rotor 5 side, and there is an advantage that it is easier to configure the non-overlapping section only in the working chamber on the female rotor 6 side as in the present embodiment. In the case where the non-polymerization section is provided only in the working chamber on the female rotor 6 side and the non-polymerization section is not provided in the working chamber on the male rotor 5 side, the male rotor 5 is moved after the working chamber on the male rotor 5 side completes the suction. What is necessary is just to comprise so that the working chamber by the side of the male rotor 5 may start a compression stroke with the rotation angle below the male rotor rotation angle equivalent to these 2 teeth.

本実施の形態の効果について説明する。インジェクション先の作動室が、吸込完了後であって圧縮開始前の雄雌独立し、かつ容積が一定の作動室であることから、インジェクション先作動室の圧力変動や、圧力自体が高いことにより十分なインジェクション流量を流せないという課題を解消することが可能となる。さらに、雌ロータ側の作動室にのみインジェクションする場合には、雌側の作動室と雄側の作動室が圧縮行程になり再度噛合いを始めても、雄ロータ側の作動室は、圧縮開始行程に入る前に吸込を完了していることから、雌側作動室にインジェクションした冷媒が雄側作動室を経由して吸込空間へ抜け出すことがないから、スクリュー流体機械のエネルギ効率を低下させることがない。加えて、インジェクション先作動室の圧力変動が小さいことから、振動や配管脈動を低減することができ、信頼性を向上することもできる。さらに、吸込完了後から圧縮開始までの間に低温の冷媒インジェクションを行うことになるので、圧縮開始前の冷媒温度を下げることができて圧縮行程における冷媒の状態変化を断熱圧縮へ近づけることが可能になるため、スクリュー流体機械のエネルギ効率を向上させることができる。   The effect of this embodiment will be described. Because the working chamber at the injection destination is a male and female independent chamber after the suction is completed and before compression starts, and the volume is constant, it is sufficient that the pressure fluctuation in the injection working chamber and the pressure itself are high. It becomes possible to solve the problem that a large injection flow rate cannot be flowed. Further, in the case of injection only into the working chamber on the female rotor side, the working chamber on the male rotor side is in the compression start stroke even if the female working chamber and the male working chamber enter the compression stroke and start to engage again. Since the suction is completed before entering, the refrigerant injected into the female working chamber does not escape to the suction space via the male working chamber, which can reduce the energy efficiency of the screw fluid machine. Absent. In addition, since the pressure fluctuation in the injection destination working chamber is small, vibration and piping pulsation can be reduced, and reliability can be improved. Furthermore, since the low-temperature refrigerant injection is performed between the completion of suction and the start of compression, the refrigerant temperature before the start of compression can be lowered, and the change in refrigerant state in the compression stroke can be brought closer to adiabatic compression. Therefore, the energy efficiency of the screw fluid machine can be improved.

本発明を実施するための第2の形態を示すスクリュー流体機械について説明する。なお、第1の形態と異なる点のみを説明する。   A screw fluid machine showing a second embodiment for carrying out the present invention will be described. Only differences from the first embodiment will be described.

