WO2011083510A1 - Refrigeration cycling device and expander installed in same - Google Patents

Refrigeration cycling device and expander installed in same Download PDF

Info

Publication number
WO2011083510A1
WO2011083510A1 PCT/JP2010/000060 JP2010000060W WO2011083510A1 WO 2011083510 A1 WO2011083510 A1 WO 2011083510A1 JP 2010000060 W JP2010000060 W JP 2010000060W WO 2011083510 A1 WO2011083510 A1 WO 2011083510A1
Authority
WO
WIPO (PCT)
Prior art keywords
expansion
sub
compression
refrigerant
refrigeration cycle
Prior art date
Application number
PCT/JP2010/000060
Other languages
French (fr)
Japanese (ja)
Inventor
角田昌之
石園文彦
永田英彰
下地美保子
関屋慎
幸田利秀
加賀邦彦
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2011548855A priority Critical patent/JPWO2011083510A1/en
Priority to PCT/JP2010/000060 priority patent/WO2011083510A1/en
Priority to EP10842035A priority patent/EP2522932A1/en
Publication of WO2011083510A1 publication Critical patent/WO2011083510A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/02Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F01C1/0207Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F01C1/0215Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • F01C1/0223Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving with symmetrical double wraps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C19/00Sealing arrangements in rotary-piston machines or engines
    • F01C19/08Axially-movable sealings for working fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • F04C18/0223Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving with symmetrical double wraps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Definitions

  • the present invention relates to a refrigeration cycle apparatus that recovers expansion power generated during expansion of a refrigerant and uses the expansion power for compression of the refrigerant, and an expander mounted thereon.
  • the expansion machine is designed on the condition that the ratio of the refrigerant specific volume of the expansion / compression inlet and the suction volume ratio are the same, and in order to match the deviation from the design point with the change in conditions during actual operation,
  • refrigerant specific volume / compression inlet refrigerant specific volume)> (expansion suction volume / compression suction volume) the expansion mechanism is bypassed by a predetermined flow rate, and (expansion inlet refrigerant specific volume / compression inlet refrigerant specific volume) ⁇ (expansion)
  • a refrigeration cycle apparatus is disclosed in which pressure is reduced and pre-expanded by a predetermined pressure before the expansion inlet (see, for example, Patent Document 1).
  • the present invention has been made to solve the above-described problems.
  • a refrigeration cycle apparatus that enables flow rate matching without performing pre-expansion or expansion mechanism bypass, and an expander mounted on the refrigeration cycle apparatus. It is intended to provide.
  • a refrigeration cycle apparatus includes a main compressor, a radiator that cools a high-pressure refrigerant, an expansion mechanism that recovers expansion power when the refrigerant is decompressed, and a sub-compression mechanism that compresses the refrigerant using the expansion power.
  • An expansion machine an evaporator for heating the low-pressure refrigerant, and an additional compression mechanism for further boosting the refrigerant compressed by the sub-compression mechanism, wherein the sub-compression mechanism is disposed downstream of the evaporator, and the expansion
  • the mechanism is a refrigeration cycle apparatus disposed downstream of the radiator and upstream of the evaporator, wherein the expander has spirals on both sides of the base plate and sucked into the expansion mechanism
  • a high-pressure introduction hole that guides the pressure of the refrigerant to the sub-compression mechanism side is disposed opposite to the swing scroll formed in the base plate, and constitutes the expansion mechanism together with the swing scroll Expansion side A fixed scroll; and a sub-compression side fixed scroll that is disposed opposite to the expansion-side fixed scroll of the swing scroll and that constitutes the sub-compression mechanism together with the swing scroll. It is characterized by.
  • An expander is an expander having an expansion mechanism that recovers expansion power during decompression of a refrigerant and a sub-compression mechanism that compresses the refrigerant using the expansion power.
  • An orbiting scroll having a spiral and having a high-pressure introduction hole formed to guide the pressure of the refrigerant sucked into the expansion mechanism to the sub-compression mechanism side, and disposed opposite to the orbiting scroll, the orbiting scroll And an expansion side fixed scroll that constitutes the expansion mechanism, and a sub compression side fixed that is disposed opposite to the expansion side fixed scroll of the swing scroll and that forms the sub compression mechanism together with the swing scroll
  • An eccentric seal provided at a sliding portion of the scroll, the swing scroll and the sub-compression side fixed scroll, and disposed on the shaft side of the eccentric seal, and the swing scroll And a concentric seal provided at a sliding portion between the sub-compression side fixed scroll and the high pressure introduction hole is opened between the concentric seal and the eccentric seal.
  • flow rate matching is possible without performing pre-expansion or expansion mechanism bypass, which is more efficient than when performing flow rate matching by bypass / pre-expansion, or flow rate matching is not possible with pre-expansion.
  • Flow rate matching is possible even under different conditions, and the operating range is wide.
  • the expander according to the present invention it is possible to reduce heat leakage via the base plate at the center of the orbiting scroll by forming the high pressure introduction hole, and to introduce the pre-expansion pressure to the sub-compression vortex side. As a result, the balance of the axial gas load acting on the orbiting scroll can be improved, and the operational stability is improved.
  • Embodiment 6 is a table showing a cycle calculation result when flow matching is performed in a branch flow in the refrigeration cycle apparatus according to Embodiment 1. It is a circuit block diagram which represents typically the refrigerant circuit structure of the refrigerating-cycle apparatus which concerns on Embodiment 2 of this invention. It is a circuit block diagram which represents typically the refrigerant circuit structure of the refrigerating-cycle apparatus which concerns on Embodiment 3 of this invention.
  • FIG. 1 is a circuit configuration diagram schematically showing a refrigerant circuit configuration of a refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention.
  • the circuit configuration and operation of the refrigeration cycle apparatus 100 will be described with reference to FIG.
  • the relationship of the size of each component may be different from the actual one.
  • the same reference numerals denote the same or equivalent parts, and this is common throughout the entire specification.
  • the forms of the constituent elements shown in the entire specification are merely examples, and are not limited to these descriptions.
  • the refrigeration cycle apparatus 100 is used as an apparatus having a refrigeration cycle for circulating a refrigerant, such as a refrigerator, a freezer, a vending machine, an air conditioner, a refrigeration apparatus, a water heater, or the like.
  • the refrigeration cycle apparatus 100 includes a main compressor 5, a radiator 11, a pre-expansion valve 14, an expander 1, an evaporator 12, a second compressor 23, and a check valve 81. Yes.
  • the main compressor 5, the radiator 11, the pre-expansion valve 14, the expansion mechanism 2 of the expander 1, and the evaporator 12 are connected in series, and the sub-compression mechanism 3 of the expander 1, the check valve 81 and the second compressor 23 are connected in series.
  • the main compression mechanism 7 of the main compressor 5 and the sub compression mechanism 3 of the expander 1 are arranged in parallel on the outlet side of the evaporator 12.
  • the discharge side of the sub-compression mechanism 3 of the expander 1 is connected to the suction side of the second compression mechanism 25 of the second compressor 23 via a check valve 81.
  • the discharge side of the second compression mechanism 25 of the second compressor 23 and the discharge side of the main compression mechanism 7 of the main compressor 5 are connected before the inlet of the radiator 11.
  • the outlet side of the radiator 11 is connected to the inlet side of the expansion mechanism 2 of the expander 1 via the pre-expansion valve 14.
  • the outlet side of the expansion mechanism 2 of the expander 1 is connected to the inlet side of the evaporator 12.
  • the main compressor 5 has a motor 6 and a main compression mechanism 7 driven by the motor 6, sucks the refrigerant flowing out of the evaporator 12, and compresses the refrigerant to bring it into a high temperature / high pressure state.
  • the main compressor 5 may be composed of, for example, an inverter compressor capable of capacity control.
  • the radiator 11 functions as a condenser or a gas cooler according to the refrigerant used, and performs heat exchange between air supplied from a blower (not shown) and the refrigerant.
  • the pre-expansion valve 14 expands the refrigerant by depressurizing it, and it is preferable that the pre-expansion valve 14 is constituted by a valve whose opening degree can be variably controlled, for example, an electronic expansion valve.
  • the evaporator 12 performs heat exchange between air supplied from a blower (not shown) and the refrigerant.
  • the expander 1 is an integrated scroll-type expansion mechanism 2 and sub-compression mechanism 3.
  • the expansion mechanism 2 collects expansion power generated when the refrigerant expands, and the expansion power collected by the sub-compression mechanism 3 is recovered. It has the function of compressing the refrigerant using it.
  • the second compressor 23 has a motor 24 and a second compression mechanism 25 driven by the motor 24, sucks the refrigerant discharged from the sub-compression mechanism 3 of the expander 1, and keeps the refrigerant in a high temperature / high pressure state. It is to make. That is, the second compressor 23 has a function as an additional compression mechanism.
  • the check valve 81 is installed between the sub-compression mechanism 3 of the expander 1 and the second compressor 23 and allows the refrigerant to flow only in one side.
  • the operation of the refrigeration cycle apparatus 100 will be described.
  • the main compression mechanism 7 When electricity is supplied to the motor 6 of the main compressor 5, the main compression mechanism 7 is driven.
  • the main compression mechanism 7 the sucked refrigerant is increased in pressure from the low pressure Pl to the high pressure Ph and is discharged.
  • the high-temperature and high-pressure refrigerant discharged from the main compressor 5 is cooled by releasing heat from the radiator 11.
  • the refrigerant cooled by the radiator 11 flows into the expansion mechanism 2 of the expander 1.
  • power generated when the refrigerant flowing into the expansion mechanism 2 is decompressed is recovered by the expansion mechanism 2, and the sub-compression mechanism 3 is driven by the recovered expansion power.
  • the refrigerant circulating in the refrigeration cycle is divided into w: (1-w) by the sub-compression mechanism 3 of the expander 1 and the main compression mechanism 7 of the main compressor 5.
  • the refrigerant specific volume at the inlet of the expansion mechanism 2 is vexi
  • the refrigerant specific volume at the inlet of the sub-compression mechanism 3 is vs
  • the expansion mechanism suction volume / sub-compression mechanism suction volume is ⁇ vEC *
  • w is 1 / ⁇ vEC *.
  • the sub-compression mechanism 3 compresses the refrigerant corresponding to the split flow ratio w from Pl to an intermediate pressure Pm corresponding to the recovered power, and the second compression mechanism 25 driven by the motor 24 performs additional compression from Pm to Ph.
  • the power between expansion / sub-compression can be balanced. That is, while the suction volume ratio ⁇ vEC * of the expander 1 is fixed and the recovered power is determined depending on the conditions, the flow rate matching with the main compressor 5 is performed by matching the flow rate with the main compressor 5.
  • the additional compression compresses the power shift and matches.
  • a pre-expansion valve 14 is described. This is for controlling the pressure on the expansion mechanism side during a transition such as startup, and is not fully involved in flow rate matching during normal operation. ing.
  • the operation state of the cycle at this time is shown on the Mollier diagram as shown in FIG.
  • the vertical axis represents the refrigerant pressure P
  • the horizontal axis represents the specific enthalpy h.
  • Point b ⁇ point c shown in FIG. 2 represents the cooling process in the radiator 11 in FIG. 1, and CO 2 is assumed as the refrigerant, so the pressure Ph exceeds the critical pressure.
  • the input (enthalpy difference he ⁇ ha) ⁇ (flow rate w) and the refrigeration capacity (enthalpy difference hd) '-Hd) ⁇ (flow rate 1) is C.I. O. P. It contributes to improvement.
  • the diversion ratio w is determined according to the suction volume ratio ⁇ vEC * of the expander 1, and the ratio (hc ⁇ hd) / (he ⁇ ha) of the enthalpy difference between the expansion mechanism 2 side and the sub compression mechanism 3 side is , W are equal, and the level of Pm also depends on ⁇ vEC * .
  • the expander 1 since the refrigerant on the expansion mechanism 2 side and the sub compression mechanism 3 side flows into the same container and exchanges power due to gas pressure, the load between the expansion mechanism 2 and the sub compression mechanism 3; In consideration of heat transfer, it is possible to adjust the pressure and temperature of the sub-compression discharge corresponding to the point e by setting ⁇ vEC * .
  • FIG. 3 is a longitudinal sectional view showing a schematic sectional configuration of the expander 1 mounted in the refrigeration cycle apparatus 100 according to the first embodiment. Based on FIG. 3, the structure of the expander 1 is demonstrated. As described above, the expander 1 includes the scroll-type expansion mechanism 2 and the sub-compression mechanism 3, and the expansion power generated when the refrigerant is expanded is recovered by the expansion mechanism 2, and the recovered expansion power is recovered. It has a function of compressing the refrigerant by the sub-compression mechanism 3.
  • the expansion mechanism 2 and the sub-compression mechanism 3 are accommodated inside a sealed container 4 that is a pressure container. As shown in FIG. 3, the expansion mechanism 2 is disposed below the sealed container 4, and the sub-compression mechanism 3 is disposed above the expansion mechanism 2.
  • the lubricating oil 9 such as refrigerating machine oil is stored at the bottom of the sealed container 4.
  • an expansion suction pipe 15 that causes the expansion mechanism 2 to suck the refrigerant
  • an expansion discharge pipe 16 that discharges the refrigerant expanded by the expansion mechanism 2
  • a sub compression suction pipe 19 that causes the sub compression mechanism 3 to suck the refrigerant.
  • a sub-compression discharge pipe 20 for discharging the refrigerant compressed by the sub-compression mechanism 3 is connected.
  • the expansion suction pipe 15, the sub compression discharge pipe 20, and the expansion discharge pipe 16 are provided so as to communicate with the inside from the side surface of the sealed container 4.
  • the sub-compression suction pipe 19 is provided so as to communicate with the inside from the upper surface of the sealed container 4.
  • the expansion mechanism 2 decompresses and expands the refrigerant sucked from the expansion suction pipe 15 and discharges the refrigerant from the expansion discharge pipe 16.
  • the expansion mechanism 2 includes an expansion side fixed scroll 51 in which an expansion side spiral 51a is formed on a base plate, and an orbiting scroll 52 in which an expansion side spiral 52a is formed on the base plate.
  • the expansion side fixed scroll 51 is disposed on the lower side
  • the swing scroll 52 is disposed on the upper side.
  • the expansion side spiral 51 a is erected as a spiral protrusion on one surface of the base plate of the expansion side fixed scroll 51.
  • the expansion-side spiral 52 a is erected as a spiral protrusion on one surface of the base plate of the swing scroll 52.
  • the expansion-side spiral 51a of the expansion-side fixed scroll 51 and the expansion-side spiral 52a of the swing scroll 52 are arranged so as to mesh with each other.
  • An expansion chamber 51d whose volume changes is formed by the relative swinging motion of the expansion side spiral 51a and the expansion side spiral 52a.
  • An eccentric seal 72b is provided on the end surface of the swing scroll 52 on the side of the expansion side fixed scroll 51 so as to surround the shaft 78.
  • the sub-compression mechanism 3 compresses the refrigerant sucked from the sub-compression suction pipe 19 and discharges it from the sub-compression discharge pipe 20.
  • the sub-compression mechanism 3 has a sub-compression side fixed scroll 61 in which a sub-compression side spiral 61a is formed on a base plate, and an orbiting scroll 52 in which a sub-compression side spiral 62a is formed on a base plate. ing.
  • the sub-compression side fixed scroll 61 is disposed on the upper side
  • the swing scroll 52 is disposed on the lower side.
  • the sub-compression side spiral 61 a is erected as a spiral projection on one surface of the base plate of the sub-compression side fixed scroll 61.
  • the sub-compression side spiral 62 a is erected as a spiral protrusion on one surface of the base plate of the swing scroll 52.
  • the sub-compression side spiral 61a of the sub-compression side fixed scroll 61 and the sub-compression side spiral 62a of the orbiting scroll 52 are arranged so as to mesh with each other.
  • a sub-compression chamber 61d in which the volume changes is formed by relatively swinging the sub-compression side spiral 61a and the sub-compression side spiral 62a.
  • oil return holes 31 for returning the lubricating oil 9 to the bottom of the hermetic container 4 are formed through the outer peripheral portions of the sub-compression side fixed scroll 61 and the expansion side fixed scroll 51 in the axial direction.
  • an eccentric seal 72 a and a concentric seal 73 are provided on the end surface of the swing scroll 52 on the side of the sub-compression side fixed scroll 61 so as to surround the shaft 78.
  • a discharge valve 32 is provided at the refrigerant discharge portion of the sub-compression side fixed scroll 61. The discharge valve 32 is opened and closed to communicate / block the sub compression chamber 61d and the sub compression discharge pipe 20.
  • Through holes are formed in substantially the center portions of the expansion side fixed scroll 51, the swing scroll 52, and the sub compression side fixed scroll 61, and a shaft 78 is fitted into these through holes.
  • the orbiting scroll 52 of the expansion mechanism 2 and the orbiting scroll 52 of the sub-compression mechanism 3 are integrally configured so as to share a base plate, and a high-pressure introduction hole 52e is formed to penetrate in the axial direction.
  • the high-pressure introduction hole 52e communicates the expansion chamber 51d and the space between the eccentric seal 72a and the concentric seal 73.
  • the shaft 78 is rotatably supported at both ends by a lower bearing 51b and an upper bearing 61b formed at the center of each of the expansion side fixed scroll 51 and the sub compression side fixed scroll 61.
  • a swing bearing 52b provided in a thick portion formed at the center of each of the expansion side spiral 52a and the sub compression side spiral 61a is penetrated and supported by a crank portion 78a formed on a shaft 78. As the shaft 78 rotates, it can swing.
  • An oil pump 76 that pumps up the lubricating oil 9 is attached to the lower end of the shaft 78. Further, an oil supply hole (not shown) through which the lubricating oil 9 pumped up by the oil pump 76 is conducted is formed in the shaft 78. The lubricating oil 9 pumped up by the oil pump 76 is supplied to the lower bearing 51b and the upper bearing 61b through an oil supply hole formed in the shaft 78. The lubricating oil 9 used in each bearing returns to the bottom of the sealed container 4 through the oil return hole 31.
  • a rocking scroll motion space having a predetermined size is formed on the outer peripheral side of the rocking scroll 52 so that the rocking scroll 52 can be swung.
  • An Oldham groove 52d is formed on the outer peripheral side of the orbiting scroll 52 and on the side of the expansion side fixed scroll 51.
  • the Oldham groove 52d restricts the rotation motion of the orbiting scroll 52 and enables the revolving motion.
  • an Oldham ring 77 is arranged.
  • a balancer 79a is provided on the upper end side of the shaft 78, and a balancer 79b is provided on the lower end side.
  • the balancer 79a and the balancer 79b are for canceling the centrifugal force generated by the swinging motion of the swing scroll 52, and the material, size, shape and the like are not particularly limited.
  • the expander 1 includes an orbiting scroll 52 in which an expansion-side spiral 52 a and a sub-compression side spiral 62 a are formed on both sides of a base plate so as to face each other.
  • the expansion mechanism 2 and the sub compression mechanism 3 are configured in combination with the sub compression side fixed scroll 61.
  • the swing scroll 52 is regulated by the Oldham ring 77 and the shaft 78 and swings with the power when the high-pressure refrigerant flowing from the expansion suction pipe 15 expands in the expansion mechanism 2.
  • the sub-compression mechanism 3 boosts the low-pressure refrigerant sucked from the sub-compression suction pipe 19 through a suction port (not shown for another phase cross section). Then, the refrigerant whose pressure has been increased to the intermediate pressure pushes the discharge valve 32 open from the discharge port (different cross section) and is discharged to the sub-compression discharge pipe 20.
  • the expanded refrigerant is discharged from the expansion discharge pipe 16 (different cross section).
  • the expansion process is from point c to point d
  • the sub-compression process is from point a to point e
  • point c is at the center of the expansion side spiral
  • the refrigerant in the state of point d, the point a at the sub-compression side spiral outer periphery, and the point e at the center of the sub-compression side spiral is in contact. That is, the refrigerant in the state of points e and c at the center of the base plate and the refrigerant at points a and d at the outer periphery of the base plate are adjacent to each other back to back.
  • the points c, d, and a are determined from the operating conditions, but the level of Pm depends on the expansion / sub-compression suction volume ratio ⁇ vEC * as described above.
  • the state quantity can be adjusted by changing the diversion ratio w depending on how ⁇ vEC * is selected at the time of design.
  • the suction volume ratio ⁇ vEC * must be selected in consideration of both heat leak and thrust.
  • the temperature difference between the points e to c at the center of the base plate under the predetermined condition is the internal heat leak.
  • FIG. 4 is a plan view showing a state in which the orbiting scroll is viewed from the sub compression spiral side.
  • FIG. 5 is a plan view showing a state in which the swing scroll is viewed from the expansion spiral side. Based on FIG.4 and FIG.5, the characteristic of the expander 1 is demonstrated in more detail.
  • the orbiting scroll is formed with an orbiting bearing 52b through which the shaft 78 penetrates at the center, and the periphery of the orbiting bearing 52b is a so-called bulbous shape (between the involute winding start point) on both the expansion side and the sub compression side. Are formed by connecting them with arcs).
  • the orbiting scroll of the expander 1 is formed by dimensionally reducing the expansion side spiral 52a that operates between the low pressure Pl and the high pressure Ph compared to the sub compression side spiral 62a that operates between the low pressure Pl and the intermediate pressure Pm.
  • the pressure receiving area of the thrust acting from the expansion side is suppressed.
  • an Oldham groove 52d into which the key part of the Oldham ring 77 is fitted is formed on the outer peripheral portion on the expansion side of the expander 1, and the Oldham groove is formed on the expansion side outer peripheral portion of the swing scroll base plate as shown in FIG. The posture of the ring 77 is adjusted between the ring 77 and the expansion side fixed scroll 51.
  • An eccentric seal 72b separates the swing bearing 52b communicating with the low pressure of the atmosphere in the container and the central portion of the pre-expansion high pressure on the end surface of the bulb-shaped portion outside the swing bearing 52b of the expansion side spiral 52a shown in FIG.
  • a high-pressure introduction hole 52e is formed in the innermost peripheral portion where the expansion chamber 51d is formed so as to guide the pressure immediately after expansion and suction to the sub-compression side.
  • the high-pressure introduction hole 52e on the sub-compression side shown in FIG. 4 is opened between the concentric seal 73 and the eccentric seal 72a on the bulb-shaped end surface, and the concentric seal 73 is intermediate between the low-pressure rocking bearing portion. Since the eccentric seal 72a is separated from the sub-compression central portion of the pressure, a high pressure is applied to the inner portion of the eccentric seal 72a and the outer portion of the concentric seal 73.
  • FIG. 6 is a partial sectional view schematically showing the state of thrust acting on the orbiting scroll. Based on FIG. 6, the thrust which acts on the swing scroll of the expander 1 is demonstrated in detail. Note that the arrows shown in FIG. 6 represent the thrust loads acting on both sides of the orbiting scroll.
  • high pressure Ph to low pressure Pl act on the spiral portion outside the expansion side eccentric seal 72b
  • intermediate pressure Pm to low pressure Pl act on the spiral portion outside the sub compression side eccentric seal 72a.
  • the high pressure Ph guided from the expansion side by the high pressure introduction hole 52e acts on the inner side of the eccentric seal 72a and the outer side of the concentric seal 73, so that the thrust on the expansion side and the sub-compression side are almost balanced in total. It has become.
  • providing a communication path (high-pressure introduction hole 52e) between the expansion side and the sub compression side increases heat leakage when the temperature difference between the expansion side central portion and the sub compression side central portion is large. There is no problem as long as the temperature difference is suppressed by selecting the suction volume ratio.
  • the high-pressure introduction hole 52e that guides the high pressure before expansion to the end face of the bulb-shaped portion of the sub-compression side spiral is represented as a fine hole that penetrates the orbiting scroll as shown in the cross-sectional view of FIG. Even if it is guided from, for example, the conduit before the expansion suction pipe 15 before being sucked to the end face of the sub compression side spiral central bulb shape portion through the sub compression side fixed scroll 61, for example, there is no functional change.
  • the high-pressure introduction hole 52e opened at the tooth bottom surface of the center portion of the sub-compression fixed scroll is always inside the eccentric seal 72a even if the swinging scroll swings outside the concentric seal 73 of the counterpart swing scroll. Needless to say, it must be opened at such a position.
  • FIG. 7 is a table showing four typical operating conditions of the refrigeration cycle apparatus.
  • FIG. 8 is a circuit configuration diagram schematically showing a refrigerant circuit configuration of a conventional refrigeration cycle apparatus (hereinafter referred to as refrigeration cycle apparatus 100 ′).
  • FIG. 9 is a table showing the cycle calculation results when the flow rate matching is performed by the conventional method. Based on FIGS. 7 to 9, four typical operating conditions in the refrigeration cycle apparatus 100 'will be described.
  • the refrigeration cycle apparatus 100 ′ shown in FIG. 8 includes a refrigeration cycle that performs flow rate matching by pre-expansion (expansion valve 13 ′) / expansion mechanism bypass (bypass pipe 40 ′).
  • the refrigeration cycle apparatus 100 ′ is different from the refrigeration cycle apparatus 100 according to the first embodiment in that the second compressor 23 is not provided and the expansion valve 13 ′ and the bypass pipe 40 ′ are provided. Yes.
  • the pre-expansion rate y which is the ratio of the bypass ratio x to the total high-low pressure difference of the decompression width pre-expanded before the expansion inlet.
  • 0 expansion suction volume / compression suction volume
  • ⁇ vEC expansion inlet refrigerant specific volume / expansion outlet refrigerant specific volume
  • (expansion inlet refrigerant specific volume / expansion outlet refrigerant specific volume) is ⁇ vE. Cycle C. at this time O. P. Is C.I. O. P. th.
  • ⁇ vE * is usually unique to the expander design and cannot be changed .
  • the cycle calculation result in the case where the flow rate matching is performed with the diversion ratio w in the refrigeration cycle apparatus 100 according to Embodiment 1 is as shown in FIG.
  • ⁇ vEC * is fixed to 0.5
  • w required for matching intermediate pressure Pm depending on w
  • the ratio is shown. Since there is no power recovery loss associated with flow rate matching, it is insufficient when ⁇ vE does not match the expansion volume ratio ⁇ vE * , especially when cooling operation is designed for heating conditions, and when heating operation is designed for cooling conditions.
  • the effect of expansion or overexpansion is C.I. O. P. As shown in FIG. O. P. It can be seen that the ratio never falls below 100%.
  • the operating state of the refrigeration cycle apparatus 100 ' can be diverted from the Mollier diagram of FIG.
  • compression of the point e ⁇ point b is performed by the main compressor 5 ′, and the refrigerant after cooling of the point b ⁇ point c by the radiator 11 ′ is In the expansion mechanism 2 ', the isentropic expansion process from point c to point d is followed.
  • the flow rate x is bypassed and decompressed by the expansion valve 13 ', so that an isoenthalpy expansion process from point c to point d' follows and the flow rate passing through the expansion mechanism 2 'is increased.
  • the recovery power is the enthalpy difference due to the isentropic expansion of the pressure Pl + (Ph ⁇ Pl) ⁇ (1 ⁇ y) to Pl in the flow rate 1 ⁇ x minutes of the enthalpy difference d′ ⁇ d in the case of bypass and in the case of preexpansion.
  • the amount is reduced as compared with the case where the entire amount is entropy expanded without bypassing or pre-expanding.
  • the refrigeration cycle apparatus 100 ′ has a recovery power that is less than the loss associated with the flow rate matching, compared with the refrigeration cycle apparatus 100 that increases the pressure by the branch flow ratio w by the sub-compression mechanism 3 ′. Since the total flow rate is increased, the level of Pm is lower than that in FIG. 2, and so is the value of Pm in the tables of FIGS.
  • the ratio of the volume flow rate at the expansion / sub-compression inlet is matched to the ratio of the suction volume of the expansion / sub-compression by bypassing or pre-expanding the expansion mechanism, that is, the volume flow rate is adjusted mainly on the expansion process side. In order to do so, the recovery power was reduced, and the boosting work in the main compressor was to be increased accordingly.
  • the matching method of the refrigeration cycle apparatus 100 whether the compression process from the low pressure Pl to the intermediate pressure Pm is performed by the sub-compression mechanism 3 of the expander 1 or the main compression mechanism 7 driven by a power source. The flow rate is adjusted on the side of the compression process side, that is, the compression process side. This is the C. of the matching method by the refrigeration cycle apparatus 100 ′ and the matching method by the split flow of the refrigeration cycle apparatus 100. O. P. It is a factor of the difference.
  • the ratio w of the flow rate sucked into the sub compression mechanism 3 with respect to the total flow rate is (expansion inlet refrigerant specific volume / sub compression inlet refrigerant specific volume). / (Expansion suction volume / Sub-compression suction volume)
  • the temperature difference between the sub-compression discharge side and the expansion inlet side is suppressed by adjusting the (expansion suction volume / sub-compression suction volume) ratio.
  • Heat leakage via the base plate in the center of the scroll can be reduced, and the balance of the axial gas load acting on the orbiting scroll can be improved by introducing the pre-expansion pressure to the sub-compression vortex side, resulting in operational stability Becomes better. Therefore, the refrigeration cycle apparatus 100 equipped with the expander 1 has a small reduction in cycle efficiency due to internal heat leakage in addition to the above effects.
  • the Mollier diagram assuming a CO 2 refrigerant has been described as an example.
  • a refrigerant other than CO 2 can be used for the refrigeration cycle apparatus 100.
  • coolant which can be used for the refrigerating-cycle apparatus 100 is demonstrated.
  • Examples of the refrigerant that can be used in the refrigeration cycle apparatus 100 include a non-azeotropic mixed refrigerant, a pseudo-azeotropic mixed refrigerant, and a single refrigerant.
  • Non-azeotropic refrigerant mixture includes R407C (R32 / R125 / R134a) which is an HFC (hydrofluorocarbon) refrigerant.
  • the pseudo azeotropic refrigerant mixture includes R410A (R32 / R125) and R404A (R125 / R143a / R134a) which are HFC refrigerants.
  • the single refrigerant includes R22 which is an HCFC (hydrochlorofluorocarbon) refrigerant, R134a which is an HFC refrigerant, and the like.
  • R22 which is an HCFC (hydrochlorofluorocarbon) refrigerant
  • R134a which is an HFC refrigerant
  • propane, isobutane, ammonia or the like which is a natural refrigerant
  • examples of the refrigerant that becomes a supercritical state include a mixed refrigerant of carbon dioxide and ether (for example, dimethyl ether, hydrofluoroether, etc.). Therefore, it is good to use the refrigerant
  • FIG. 11 is a circuit configuration diagram schematically showing the refrigerant circuit configuration of the refrigeration cycle apparatus 100a according to Embodiment 2 of the present invention. Based on FIG. 11, the characteristic point of the refrigerating cycle apparatus 100a is demonstrated.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and differences from the first embodiment will be mainly described.
  • the refrigeration cycle apparatus 100a can also use the various refrigerants described in the first embodiment.
  • the refrigeration cycle apparatus 100a according to Embodiment 2 is also equipped with a refrigeration cycle that circulates refrigerant, such as a refrigerator, a freezer, a vending machine, an air conditioner, like the refrigeration cycle apparatus 100 according to Embodiment 1. Used as refrigeration equipment, water heater, etc.
  • the refrigeration cycle apparatus 100a also has a main compressor 5, a radiator 11, a pre-expansion valve 14, an expander 1, an evaporator 12, a second compressor 23, and a check valve 81. Yes.
  • the connection state of each component device is different from that of the refrigeration cycle apparatus 100 according to Embodiment 1.
  • the refrigerant 12 is diverted to the sub-compression mechanism 3 at the outlet of the evaporator 12 and the refrigerant flow rate 1-w is diverted to the main compressor 5, but the second compressor 23 only discharges the sub-compression mechanism 3 discharge. Rather than performing additional compression, the amount of discharge from the main compressor 5 is also sucked and increased from an intermediate pressure to a high pressure. That is, in the refrigeration cycle apparatus 100 according to Embodiment 1, the main compressor 5 and the second compressor 23 are arranged in parallel, but in the refrigeration cycle apparatus 100a, the main compressor 5 and the second compressor 23 are in series. The refrigerant discharged from the sub compression mechanism 3 is guided between the main compressor 5 and the second compressor 23 via the check valve 81.
  • the second compressor 23 of the refrigeration cycle apparatus 100 according to Embodiment 1 additionally compresses only the sub-compressed refrigerant, a compressor having a small stroke volume can be used.
  • the second compressor 23 of the refrigeration cycle apparatus 100a according to the second embodiment compresses not only the sub-compressed refrigerant but also the refrigerant after being compressed by the main compressor 5.
  • a relatively large stroke volume can be used.
  • the stroke volume when the number of rotations at the design point of each compressor (the main compressor 5 and the second compressor 23) of the refrigeration cycle apparatus 100 according to Embodiment 1 is about 50 [rps] is as follows.
  • the main compressor 5 is about 29.2 [cc / rev]
  • the second compressor 23 is about 5.9 [cc / rev].
  • the stroke volume when the number of revolutions at the design point of each compressor (the main compressor 5 and the second compressor 23) of the refrigeration cycle apparatus 100a according to Embodiment 2 is about 50 [rps].
  • the main compressor 5 is about 29.2 [cc / rev]
  • the second compressor 23 is about 26.9 [cc / rev].
  • the ratio w of the flow rate sucked into the sub compression mechanism 3 with respect to the total flow rate is (expansion inlet refrigerant specific volume / sub compression inlet refrigerant specific volume). / (Expansion suction volume / Sub-compression suction volume)
  • the temperature difference between the sub-compression discharge side and the expansion inlet side is suppressed by adjusting the (expansion suction volume / sub-compression suction volume) ratio, and swings.
  • Heat leakage via the base plate in the center of the scroll can be reduced, and the balance of the axial gas load acting on the orbiting scroll can be improved by introducing the pre-expansion pressure to the sub-compression vortex side, resulting in operational stability Becomes better. Therefore, the refrigeration cycle apparatus 100a equipped with the expander 1 has a small reduction in cycle efficiency due to internal heat leakage in addition to the above effects.
  • FIG. FIG. 12 is a circuit configuration diagram schematically showing the refrigerant circuit configuration of the refrigeration cycle apparatus 100b according to Embodiment 3 of the present invention. Based on FIG. 12, the feature point of the refrigeration cycle apparatus 100b will be described. In the third embodiment, the same reference numerals are given to the same parts as those in the first and second embodiments, and differences from the first and second embodiments will be mainly described.
  • the refrigeration cycle apparatus 100b can also use the various refrigerants described in the first embodiment.
  • the refrigeration cycle apparatus 100b according to Embodiment 3 is also equipped with a refrigeration cycle that circulates the refrigerant, such as a refrigerator, a freezer, a vending machine, an air conditioner, like the refrigeration cycle apparatus 100 according to Embodiment 1. Used as refrigeration equipment, water heater, etc.
  • the refrigeration cycle apparatus 100 b includes a main compressor 5, a radiator 11, a pre-expansion valve 14, an expander 1, an evaporator 12, and a check valve 81. That is, it is different from the refrigeration cycle apparatus 100 according to Embodiment 1 and the refrigeration cycle apparatus 100a according to Embodiment 2 in that the second compressor is not provided.
  • the refrigerant 12 is diverted to the sub-compression mechanism 3 at the outlet of the evaporator 12 and the refrigerant flow rate 1-w is diverted to the main compressor 5; Rather than performing additional compression with the two compressors, the main compressor 5 is returned to the compression chamber in the middle of compression. That is, in the refrigeration cycle apparatus 100b, intermediate pressure to high pressure increase for the total flow rate of the refrigerant is performed in the main compressor 5. Therefore, the main compressor 5 includes a path and a port (injection port) for taking in the refrigerant from the sub-compression mechanism 3 into the compression chamber.
  • the second compressor is not provided.
  • the cost can be reduced accordingly. That is, in the refrigeration cycle apparatus 100b, a part of the main compressor 5 plays a role of an additional compression mechanism.
  • the ratio w of the flow rate sucked into the sub compression mechanism 3 with respect to the total flow rate is (expansion inlet refrigerant specific volume / sub compression inlet refrigerant specific volume). / (Expansion suction volume / Sub-compression suction volume)
  • the temperature difference between the sub-compression discharge side and the expansion inlet side is suppressed by adjusting the (expansion suction volume / sub-compression suction volume) ratio.
  • Heat leakage via the base plate in the center of the scroll can be reduced, and the balance of the axial gas load acting on the orbiting scroll can be improved by introducing the pre-expansion pressure to the sub-compression vortex side, resulting in operational stability Becomes better. Therefore, the refrigeration cycle apparatus 100a equipped with the expander 1 has a small reduction in cycle efficiency due to internal heat leakage in addition to the above effects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Provided are a refrigeration cycling device that is capable of flow rate matching without pre-expansion or by-passing an expansion mechanism, and an expander installed in such a refrigeration cycling device. A refrigeration cycling device (100) has an expander (1) that is provided with a swing scroll having a base plate with spirals on both sides thereof. Formed in the base plate is a high pressure guiding hole (52e) for guiding the pressure of a refrigerant introduced into an expansion mechanism (2) towards a sub compression mechanism (3).