雄ロータの歯数Mが4、雌ロータの歯数Fが6の場合(F−M=2)であれば、図5に示すように雌側作動室に、吸込完了後から圧縮開始までの間に容積一定の区間を設けるとともに、インジェクションポート17aを非重合区間34内に設けることが可能になる。一方で、雄ロータの歯数Mは4のままで、雌ロータの歯数Fを5にした場合(F−M=1)、雌側の吸込完了後作動室は、重なり合うか、又は、重ならなくとも非重合区間を十分に確保できないため、インジェクションポートを配設できないか、又は、十分なインジェクションポート面積を確保することができない。従って、吸込完了後に圧縮開始前までの区間で容積一定となる作動室であって、インジェクションポートの配設も可能となる作動室を構成するためには、雄ロータの歯数Mと雌ロータの歯数Fとが、「F−M≧2(数式1)」の関係にあることが望ましい。数式1の関係にあるスクリュー流体機械であれば、第1の実施の形態同様の効果を得ることができる。   If the number of teeth M of the male rotor is 4 and the number of teeth F of the female rotor is 6 (F−M = 2), as shown in FIG. It is possible to provide a section having a constant volume between them and to provide the injection port 17a in the non-polymerization section 34. On the other hand, when the number of teeth M of the male rotor remains 4 and the number of teeth F of the female rotor is set to 5 (F−M = 1), the working chambers on the female side overlap after completion of suction. Even if not, the non-polymerization section cannot be secured sufficiently, so that the injection port cannot be provided, or a sufficient injection port area cannot be secured. Therefore, in order to construct a working chamber in which the volume is constant in the section from the completion of suction to before the start of compression, and in which an injection port can be provided, the number of teeth M of the male rotor and the female rotor It is desirable that the number of teeth F has a relationship of “F−M ≧ 2 (Equation 1)”. If it is the screw fluid machine which has the relation of Numerical formula 1, the same effect as a 1st embodiment can be acquired.

本発明を実施するための第3の形態を示す冷凍サイクル装置について、図6を用いて説明する。本実施の形態は、第1、2の実施の形態に示したスクリュー流体機械を用いた冷凍サイクル装置に関する。   A refrigeration cycle apparatus showing a third embodiment for carrying out the present invention will be described with reference to FIG. The present embodiment relates to a refrigeration cycle apparatus using the screw fluid machine shown in the first and second embodiments.

冷凍サイクル装置は、第1、2の実施の形態で示したスクリュー流体機械を圧縮機40として用いる。圧縮機40の吐出口40bから吐出されたガス冷媒を凝縮する凝縮器41と、凝縮器41から流出した液冷媒の膨張手段42と、膨張手段42にて膨張した冷媒を蒸発させてガス冷媒とし、そのガス冷媒を圧縮機40の吸込口40aに供給する蒸発器43と、を順次接続して主流路48を構成する。さらに、凝縮器41と膨張手段42との間の主流路48から分岐して圧縮機40のインジェクションポート40cに連結する副流路47と、副流路47には中間熱交換用膨張手段44と、中間熱交換用膨張手段44の出口側の冷媒と主流路48の冷媒とを熱交換する中間熱交換器45と、中間熱交換器45と圧縮機40のインジェクションポートの間に配置された流量調整手段46と、を有する。なお、図6においては、圧縮機40の吸込口40aとインジェクションポート40cは、模式的に同じ位置にて記載しているが、第1、2の実施の形態で説明したように位置関係や構造は異なる。   The refrigeration cycle apparatus uses the screw fluid machine shown in the first and second embodiments as the compressor 40. The condenser 41 for condensing the gas refrigerant discharged from the discharge port 40b of the compressor 40, the expansion means 42 for the liquid refrigerant flowing out from the condenser 41, and the refrigerant expanded by the expansion means 42 are evaporated to form a gas refrigerant. The main flow path 48 is configured by sequentially connecting the evaporator 43 that supplies the gas refrigerant to the suction port 40a of the compressor 40. Furthermore, a sub-flow channel 47 branched from the main flow channel 48 between the condenser 41 and the expansion means 42 and connected to the injection port 40c of the compressor 40, and an intermediate heat exchange expansion means 44 and The intermediate heat exchanger 45 for exchanging heat between the refrigerant on the outlet side of the expansion means for intermediate heat exchange 44 and the refrigerant in the main flow path 48, and the flow rate disposed between the intermediate heat exchanger 45 and the injection port of the compressor 40 Adjusting means 46. In FIG. 6, the suction port 40 a and the injection port 40 c of the compressor 40 are schematically illustrated at the same position, but as described in the first and second embodiments, the positional relationship and structure Is different.

本実施の形態の効果について説明する。副流路47に中間熱交換用膨張手段44と中間熱交換器45を設けることで、副流路47を流れる液冷媒を減圧してガス化させて、凝縮器41を通過してきた主流路48の高圧な液冷媒を冷却し、冷凍能力を向上させることができる。ここで、圧縮機40に第1、2の実施の形態で示したスクリュー流体機械を用いる。従って、インジェクションポート40cに連通する作動室は、吸込完了後であって圧縮開始前、かつ容積一定であることから、作動室内圧は、均圧、且つ、吸込圧力相当の低い圧力になる。従来の作動室内圧のように圧力変動があって、かつ、圧縮途中の高めの圧力である場合に比べて、副流路47での減圧幅を大きく確保することができるため、冷凍能力を確実に向上させることが可能になる。また、圧力変動の無い作動室へインジェクションができるので、振動や配管脈動の問題を軽減することができる。なお、使用状況に応じては、中間熱交換器45と圧縮機40のインジェクションポート40cの間に設けた流量調整手段46にて、インジェクション量の調整を行うことで、様々な運転状況に対応したインジェクション効果を得ることが可能になる。   The effect of this embodiment will be described. By providing the intermediate heat exchange expansion means 44 and the intermediate heat exchanger 45 in the sub-channel 47, the liquid refrigerant flowing through the sub-channel 47 is decompressed and gasified, and the main channel 48 that has passed through the condenser 41. The high-pressure liquid refrigerant can be cooled and the refrigerating capacity can be improved. Here, the screw fluid machine shown in the first and second embodiments is used for the compressor 40. Accordingly, since the working chamber communicating with the injection port 40c is after completion of suction and before compression starts and has a constant volume, the pressure in the working chamber becomes equal and low pressure corresponding to the suction pressure. Compared to the case where there is pressure fluctuation as in the conventional working chamber pressure and the pressure is higher during compression, the pressure reduction width in the sub-channel 47 can be secured larger, so that the refrigerating capacity is ensured. It becomes possible to improve. In addition, since the injection into the working chamber without pressure fluctuation can be performed, problems of vibration and piping pulsation can be reduced. It should be noted that depending on the usage situation, the flow rate adjusting means 46 provided between the intermediate heat exchanger 45 and the injection port 40c of the compressor 40 can be used to adjust the injection amount to cope with various operating situations. An injection effect can be obtained.

本発明を実施するための第4の形態を示す冷凍サイクル装置について、図7を用いて説明する。本実施の形態は、第1、2の実施の形態に示したスクリュー流体機械を用いた冷凍サイクル装置に関する。   A refrigeration cycle apparatus showing a fourth embodiment for carrying out the present invention will be described with reference to FIG. The present embodiment relates to a refrigeration cycle apparatus using the screw fluid machine shown in the first and second embodiments.