Description

冷凍サイクル装置及びそれに搭載される膨張機Refrigeration cycle apparatus and expander mounted thereon
 本発明は、冷媒の膨張時に発生する膨張動力を回収し、その膨張動力を用いて冷媒の圧縮に利用するようにした冷凍サイクル装置及びそれに搭載される膨張機に関するものである。 The present invention relates to a refrigeration cycle apparatus that recovers expansion power generated during expansion of a refrigerant and uses the expansion power for compression of the refrigerant, and an expander mounted thereon.
 冷凍・空調用に用いられる冷凍サイクルにおいて、容積型の流体機械で冷媒の減圧過程を行なって膨張動力を回収し、回収された動力を容積型の流体機械で行なわれる冷媒の圧縮過程に用いる場合、いわゆる“密度比一定の制約”という冷媒の体積流量のマッチングを考慮しなければならない。このような容積型の流体機械では、膨張機構の冷媒吸入容積と、膨張機構からの回収動力を受けて連繋する圧縮機構の冷媒吸入容積と、の比が固定であるため、双方を通過する冷媒の流量が同じ場合には、両機構入口での冷媒比容積の比が吸入容積の比と一致する必要がある。 In a refrigeration cycle used for refrigeration and air conditioning, when a refrigerant is decompressed by a positive displacement fluid machine and the expansion power is recovered, and the recovered power is used for the refrigerant compression process performed by the positive displacement fluid machine The so-called “constant constant density ratio” matching of the volume flow rate of the refrigerant must be considered. In such a displacement type fluid machine, since the ratio of the refrigerant suction volume of the expansion mechanism and the refrigerant suction volume of the compression mechanism linked by receiving the recovery power from the expansion mechanism is fixed, the refrigerant passing through both of them is fixed. If the flow rates of the two are the same, the ratio of the refrigerant specific volume at the inlets of both mechanisms needs to match the ratio of the suction volume.
 膨張/圧縮入口の冷媒比容積の比と吸入容積比との一致を条件として膨張機を設計し、実運転時の条件変化に対して設計点からのずれ分をマッチングさせるために、(膨張入口冷媒比容積/圧縮入口冷媒比容積)>(膨張吸入容積/圧縮吸入容積)の場合には所定の流量だけ膨張機構をバイパスさせ、(膨張入口冷媒比容積/圧縮入口冷媒比容積)<(膨張吸入容積/圧縮吸入容積)の場合には膨張入口前で所定の圧力だけ減圧・予膨張させるようにした冷凍サイクル装置が開示されている(たとえば、特許文献1参照)。 The expansion machine is designed on the condition that the ratio of the refrigerant specific volume of the expansion / compression inlet and the suction volume ratio are the same, and in order to match the deviation from the design point with the change in conditions during actual operation, In the case of refrigerant specific volume / compression inlet refrigerant specific volume)> (expansion suction volume / compression suction volume), the expansion mechanism is bypassed by a predetermined flow rate, and (expansion inlet refrigerant specific volume / compression inlet refrigerant specific volume) <(expansion) In the case of (suction volume / compression suction volume), a refrigeration cycle apparatus is disclosed in which pressure is reduced and pre-expanded by a predetermined pressure before the expansion inlet (see, for example, Patent Document 1).
特開2004-150750号公報(第5、6頁、第3図等)Japanese Unexamined Patent Publication No. 2004-150750 ( pages 5 and 6, FIG. 3 etc.)
 特許文献1に記載されているような冷凍サイクル装置においては、密度比一定の制約から外れる運転条件でマッチングを取るようにしている。そのため、膨張機(膨張機6)と並列に制御弁(制御弁7)を備えたバイパス回路が設けられており、C.O.P.最大となる最適高圧を決定することで決まるバイパス量比に基づいて制御弁の開度を調整するようになっている。 In the refrigeration cycle apparatus described in Patent Document 1, matching is performed under operating conditions that deviate from the restriction of a constant density ratio. Therefore, a bypass circuit provided with a control valve (control valve 7) in parallel with the expander (expander 6) is provided. O. P. The opening degree of the control valve is adjusted based on the bypass amount ratio determined by determining the maximum optimum high pressure.
 しかしながら、特許文献1に記載されているような冷凍サイクル装置では、(膨張入口冷媒比容積/圧縮入口冷媒比容積)<(膨張吸入容積/圧縮吸入容積)の場合に流量マッチングを取るために行なう予膨張が、液相あるいは液相側の超臨界域で行なわれることが多く、減圧幅の割に比容積変化が小さい。そのため、高低圧差のほとんどを予膨張してしまう、若しくは、回収動力が得られなくなるまで予膨張してしまうことになり、マッチングが取れないという可能性もあった。 However, in the refrigeration cycle apparatus described in Patent Document 1, in order to obtain flow rate matching when (expansion inlet refrigerant specific volume / compression inlet refrigerant specific volume) <(expansion suction volume / compression suction volume). Pre-expansion is often performed in the liquid phase or the supercritical region on the liquid phase side, and the specific volume change is small for the reduced pressure width. For this reason, most of the difference between the high and low pressures is pre-expanded, or it is pre-expanded until recovery power cannot be obtained, and there is a possibility that matching cannot be achieved.
 また、特許文献1に記載されているような冷凍サイクル装置では、C.O.P.が最大となるようにバイパス量を決定するとはいえ、バイパスする冷媒流量については絞り装置(制御弁7)で等エンタルピ膨張させている。そのため、その分のエネルギは回収できず、バイパスしない場合に較べると膨張エネルギをロスしてしまうことになる。 In the refrigeration cycle apparatus described in Patent Document 1, C.I. O. P. Although the bypass amount is determined so as to maximize the refrigerant flow rate, the refrigerant flow rate to be bypassed is enthalpy-expanded by the expansion device (control valve 7). Therefore, the amount of energy cannot be recovered, and the expansion energy is lost as compared with the case where the energy is not bypassed.
 本発明は、上述のような問題を解決するためになされたもので、予膨張や膨張機構バイパスを行なわずに流量マッチングを可能とした冷凍サイクル装置及びその冷凍サイクル装置に搭載される膨張機を提供することを目的としている。 The present invention has been made to solve the above-described problems. A refrigeration cycle apparatus that enables flow rate matching without performing pre-expansion or expansion mechanism bypass, and an expander mounted on the refrigeration cycle apparatus. It is intended to provide.
 本発明に係る冷凍サイクル装置は、主圧縮機、高圧の冷媒を冷却する放熱器、冷媒の減圧時の膨張動力を回収する膨張機構とその膨張動力を用いて冷媒を圧縮するサブ圧縮機構を有する膨張機、低圧の冷媒を加熱する蒸発器、及び、前記サブ圧縮機構で圧縮された冷媒を更に昇圧する追加圧縮機構を備え、前記サブ圧縮機構が前記蒸発器の下流側に配置され、前記膨張機構が前記放熱器の下流側であって前記蒸発器の上流側に配置されている冷凍サイクル装置であって、前記膨張機は、台板の両面に渦巻を有し、前記膨張機構に吸入した冷媒の圧力を前記サブ圧縮機構側に導く高圧導入孔が前記台板に形成されている揺動スクロールと、前記揺動スクロールに対向して配置され、前記揺動スクロールとともに前記膨張機構を構成する膨張側固定スクロールと、前記揺動スクロールの前記膨張側固定スクロールとは反対側に対向して配置され、前記揺動スクロールとともに前記サブ圧縮機構を構成するサブ圧縮側固定スクロールと、を有していることを特徴とする。 A refrigeration cycle apparatus according to the present invention includes a main compressor, a radiator that cools a high-pressure refrigerant, an expansion mechanism that recovers expansion power when the refrigerant is decompressed, and a sub-compression mechanism that compresses the refrigerant using the expansion power. An expansion machine, an evaporator for heating the low-pressure refrigerant, and an additional compression mechanism for further boosting the refrigerant compressed by the sub-compression mechanism, wherein the sub-compression mechanism is disposed downstream of the evaporator, and the expansion The mechanism is a refrigeration cycle apparatus disposed downstream of the radiator and upstream of the evaporator, wherein the expander has spirals on both sides of the base plate and sucked into the expansion mechanism A high-pressure introduction hole that guides the pressure of the refrigerant to the sub-compression mechanism side is disposed opposite to the swing scroll formed in the base plate, and constitutes the expansion mechanism together with the swing scroll Expansion side A fixed scroll; and a sub-compression side fixed scroll that is disposed opposite to the expansion-side fixed scroll of the swing scroll and that constitutes the sub-compression mechanism together with the swing scroll. It is characterized by.
 本発明に係る膨張機は、冷媒の減圧時の膨張動力を回収する膨張機構及びその膨張動力を用いて冷媒を圧縮するサブ圧縮機構を有している膨張機であって、台板の両面に渦巻を有し、前記膨張機構に吸入した冷媒の圧力を前記サブ圧縮機構側に導く高圧導入孔が形成されている揺動スクロールと、前記揺動スクロールに対向して配置され、前記揺動スクロールとともに前記膨張機構を構成する膨張側固定スクロールと、前記揺動スクロールの前記膨張側固定スクロールとは反対側に対向して配置され、前記揺動スクロールとともに前記サブ圧縮機構を構成するサブ圧縮側固定スクロールと、前記揺動スクロールと前記サブ圧縮側固定スクロールとの摺動部に設けられた偏心シールと、前記偏心シールよりも軸側に配置され、前記揺動スクロールと前記サブ圧縮側固定スクロールとの摺動部に設けられた同心シールと、を有し、前記高圧導入孔は、前記同心シールと前記偏心シールとの間に開口されていることを特徴とする。 An expander according to the present invention is an expander having an expansion mechanism that recovers expansion power during decompression of a refrigerant and a sub-compression mechanism that compresses the refrigerant using the expansion power. An orbiting scroll having a spiral and having a high-pressure introduction hole formed to guide the pressure of the refrigerant sucked into the expansion mechanism to the sub-compression mechanism side, and disposed opposite to the orbiting scroll, the orbiting scroll And an expansion side fixed scroll that constitutes the expansion mechanism, and a sub compression side fixed that is disposed opposite to the expansion side fixed scroll of the swing scroll and that forms the sub compression mechanism together with the swing scroll An eccentric seal provided at a sliding portion of the scroll, the swing scroll and the sub-compression side fixed scroll, and disposed on the shaft side of the eccentric seal, and the swing scroll And a concentric seal provided at a sliding portion between the sub-compression side fixed scroll and the high pressure introduction hole is opened between the concentric seal and the eccentric seal. To do.
 本発明に係る冷凍サイクル装置によれば、予膨張や膨張機構バイパスを行なわずに流量マッチングが可能となり、バイパス/予膨張で流量マッチングする場合よりも効率の高い、または予膨張では流量マッチングできなかった条件でも流量マッチングが可能となり、運転範囲の広いものとなる。 According to the refrigeration cycle apparatus according to the present invention, flow rate matching is possible without performing pre-expansion or expansion mechanism bypass, which is more efficient than when performing flow rate matching by bypass / pre-expansion, or flow rate matching is not possible with pre-expansion. Flow rate matching is possible even under different conditions, and the operating range is wide.
 本発明に係る膨張機によれば、高圧導入孔を形成することによって揺動スクロール中央部の台板を経由した熱リークを低減することができ、膨張前圧力をサブ圧縮渦巻側に導入することにより揺動スクロールに作用する軸方向ガス荷重のバランスを改善でき、動作安定性が良好となる。 According to the expander according to the present invention, it is possible to reduce heat leakage via the base plate at the center of the orbiting scroll by forming the high pressure introduction hole, and to introduce the pre-expansion pressure to the sub-compression vortex side. As a result, the balance of the axial gas load acting on the orbiting scroll can be improved, and the operational stability is improved.
本発明の実施の形態1に係る冷凍サイクル装置の冷媒回路構成を模式的に表す回路構成図である。It is a circuit block diagram which represents typically the refrigerant circuit structure of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置の動作状況を示すモリエル線図である。It is a Mollier diagram which shows the operation | movement condition of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置に搭載される膨張機の概略断面構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the schematic cross-sectional structure of the expander mounted in the refrigeration cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置に搭載される膨張機の揺動スクロールをサブ圧縮渦巻側から見た状態を示す平面図である。It is a top view which shows the state which looked at the rocking scroll of the expander mounted in the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention from the sub compression vortex side. 本発明の実施の形態1に係る冷凍サイクル装置に搭載される膨張機の揺動スクロールを膨張渦巻側から見た状態を示す平面図である。It is a top view which shows the state which looked at the swing scroll of the expander mounted in the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention from the expansion spiral side. 本発明の実施の形態1に係る冷凍サイクル装置に搭載される膨張機の揺動スクロールに作用するスラストの状況を模式的に示す部分断面図である。It is a fragmentary sectional view which shows typically the condition of the thrust which acts on the rocking | fluctuation scroll of the expander mounted in the refrigerating cycle apparatus which concerns on Embodiment 1 of this invention. 冷凍サイクル装置の代表的な4つの運転条件を示す表である。It is a table | surface which shows four typical operating conditions of a refrigerating-cycle apparatus. 従来の冷凍サイクル装置の冷媒回路構成を模式的に表す回路構成図である。It is a circuit block diagram which represents typically the refrigerant circuit structure of the conventional refrigeration cycle apparatus. 従来方式によって流量マッチングした場合のサイクル計算結果を示す表である。It is a table | surface which shows the cycle calculation result at the time of carrying out flow volume matching by the conventional system. 実施の形態1に係る冷凍サイクル装置において分流で流量マッチングした場合のサイクル計算結果を示す表である。6 is a table showing a cycle calculation result when flow matching is performed in a branch flow in the refrigeration cycle apparatus according to Embodiment 1. 本発明の実施の形態2に係る冷凍サイクル装置の冷媒回路構成を模式的に表す回路構成図である。It is a circuit block diagram which represents typically the refrigerant circuit structure of the refrigerating-cycle apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る冷凍サイクル装置の冷媒回路構成を模式的に表す回路構成図である。It is a circuit block diagram which represents typically the refrigerant circuit structure of the refrigerating-cycle apparatus which concerns on Embodiment 3 of this invention.
 以下、図面に基づいて本発明の実施の形態について説明する。
実施の形態1.
 図1は、本発明の実施の形態1に係る冷凍サイクル装置100の冷媒回路構成を模式的に表す回路構成図である。図1に基づいて、冷凍サイクル装置100の回路構成及び動作について説明する。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、図1を含め、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。さらに、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a circuit configuration diagram schematically showing a refrigerant circuit configuration of a refrigeration cycle apparatus 100 according to Embodiment 1 of the present invention. The circuit configuration and operation of the refrigeration cycle apparatus 100 will be described with reference to FIG. In addition, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one. Further, in the following drawings including FIG. 1, the same reference numerals denote the same or equivalent parts, and this is common throughout the entire specification. Furthermore, the forms of the constituent elements shown in the entire specification are merely examples, and are not limited to these descriptions.
 実施の形態1に係る冷凍サイクル装置100は、冷媒を循環させる冷凍サイクルを備えた装置、たとえば冷蔵庫や冷凍庫、自動販売機、空気調和装置、冷凍装置、給湯器等として利用される。冷凍サイクル装置100は、主圧縮機5と、放熱器11と、予膨張弁14と、膨張機1と、蒸発器12と、第2圧縮機23と、逆止弁81と、を有している。主圧縮機5と、放熱器11と、予膨張弁14と、膨張機1の膨張機構2と、蒸発器12と、が直列に接続され、膨張機1のサブ圧縮機構3と、逆止弁81と、第2圧縮機23と、が直列に接続されている。 The refrigeration cycle apparatus 100 according to Embodiment 1 is used as an apparatus having a refrigeration cycle for circulating a refrigerant, such as a refrigerator, a freezer, a vending machine, an air conditioner, a refrigeration apparatus, a water heater, or the like. The refrigeration cycle apparatus 100 includes a main compressor 5, a radiator 11, a pre-expansion valve 14, an expander 1, an evaporator 12, a second compressor 23, and a check valve 81. Yes. The main compressor 5, the radiator 11, the pre-expansion valve 14, the expansion mechanism 2 of the expander 1, and the evaporator 12 are connected in series, and the sub-compression mechanism 3 of the expander 1, the check valve 81 and the second compressor 23 are connected in series.
 すなわち、冷凍サイクル装置100においては、主圧縮機5の主圧縮機構7と、膨張機1のサブ圧縮機構3とは、蒸発器12出口側において並列配置されている。また、膨張機1のサブ圧縮機構3の吐出側は、第2圧縮機23の第2圧縮機構25の吸入側に逆止弁81を介して接続されている。第2圧縮機23の第2圧縮機構25の吐出側と、主圧縮機5の主圧縮機構7の吐出側とは、放熱器11の入口前で接続されている。放熱器11の出口側は、予膨張弁14を経て膨張機1の膨張機構2の入口側に接続されている。膨張機1の膨張機構2の出口側は、蒸発器12の入口側に接続されている。 That is, in the refrigeration cycle apparatus 100, the main compression mechanism 7 of the main compressor 5 and the sub compression mechanism 3 of the expander 1 are arranged in parallel on the outlet side of the evaporator 12. The discharge side of the sub-compression mechanism 3 of the expander 1 is connected to the suction side of the second compression mechanism 25 of the second compressor 23 via a check valve 81. The discharge side of the second compression mechanism 25 of the second compressor 23 and the discharge side of the main compression mechanism 7 of the main compressor 5 are connected before the inlet of the radiator 11. The outlet side of the radiator 11 is connected to the inlet side of the expansion mechanism 2 of the expander 1 via the pre-expansion valve 14. The outlet side of the expansion mechanism 2 of the expander 1 is connected to the inlet side of the evaporator 12.
 主圧縮機5は、モータ6及びモータ6によって駆動される主圧縮機構7を有し、蒸発器12から流出した冷媒を吸入し、その冷媒を圧縮して高温・高圧の状態にするものである。この主圧縮機5は、たとえば容量制御可能なインバータ圧縮機などで構成するとよい。放熱器11は、使用される冷媒に応じて凝縮器又はガスクーラとして機能し、図示省略の送風機から供給される空気と冷媒との間で熱交換を行なうものである。予膨張弁14は、冷媒を減圧して膨張させるものであり、開度が可変に制御可能なもの、たとえば電子式膨張弁等で構成するとよい。蒸発器12は、図示省略の送風機から供給される空気と冷媒との間で熱交換を行なうものである。 The main compressor 5 has a motor 6 and a main compression mechanism 7 driven by the motor 6, sucks the refrigerant flowing out of the evaporator 12, and compresses the refrigerant to bring it into a high temperature / high pressure state. . The main compressor 5 may be composed of, for example, an inverter compressor capable of capacity control. The radiator 11 functions as a condenser or a gas cooler according to the refrigerant used, and performs heat exchange between air supplied from a blower (not shown) and the refrigerant. The pre-expansion valve 14 expands the refrigerant by depressurizing it, and it is preferable that the pre-expansion valve 14 is constituted by a valve whose opening degree can be variably controlled, for example, an electronic expansion valve. The evaporator 12 performs heat exchange between air supplied from a blower (not shown) and the refrigerant.
 膨張機1は、スクロール型の膨張機構2及びサブ圧縮機構3を一体としたものであり、膨張機構2で冷媒の膨張時に発生する膨張動力を回収し、サブ圧縮機構3で回収した膨張動力を用いて冷媒を圧縮する機能を有しているものである。第2圧縮機23は、モータ24及びモータ24によって駆動される第2圧縮機構25を有し、膨張機1のサブ圧縮機構3から吐出された冷媒を吸入し、その冷媒を高温・高圧の状態にするものである。つまり、第2圧縮機23が追加圧縮機構としての機能を有している。逆止弁81は、膨張機1のサブ圧縮機構3と第2圧縮機23との間に設置され、冷媒の流れを一方にのみ許容するものである。 The expander 1 is an integrated scroll-type expansion mechanism 2 and sub-compression mechanism 3. The expansion mechanism 2 collects expansion power generated when the refrigerant expands, and the expansion power collected by the sub-compression mechanism 3 is recovered. It has the function of compressing the refrigerant using it. The second compressor 23 has a motor 24 and a second compression mechanism 25 driven by the motor 24, sucks the refrigerant discharged from the sub-compression mechanism 3 of the expander 1, and keeps the refrigerant in a high temperature / high pressure state. It is to make. That is, the second compressor 23 has a function as an additional compression mechanism. The check valve 81 is installed between the sub-compression mechanism 3 of the expander 1 and the second compressor 23 and allows the refrigerant to flow only in one side.
 ここで、冷凍サイクル装置100の動作について説明する。
 主圧縮機5のモータ6に電気が供給されると主圧縮機構7が駆動される。主圧縮機構7では、吸引された冷媒が低圧Plから高圧Phまで昇圧し、吐出される。主圧縮機5から吐出された高温・高圧の冷媒は、放熱器11で放熱することで冷却される。放熱器11で冷却された冷媒は、膨張機1の膨張機構2に流入する。膨張機1では、膨張機構2に流入した冷媒が減圧するときに発生する動力を膨張機構2で回収し、回収した膨張動力によりサブ圧縮機構3が駆動される。
Here, the operation of the refrigeration cycle apparatus 100 will be described.
When electricity is supplied to the motor 6 of the main compressor 5, the main compression mechanism 7 is driven. In the main compression mechanism 7, the sucked refrigerant is increased in pressure from the low pressure Pl to the high pressure Ph and is discharged. The high-temperature and high-pressure refrigerant discharged from the main compressor 5 is cooled by releasing heat from the radiator 11. The refrigerant cooled by the radiator 11 flows into the expansion mechanism 2 of the expander 1. In the expander 1, power generated when the refrigerant flowing into the expansion mechanism 2 is decompressed is recovered by the expansion mechanism 2, and the sub-compression mechanism 3 is driven by the recovered expansion power.