冷凍サイクル装置の主流路58は、第3の実施の形態と同様であり、圧縮機50には第1、2の実施の形態で示したスクリュー流体機械を用いる。圧縮機50の吐出口50bから吐出されたガス冷媒を凝縮する凝縮器51と、凝縮器51から流出した液冷媒の膨張手段52と、膨張手段52にて膨張した冷媒を蒸発させてガス冷媒とし、そのガス冷媒を圧縮機50の吸込口50aに供給する蒸発器53と、を順次接続して主流路58を構成する。さらに、凝縮器51と膨張手段52との間に気液分離器前膨張手段54と気液分離器55を配設して冷媒を気液に分離し、気液分離器55での液冷媒は主流路58の膨張手段52へ流出させ、気液分離器55でのガス冷媒を圧縮機50のインジェクションポート50cに連結する副流路57と、副流路57には気液分離器55と圧縮機50のインジェクションポートの間に配置された流量調整手段56と、を有する。なお、図7においては、圧縮機50の吸込口50aとインジェクションポート50cは、模式的に同じ位置にて記載しているが、第1、2の実施の形態で説明したように位置関係や構造は異なる。   The main flow path 58 of the refrigeration cycle apparatus is the same as that in the third embodiment, and the screw fluid machine shown in the first and second embodiments is used for the compressor 50. The condenser 51 that condenses the gas refrigerant discharged from the discharge port 50b of the compressor 50, the expansion means 52 for the liquid refrigerant that has flowed out of the condenser 51, and the refrigerant expanded in the expansion means 52 is evaporated to form a gas refrigerant. The main flow path 58 is configured by sequentially connecting the evaporator 53 that supplies the gas refrigerant to the suction port 50 a of the compressor 50. Further, a gas-liquid separator pre-expansion means 54 and a gas-liquid separator 55 are disposed between the condenser 51 and the expansion means 52 to separate the refrigerant into gas-liquid, and the liquid refrigerant in the gas-liquid separator 55 is The sub-flow channel 57 that flows out to the expansion means 52 of the main flow channel 58 and connects the gas refrigerant in the gas-liquid separator 55 to the injection port 50 c of the compressor 50, and the sub-flow channel 57 is compressed with the gas-liquid separator 55. Flow rate adjusting means 56 disposed between the injection ports of the machine 50. In FIG. 7, the suction port 50a and the injection port 50c of the compressor 50 are schematically illustrated at the same position, but as described in the first and second embodiments, the positional relationship and structure Is different.

本実施の形態の効果について説明する。気液分離器55にてガス冷媒と液冷媒に分離し、ガス冷媒は副流路57を経由して圧縮機50の作動室にインジェクションし、液冷媒は主流路58に戻すことで、冷凍能力の増加や成績係数の向上を図ることができる。ここでは、圧縮機50に第1、2の実施の形態で示したスクリュー流体機械を用いることから、インジェクションポート50cに連通する作動室は、吸込完了後であって圧縮開始前、かつ容積一定であることから、作動室内圧は、均圧、且つ、吸込圧力相当の低い圧力になる。従来の作動室内圧の様に圧力変動があって、かつ、圧縮途中の高めの圧力である場合に比べて、気液分離器55での減圧幅を大きく確保することが可能になり、圧力変動の無い作動室へインジェクションができるので、振動や配管脈動の問題を軽減することができる。なお、使用状況に応じては、気液分離器55と圧縮機50のインジェクションポート50cの間に設けた流量調整手段56にて、インジェクション量の調整を行うことで、様々な運転状況に対応したインジェクション効果を得ることが可能になる。   The effect of this embodiment will be described. The gas-liquid separator 55 separates the gas refrigerant and the liquid refrigerant, the gas refrigerant is injected into the working chamber of the compressor 50 via the sub-flow path 57, and the liquid refrigerant is returned to the main flow path 58, so that the refrigerating capacity Can be increased and the coefficient of performance can be improved. Here, since the screw fluid machine shown in the first and second embodiments is used for the compressor 50, the working chamber communicated with the injection port 50c is after the completion of suction, before the start of compression, and at a constant volume. For this reason, the working chamber pressure is equal to a low pressure corresponding to the suction pressure. Compared to the case where the pressure fluctuates as in the conventional working chamber pressure and is a high pressure in the middle of compression, it is possible to ensure a large pressure reduction range in the gas-liquid separator 55. Since the injection can be performed into a working chamber without any problems, vibration and piping pulsation problems can be reduced. Depending on the use situation, the flow rate adjusting means 56 provided between the gas-liquid separator 55 and the injection port 50c of the compressor 50 can be used to adjust the injection amount to cope with various operating situations. An injection effect can be obtained.

1・・スクリュー流体機械
2・・圧縮部
3・・駆動部
4・・ケーシング
5・・雄ロータ
6・・雌ロータ
7・・ケーシングのボア
8・・ケーシングの吸込端面
9・・ケーシングの吐出端面
10、10a、10b、10c・・吸込ポート
11、11a、11b・・吐出ポート
12a、12b・・雄ロータの軸支手段
13a、13b・・雌ロータの軸支手段
14・・モータ
15・・吸込口
16・・吐出口、
17・・インジェクション部
17a・・インジェクションポート
17b・・インジェクション流路
20a〜20d・・雄ロータの歯
21a〜21f・・雌ロータの歯
22a〜22f・・雄ロータの作動室
23a〜23g・・雌ロータの作動室
30・・雄ロータの吸込完了作動室
31a、31b・・雌ロータの吸込完了作動室
32・・雌ロータの作動室端部
33a、33b・・雌ロータの作動室端部
40、50・・圧縮機
41、51・・凝縮器
42、52・・膨張手段
43、53・・蒸発器
46、56・・流量調整手段
47、57・・副流路
48、58・・主流路
44・・中間熱交換用膨張手段
45・・中間熱交換器
54・・気液分離器前膨張手段
55・・気液分離器
1. ・ Screw fluid machinery
2 ・ ・ Compression part
3.Drive unit
4.Case
5 ・ ・ Male Rotor
6 .. Female rotor
7 .. Bore of casing
8 .. Suction end face of casing
9 ・ ・ Discharge end face of casing
10, 10a, 10b, 10c ... Suction port
11, 11a, 11b ... Discharge port
12a, 12b .. Male rotor shaft support means
13a, 13b .. Means for supporting female rotor
14. ・ Motor
15.Suction port
16. ・ Discharge port,
17 ・ ・ Injection
17a ・ Injection port
17b ・ ・ Injection flow path
20a ~ 20d ・ ・ Tooth of male rotor
21a to 21f ... Female rotor teeth
22a-22f .. Male rotor working chamber
23a to 23g .. Female rotor working chamber
30 .. Completed suction chamber for male rotor
31a, 31b .. Female rotor suction completion working chamber
32 .. End of working chamber of female rotor
33a, 33b .. working chamber end of female rotor
40, 50 ・ ・ Compressor
41, 51 ... Condenser
42, 52 .. Expansion means
43, 53 ... Evaporator
46, 56 .. Flow rate adjustment means
47, 57 ...
48, 58 ... Main flow path
44 ・ ・ Expansion means for intermediate heat exchange
45 ・ ・ Intermediate heat exchanger
54 .. Expansion means before gas-liquid separator
55 ・ ・ Gas-liquid separator

Claims (7)