 膨張機1のサブ圧縮機構3が作動することにより、冷凍サイクルを循環する冷媒は膨張機1のサブ圧縮機構3と主圧縮機5の主圧縮機構7にw:(1-w)で分流される。このとき、膨張機構2の入口における冷媒比容積をvexi、サブ圧縮機構3の入口における冷媒比容積をvs、膨張機構吸入容積/サブ圧縮機構吸入容積をσvECとすると、wが1/σvEC×(vexi/vs)となるように主圧縮機5の吸入量(回転数)を調整することにより、膨張/サブ圧縮間の流量はマッチングが取れる。 By operating the sub-compression mechanism 3 of the expander 1, the refrigerant circulating in the refrigeration cycle is divided into w: (1-w) by the sub-compression mechanism 3 of the expander 1 and the main compression mechanism 7 of the main compressor 5. The At this time, if the refrigerant specific volume at the inlet of the expansion mechanism 2 is vexi, the refrigerant specific volume at the inlet of the sub-compression mechanism 3 is vs, and the expansion mechanism suction volume / sub-compression mechanism suction volume is σvEC * , w is 1 / σvEC *. By adjusting the amount of suction (rotational speed) of the main compressor 5 so as to be x (vexi / vs), the flow rate between expansion / sub-compression can be matched.
 また、分流比w分の冷媒について、サブ圧縮機構3でPlから回収動力に見合う中間圧Pmまでの圧縮を行ない、PmからPhまでの追加圧縮をモータ24で駆動される第2圧縮機構25で賄うことにより、膨張/サブ圧縮間の動力も釣り合いが取れる。すなわち、膨張機1の吸入容積比σvECが固定で回収動力が条件に依存して決まっていることに対して、主圧縮機5との分流比で流量のマッチングを、第2圧縮機23の追加圧縮で動力のずれを吸収してマッチングを図っていることになる。 Further, the sub-compression mechanism 3 compresses the refrigerant corresponding to the split flow ratio w from Pl to an intermediate pressure Pm corresponding to the recovered power, and the second compression mechanism 25 driven by the motor 24 performs additional compression from Pm to Ph. By covering this, the power between expansion / sub-compression can be balanced. That is, while the suction volume ratio σvEC * of the expander 1 is fixed and the recovered power is determined depending on the conditions, the flow rate matching with the main compressor 5 is performed by matching the flow rate with the main compressor 5. The additional compression compresses the power shift and matches.
 なお、図1には予膨張弁14が記載されているが、これは起動時など過渡時に膨張機構側の圧力をコントロールするためのもので、定常時は全開で流量マッチングに関わらないようになっている。 In FIG. 1, a pre-expansion valve 14 is described. This is for controlling the pressure on the expansion mechanism side during a transition such as startup, and is not fully involved in flow rate matching during normal operation. ing.
 このときのサイクルの動作状況を、モリエル線図の上に示すと図2のようになる。図2では、縦軸が冷媒圧力Pを、横軸が比エンタルピhを、それぞれ表している。図2に示す点b→点cが、図1における放熱器11での冷却過程を表しており、冷媒としてCOを想定しているので圧力Phが臨界圧を超えている。 The operation state of the cycle at this time is shown on the Mollier diagram as shown in FIG. In FIG. 2, the vertical axis represents the refrigerant pressure P, and the horizontal axis represents the specific enthalpy h. Point b → point c shown in FIG. 2 represents the cooling process in the radiator 11 in FIG. 1, and CO 2 is assumed as the refrigerant, so the pressure Ph exceeds the critical pressure.
 放熱器11の出口から膨張弁のように動力を回収しない絞り装置で減圧すると点cから比エンタルピ一定で減圧して点d’に至るのに対して、膨張機1のように膨張機構2で膨張動力を発生しながら減圧されると点c→点dの過程を辿る。この減圧時の比エンタルピの差d’-dが動力として回収されるエネルギに相当し、流量w分を点a→点eのサブ圧縮機構3で圧縮する時の動力として利用される。第2圧縮機23で行なう追加圧縮は点e→点b、主圧縮機5での圧縮は点a→点bで表される。 When the pressure is reduced from the outlet of the radiator 11 with a throttling device that does not recover power, such as an expansion valve, the pressure is reduced at a constant enthalpy at a constant enthalpy from point c to point d ′. When the pressure is reduced while generating expansion power, the process from point c to point d is followed. This specific enthalpy difference d'-d at the time of pressure reduction corresponds to the energy recovered as power, and is used as power when the flow rate w is compressed by the sub-compression mechanism 3 from point a to point e. The additional compression performed by the second compressor 23 is represented by a point e → a point b, and the compression in the main compressor 5 is represented by a point a → a point b.
 このとき、(エンタルピ差ha-hd)×(流量1)相当分が冷凍能力で、(エンタルピ差he-ha)×(流量1-w)+(エンタルピ差hb-he)×(流量1)相当分の電気入力が主圧縮機5のモータ6及び第2圧縮機23のモータ24で消費されるので、この比率が所謂サイクルC.O.P.となる。動力回収を行なわないときのサイクル点a→点b→点c→点d’→点aと較べると、入力の(エンタルピ差he-ha)×(流量w)分と冷凍能力の(エンタルピ差hd’-hd)×(流量1)分がC.O.P.向上に寄与していることになる。 At this time, (enthalpy difference ha−hd) × (flow rate 1) equivalent is refrigeration capacity, and (enthalpy difference he−ha) × (flow rate 1−w) + (enthalpy difference hb−he) × (flow rate 1) equivalent Is consumed by the motor 6 of the main compressor 5 and the motor 24 of the second compressor 23, so this ratio is the so-called cycle C.I. O. P. It becomes. Compared with cycle point a → point b → point c → point d ′ → point a when power recovery is not performed, the input (enthalpy difference he−ha) × (flow rate w) and the refrigeration capacity (enthalpy difference hd) '-Hd) × (flow rate 1) is C.I. O. P. It contributes to improvement.
 また前述の如く、分流比wは膨張機1の吸入容積比σvECに応じて決まり、膨張機構2側とサブ圧縮機構3側のエンタルピ差の比(hc-hd)/(he-ha)は、wと等しくなるので、PmのレベルもσvECに依存する。膨張機1は、同一容器内に膨張機構2側とサブ圧縮機構3側の冷媒が流入し、ガス圧に起因する動力のやり取りをすることから、膨張機構2/サブ圧縮機構3間の荷重、伝熱に配慮して点eに相当するサブ圧縮吐出の圧力、温度をσvECの設定により調整することが、可能となる。 As described above, the diversion ratio w is determined according to the suction volume ratio σvEC * of the expander 1, and the ratio (hc−hd) / (he−ha) of the enthalpy difference between the expansion mechanism 2 side and the sub compression mechanism 3 side is , W are equal, and the level of Pm also depends on σvEC * . In the expander 1, since the refrigerant on the expansion mechanism 2 side and the sub compression mechanism 3 side flows into the same container and exchanges power due to gas pressure, the load between the expansion mechanism 2 and the sub compression mechanism 3; In consideration of heat transfer, it is possible to adjust the pressure and temperature of the sub-compression discharge corresponding to the point e by setting σvEC * .
 図3は、実施の形態1に係る冷凍サイクル装置100に搭載される膨張機1の概略断面構成を示す縦断面図である。図3に基づいて、膨張機1の構成について説明する。上述したように、膨張機1は、スクロール型の膨張機構2及びサブ圧縮機構3を一体としたものであり、冷媒の膨張時に発生する膨張動力を膨張機構2で回収し、回収した膨張動力を用いて冷媒をサブ圧縮機構3で圧縮する機能を有している。膨張機構2及びサブ圧縮機構3は、圧力容器である密閉容器4内部に収容されている。図3に示すように、密閉容器4の下方に膨張機構2が、膨張機構2の上方にサブ圧縮機構3が、それぞれ配置されている。 FIG. 3 is a longitudinal sectional view showing a schematic sectional configuration of the expander 1 mounted in the refrigeration cycle apparatus 100 according to the first embodiment. Based on FIG. 3, the structure of the expander 1 is demonstrated. As described above, the expander 1 includes the scroll-type expansion mechanism 2 and the sub-compression mechanism 3, and the expansion power generated when the refrigerant is expanded is recovered by the expansion mechanism 2, and the recovered expansion power is recovered. It has a function of compressing the refrigerant by the sub-compression mechanism 3. The expansion mechanism 2 and the sub-compression mechanism 3 are accommodated inside a sealed container 4 that is a pressure container. As shown in FIG. 3, the expansion mechanism 2 is disposed below the sealed container 4, and the sub-compression mechanism 3 is disposed above the expansion mechanism 2.
 密閉容器4の底部には、冷凍機油等の潤滑油9が貯留されている。密閉容器4には、膨張機構2に冷媒を吸入させる膨張吸入管15と、膨張機構2で膨張した冷媒を吐出させる膨張吐出管16と、サブ圧縮機構3に冷媒を吸入させるサブ圧縮吸入管19と、サブ圧縮機構3で圧縮した冷媒を吐出させるサブ圧縮吐出管20と、が連接されている。膨張吸入管15、サブ圧縮吐出管20及び膨張吐出管16は、密閉容器4の側面から内部に連通するように設けられている。サブ圧縮吸入管19は、密閉容器4の上面から内部に連通するように設けられている。 The lubricating oil 9 such as refrigerating machine oil is stored at the bottom of the sealed container 4. In the sealed container 4, an expansion suction pipe 15 that causes the expansion mechanism 2 to suck the refrigerant, an expansion discharge pipe 16 that discharges the refrigerant expanded by the expansion mechanism 2, and a sub compression suction pipe 19 that causes the sub compression mechanism 3 to suck the refrigerant. And a sub-compression discharge pipe 20 for discharging the refrigerant compressed by the sub-compression mechanism 3 is connected. The expansion suction pipe 15, the sub compression discharge pipe 20, and the expansion discharge pipe 16 are provided so as to communicate with the inside from the side surface of the sealed container 4. The sub-compression suction pipe 19 is provided so as to communicate with the inside from the upper surface of the sealed container 4.
 膨張機構2は、膨張吸入管15から吸入した冷媒を減圧して膨張させ、その冷媒を膨張吐出管16から吐出するものである。この膨張機構2は、台板上に膨張側渦巻51aが形成された膨張側固定スクロール51と、台板上に膨張側渦巻52aが形成された揺動スクロール52と、を有している。図3に示すように、膨張側固定スクロール51が下側に、揺動スクロール52が上側に配置されている。膨張側渦巻51aは、膨張側固定スクロール51の台板の一方の面に渦巻状突起として立設されている。また、膨張側渦巻52aは、揺動スクロール52の台板の一方の面に渦巻状突起として立設されている。 The expansion mechanism 2 decompresses and expands the refrigerant sucked from the expansion suction pipe 15 and discharges the refrigerant from the expansion discharge pipe 16. The expansion mechanism 2 includes an expansion side fixed scroll 51 in which an expansion side spiral 51a is formed on a base plate, and an orbiting scroll 52 in which an expansion side spiral 52a is formed on the base plate. As shown in FIG. 3, the expansion side fixed scroll 51 is disposed on the lower side, and the swing scroll 52 is disposed on the upper side. The expansion side spiral 51 a is erected as a spiral protrusion on one surface of the base plate of the expansion side fixed scroll 51. The expansion-side spiral 52 a is erected as a spiral protrusion on one surface of the base plate of the swing scroll 52.
 そして、膨張側固定スクロール51の膨張側渦巻51aと、揺動スクロール52の膨張側渦巻52aとは、互いに咬合ようにして配置されている。膨張側渦巻51aと膨張側渦巻52aとが相対的に揺動運動することによって容積が変化する膨張室51dが形成される。なお、膨張側固定スクロール51側の揺動スクロール52端面には、軸78を囲繞して偏心シール72bが設けられている。 The expansion-side spiral 51a of the expansion-side fixed scroll 51 and the expansion-side spiral 52a of the swing scroll 52 are arranged so as to mesh with each other. An expansion chamber 51d whose volume changes is formed by the relative swinging motion of the expansion side spiral 51a and the expansion side spiral 52a. An eccentric seal 72b is provided on the end surface of the swing scroll 52 on the side of the expansion side fixed scroll 51 so as to surround the shaft 78.
 サブ圧縮機構3は、サブ圧縮吸入管19から吸入した冷媒を圧縮して、サブ圧縮吐出管20から吐出するものである。このサブ圧縮機構3は、台板上にサブ圧縮側渦巻61aが形成されたサブ圧縮側固定スクロール61と、台板上にサブ圧縮側渦巻62aが形成された揺動スクロール52と、を有している。図3に示すように、サブ圧縮側固定スクロール61が上側に、揺動スクロール52が下側に配置されている。サブ圧縮側渦巻61aは、サブ圧縮側固定スクロール61の台板の一方の面に渦巻状突起として立設されている。また、サブ圧縮側渦巻62aは、揺動スクロール52の台板の一方の面に渦巻状突起として立設されている。 The sub-compression mechanism 3 compresses the refrigerant sucked from the sub-compression suction pipe 19 and discharges it from the sub-compression discharge pipe 20. The sub-compression mechanism 3 has a sub-compression side fixed scroll 61 in which a sub-compression side spiral 61a is formed on a base plate, and an orbiting scroll 52 in which a sub-compression side spiral 62a is formed on a base plate. ing. As shown in FIG. 3, the sub-compression side fixed scroll 61 is disposed on the upper side, and the swing scroll 52 is disposed on the lower side. The sub-compression side spiral 61 a is erected as a spiral projection on one surface of the base plate of the sub-compression side fixed scroll 61. The sub-compression side spiral 62 a is erected as a spiral protrusion on one surface of the base plate of the swing scroll 52.
 そして、サブ圧縮側固定スクロール61のサブ圧縮側渦巻61aと、揺動スクロール52のサブ圧縮側渦巻62aとは、互いに咬合ようにして配置されている。サブ圧縮側渦巻61aとサブ圧縮側渦巻62aとが相対的に揺動運動することによって容積が変化するサブ圧縮室61dが形成される。なお、サブ圧縮側固定スクロール61と膨張側固定スクロール51の外周部には、潤滑油9を密閉容器4の底部に戻すための返油孔31が軸方向に貫通形成されている。また、サブ圧縮側固定スクロール61側の揺動スクロール52端面には、軸78を囲繞して偏心シール72a及び同心シール73が設けられている。さらに、サブ圧縮側固定スクロール61の冷媒吐出部分には吐出弁32が設けられている。この吐出弁32は、開閉することでサブ圧縮室61dとサブ圧縮吐出管20とを連通・遮断するようになっている。 The sub-compression side spiral 61a of the sub-compression side fixed scroll 61 and the sub-compression side spiral 62a of the orbiting scroll 52 are arranged so as to mesh with each other. A sub-compression chamber 61d in which the volume changes is formed by relatively swinging the sub-compression side spiral 61a and the sub-compression side spiral 62a. In addition, oil return holes 31 for returning the lubricating oil 9 to the bottom of the hermetic container 4 are formed through the outer peripheral portions of the sub-compression side fixed scroll 61 and the expansion side fixed scroll 51 in the axial direction. Further, an eccentric seal 72 a and a concentric seal 73 are provided on the end surface of the swing scroll 52 on the side of the sub-compression side fixed scroll 61 so as to surround the shaft 78. Further, a discharge valve 32 is provided at the refrigerant discharge portion of the sub-compression side fixed scroll 61. The discharge valve 32 is opened and closed to communicate / block the sub compression chamber 61d and the sub compression discharge pipe 20.
 膨張側固定スクロール51、揺動スクロール52、サブ圧縮側固定スクロール61の略中心部には貫通穴が形成されており、これらの貫通穴に軸78が嵌入されるようになっている。膨張機構2の揺動スクロール52とサブ圧縮機構3の揺動スクロール52とは、台板を共用した形で一体的に構成されており、高圧導入孔52eが軸方向に貫通形成されている。高圧導入孔52eは、膨張室51dと、偏心シール72aと同心シール73との間の空間と、を連通している。 Through holes are formed in substantially the center portions of the expansion side fixed scroll 51, the swing scroll 52, and the sub compression side fixed scroll 61, and a shaft 78 is fitted into these through holes. The orbiting scroll 52 of the expansion mechanism 2 and the orbiting scroll 52 of the sub-compression mechanism 3 are integrally configured so as to share a base plate, and a high-pressure introduction hole 52e is formed to penetrate in the axial direction. The high-pressure introduction hole 52e communicates the expansion chamber 51d and the space between the eccentric seal 72a and the concentric seal 73.
 軸78は、膨張側固定スクロール51及びサブ圧縮側固定スクロール61のそれぞれの中央部に形成された下軸受51b及び上軸受61bによって、回転自在に両持ち支持されている。揺動スクロール52は、膨張側渦巻52a、サブ圧縮側渦巻61aそれぞれの中央部に形成されている肉厚部内に設けた揺動軸受52bが、軸78に形成されたクランク部78aによって貫通支持され、軸78の回転動作に伴って揺動運動できるようになっている。 The shaft 78 is rotatably supported at both ends by a lower bearing 51b and an upper bearing 61b formed at the center of each of the expansion side fixed scroll 51 and the sub compression side fixed scroll 61. In the swing scroll 52, a swing bearing 52b provided in a thick portion formed at the center of each of the expansion side spiral 52a and the sub compression side spiral 61a is penetrated and supported by a crank portion 78a formed on a shaft 78. As the shaft 78 rotates, it can swing.
 軸78の下端には、潤滑油9を汲み上げる油ポンプ76が装着されている。また、軸78内には、油ポンプ76で汲み上げられた潤滑油9を導通させる図示省略の給油孔が空けられている。油ポンプ76で汲み上げられた潤滑油9は、軸78内に形成されている給油孔を通って、下軸受51b及び上軸受61bに供給されるようになっている。また、各軸受で使用された潤滑油9は、返油孔31を介して密閉容器4の底部に戻るようになっている。なお、揺動スクロール52の外周側には、揺動スクロール52が揺動運転可能なように所定の大きさで揺動スクロール運動空間が形成されている。 An oil pump 76 that pumps up the lubricating oil 9 is attached to the lower end of the shaft 78. Further, an oil supply hole (not shown) through which the lubricating oil 9 pumped up by the oil pump 76 is conducted is formed in the shaft 78. The lubricating oil 9 pumped up by the oil pump 76 is supplied to the lower bearing 51b and the upper bearing 61b through an oil supply hole formed in the shaft 78. The lubricating oil 9 used in each bearing returns to the bottom of the sealed container 4 through the oil return hole 31. A rocking scroll motion space having a predetermined size is formed on the outer peripheral side of the rocking scroll 52 so that the rocking scroll 52 can be swung.
 揺動スクロール52の外周側であって膨張側固定スクロール51側には、オルダム溝52dが形成されており、このオルダム溝52dに揺動スクロール52の自転運動を規制し、公転運動を可能とするためのオルダムリング77が配置されている。また、軸78の上端側にはバランサ79aが、下端側にはバランサ79bがそれぞれ設けられている。バランサ79a及びバランサ79bは、揺動スクロール52が揺動運動することによって発生する遠心力を相殺するためのものであり、材質及び大きさ、形状等を特に限定するものではない。 An Oldham groove 52d is formed on the outer peripheral side of the orbiting scroll 52 and on the side of the expansion side fixed scroll 51. The Oldham groove 52d restricts the rotation motion of the orbiting scroll 52 and enables the revolving motion. For this purpose, an Oldham ring 77 is arranged. A balancer 79a is provided on the upper end side of the shaft 78, and a balancer 79b is provided on the lower end side. The balancer 79a and the balancer 79b are for canceling the centrifugal force generated by the swinging motion of the swing scroll 52, and the material, size, shape and the like are not particularly limited.
 すなわち、図3に示すように、膨張機1は、膨張側渦巻52aとサブ圧縮側渦巻62aとが台板の両面に背面合わせに形成された揺動スクロール52が、それぞれ膨張側固定スクロール51とサブ圧縮側固定スクロール61と組み合わされて、膨張機構2とサブ圧縮機構3を構成している。 That is, as shown in FIG. 3, the expander 1 includes an orbiting scroll 52 in which an expansion-side spiral 52 a and a sub-compression side spiral 62 a are formed on both sides of a base plate so as to face each other. The expansion mechanism 2 and the sub compression mechanism 3 are configured in combination with the sub compression side fixed scroll 61.
 したがって、膨張機1では、膨張吸入管15から流入した高圧の冷媒が膨張機構2内で膨張するときの動力で、揺動スクロール52は、オルダムリング77と軸78で規正されて揺動運動し、サブ圧縮機構3がサブ圧縮吸入管19から吸入ポート(別位相断面のため図示せず)を経て吸入された低圧の冷媒を昇圧する。そして、中間圧まで昇圧された冷媒は、吐出ポート(別断面)から吐出弁32を押し開けて、サブ圧縮吐出管20へと吐出される。膨張後の冷媒は、膨張吐出管16(別断面)から排出される。 Therefore, in the expander 1, the swing scroll 52 is regulated by the Oldham ring 77 and the shaft 78 and swings with the power when the high-pressure refrigerant flowing from the expansion suction pipe 15 expands in the expansion mechanism 2. The sub-compression mechanism 3 boosts the low-pressure refrigerant sucked from the sub-compression suction pipe 19 through a suction port (not shown for another phase cross section). Then, the refrigerant whose pressure has been increased to the intermediate pressure pushes the discharge valve 32 open from the discharge port (different cross section) and is discharged to the sub-compression discharge pipe 20. The expanded refrigerant is discharged from the expansion discharge pipe 16 (different cross section).
 膨張機1のように膨張側渦巻52aとサブ圧縮側渦巻62aとが背面合わせで一体化した両面スクロール機構の膨張機を用いるとき、揺動スクロールの台板を挟んで膨張側とサブ圧縮側の冷媒が近接して通過することになる。そのため、膨張側とサブ圧縮側との温度差が大きすぎると揺動スクロールの台板を経由した熱リークが無視できないレベルとなる可能性がある。特に、サブ圧縮側から膨張側への熱リークは、サイクル効率が低下する方向へ作用するので、できる限り回避することが望ましい。 When using an expander having a double-sided scroll mechanism in which the expansion side spiral 52a and the sub compression side spiral 62a are integrated back to back as in the expander 1, the expansion side and the sub compression side are sandwiched by the base plate of the swing scroll. The refrigerant will pass nearby. For this reason, if the temperature difference between the expansion side and the sub-compression side is too large, there is a possibility that the heat leak through the base plate of the orbiting scroll cannot be ignored. In particular, the heat leak from the sub-compression side to the expansion side acts in the direction of reducing the cycle efficiency, so it is desirable to avoid it as much as possible.