互いに噛合いながら回転する雄ロータ及び雌ロータと、
吸込端面、吐出端面、及び、ボアを有し、前記雄ロータ及び前記雌ロータを収納するケーシングと、
前記雄ロータ、前記雌ロータ、及び、前記ケーシングにより構成された複数の作動室と、
前記作動室に形成され、前記作動室に冷媒をインジェクションするためのインジェクションポートと、
前記ケーシングに設けた吸込ポートと、
前記ケーシングに設けた吐出ポートと、
前記雄ロータ及び前記雌ロータを回転自在に軸支する軸支手段と、
を備え、
冷媒吸込完了後に容積が一定となる前記作動室を構成し、
前記インジェクションポートは、冷媒吸込完了後の容積が一定となる前記作動室に開口し、前記作動室の圧縮行程前に閉口するスクリュー流体機械。
A male rotor and a female rotor rotating while meshing with each other;
A casing having a suction end face, a discharge end face, and a bore, and housing the male rotor and the female rotor;
A plurality of working chambers configured by the male rotor, the female rotor, and the casing;
An injection port formed in the working chamber and for injecting refrigerant into the working chamber;
A suction port provided in the casing;
A discharge port provided in the casing;
Shaft support means for rotatably supporting the male rotor and the female rotor;
With
Constituting the working chamber having a constant volume after completion of refrigerant suction;
The injection port is a screw fluid machine that opens to the working chamber where the volume after completion of refrigerant suction is constant and closes before the compression stroke of the working chamber.
請求項1において、冷媒吸込完了後に容積が一定となる前記作動室は、前記雄ロータ、前記ボア、前記吸込端面、及び、前記吐出端面、又は、前記雌ロータ、前記ボア、前記吸込端面、及び、前記吐出端面により形成されるスクリュー流体機械。   In Claim 1, the working chamber whose volume becomes constant after completion of refrigerant suction is the male rotor, the bore, the suction end face, and the discharge end face, or the female rotor, the bore, the suction end face, and A screw fluid machine formed by the discharge end face. 請求項2において、前記インジェクションポートは、前記雌ロータ、前記ボア、前記吸込端面、及び、前記吐出端面により形成された前記作動室にのみが配設されるスクリュー流体機械。   3. The screw fluid machine according to claim 2, wherein the injection port is disposed only in the working chamber formed by the female rotor, the bore, the suction end surface, and the discharge end surface. 請求項3において、前記雌ロータ、前記ボア、前記吸込端面、及び、前記吐出端面により形成された前記作動室は、冷媒吸込完了後、前記雄ロータの歯2枚に相当する前記雄ロータ回転角度以下の回転角度で圧縮行程を開始するスクリュー流体機械。   4. The male rotor rotation angle according to claim 3, wherein the working chamber formed by the female rotor, the bore, the suction end face, and the discharge end face is equivalent to two teeth of the male rotor after completion of refrigerant suction. Screw fluid machine that starts the compression stroke at the following rotation angles. 請求項1乃至4の何れかにおいて、前記雄ロータの歯数Mと前記雌ロータの歯数Fとが、F−M≧2の関係にあるスクリュー流体機械。   5. The screw fluid machine according to claim 1, wherein the number M of teeth of the male rotor and the number of teeth F of the female rotor are in a relationship of F−M ≧ 2. 請求項1乃至5の何れかに記載されたスクリュー流体機械と、
前記スクリュー流体機械から吐出されたガス冷媒を凝縮する凝縮器と、
前記凝縮器から流出した冷媒を膨張させる膨張手段と、
前記膨張手段にて膨張させて冷媒を蒸発させる蒸発器と、
を順次接続した主流路と、
前記凝縮器と前記膨張手段との間の主流路から分岐して、前記スクリュー流体機械の前記インジェクションポートに連結する副流路と、
前記副流路に配置され、前記副流路を流れる冷媒を膨張させる中間熱交換用膨張手段と、
前記凝縮機出口側の前記主流路を流れる冷媒と、前記中間熱交換用膨張手段出口側の前記副流路を流れる冷媒と、を熱交換する中間熱交換器と、
を備えた冷凍サイクル装置。
A screw fluid machine according to any of claims 1 to 5,
A condenser for condensing gas refrigerant discharged from the screw fluid machine;
Expansion means for expanding the refrigerant flowing out of the condenser;
An evaporator that is expanded by the expansion means to evaporate the refrigerant;
A main flow path sequentially connected,
A sub-flow path branched from the main flow path between the condenser and the expansion means and connected to the injection port of the screw fluid machine;
An intermediate heat exchange expansion means that is disposed in the subflow path and expands the refrigerant flowing through the subflow path;
An intermediate heat exchanger for exchanging heat between the refrigerant flowing through the main channel on the outlet side of the condenser and the refrigerant flowing through the sub-channel on the outlet side of the expansion means for intermediate heat exchange;
A refrigeration cycle apparatus comprising:
請求項1乃至5の何れかに記載されたスクリュー流体機械と、
前記スクリュー流体機械から吐出されたガス冷媒を凝縮する凝縮器と、
前記凝縮器から流出した冷媒を膨張させる膨張手段と、
前記膨張手段にて膨張させた冷媒を蒸発させる蒸発器と、
を順次接続した主流路と、
前記凝縮器と前記膨張手段との間に配設され、冷媒を膨張させる気液分離機前膨張手段、及び、気液分離器と、
前記気液分離器において前記主回路から分岐して、前記スクリュー流体機械の前記インジェクションポートに連結する副流路と、
を備え、
前記気液分離器で分離された液冷媒は前記主流路を介して前記膨張手段へ流入し、
前記気液分離器で分離されたガス冷媒は前記副流路を介して副流路前記スクリュー流体機械の前記インジェクションポートに流入する
冷凍サイクル装置。
A screw fluid machine according to any of claims 1 to 5,
A condenser for condensing gas refrigerant discharged from the screw fluid machine;
Expansion means for expanding the refrigerant flowing out of the condenser;
An evaporator for evaporating the refrigerant expanded by the expansion means;
A main flow path sequentially connected,
A gas-liquid separator pre-expansion means that is disposed between the condenser and the expansion means and expands the refrigerant; and a gas-liquid separator;
A sub-flow path branched from the main circuit in the gas-liquid separator and connected to the injection port of the screw fluid machine;
With
The liquid refrigerant separated by the gas-liquid separator flows into the expansion means via the main flow path,
The refrigeration cycle apparatus in which the gas refrigerant separated by the gas-liquid separator flows into the injection port of the screw fluid machine via the sub-flow path.
JP2014030174A 2014-02-20 2014-02-20 Screw fluid machine and refrigeration cycle apparatus Active JP6259309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014030174A JP6259309B2 (en) 2014-02-20 2014-02-20 Screw fluid machine and refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014030174A JP6259309B2 (en) 2014-02-20 2014-02-20 Screw fluid machine and refrigeration cycle apparatus