 図2に示したモリエル線図上で、膨張過程は点c→点d、サブ圧縮過程は点a→点eとなるので、膨張側渦巻中央部には点c、膨張側渦巻外周部には点d、サブ圧縮側渦巻外周部には点a、サブ圧縮側渦巻中央部には点e、の状態の冷媒が接していることになる。つまり、台板中央部で点eと点cの状態の冷媒が、台板外周部で点aと点dの冷媒が、各々背面合わせで隣接していることになる。このうち点c、点d、点aについては運転条件から決まっているが、前述の如くPmのレベルは膨張/サブ圧縮の吸入容積比σvECに依存するので、点eについては膨張機1の設計時にσvECの選び方によって分流比wを変えて状態量の調整が可能である。 In the Mollier diagram shown in FIG. 2, the expansion process is from point c to point d, and the sub-compression process is from point a to point e, so point c is at the center of the expansion side spiral, and The refrigerant in the state of point d, the point a at the sub-compression side spiral outer periphery, and the point e at the center of the sub-compression side spiral is in contact. That is, the refrigerant in the state of points e and c at the center of the base plate and the refrigerant at points a and d at the outer periphery of the base plate are adjacent to each other back to back. Among these points, the points c, d, and a are determined from the operating conditions, but the level of Pm depends on the expansion / sub-compression suction volume ratio σvEC * as described above. The state quantity can be adjusted by changing the diversion ratio w depending on how σvEC * is selected at the time of design.
 また、揺動スクロールの両面で高圧Ph~低圧Plの膨張過程と低圧Pl~中間圧Pmのサブ圧縮過程が進行するため、揺動スクロールに作用する軸方向のガス荷重(スラスト)は等しくならず、中間圧Pmに依存してスラスト差が過大になると、渦巻先押付による摺動損失の増大や運転安定性の低下を引き起こすことになってしまう。したがって、吸入容積比σvECは、熱リークとスラストの両方を考慮して選択しなければならないが、所定の条件で台板中央部での点e~点c間の温度差が、内部熱リークによるサイクル効率低下が許容できるレベルとなるように膨張機1の吸入容積比を選択するとPmは概ね(Ph+Pl)/2以下となる。 Further, since the expansion process of high pressure Ph to low pressure Pl and the sub-compression process of low pressure Pl to intermediate pressure Pm proceed on both sides of the orbiting scroll, the axial gas load (thrust) acting on the orbiting scroll is not equal. If the thrust difference becomes excessive depending on the intermediate pressure Pm, an increase in sliding loss or a decrease in operational stability due to the spiral tip pressing will be caused. Therefore, the suction volume ratio σvEC * must be selected in consideration of both heat leak and thrust. However, the temperature difference between the points e to c at the center of the base plate under the predetermined condition is the internal heat leak. When the suction volume ratio of the expander 1 is selected so that the reduction in cycle efficiency due to the pressure is acceptable, Pm is approximately (Ph + Pl) / 2 or less.
 この状況では、渦巻形状・寸法にもよるが、スラスト差によりサブ圧縮側の渦巻先に過大な押付が生じるのを避けられないので、そのままでは運転できない。しかしながら、膨張吸入側の高圧をサブ圧縮側の中央部に導くことにより、サブ圧縮側に作用するスラストを増し、膨張側からのスラストにバランスさせることが可能である。そこで、膨張機1では、揺動スクロールを軸方向に貫通する高圧導入孔52eを設けることにより、膨張入口側の膨張前高圧をサブ圧縮側中央部端面の同心シール73と偏心シール72aとの間の部分に作用させるようにしている。 In this situation, although it depends on the shape and dimensions of the spiral, it is inevitable that excessive thrust will occur at the sub-compression side spiral tip due to the thrust difference. However, it is possible to increase the thrust acting on the sub-compression side and to balance it with the thrust from the expansion side by introducing the high pressure on the expansion suction side to the central portion on the sub-compression side. Therefore, in the expander 1, by providing the high pressure introduction hole 52e penetrating the orbiting scroll in the axial direction, the pre-expansion high pressure on the expansion inlet side is transferred between the concentric seal 73 and the eccentric seal 72a on the subcompression side central end face. It is made to act on the part.
 図4は、揺動スクロールをサブ圧縮渦巻側から見た状態を示す平面図である。図5は、揺動スクロールを膨張渦巻側から見た状態を示す平面図である。図4及び図5に基づいて、膨張機1の特徴を更に詳しく説明する。揺動スクロールには、中央部に軸78が貫通するための揺動軸受52bが形成されており、揺動軸受52bの周囲は膨張側、サブ圧縮側共にいわゆる球根形状(インボリュート巻始め点の間を円弧で接続したような形状)が形成されている。 FIG. 4 is a plan view showing a state in which the orbiting scroll is viewed from the sub compression spiral side. FIG. 5 is a plan view showing a state in which the swing scroll is viewed from the expansion spiral side. Based on FIG.4 and FIG.5, the characteristic of the expander 1 is demonstrated in more detail. The orbiting scroll is formed with an orbiting bearing 52b through which the shaft 78 penetrates at the center, and the periphery of the orbiting bearing 52b is a so-called bulbous shape (between the involute winding start point) on both the expansion side and the sub compression side. Are formed by connecting them with arcs).
 膨張機1の揺動スクロールは、低圧Pl~中間圧Pm間で動作するサブ圧縮側渦巻62aに較べて、低圧Pl~高圧Ph間で動作する膨張側渦巻52aを寸法的に小さくすることで、膨張側から作用するスラストの受圧面積を抑えるようになっている。また、膨張機1の膨張側の外周部にはオルダムリング77のキー部が嵌め合わされるオルダム溝52dが形成されており、図3に示すように揺動スクロール台板の膨張側外周部でオルダムリング77が膨張側固定スクロール51との間で姿勢規正を行なうようになっている。 The orbiting scroll of the expander 1 is formed by dimensionally reducing the expansion side spiral 52a that operates between the low pressure Pl and the high pressure Ph compared to the sub compression side spiral 62a that operates between the low pressure Pl and the intermediate pressure Pm. The pressure receiving area of the thrust acting from the expansion side is suppressed. Further, an Oldham groove 52d into which the key part of the Oldham ring 77 is fitted is formed on the outer peripheral portion on the expansion side of the expander 1, and the Oldham groove is formed on the expansion side outer peripheral portion of the swing scroll base plate as shown in FIG. The posture of the ring 77 is adjusted between the ring 77 and the expansion side fixed scroll 51.
 図5に示す膨張側渦巻52aの揺動軸受52b外側の球根形状部端面には、容器内雰囲気の低圧に通じている揺動軸受52bと膨張前高圧の中央部とを偏心シール72bが隔てており、膨張室51dが形成される最内周部分に膨張吸入直後の圧力をサブ圧縮側に導くように高圧導入孔52eが形成されている。図4に示すサブ圧縮側の高圧導入孔52eは、球根形状部端面の同心シール73と偏心シール72aの間に開口しており、低圧の揺動軸受部との間を同心シール73が、中間圧のサブ圧縮中央部との間を偏心シール72aが隔てることにより、偏心シール72a内側、同心シール73外側の部分に高圧が作用するようになっている。 An eccentric seal 72b separates the swing bearing 52b communicating with the low pressure of the atmosphere in the container and the central portion of the pre-expansion high pressure on the end surface of the bulb-shaped portion outside the swing bearing 52b of the expansion side spiral 52a shown in FIG. A high-pressure introduction hole 52e is formed in the innermost peripheral portion where the expansion chamber 51d is formed so as to guide the pressure immediately after expansion and suction to the sub-compression side. The high-pressure introduction hole 52e on the sub-compression side shown in FIG. 4 is opened between the concentric seal 73 and the eccentric seal 72a on the bulb-shaped end surface, and the concentric seal 73 is intermediate between the low-pressure rocking bearing portion. Since the eccentric seal 72a is separated from the sub-compression central portion of the pressure, a high pressure is applied to the inner portion of the eccentric seal 72a and the outer portion of the concentric seal 73.
 図6は、揺動スクロールに作用するスラストの状況を模式的に示す部分断面図である。図6に基づいて、膨張機1の揺動スクロールに作用するスラストについて詳しく説明する。なお、図6に示す矢印が揺動スクロールの両面にそれぞれ作用しているスラスト荷重を表している。 FIG. 6 is a partial sectional view schematically showing the state of thrust acting on the orbiting scroll. Based on FIG. 6, the thrust which acts on the swing scroll of the expander 1 is demonstrated in detail. Note that the arrows shown in FIG. 6 represent the thrust loads acting on both sides of the orbiting scroll.
 図6において、膨張側の偏心シール72bから外側の渦巻部分には高圧Ph~低圧Plが作用し、サブ圧縮側の偏心シール72aから外側の渦巻部分には中間圧Pm~低圧Plが作用する。さらに、偏心シール72aの内側、同心シール73の外側の部分に高圧導入孔52eで膨張側から導かれた高圧Phが作用することにより、トータルで膨張側とサブ圧縮側のスラストが概ね釣り合うようになっている。このとき、膨張側とサブ圧縮側の間に連通路(高圧導入孔52e)を設けることは、膨張側中央部とサブ圧縮側中央部の温度差が大きい場合には熱リークを増大させるが、吸入容積比の選択により温度差を抑制していれば問題ない。 6, high pressure Ph to low pressure Pl act on the spiral portion outside the expansion side eccentric seal 72b, and intermediate pressure Pm to low pressure Pl act on the spiral portion outside the sub compression side eccentric seal 72a. Further, the high pressure Ph guided from the expansion side by the high pressure introduction hole 52e acts on the inner side of the eccentric seal 72a and the outer side of the concentric seal 73, so that the thrust on the expansion side and the sub-compression side are almost balanced in total. It has become. At this time, providing a communication path (high-pressure introduction hole 52e) between the expansion side and the sub compression side increases heat leakage when the temperature difference between the expansion side central portion and the sub compression side central portion is large. There is no problem as long as the temperature difference is suppressed by selecting the suction volume ratio.
 また、膨張前の高圧をサブ圧縮側渦巻の球根形状部端面に導く高圧導入孔52eは、図3の断面図のように揺動スクロールを貫通する細孔として表されているが、膨張機構に吸入される前のたとえば膨張吸入管15以前の管路から、たとえばサブ圧縮側固定スクロール61内を経由してサブ圧縮側渦巻中央球根形状部端面に導くようにしても機能的には変わらない。この場合、サブ圧縮側固定スクロール中央部歯底面に開口する高圧導入孔52eは、相手側の揺動スクロールの同心シール73の外側で揺動スクロールが揺動運動しても常に偏心シール72aの内側となるような位置に開口しなければならないことは言うまでもない。 Further, the high-pressure introduction hole 52e that guides the high pressure before expansion to the end face of the bulb-shaped portion of the sub-compression side spiral is represented as a fine hole that penetrates the orbiting scroll as shown in the cross-sectional view of FIG. Even if it is guided from, for example, the conduit before the expansion suction pipe 15 before being sucked to the end face of the sub compression side spiral central bulb shape portion through the sub compression side fixed scroll 61, for example, there is no functional change. In this case, the high-pressure introduction hole 52e opened at the tooth bottom surface of the center portion of the sub-compression fixed scroll is always inside the eccentric seal 72a even if the swinging scroll swings outside the concentric seal 73 of the counterpart swing scroll. Needless to say, it must be opened at such a position.
 図7は、冷凍サイクル装置の代表的な4つの運転条件を示す表である。図8は、従来の冷凍サイクル装置(以下、冷凍サイクル装置100’と称する)の冷媒回路構成を模式的に表す回路構成図である。図9は、従来方式によって流量マッチングした場合のサイクル計算結果を示す表である。図7~図9に基づいて、冷凍サイクル装置100’における代表的な4つの運転条件について説明する。図8に示す冷凍サイクル装置100’は、予膨張(膨張弁13’)/膨張機構バイパス(バイパス管40’)で流量マッチングを行なう冷凍サイクルを備えたものである。 FIG. 7 is a table showing four typical operating conditions of the refrigeration cycle apparatus. FIG. 8 is a circuit configuration diagram schematically showing a refrigerant circuit configuration of a conventional refrigeration cycle apparatus (hereinafter referred to as refrigeration cycle apparatus 100 ′). FIG. 9 is a table showing the cycle calculation results when the flow rate matching is performed by the conventional method. Based on FIGS. 7 to 9, four typical operating conditions in the refrigeration cycle apparatus 100 'will be described. The refrigeration cycle apparatus 100 ′ shown in FIG. 8 includes a refrigeration cycle that performs flow rate matching by pre-expansion (expansion valve 13 ′) / expansion mechanism bypass (bypass pipe 40 ′).
 冷凍サイクル装置100’は、第2圧縮機23を設けていない点、及び、膨張弁13’及びバイパス管40’を設けている点で、実施の形態1に係る冷凍サイクル装置100と相違している。図7に示す4つの条件について、図8に示す冷凍サイクル装置100’で流量マッチングをする場合、バイパス比xと膨張入口前で予膨張させる減圧幅の全高低圧差に対する比率である予膨張率yとが、ともに0となるような(膨張吸入容積/圧縮吸入容積)、すなわち運転条件によって決まる(膨張入口冷媒比容積/圧縮入口冷媒比容積)はσvECのようになる。また、(膨張入口冷媒比容積/膨張出口冷媒比容積)はσvEのようになる。このときのサイクルC.O.P.は、C.O.P.thとなる。 The refrigeration cycle apparatus 100 ′ is different from the refrigeration cycle apparatus 100 according to the first embodiment in that the second compressor 23 is not provided and the expansion valve 13 ′ and the bypass pipe 40 ′ are provided. Yes. When the flow rate matching is performed in the refrigeration cycle apparatus 100 ′ shown in FIG. 8 for the four conditions shown in FIG. 7, the pre-expansion rate y, which is the ratio of the bypass ratio x to the total high-low pressure difference of the decompression width pre-expanded before the expansion inlet. Are both 0 (expansion suction volume / compression suction volume), that is, determined by operating conditions (expansion inlet refrigerant specific volume / compression inlet refrigerant specific volume) is σvEC. Further, (expansion inlet refrigerant specific volume / expansion outlet refrigerant specific volume) is σvE. Cycle C. at this time O. P. Is C.I. O. P. th.
 運転条件側のσvEは、膨張機構2’の膨張容積比(膨張開始容積/膨張完了容積)=σvEに対応するが、σvEが通常は膨張機設計に固有で変えられないので、σvEとσvEの乖離が大きくなると、不足膨張や過膨張による回収動力の目減りが著しくなる。 ΣvE on the operating condition side corresponds to the expansion volume ratio (expansion start volume / expansion completion volume) = σvE * of the expansion mechanism 2 ′, but σvE * is usually unique to the expander design and cannot be changed . When the difference between σvE and σvE becomes large, the reduction in recovered power due to underexpansion and overexpansion becomes significant.
 ある条件に対して、(膨張入口冷媒比容積/圧縮入口冷媒比容積)と等しくなるような(膨張吸入容積/圧縮吸入容積)=σvECと、(膨張入口冷媒比容積/膨張出口冷媒比容積)と等しくなるような(膨張開始容積/膨張完了容積)=σvEと、を設定し、残りの3条件に対して予膨張率yとバイパス比xとで流量マッチングしたサイクルの計算結果を図9に示している。 For a certain condition, (expansion suction volume / compression suction volume) = σvEC * and (expansion inlet refrigerant specific volume / expansion outlet refrigerant specific volume) which are equal to (expansion inlet refrigerant specific volume / compression inlet refrigerant specific volume) (Expansion start volume / expansion completion volume) = σvE *, and the flow rate matching with the pre-expansion rate y and the bypass ratio x for the remaining three conditions is shown in FIG. 9 shows.
 図9では、(膨張入口冷媒比容積/圧縮入口冷媒比容積)がσvEC、(膨張入口冷媒比容積/膨張出口冷媒比容積)がσvEの条件に対して、膨張容積比=(膨張吸入容積/圧縮吸入容積)がσvEC、(膨張開始容積/膨張完了容積)がσvEである膨張機1’を用いるとき、流量マッチングに必要な予膨張率y、バイパス比x、サブ圧縮出口圧力である中間圧Pm及びそのときのC.O.P.の図7で示すC.O.P.thに対する比を示している。 In FIG. 9, with respect to the condition that (expansion inlet refrigerant specific volume / compression inlet refrigerant specific volume) is σvEC and (expansion inlet refrigerant specific volume / expansion outlet refrigerant specific volume) is σvE, the expansion volume ratio = (expansion suction volume / When using the expander 1 ′ having a compression suction volume (σvEC * ) and (expansion start volume / expansion completion volume) σvE * , the pre-expansion ratio y, bypass ratio x, and sub-compression outlet pressure necessary for flow rate matching are used. Intermediate pressure Pm and C. O. P. C. shown in FIG. O. P. The ratio to th is shown.
 σvEC=σvECの場合にはバイパスも予膨張も必要がない。σvEC<σvECのときはバイパス、σvEC>σvECのときは予膨張を行なって流量をマッチングさせることになるが、σvECがσvECよりも大きすぎると、最大限予膨張してもマッチングが取れない、或いはマッチングが取れてもC.O.P.比が100%を下回って膨張動力回収による性能改善効果が得られない、という事態が生じる。暖房条件にσvECを合わせたときの冷房定格条件がこれに当たり、暖房に合わせて設計された膨張機1’を冷房定格条件で使用するのであれば、この方式が向いていないことが容易に理解できる。 When σvEC * = σvEC, neither bypass nor pre-expansion is required. When σvEC * <σvEC, bypass flow is performed, and when σvEC * > σvEC, pre-expansion is performed to match the flow rate. However, if σvEC * is too larger than σvEC, matching can be achieved even if the maximum pre-expansion occurs C. O. P. A situation occurs in which the ratio is less than 100% and the performance improvement effect by the recovery of the expansion power cannot be obtained. This is the cooling rated condition when σvEC * is matched to the heating condition, and if the expander 1 ′ designed for heating is used under the cooling rated condition, it is easily understood that this method is not suitable. it can.
 これに対して、実施の形態1に係る冷凍サイクル装置100における分流比wで流量マッチングを行なうような場合のサイクル計算結果は図10に示すようになる。ここでは、σvEC=0.5に固定したとき、マッチングに必要なw、wに依存する中間圧Pm、およびその時のC.O.P.比を示している。流量マッチングに付随する動力回収ロスがないため、σvEが膨張容積比σvEと一致しないとき、特に暖房条件に合わせた設計での冷房運転、冷房条件にあわせた設計での暖房運転のときには、不足膨張或いは過膨張の影響がC.O.P.比に現れて低下しているが、図9に示したようにC.O.P.比が100%を下回るようなことはないということがわかる。 On the other hand, the cycle calculation result in the case where the flow rate matching is performed with the diversion ratio w in the refrigeration cycle apparatus 100 according to Embodiment 1 is as shown in FIG. Here, when σvEC * is fixed to 0.5, w required for matching, intermediate pressure Pm depending on w, and C.I. O. P. The ratio is shown. Since there is no power recovery loss associated with flow rate matching, it is insufficient when σvE does not match the expansion volume ratio σvE * , especially when cooling operation is designed for heating conditions, and when heating operation is designed for cooling conditions. The effect of expansion or overexpansion is C.I. O. P. As shown in FIG. O. P. It can be seen that the ratio never falls below 100%.
 冷凍サイクル装置100’の動作状況は、図2のモリエル線図を流用できる。サブ圧縮機構3’で点a→点eのサブ圧縮後、主圧縮機5’で点e→点bの圧縮を行ない、放熱器11’にて点b→点cの冷却後の冷媒は、膨張機構2’において点c→点dの等エントロピ膨張過程を辿る。しかしながら、流量マッチングの必要に応じて、流量x分がバイパスして膨張弁13’で減圧されることにより点c→点d’の等エンタルピ膨張過程を辿り、膨張機構2’を通過する流量が1-xとなる、或いは点cから予膨張弁14で予膨張率y分だけ点d’に向かって等エンタルピ膨張した後、膨張機構2’にて等エントロピ膨張することになる。 The operating state of the refrigeration cycle apparatus 100 'can be diverted from the Mollier diagram of FIG. After sub-compression of point a → point e by the sub-compression mechanism 3 ′, compression of the point e → point b is performed by the main compressor 5 ′, and the refrigerant after cooling of the point b → point c by the radiator 11 ′ is In the expansion mechanism 2 ', the isentropic expansion process from point c to point d is followed. However, if the flow rate matching is necessary, the flow rate x is bypassed and decompressed by the expansion valve 13 ', so that an isoenthalpy expansion process from point c to point d' follows and the flow rate passing through the expansion mechanism 2 'is increased. 1-x, or isentropic expansion from the point c by the preexpansion valve 14 toward the point d ′ by the preexpansion rate y, followed by isentropic expansion by the expansion mechanism 2 ′.
 このため回収動力は、バイパスの場合はエンタルピ差d’-dの流量1-x分、予膨張の場合は圧力Pl+(Ph-Pl)・(1-y)~Plの等エントロピ膨張によるエンタルピ差分、となり、何れの場合もバイパス或いは予膨張せずに全量等エントロピ膨張する場合に較べると目減りする。流量マッチングに伴う回収動力減少が殆どなく、サブ圧縮機構3’で分流比w分だけ昇圧する冷凍サイクル装置100と比較して、冷凍サイクル装置100’では流量マッチングに伴うロス分だけ少ない回収動力で全流量を昇圧するので、Pmのレベルは図2よりも低くなり、図9と図10の表中のPmの値もそのようになっている。 Therefore, the recovery power is the enthalpy difference due to the isentropic expansion of the pressure Pl + (Ph−Pl) · (1−y) to Pl in the flow rate 1−x minutes of the enthalpy difference d′−d in the case of bypass and in the case of preexpansion. In any case, the amount is reduced as compared with the case where the entire amount is entropy expanded without bypassing or pre-expanding. There is almost no reduction in the recovery power associated with the flow rate matching, and the refrigeration cycle apparatus 100 ′ has a recovery power that is less than the loss associated with the flow rate matching, compared with the refrigeration cycle apparatus 100 that increases the pressure by the branch flow ratio w by the sub-compression mechanism 3 ′. Since the total flow rate is increased, the level of Pm is lower than that in FIG. 2, and so is the value of Pm in the tables of FIGS.
 従来のマッチング方法では、膨張機構バイパス或いは予膨張することにより膨張/サブ圧縮入口における体積流量の比を膨張/サブ圧縮の吸入容積の比に合わせる、すなわち体積流量の調整を主に膨張過程側で行なうために回収動力が減少し、その分主圧縮機での昇圧仕事が増大することになっていた。これに対して、冷凍サイクル装置100のマッチング方法は、低圧Plから中間圧Pmまでの圧縮過程を膨張機1のサブ圧縮機構3で行なうか、動力源により駆動される主圧縮機構7で行なうかの比率である分流比w、すなわち圧縮過程側で体積流量の調整を行なうようになっている。このことが冷凍サイクル装置100’によるマッチング方法と冷凍サイクル装置100の分流によるマッチング方法のC.O.P.の差異の要因となっている。 In the conventional matching method, the ratio of the volume flow rate at the expansion / sub-compression inlet is matched to the ratio of the suction volume of the expansion / sub-compression by bypassing or pre-expanding the expansion mechanism, that is, the volume flow rate is adjusted mainly on the expansion process side. In order to do so, the recovery power was reduced, and the boosting work in the main compressor was to be increased accordingly. On the other hand, in the matching method of the refrigeration cycle apparatus 100, whether the compression process from the low pressure Pl to the intermediate pressure Pm is performed by the sub-compression mechanism 3 of the expander 1 or the main compression mechanism 7 driven by a power source. The flow rate is adjusted on the side of the compression process side, that is, the compression process side. This is the C. of the matching method by the refrigeration cycle apparatus 100 ′ and the matching method by the split flow of the refrigeration cycle apparatus 100. O. P. It is a factor of the difference.