Publications (2)

Publication Number Publication Date
JP2015155652A true JP2015155652A (en) 2015-08-27
JP6259309B2 JP6259309B2 (en) 2018-01-10

Family

ID=54775097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014030174A Active JP6259309B2 (en) 2014-02-20 2014-02-20 Screw fluid machine and refrigeration cycle apparatus

Country Status (1)

Country Link
JP (1) JP6259309B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109563835A (en) * 2016-08-23 2019-04-02 株式会社日立产机系统 Fluid machinery
WO2019093106A1 (en) * 2017-11-09 2019-05-16 株式会社神戸製鋼所 Liquid-cooled screw compressor
WO2019093107A1 (en) * 2017-11-09 2019-05-16 株式会社神戸製鋼所 Liquid-cooled screw compressor

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3568466A (en) * 1968-05-06 1971-03-09 Stal Refrigeration Ab Refrigeration system with multi-stage throttling
JPS50147209U (en) * 1974-05-22 1975-12-06
JPS5045539Y1 (en) * 1974-05-28 1975-12-23
US4062199A (en) * 1975-06-24 1977-12-13 Kabushiki Kaisha Maekawa Seisakusho Refrigerating apparatus
JPS55100079U (en) * 1979-12-27 1980-07-11
JPS56118988U (en) * 1981-01-21 1981-09-10
JPS63202796U (en) * 1987-06-19 1988-12-27
JPH0180688U (en) * 1987-11-19 1989-05-30
JPH0347495A (en) * 1989-07-13 1991-02-28 Kobe Steel Ltd Screw-type fluid machine
JPH06288369A (en) * 1993-04-06 1994-10-11 Hitachi Ltd Suction port of screw compressor
JP2003184768A (en) * 2001-12-12 2003-07-03 Hitachi Ltd Water jet type screw compressor
JP4140488B2 (en) * 2003-09-09 2008-08-27 ダイキン工業株式会社 Screw compressor and refrigeration equipment
JP2012127565A (en) * 2010-12-15 2012-07-05 Mitsubishi Electric Corp Refrigeration cycle device
JP2013064331A (en) * 2011-09-15 2013-04-11 Daikin Industries Ltd Screw compressor and refrigerating device

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3568466A (en) * 1968-05-06 1971-03-09 Stal Refrigeration Ab Refrigeration system with multi-stage throttling
JPS50147209U (en) * 1974-05-22 1975-12-06
JPS5045539Y1 (en) * 1974-05-28 1975-12-23
US4062199A (en) * 1975-06-24 1977-12-13 Kabushiki Kaisha Maekawa Seisakusho Refrigerating apparatus
JPS55100079U (en) * 1979-12-27 1980-07-11
JPS56118988U (en) * 1981-01-21 1981-09-10
JPS63202796U (en) * 1987-06-19 1988-12-27
JPH0180688U (en) * 1987-11-19 1989-05-30
JPH0347495A (en) * 1989-07-13 1991-02-28 Kobe Steel Ltd Screw-type fluid machine
JPH06288369A (en) * 1993-04-06 1994-10-11 Hitachi Ltd Suction port of screw compressor
JP2003184768A (en) * 2001-12-12 2003-07-03 Hitachi Ltd Water jet type screw compressor
JP4140488B2 (en) * 2003-09-09 2008-08-27 ダイキン工業株式会社 Screw compressor and refrigeration equipment
JP2012127565A (en) * 2010-12-15 2012-07-05 Mitsubishi Electric Corp Refrigeration cycle device
JP2013064331A (en) * 2011-09-15 2013-04-11 Daikin Industries Ltd Screw compressor and refrigerating device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109563835A (en) * 2016-08-23 2019-04-02 株式会社日立产机系统 Fluid machinery
CN109563835B (en) * 2016-08-23 2020-09-18 株式会社日立产机系统 Fluid machinery
WO2019093106A1 (en) * 2017-11-09 2019-05-16 株式会社神戸製鋼所 Liquid-cooled screw compressor
WO2019093107A1 (en) * 2017-11-09 2019-05-16 株式会社神戸製鋼所 Liquid-cooled screw compressor
JP2019085967A (en) * 2017-11-09 2019-06-06 株式会社神戸製鋼所 Liquid-cooled type screw compressor
CN111279080A (en) * 2017-11-09 2020-06-12 株式会社神户制钢所 Liquid-cooled screw compressor
CN111279080B (en) * 2017-11-09 2023-02-10 神钢压缩机株式会社 Liquid-cooled screw compressor

Also Published As

Publication number Publication date
JP6259309B2 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
US7914267B2 (en) Multistage compressor for a CO2 cycle that includes a rotary compressing mechanism and a scroll compressing mechanism
US9611849B2 (en) System including high-side and low-side compressors
JP5014880B2 (en) Single screw multistage compressor and refrigeration / cooling system using the same
JP5228905B2 (en) Refrigeration equipment
JP6259309B2 (en) Screw fluid machine and refrigeration cycle apparatus
JPWO2011148453A1 (en) Two-stage rotary compressor and heat pump device
JP5338314B2 (en) Compressor and refrigeration equipment
JP2012127565A (en) Refrigeration cycle device
KR101275921B1 (en) Hermetic type compressor
WO2020067196A1 (en) Multistage compression system
US20130136626A1 (en) Screw compressor with muffle structure and rotor seat thereof
JP2010106754A (en) Compressor unit
JP7025227B2 (en) Refrigeration equipment
JP6004004B2 (en) Turbo refrigerator
JP2012093017A (en) Refrigerating cycle device
JP5090932B2 (en) Cooling device for transcritical operation with economizer
JP6160502B2 (en) Refrigeration cycle equipment
JP6655534B2 (en) Compressor with oil separator
WO2011083510A1 (en) Refrigeration cycling device and expander installed in same
CN109642579A (en) Helical-lobe compressor and refrigerating circulatory device
JP2007127052A (en) Expansion machine and refrigeration cycle device using same
WO2012104934A1 (en) Scroll expander, and refrigeration cycle with the scroll expander
JP2015028313A (en) Axial vane type compressor
WO2015129169A1 (en) Compressor
JP5322016B2 (en) Single screw multistage compressor and refrigeration / cooling system using the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150820

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150903

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150904

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160404

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170718

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171208

R150 Certificate of patent or registration of utility model

Ref document number: 6259309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150