 以上のように、実施の形態1に係る冷凍サイクル装置100によれば、全流量に対するサブ圧縮機構3に吸入される流量の比wが、(膨張入口冷媒比容積/サブ圧縮入口冷媒比容積)/(膨張吸入容積/サブ圧縮吸入容積)となるように主圧縮機側に吸入される流量を調整することにより流量のマッチングが可能となり、バイパス/予膨張で流量マッチングする場合よりも効率の高い、または予膨張では流量マッチングできなかった条件でも流量マッチングが可能となり、運転範囲の広いものとなる。 As described above, according to the refrigeration cycle apparatus 100 according to Embodiment 1, the ratio w of the flow rate sucked into the sub compression mechanism 3 with respect to the total flow rate is (expansion inlet refrigerant specific volume / sub compression inlet refrigerant specific volume). / (Expansion suction volume / Sub-compression suction volume) By adjusting the flow rate sucked into the main compressor side, the flow rate matching becomes possible, and the efficiency is higher than the flow rate matching by bypass / pre-expansion Alternatively, flow rate matching is possible even under conditions where flow rate matching was not possible with pre-expansion, and the operating range is wide.
 また、冷凍サイクル装置100に用いられる膨張機1によれば、(膨張吸入容積/サブ圧縮吸入容積)比を調整することによりサブ圧縮吐出側と膨張入口側の温度差を抑制して、揺動スクロール中央部の台板を経由した熱リークを低減することができ、膨張前圧力をサブ圧縮渦巻側に導入することにより揺動スクロールに作用する軸方向ガス荷重のバランスを改善でき、動作安定性が良好となる。よって、この膨張機1を搭載した冷凍サイクル装置100は、上記効果に加えて内部熱リークによるサイクル効率低下が小さいものとなる。 Further, according to the expander 1 used in the refrigeration cycle apparatus 100, the temperature difference between the sub-compression discharge side and the expansion inlet side is suppressed by adjusting the (expansion suction volume / sub-compression suction volume) ratio. Heat leakage via the base plate in the center of the scroll can be reduced, and the balance of the axial gas load acting on the orbiting scroll can be improved by introducing the pre-expansion pressure to the sub-compression vortex side, resulting in operational stability Becomes better. Therefore, the refrigeration cycle apparatus 100 equipped with the expander 1 has a small reduction in cycle efficiency due to internal heat leakage in addition to the above effects.
 図2ではCO冷媒を想定したモリエル線図を例に説明したが、冷凍サイクル装置100にはCO以外の冷媒も使用することができる。冷凍サイクル装置100に使用可能な冷媒について説明する。冷凍サイクル装置100に使用できる冷媒には、非共沸混合冷媒や擬似共沸混合冷媒、単一冷媒等がある。非共沸混合冷媒には、HFC(ハイドロフルオロカーボン)冷媒であるR407C(R32/R125/R134a)等がある。擬似共沸混合冷媒には、HFC冷媒であるR410A(R32/R125)やR404A(R125/R143a/R134a)等がある。 In FIG. 2, the Mollier diagram assuming a CO 2 refrigerant has been described as an example. However, a refrigerant other than CO 2 can be used for the refrigeration cycle apparatus 100. The refrigerant | coolant which can be used for the refrigerating-cycle apparatus 100 is demonstrated. Examples of the refrigerant that can be used in the refrigeration cycle apparatus 100 include a non-azeotropic mixed refrigerant, a pseudo-azeotropic mixed refrigerant, and a single refrigerant. Non-azeotropic refrigerant mixture includes R407C (R32 / R125 / R134a) which is an HFC (hydrofluorocarbon) refrigerant. The pseudo azeotropic refrigerant mixture includes R410A (R32 / R125) and R404A (R125 / R143a / R134a) which are HFC refrigerants.
 また、単一冷媒には、HCFC(ハイドロクロロフルオロカーボン)冷媒であるR22やHFC冷媒であるR134a等がある。そのほか、自然冷媒であるプロパンや、イソブタン、アンモニア等を使用することもできる。さらに、超臨界状態となる冷媒としては、たとえば二酸化炭素とエーテル(たとえば、ジメチルエーテルやハイドロフルオロエーテル等)との混合冷媒等がある。したがって、冷凍サイクル装置100の用途や目的に応じた冷媒を使用するとよい。 Also, the single refrigerant includes R22 which is an HCFC (hydrochlorofluorocarbon) refrigerant, R134a which is an HFC refrigerant, and the like. In addition, propane, isobutane, ammonia or the like, which is a natural refrigerant, can also be used. Further, examples of the refrigerant that becomes a supercritical state include a mixed refrigerant of carbon dioxide and ether (for example, dimethyl ether, hydrofluoroether, etc.). Therefore, it is good to use the refrigerant | coolant according to the use and the objective of the refrigerating cycle apparatus 100. FIG.
実施の形態2.
 図11は、本発明の実施の形態2に係る冷凍サイクル装置100aの冷媒回路構成を模式的に表す回路構成図である。図11に基づいて、冷凍サイクル装置100aの特徴点について説明する。なお、実施の形態2では、実施の形態1と同一部分には同一符号を付し、実施の形態1との相違点を中心に説明するものとする。また、冷凍サイクル装置100aも実施の形態1で説明した種々の冷媒を使用することができる。
Embodiment 2.
FIG. 11 is a circuit configuration diagram schematically showing the refrigerant circuit configuration of the refrigeration cycle apparatus 100a according to Embodiment 2 of the present invention. Based on FIG. 11, the characteristic point of the refrigerating cycle apparatus 100a is demonstrated. In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and differences from the first embodiment will be mainly described. The refrigeration cycle apparatus 100a can also use the various refrigerants described in the first embodiment.
 実施の形態2に係る冷凍サイクル装置100aも、実施の形態1に係る冷凍サイクル装置100のように、冷媒を循環させる冷凍サイクルを備えた装置、たとえば冷蔵庫や冷凍庫、自動販売機、空気調和装置、冷凍装置、給湯器等として利用される。冷凍サイクル装置100aも、主圧縮機5と、放熱器11と、予膨張弁14と、膨張機1と、蒸発器12と、第2圧縮機23と、逆止弁81と、を有している。ただし、各要素機器の接続状態が、実施の形態1に係る冷凍サイクル装置100と相違している。 The refrigeration cycle apparatus 100a according to Embodiment 2 is also equipped with a refrigeration cycle that circulates refrigerant, such as a refrigerator, a freezer, a vending machine, an air conditioner, like the refrigeration cycle apparatus 100 according to Embodiment 1. Used as refrigeration equipment, water heater, etc. The refrigeration cycle apparatus 100a also has a main compressor 5, a radiator 11, a pre-expansion valve 14, an expander 1, an evaporator 12, a second compressor 23, and a check valve 81. Yes. However, the connection state of each component device is different from that of the refrigeration cycle apparatus 100 according to Embodiment 1.
 冷凍サイクル装置100aでは、蒸発器12出口でサブ圧縮機構3に冷媒流量w、主圧縮機5に冷媒流量1-wで分流するが、第2圧縮機23がサブ圧縮機構3の吐出分だけを追加圧縮するのではなく、主圧縮機5の吐出分も併せて吸入し、中間圧から高圧まで昇圧するようになっている。つまり、実施の形態1に係る冷凍サイクル装置100では主圧縮機5と第2圧縮機23とが並列配置されているが、冷凍サイクル装置100aでは主圧縮機5と第2圧縮機23とが直列配置され、サブ圧縮機構3からの吐出冷媒を逆止弁81を介して主圧縮機5と第2圧縮機23との間に導くようにしている。 In the refrigeration cycle apparatus 100a, the refrigerant 12 is diverted to the sub-compression mechanism 3 at the outlet of the evaporator 12 and the refrigerant flow rate 1-w is diverted to the main compressor 5, but the second compressor 23 only discharges the sub-compression mechanism 3 discharge. Rather than performing additional compression, the amount of discharge from the main compressor 5 is also sucked and increased from an intermediate pressure to a high pressure. That is, in the refrigeration cycle apparatus 100 according to Embodiment 1, the main compressor 5 and the second compressor 23 are arranged in parallel, but in the refrigeration cycle apparatus 100a, the main compressor 5 and the second compressor 23 are in series. The refrigerant discharged from the sub compression mechanism 3 is guided between the main compressor 5 and the second compressor 23 via the check valve 81.
 実施の形態1に係る冷凍サイクル装置100の第2圧縮機23は、サブ圧縮後の冷媒だけを追加圧縮するので行程容積の小さいものを用いることができる。それに対し、実施の形態2に係る冷凍サイクル装置100aの第2圧縮機23は、サブ圧縮後の冷媒だけを追加圧縮するのではなく、主圧縮機5で圧縮された後の冷媒も圧縮するので比較的行程容積の大きなものを用いることができる。 Since the second compressor 23 of the refrigeration cycle apparatus 100 according to Embodiment 1 additionally compresses only the sub-compressed refrigerant, a compressor having a small stroke volume can be used. On the other hand, the second compressor 23 of the refrigeration cycle apparatus 100a according to the second embodiment compresses not only the sub-compressed refrigerant but also the refrigerant after being compressed by the main compressor 5. A relatively large stroke volume can be used.
 たとえば、実施の形態1に係る冷凍サイクル装置100の各圧縮機(主圧縮機5、第2圧縮機23)の設計点での回転数を何れも50[rps]程度とした場合の行程容積は、主圧縮機5が約29.2[cc/rev]に対して、第2圧縮機23が約5.9[cc/rev]程度となる。それに対し、実施の形態2に係る冷凍サイクル装置100aの各圧縮機(主圧縮機5、第2圧縮機23)の設計点での回転数を何れも50[rps]程度とした場合の行程容積は、主圧縮機5が約29.2[cc/rev]に対して、第2圧縮機23が約26.9[cc/rev]程度となる。 For example, the stroke volume when the number of rotations at the design point of each compressor (the main compressor 5 and the second compressor 23) of the refrigeration cycle apparatus 100 according to Embodiment 1 is about 50 [rps] is as follows. The main compressor 5 is about 29.2 [cc / rev], and the second compressor 23 is about 5.9 [cc / rev]. On the other hand, the stroke volume when the number of revolutions at the design point of each compressor (the main compressor 5 and the second compressor 23) of the refrigeration cycle apparatus 100a according to Embodiment 2 is about 50 [rps]. The main compressor 5 is about 29.2 [cc / rev], and the second compressor 23 is about 26.9 [cc / rev].
 容積型の圧縮機を用いる場合、一般的に行程容積の小さな圧縮機ほど効率維持が難しい。そのため、冷凍サイクル装置100aでは、行程容積の比較的大きな圧縮機を第2圧縮機23に利用することができるので、サイクル全体の効率が向上することになる。 When using a positive displacement compressor, it is generally difficult to maintain efficiency as the compressor has a smaller stroke volume. Therefore, in the refrigeration cycle apparatus 100a, a compressor having a relatively large stroke volume can be used for the second compressor 23, so that the efficiency of the entire cycle is improved.
 以上のように、実施の形態2に係る冷凍サイクル装置100aによれば、全流量に対するサブ圧縮機構3に吸入される流量の比wが、(膨張入口冷媒比容積/サブ圧縮入口冷媒比容積)/(膨張吸入容積/サブ圧縮吸入容積)となるように主圧縮機側に吸入される流量を調整することにより流量のマッチングが可能となり、バイパス/予膨張で流量マッチングする場合よりも効率の高い、または予膨張では流量マッチングできなかった条件でも流量マッチングが可能となり、運転範囲の広いものとなる。また、行程容積の比較的大きな圧縮機を第2圧縮機23として利用することができるので、サイクル全体の効率が更に向上することになる。 As described above, according to the refrigeration cycle apparatus 100a according to Embodiment 2, the ratio w of the flow rate sucked into the sub compression mechanism 3 with respect to the total flow rate is (expansion inlet refrigerant specific volume / sub compression inlet refrigerant specific volume). / (Expansion suction volume / Sub-compression suction volume) By adjusting the flow rate sucked into the main compressor side, the flow rate matching becomes possible, and the efficiency is higher than the flow rate matching by bypass / pre-expansion Alternatively, flow rate matching is possible even under conditions where flow rate matching was not possible with pre-expansion, and the operating range is wide. In addition, since a compressor having a relatively large stroke volume can be used as the second compressor 23, the efficiency of the entire cycle is further improved.
 また、冷凍サイクル装置100aに用いられる膨張機1によれば、(膨張吸入容積/サブ圧縮吸入容積)比を調整することによりサブ圧縮吐出側と膨張入口側の温度差を抑制して、揺動スクロール中央部の台板を経由した熱リークを低減することができ、膨張前圧力をサブ圧縮渦巻側に導入することにより揺動スクロールに作用する軸方向ガス荷重のバランスを改善でき、動作安定性が良好となる。よって、この膨張機1を搭載した冷凍サイクル装置100aは、上記効果に加えて内部熱リークによるサイクル効率低下が小さいものとなる。 Further, according to the expander 1 used in the refrigeration cycle apparatus 100a, the temperature difference between the sub-compression discharge side and the expansion inlet side is suppressed by adjusting the (expansion suction volume / sub-compression suction volume) ratio, and swings. Heat leakage via the base plate in the center of the scroll can be reduced, and the balance of the axial gas load acting on the orbiting scroll can be improved by introducing the pre-expansion pressure to the sub-compression vortex side, resulting in operational stability Becomes better. Therefore, the refrigeration cycle apparatus 100a equipped with the expander 1 has a small reduction in cycle efficiency due to internal heat leakage in addition to the above effects.
実施の形態3.
 図12は、本発明の実施の形態3に係る冷凍サイクル装置100bの冷媒回路構成を模式的に表す回路構成図である。図12に基づいて、冷凍サイクル装置100bの特徴点について説明する。なお、実施の形態3では、実施の形態1及び実施の形態2と同一部分には同一符号を付し、実施の形態1及び実施の形態2との相違点を中心に説明するものとする。また、冷凍サイクル装置100bも実施の形態1で説明した種々の冷媒を使用することができる。
Embodiment 3 FIG.
FIG. 12 is a circuit configuration diagram schematically showing the refrigerant circuit configuration of the refrigeration cycle apparatus 100b according to Embodiment 3 of the present invention. Based on FIG. 12, the feature point of the refrigeration cycle apparatus 100b will be described. In the third embodiment, the same reference numerals are given to the same parts as those in the first and second embodiments, and differences from the first and second embodiments will be mainly described. The refrigeration cycle apparatus 100b can also use the various refrigerants described in the first embodiment.
 実施の形態3に係る冷凍サイクル装置100bも、実施の形態1に係る冷凍サイクル装置100のように、冷媒を循環させる冷凍サイクルを備えた装置、たとえば冷蔵庫や冷凍庫、自動販売機、空気調和装置、冷凍装置、給湯器等として利用される。冷凍サイクル装置100bは、主圧縮機5と、放熱器11と、予膨張弁14と、膨張機1と、蒸発器12と、逆止弁81と、を有している。つまり、第2圧縮機を設けていない点で、実施の形態1に係る冷凍サイクル装置100、実施の形態2に係る冷凍サイクル装置100aと相違している。 The refrigeration cycle apparatus 100b according to Embodiment 3 is also equipped with a refrigeration cycle that circulates the refrigerant, such as a refrigerator, a freezer, a vending machine, an air conditioner, like the refrigeration cycle apparatus 100 according to Embodiment 1. Used as refrigeration equipment, water heater, etc. The refrigeration cycle apparatus 100 b includes a main compressor 5, a radiator 11, a pre-expansion valve 14, an expander 1, an evaporator 12, and a check valve 81. That is, it is different from the refrigeration cycle apparatus 100 according to Embodiment 1 and the refrigeration cycle apparatus 100a according to Embodiment 2 in that the second compressor is not provided.
 冷凍サイクル装置100bでは、蒸発器12出口でサブ圧縮機構3に冷媒流量w、主圧縮機5に冷媒流量1-wで分流するが、低圧で分流したサブ圧縮機構3で圧縮後の冷媒を第2圧縮機で追加圧縮するのではなく、主圧縮機5の圧縮途中の圧縮室に戻すようになっている。つまり、冷凍サイクル装置100bでは、冷媒の全流量についての中間圧~高圧の昇圧を主圧縮機5内で行なうようになっている。したがって、主圧縮機5は、サブ圧縮機構3からの冷媒を圧縮室内に取り込むための経路とポート(インジェクションポート)を備えている。 In the refrigeration cycle apparatus 100b, the refrigerant 12 is diverted to the sub-compression mechanism 3 at the outlet of the evaporator 12 and the refrigerant flow rate 1-w is diverted to the main compressor 5; Rather than performing additional compression with the two compressors, the main compressor 5 is returned to the compression chamber in the middle of compression. That is, in the refrigeration cycle apparatus 100b, intermediate pressure to high pressure increase for the total flow rate of the refrigerant is performed in the main compressor 5. Therefore, the main compressor 5 includes a path and a port (injection port) for taking in the refrigerant from the sub-compression mechanism 3 into the compression chamber.
 冷凍サイクル装置100bでは、主圧縮機5に中間圧に応じて、サブ圧縮機構3からの冷媒を圧縮室内に取り込むための経路とポートを備える必要があるものの、第2圧縮機を設けていないので、その分のコストを低減することが可能になる。つまり、冷凍サイクル装置100bでは、主圧縮機5の一部が追加圧縮機構の役割を担っているのである。 In the refrigeration cycle apparatus 100b, although it is necessary to provide the main compressor 5 with a path and a port for taking in the refrigerant from the sub-compression mechanism 3 into the compression chamber according to the intermediate pressure, the second compressor is not provided. The cost can be reduced accordingly. That is, in the refrigeration cycle apparatus 100b, a part of the main compressor 5 plays a role of an additional compression mechanism.
 以上のように、実施の形態3に係る冷凍サイクル装置100bによれば、全流量に対するサブ圧縮機構3に吸入される流量の比wが、(膨張入口冷媒比容積/サブ圧縮入口冷媒比容積)/(膨張吸入容積/サブ圧縮吸入容積)となるように主圧縮機側に吸入される流量を調整することにより流量のマッチングが可能となり、バイパス/予膨張で流量マッチングする場合よりも効率の高い、または予膨張では流量マッチングできなかった条件でも流量マッチングが可能となり、運転範囲の広いものとなる。また、第2圧縮機を設けなくて済むので、その分に要していたコストの低減を図ることが可能になる。 As described above, according to the refrigeration cycle apparatus 100b according to Embodiment 3, the ratio w of the flow rate sucked into the sub compression mechanism 3 with respect to the total flow rate is (expansion inlet refrigerant specific volume / sub compression inlet refrigerant specific volume). / (Expansion suction volume / Sub-compression suction volume) By adjusting the flow rate sucked into the main compressor side, the flow rate matching becomes possible, and the efficiency is higher than the flow rate matching by bypass / pre-expansion Alternatively, flow rate matching is possible even under conditions where flow rate matching was not possible with pre-expansion, and the operating range is wide. In addition, since it is not necessary to provide the second compressor, it is possible to reduce the cost required for that.
 また、冷凍サイクル装置100bに用いられる膨張機1によれば、(膨張吸入容積/サブ圧縮吸入容積)比を調整することによりサブ圧縮吐出側と膨張入口側の温度差を抑制して、揺動スクロール中央部の台板を経由した熱リークを低減することができ、膨張前圧力をサブ圧縮渦巻側に導入することにより揺動スクロールに作用する軸方向ガス荷重のバランスを改善でき、動作安定性が良好となる。よって、この膨張機1を搭載した冷凍サイクル装置100aは、上記効果に加えて内部熱リークによるサイクル効率低下が小さいものとなる。 Further, according to the expander 1 used in the refrigeration cycle apparatus 100b, the temperature difference between the sub-compression discharge side and the expansion inlet side is suppressed by adjusting the (expansion suction volume / sub-compression suction volume) ratio. Heat leakage via the base plate in the center of the scroll can be reduced, and the balance of the axial gas load acting on the orbiting scroll can be improved by introducing the pre-expansion pressure to the sub-compression vortex side, resulting in operational stability Becomes better. Therefore, the refrigeration cycle apparatus 100a equipped with the expander 1 has a small reduction in cycle efficiency due to internal heat leakage in addition to the above effects.
 1 膨張機、1’ 膨張機、2 膨張機構、2’ 膨張機構、3 サブ圧縮機構、3’ サブ圧縮機構、4 密閉容器、5 主圧縮機、5’ 主圧縮機、6 モータ、6’ モータ、7 主圧縮機構、7’ 主圧縮機構、9 潤滑油、11 放熱器、11’ 放熱器、12 蒸発器、12’ 蒸発器、13’ 膨張弁、14 予膨張弁、14’ 予膨張弁、15 膨張吸入管、16 膨張吐出管、19 サブ圧縮吸入管、20 サブ圧縮吐出管、23 第2圧縮機、24 モータ、25 第2圧縮機構、31 返油孔、32 吐出弁、40’ バイパス管、51 膨張側固定スクロール、51a 膨張側渦巻、51b 下軸受、51d 膨張室、52 揺動スクロール、52a 膨張側渦巻、52b 揺動軸受、52d オルダム溝、52e 高圧導入孔、61 サブ圧縮側固定スクロール、61a サブ圧縮側渦巻、61b 上軸受、61d サブ圧縮室、62a サブ圧縮側渦巻、72a 偏心シール、72b 偏心シール、73 同心シール、76 油ポンプ、77 オルダムリング、78 軸、78a クランク部、79a バランサ、79b バランサ、81 逆止弁、81’ 逆止弁、100 冷凍サイクル装置、100’ 冷凍サイクル装置、100a 冷凍サイクル装置、100b 冷凍サイクル装置。 1 expander, 1 'expander, 2 expansion mechanism, 2' expansion mechanism, 3 sub compression mechanism, 3 'sub compression mechanism, 4 sealed container, 5 main compressor, 5' main compressor, 6 motor, 6 'motor 7 main compression mechanism, 7 'main compression mechanism, 9 lubricating oil, 11 radiator, 11' radiator, 12 evaporator, 12 'evaporator, 13' expansion valve, 14 pre-expansion valve, 14 'pre-expansion valve, 15 expansion suction pipe, 16 expansion discharge pipe, 19 sub compression suction pipe, 20 sub compression discharge pipe, 23 second compressor, 24 motor, 25 second compression mechanism, 31 oil return hole, 32 discharge valve, 40 'bypass pipe , 51 Expansion side fixed scroll, 51a Expansion side spiral, 51b Lower bearing, 51d Expansion chamber, 52 Swing scroll, 52a Expansion side spiral, 52b Swing bearing, 52d Oldham groove, 52 High pressure introduction hole, 61 sub compression side fixed scroll, 61a sub compression side spiral, 61b upper bearing, 61d sub compression chamber, 62a sub compression side spiral, 72a eccentric seal, 72b eccentric seal, 73 concentric seal, 76 oil pump, 77 Oldham Ring, 78 shaft, 78a crank section, 79a balancer, 79b balancer, 81 check valve, 81 ′ check valve, 100 refrigeration cycle apparatus, 100 ′ refrigeration cycle apparatus, 100a refrigeration cycle apparatus, 100b refrigeration cycle apparatus.

Claims (7)

  1.  主圧縮機、高圧の冷媒を冷却する放熱器、冷媒の減圧時の膨張動力を回収する膨張機構とその膨張動力を用いて冷媒を圧縮するサブ圧縮機構を有する膨張機、低圧の冷媒を加熱する蒸発器、及び、前記サブ圧縮機構で圧縮された冷媒を更に昇圧する追加圧縮機構を備え、前記サブ圧縮機構が前記蒸発器の下流側に配置され、前記膨張機構が前記放熱器の下流側であって前記蒸発器の上流側に配置されている冷凍サイクル装置であって、
     前記膨張機は、
     台板の両面に渦巻を有し、前記膨張機構に吸入した冷媒の圧力を前記サブ圧縮機構側に導く高圧導入孔が前記台板に形成されている揺動スクロールと、
     前記揺動スクロールに対向して配置され、前記揺動スクロールとともに前記膨張機構を構成する膨張側固定スクロールと、
     前記揺動スクロールの前記膨張側固定スクロールとは反対側に対向して配置され、前記揺動スクロールとともに前記サブ圧縮機構を構成するサブ圧縮側固定スクロールと、を有している
     ことを特徴とする冷凍サイクル装置。
    Main compressor, radiator that cools high-pressure refrigerant, expansion mechanism that recovers expansion power during decompression of refrigerant and sub-compression mechanism that compresses refrigerant using the expansion power, heats low-pressure refrigerant An evaporator, and an additional compression mechanism that further pressurizes the refrigerant compressed by the sub-compression mechanism, wherein the sub-compression mechanism is disposed on the downstream side of the evaporator, and the expansion mechanism is disposed on the downstream side of the radiator. A refrigeration cycle apparatus disposed upstream of the evaporator,
    The expander is
    An orbiting scroll having spirals on both sides of the base plate, and a high-pressure introduction hole formed in the base plate for guiding the pressure of the refrigerant sucked into the expansion mechanism to the sub-compression mechanism side;
    An expansion-side fixed scroll that is disposed opposite to the swing scroll and forms the expansion mechanism together with the swing scroll;
    A sub-compression side fixed scroll that is disposed opposite to the expansion-side fixed scroll of the swing scroll and that forms the sub-compression mechanism together with the swing scroll. Refrigeration cycle equipment.
  2.  前記揺動スクロールと前記サブ圧縮側固定スクロールとの摺動部には、偏心シールと前記偏心シールよりも軸側に配置される同心シールとが設けられており、
     前記高圧導入孔は、
     前記同心シールと前記偏心シールとの間に開口されている
     ことを特徴とする請求項1に記載の冷凍サイクル装置。
    The sliding portion between the swing scroll and the sub-compression side fixed scroll is provided with an eccentric seal and a concentric seal disposed on the shaft side of the eccentric seal,
    The high-pressure introduction hole is
    The refrigeration cycle apparatus according to claim 1, wherein the refrigeration cycle apparatus is opened between the concentric seal and the eccentric seal.
  3.  前記追加圧縮機構は、
     前記主圧縮機と並列に配置されている第2圧縮機である
     ことを特徴とする請求項1又は2に記載の冷凍サイクル装置。
    The additional compression mechanism is:
    The refrigeration cycle apparatus according to claim 1 or 2, wherein the refrigeration cycle apparatus is a second compressor arranged in parallel with the main compressor.
  4.  前記追加圧縮機構は、
     前記主圧縮機と直列に配置され、前記サブ圧縮機構で圧縮された冷媒と前記主圧縮機で圧縮された冷媒とを併せて吸入・圧縮する第2圧縮機である
     ことを特徴とする請求項1又は2に記載の冷凍サイクル装置。
    The additional compression mechanism is:
    The second compressor which is arranged in series with the main compressor and sucks and compresses the refrigerant compressed by the sub-compression mechanism and the refrigerant compressed by the main compressor together. The refrigeration cycle apparatus according to 1 or 2.
  5.  前記追加圧縮機構は、
     前記主圧縮機の圧縮機構の一部が担っている
     ことを特徴とする請求項1又は2に記載の冷凍サイクル装置。
    The additional compression mechanism is:
    The refrigeration cycle apparatus according to claim 1 or 2, wherein a part of a compression mechanism of the main compressor is in charge.
  6.  冷媒として高圧側において超臨界状態となるものを用いている
     ことを特徴とする請求項1~5のいずれか一項に記載の冷凍サイクル装置。
    The refrigeration cycle apparatus according to any one of claims 1 to 5, wherein a refrigerant that is in a supercritical state on the high pressure side is used.
  7.  冷媒の減圧時の膨張動力を回収する膨張機構及びその膨張動力を用いて冷媒を圧縮するサブ圧縮機構を有している膨張機であって、
     台板の両面に渦巻を有し、前記膨張機構に吸入した冷媒の圧力を前記サブ圧縮機構側に導く高圧導入孔が形成されている揺動スクロールと、
     前記揺動スクロールに対向して配置され、前記揺動スクロールとともに前記膨張機構を構成する膨張側固定スクロールと、
     前記揺動スクロールの前記膨張側固定スクロールとは反対側に対向して配置され、前記揺動スクロールとともに前記サブ圧縮機構を構成するサブ圧縮側固定スクロールと、
     前記揺動スクロールと前記サブ圧縮側固定スクロールとの摺動部に設けられた偏心シールと、
     前記偏心シールよりも軸側に配置され、前記揺動スクロールと前記サブ圧縮側固定スクロールとの摺動部に設けられた同心シールと、を有し、
     前記高圧導入孔は、
     前記同心シールと前記偏心シールとの間に開口されている
     ことを特徴とする膨張機。
    An expansion mechanism having an expansion mechanism for recovering expansion power during decompression of the refrigerant and a sub-compression mechanism for compressing the refrigerant using the expansion power,
    An orbiting scroll having spirals on both sides of the base plate and formed with high-pressure introduction holes for guiding the pressure of the refrigerant sucked into the expansion mechanism to the sub-compression mechanism side;
    An expansion-side fixed scroll that is disposed opposite to the swing scroll and forms the expansion mechanism together with the swing scroll;
    A sub-compression side fixed scroll disposed opposite to the expansion-side fixed scroll of the swing scroll and constituting the sub-compression mechanism together with the swing scroll;
    An eccentric seal provided at a sliding portion between the swing scroll and the sub-compression side fixed scroll;
    A concentric seal disposed on the shaft side of the eccentric seal and provided at a sliding portion between the swing scroll and the sub-compression side fixed scroll;
    The high-pressure introduction hole is
    An expander that is opened between the concentric seal and the eccentric seal.
PCT/JP2010/000060 2010-01-07 2010-01-07 Refrigeration cycling device and expander installed in same WO2011083510A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011548855A JPWO2011083510A1 (en) 2010-01-07 2010-01-07 Refrigeration cycle apparatus and expander mounted thereon
PCT/JP2010/000060 WO2011083510A1 (en) 2010-01-07 2010-01-07 Refrigeration cycling device and expander installed in same
EP10842035A EP2522932A1 (en) 2010-01-07 2010-01-07 Refrigeration cycling device and expander installed in same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/000060 WO2011083510A1 (en) 2010-01-07 2010-01-07 Refrigeration cycling device and expander installed in same

Publications (1)

Publication Number Publication Date
WO2011083510A1 true WO2011083510A1 (en) 2011-07-14

Family

ID=44305256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000060 WO2011083510A1 (en) 2010-01-07 2010-01-07 Refrigeration cycling device and expander installed in same

Country Status (3)

Country Link
EP (1) EP2522932A1 (en)
JP (1) JPWO2011083510A1 (en)
WO (1) WO2011083510A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013030896A1 (en) * 2011-09-01 2013-03-07 三菱電機株式会社 Refrigeration cycle device
JP2015113760A (en) * 2013-12-11 2015-06-22 サンデンホールディングス株式会社 Scroll type fluid machine
CN109236648A (en) * 2018-11-08 2019-01-18 周琦人 Sliding-vane air compressor oil tank oil oil return system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04340062A (en) * 1991-05-14 1992-11-26 Nippondenso Co Ltd Refrigeration cycle
JP2005257103A (en) * 2004-03-09 2005-09-22 Mitsubishi Electric Corp Refrigerating air conditioner
WO2007023599A1 (en) * 2005-08-26 2007-03-01 Mitsubishi Electric Corporation Refrigerating air conditioner
JP2007132622A (en) * 2005-11-11 2007-05-31 Daikin Ind Ltd Heat pump hot water supply device
JP2008088854A (en) * 2006-09-29 2008-04-17 Daikin Ind Ltd Scroll expander
JP2008241069A (en) * 2007-03-26 2008-10-09 Mitsubishi Electric Corp Air conditioning device
WO2009101818A1 (en) * 2008-02-15 2009-08-20 Panasonic Corporation Refrigeration cycle device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04340062A (en) * 1991-05-14 1992-11-26 Nippondenso Co Ltd Refrigeration cycle
JP2005257103A (en) * 2004-03-09 2005-09-22 Mitsubishi Electric Corp Refrigerating air conditioner
WO2007023599A1 (en) * 2005-08-26 2007-03-01 Mitsubishi Electric Corporation Refrigerating air conditioner
JP2007132622A (en) * 2005-11-11 2007-05-31 Daikin Ind Ltd Heat pump hot water supply device
JP2008088854A (en) * 2006-09-29 2008-04-17 Daikin Ind Ltd Scroll expander
JP2008241069A (en) * 2007-03-26 2008-10-09 Mitsubishi Electric Corp Air conditioning device
WO2009101818A1 (en) * 2008-02-15 2009-08-20 Panasonic Corporation Refrigeration cycle device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013030896A1 (en) * 2011-09-01 2013-03-07 三菱電機株式会社 Refrigeration cycle device
US9395105B2 (en) 2011-09-01 2016-07-19 Mitsubishi Electric Corporation Refrigeration cycle device
JP2015113760A (en) * 2013-12-11 2015-06-22 サンデンホールディングス株式会社 Scroll type fluid machine
CN109236648A (en) * 2018-11-08 2019-01-18 周琦人 Sliding-vane air compressor oil tank oil oil return system

Also Published As

Publication number Publication date
JPWO2011083510A1 (en) 2013-05-13
EP2522932A1 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
US8074471B2 (en) Refrigeration cycle apparatus and fluid machine used for the same
JP4859694B2 (en) Multistage compressor
EP2765369B1 (en) Refrigeration cycle device
JP2008163894A (en) Multiple stage compressor
US20090007590A1 (en) Refrigeration System
JP4949817B2 (en) Multistage compressor and refrigeration cycle using the same
JP2004190559A (en) Displacement expander and fluid machine
JP4039024B2 (en) Refrigeration equipment
WO2009130929A1 (en) Refrigeration air conditioner
JP4555231B2 (en) Scroll expander
WO2011083510A1 (en) Refrigeration cycling device and expander installed in same
JP2012093017A (en) Refrigerating cycle device
JP4924092B2 (en) Refrigeration cycle equipment
JP4991255B2 (en) Refrigeration cycle equipment
JP2003065615A (en) Refrigerating machine
JP2010150926A (en) Scroll expander and refrigerating/air-conditioning device including the same
EP2527591B1 (en) Positive displacement expander and refrigeration cycle device using the positive displacement expander
JP5523629B2 (en) Scroll expander and refrigeration cycle apparatus
WO2006013970A1 (en) Freezing cycle apparatus
WO2012104934A1 (en) Scroll expander, and refrigeration cycle with the scroll expander
JP5247752B2 (en) Refrigeration cycle equipment
JP2009133319A (en) Displacement type expansion machine and fluid machine
JP2011237086A (en) Refrigerating air conditioner
WO2011161953A1 (en) Refrigeration cycle apparatus
JP2010096417A (en) Scroll expansion device and refrigerating cycle device including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10842035

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011548855

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010842035

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE