JP5090932B2 - Cooling device for transcritical operation with economizer - Google Patents

Cooling device for transcritical operation with economizer Download PDF

Info

Publication number
JP5090932B2
JP5090932B2 JP2007557313A JP2007557313A JP5090932B2 JP 5090932 B2 JP5090932 B2 JP 5090932B2 JP 2007557313 A JP2007557313 A JP 2007557313A JP 2007557313 A JP2007557313 A JP 2007557313A JP 5090932 B2 JP5090932 B2 JP 5090932B2
Authority
JP
Japan
Prior art keywords
compressor
pressure
heat exchanger
internal heat
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007557313A
Other languages
Japanese (ja)
Other versions
JP2008531969A (en
Inventor
モーゼマン ディーター
ザイツェフ ドミトロ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Refrigeration Germany GmbH
Original Assignee
GEA Refrigeration Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GEA Refrigeration Germany GmbH filed Critical GEA Refrigeration Germany GmbH
Publication of JP2008531969A publication Critical patent/JP2008531969A/en
Application granted granted Critical
Publication of JP5090932B2 publication Critical patent/JP5090932B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Description

本発明は、遷臨界運転のための冷却装置であって、ジオメトリック制御された入口開口および出口開口を有する圧縮機、例えばスクリュー圧縮機またはスクロール圧縮機を有しており、少なくとも3つの圧力レベルで作動する形式のものに関する。圧力レベルは、圧縮機の吸入側にあり、エバポレータの圧力に近い吸入圧と、エコノマイザ接続部にかけられる中間圧と、圧縮機の吐出側に作用し、ガスクーラの圧力に近い吐出圧(圧縮最終圧)である。圧縮機のこれらの圧力に所属の面は、低圧側または吸気側または吸入側および高圧側または吐出側と言われる。高圧側の圧力は、冷媒の臨界点における圧力よりも大きい。従ってこのプロセスは、遷臨界的または超臨界的な冷却プロセスと言われる。   The present invention is a cooling device for transcritical operation, comprising a compressor with geometrically controlled inlet and outlet openings, such as a screw compressor or a scroll compressor, at least three pressure levels. It is related to the type that operates in. The pressure level is on the suction side of the compressor, the suction pressure close to the evaporator pressure, the intermediate pressure applied to the economizer connection, the discharge pressure acting on the compressor discharge side and close to the pressure of the gas cooler (compression final pressure). ). The planes belonging to these pressures of the compressor are referred to as the low pressure side or intake side or suction side and the high pressure side or discharge side. The pressure on the high pressure side is greater than the pressure at the critical point of the refrigerant. This process is therefore referred to as a transcritical or supercritical cooling process.

このような形式の冷却装置では、圧縮機は、エバポレータで蒸発する吸入圧力下にある作動媒体を吸入し、これを高圧側の圧力である吐出圧にまで圧縮する。作動媒体(冷媒)はガスクーラで冷却され、次いで膨張機で機械的な作業のもと膨張されるか、または絞り装置で液体分離器における圧力にまで膨張される。圧力は作動媒体の臨界点における圧力よりも低いので、液体分離器において分離された液体および蒸気(フラッシュガス)が生じる。圧力低下により作動媒体の温度が下がる。液体は熱供給により気化される。このために必要な熱量は、冷却技術およびエアコンディショニング技術では冷却能力と言われる。   In such a type of cooling device, the compressor sucks the working medium under the suction pressure evaporated by the evaporator, and compresses it to the discharge pressure that is the high-pressure side pressure. The working medium (refrigerant) is cooled with a gas cooler and then expanded under mechanical work in an expander or expanded to the pressure in the liquid separator with a throttling device. Since the pressure is lower than the pressure at the critical point of the working medium, liquid and vapor (flash gas) separated in the liquid separator are produced. The temperature of the working medium decreases due to the pressure drop. The liquid is vaporized by supplying heat. The amount of heat required for this is referred to as cooling capacity in cooling and air conditioning technologies.

液体の割合が多ければ、冷却能力も大きい。   The greater the proportion of liquid, the greater the cooling capacity.

本発明は、その圧縮圧が、冷媒、例えばCOの臨界範囲を超えている、冷却装置で使用するための圧縮機における装置に関する。 The present invention has a compression pressure of the refrigerant, for example, above the critical range of CO 2, an apparatus in the compressor for use in refrigeration apparatus.

先行技術によれば、超臨界高圧側を有する冷却プロセスによる冷却発生の際には、フラッシュガスの割合が、膨張機における膨張の際も絞り装置においても極めて大きい。残留液体量は、圧縮機から圧送される質量流量よりも少ない。圧縮機電気入力に対する冷却能力の比、即ちCOPは相応に低下する。冷却発生のための所要エネルギは許容できないほど大きい。従って別の構成では2段階式の膨張機が使用されている。このような膨張では、比較的高い圧力で第1のフラッシュガス部分と第1の液体部分が生じる。第1のフラッシュガス部分は第2の圧縮機で再び高圧側の圧力にまで圧縮され、第1の液体は液体分離器における圧力にまで膨張される。この場合、液体部分とフラッシュガス部分との比は著しく大きくなる。欠点は固有の駆動装置を備えた第2の圧縮機が必要であることにある。このような装置のためのコストは高く、このような装置の運転は、単段装置の場合よりも複雑である。何故ならば、圧縮機の始動および停止のための時間的経過と両圧縮機の圧送流が互いに適合されなければならず、従って制御されなければならないからである。圧縮機の高圧側の圧力が臨界点の圧力の下側にある臨界未満の冷却回路で使用される、スクリュー圧縮機を備えたいわゆるエコノマイザ連結部のような別の公知の技術的手段は、公知のスクリュー圧縮機によっては実現されない。何故ならば遷臨界冷却回路では、臨界点の圧力よりも高い中間圧力が調節されるからである。従って、高圧から中間圧への第1段階の膨張ではさらに膨張される液体は生じない。エコノマイザ接続開口を備えた公知の圧縮機では、この開口への供給、チャージは、早くてもスクリュー溝間が最大のジオメトリックな室体積に達し、ロータの進行性の回転により、圧縮機ケーシングに配置された入口窓へもはや接続しなくなった後に行われる。使用可能な室体積は、冷媒の臨界点における圧力よりも小さい圧力でフラッシュガス部分を収容するのに十分な大きさではない。   According to the prior art, when cooling is generated by a cooling process having a supercritical high pressure side, the proportion of flash gas is very high both in the expansion device and in the expansion device. The amount of residual liquid is less than the mass flow rate pumped from the compressor. The ratio of cooling capacity to compressor electrical input, ie COP, decreases correspondingly. The energy required to generate cooling is unacceptably large. Thus, in another configuration, a two-stage expander is used. Such expansion produces a first flash gas portion and a first liquid portion at a relatively high pressure. The first flash gas portion is compressed again to a higher pressure by the second compressor, and the first liquid is expanded to the pressure in the liquid separator. In this case, the ratio between the liquid portion and the flash gas portion is significantly increased. The disadvantage is that a second compressor with its own drive is required. The cost for such a device is high and the operation of such a device is more complex than in the case of a single stage device. This is because the time course for starting and stopping the compressor and the pumping flow of both compressors must be matched to each other and therefore controlled. Another known technical means, such as a so-called economizer connection with a screw compressor, used in a subcritical cooling circuit where the pressure on the high pressure side of the compressor is below the pressure at the critical point is known This is not possible with some screw compressors. This is because in the transcritical cooling circuit, an intermediate pressure higher than the pressure at the critical point is adjusted. Therefore, the first stage of expansion from high pressure to intermediate pressure does not result in further expanded liquid. In known compressors with an economizer connection opening, the supply and charge to this opening reaches the maximum geometric chamber volume between the screw grooves at the earliest, and the progressive rotation of the rotor causes the compressor casing to This is done after it is no longer connected to the placed entrance window. The usable chamber volume is not large enough to accommodate the flash gas portion at a pressure less than the pressure at the critical point of the refrigerant.

本発明の課題は、2段階の膨張装置とエコノマイザとともに稼動される唯1つの圧縮機のみを必要とする技術的手段を提供することにある。この場合、エコノマイザ接続部における中間圧のもとでのフラッシュガス部分の割合は、冷媒の臨界点における圧力よりも小さいのが望ましい。   The object of the present invention is to provide technical means which require only one compressor operated with a two-stage expansion device and an economizer. In this case, the ratio of the flash gas portion under the intermediate pressure in the economizer connection is preferably smaller than the pressure at the critical point of the refrigerant.

本発明の特徴によれば、ガスクーラから生じた冷媒蒸気は、高圧レベルから中間圧レベルへと膨張する前に、従って圧縮機におけるエコノマイザ接続部に進入する前に内部熱交換器を通過する。この場合、高圧下にある冷媒蒸気は熱交換器の熱交換面の一方の側で冷却され、エバポレータから出た後の冷媒蒸気は内部熱交換器の熱交換面の他方の側で過熱せられた後、圧縮機によって吸入され圧縮される。   According to a feature of the present invention, the refrigerant vapor generated from the gas cooler passes through the internal heat exchanger before expanding from the high pressure level to the intermediate pressure level and thus before entering the economizer connection in the compressor. In this case, the refrigerant vapor under high pressure is cooled on one side of the heat exchange surface of the heat exchanger, and the refrigerant vapor after exiting the evaporator is superheated on the other side of the heat exchange surface of the internal heat exchanger. After that, it is sucked and compressed by a compressor.

ガスクーラを出た後の冷媒蒸気のさらなる冷却により、中間圧力レベルへの膨張の際に僅かなフラッシュガスが生じる。これにより、公知の構造のスクリュー圧縮機によってエコノマイザ接続部において、冷媒の臨界圧よりも低い中間圧力が実現され、冷却回路の経済性は公知の方法に対して著しく改善される。スクリューロータの考慮されるスクリュー溝、即ち作業室への流入過程は、圧縮機の吸入側へのこのスクリュー溝の流れ接続がなくなる瞬間に終了する。考慮されるスクリュー溝のジオメトリックなスクリュー溝体積はこの位相ではほぼ最大値に達する。有利には、この時点の直前または幾分遅れて、ロータのさらなる回転により考慮されるスクリュー溝の、ロータの周囲ケーシングに配置されたエコノマイザ接続開口への流れ接続が行われる。考慮されるスクリュー溝のジオメトリックなスクリュー溝体積は、主ロータにおけるロータプロフィールの巻き掛け角度と、両ロータの歯数に応じて一定である(搬送位相)かまたはロータ回転の結果小さくなる。   Further cooling of the refrigerant vapor after leaving the gas cooler results in a slight flash gas upon expansion to the intermediate pressure level. Thereby, an intermediate pressure lower than the critical pressure of the refrigerant is realized in the economizer connection by the screw compressor having a known structure, and the economic efficiency of the cooling circuit is remarkably improved with respect to the known method. The considered screw groove of the screw rotor, i.e. the process of entry into the working chamber, ends at the moment when there is no flow connection of this screw groove to the suction side of the compressor. The geometric screw groove volume of the screw groove considered reaches almost the maximum value in this phase. Advantageously, immediately before this point or somewhat later, a flow connection is made of the screw groove considered by further rotation of the rotor to an economizer connection opening arranged in the surrounding casing of the rotor. The geometric screw groove volume of the screw groove considered is either constant (conveying phase) or smaller as a result of the rotor rotation, depending on the winding angle of the rotor profile in the main rotor and the number of teeth of both rotors.

本発明の特徴によれば、遷臨界運転のための冷却装置は少なくとも次の構成部分を有している。即ち、ガスクーラ、内部熱交換器、中間圧力容器、エバポレータ、ジオメトリック制御された流入開口及び流出開口を備えた圧縮機、例えばスクリュー圧縮機またはスクロール圧縮機、絞り装置、これらの構成部分間を接続する管路を有している。圧縮機には運転状態において、圧縮機の吸入側で吸入圧が、吐出側で吐出圧がかかっている。この場合、吐出側の圧力は、冷媒の臨界点における圧力よりも大きい。圧縮機はケーシングにおいてエコノマイザ接続開口を有しており、エコノマイザ接続開口は、吐出圧と吸入圧との間の圧力を有する中間圧力容器への流れ接続部を有している。圧縮機のエコノマイザ接続部の手前には2つの流路を備えた内部熱交換器が配置されており、前記流路には熱交換面が配置されている。この場合、一方の流路は下流側でガスクーラ出口と、液体分離器として形成されている中間圧力容器の手前の絞り個所との間に配置されていて、他方の流路は下流側でエバポレータ出口と圧縮機の吸入側との間に配置されている。温度レベルが異なることにより、エバポレータから生じる冷媒蒸気が内部熱交換器で加熱され、ガスクーラから出る冷媒蒸気は引き続き冷却される。このような冷却により、中間圧力容器における中間圧力レベルに引き続き膨張させる間、フラッシュガス部分の割合は減じられる。膨張した冷媒の相対湿度は大きくなる。フラッシュガスが僅かであることにより、圧縮機のエコノマイザ接続部における中間圧力は、冷媒の臨界点における圧力よりも著しく低くなるので、既存の構成部分の圧縮機をこのような形式の冷却装置に使用することができ、冷却装置は改善された経済性で運転される。   According to a feature of the invention, a cooling device for transcritical operation has at least the following components: That is, gas coolers, internal heat exchangers, intermediate pressure vessels, evaporators, compressors with geometrically controlled inflow and outflow openings, such as screw compressors or scroll compressors, throttling devices, connecting these components It has a pipeline to do. In the operating state, the compressor has suction pressure on the suction side of the compressor and discharge pressure on the discharge side. In this case, the pressure on the discharge side is larger than the pressure at the critical point of the refrigerant. The compressor has an economizer connection opening in the casing, and the economizer connection opening has a flow connection to an intermediate pressure vessel having a pressure between the discharge pressure and the suction pressure. An internal heat exchanger having two flow paths is disposed in front of the economizer connection portion of the compressor, and a heat exchange surface is disposed in the flow path. In this case, one of the flow paths is arranged between the gas cooler outlet on the downstream side and the throttle part in front of the intermediate pressure vessel formed as a liquid separator, and the other flow path is located on the downstream side of the evaporator outlet. And the suction side of the compressor. Due to the different temperature levels, the refrigerant vapor generated from the evaporator is heated in the internal heat exchanger, and the refrigerant vapor exiting from the gas cooler is subsequently cooled. Such cooling reduces the fraction of the flash gas portion during subsequent expansion to the intermediate pressure level in the intermediate pressure vessel. The relative humidity of the expanded refrigerant increases. Because of the small amount of flash gas, the intermediate pressure at the compressor economizer connection is significantly lower than the pressure at the critical point of the refrigerant, so existing component compressors are used for this type of cooling system. And the cooling device is operated with improved economy.

本発明の別の特徴によれば、遷臨界運転のための冷却装置は少なくとも以下の構成部分を有している。即ち、ガスクーラと、第1と第2の内部熱交換器と、エバポレータと、ジオメトリック制御された入口開口と出口開口とを備えた圧縮機、例えばスクリュー圧縮機またはスクロール圧縮機と、絞り装置と、これらの構成部分間の接続管路とを有している。冷却装置の運転時には圧縮機の吸入側には吸入圧が、吐出側には吐出圧がかけられている。この場合、吐出側の圧力は、冷媒の臨界点における圧力よりも大きい。圧縮機はケーシングにエコノマイザ接続開口を有していて、エコノマイザ接続開口は、熱交換面が配置されている2つの流路を備えた、冷却装置またはエアコンディショナの第1の内部熱交換器への流れ接続部を有しており、この場合、一方の流路はガスクーラからの高圧下にある冷媒流を第2の熱交換器を通してエバポレータへと供給し、他方の流路は高圧下にある冷媒の部分流を供給し、この部分流は、高圧下にある冷媒を中間圧レベルに膨張させるための絞りを通過し、第1の内部熱交換器へ進入し、下流側で他方の流路の高圧下にある冷媒蒸気を冷却する。圧縮機の吸入側の手前に、熱交換面が配置された2つの流路を有した第2の内部熱交換器が配置されている。この場合、一方の流路は下流側で、冷却装置の最も低い圧力レベルを有した液体分離器と圧縮機の吸入側との間に配置されていて、他方の流路は下流側でガスクーラ出口と第1の内部熱交換器の手前の絞り個所との間に配置されている。   According to another characteristic of the invention, a cooling device for transcritical operation has at least the following components: That is, a gas cooler, first and second internal heat exchangers, an evaporator, a compressor having a geometrically controlled inlet opening and outlet opening, such as a screw compressor or a scroll compressor, and a throttle device; And a connecting pipe line between these components. During operation of the cooling device, suction pressure is applied to the suction side of the compressor and discharge pressure is applied to the discharge side. In this case, the pressure on the discharge side is larger than the pressure at the critical point of the refrigerant. The compressor has an economizer connection opening in the casing, the economizer connection opening being connected to the first internal heat exchanger of the cooling device or the air conditioner with two flow paths in which the heat exchange surfaces are arranged. In this case, one flow path supplies the refrigerant flow under high pressure from the gas cooler to the evaporator through the second heat exchanger, and the other flow path is under high pressure. A partial flow of the refrigerant is supplied, the partial flow passes through a throttle for expanding the refrigerant under high pressure to an intermediate pressure level, enters the first internal heat exchanger, and downstream of the other flow path Cool the refrigerant vapor under high pressure. A second internal heat exchanger having two flow paths in which a heat exchange surface is disposed is disposed in front of the suction side of the compressor. In this case, one channel is arranged downstream, between the liquid separator having the lowest pressure level of the cooling device and the suction side of the compressor, and the other channel is arranged downstream of the gas cooler outlet And the throttle portion in front of the first internal heat exchanger.

有利には同じ技術的特徴を、ジオメトリック制御された入口開口と出口開口とを有した別の圧縮機構成形式および圧縮機に適用することができる。   The same technical features can advantageously be applied to other compressor configurations and compressors with geometrically controlled inlet and outlet openings.

本発明による技術的特徴により、循環質量流がエバポレータにより減じられる。何故ならば、吸入側における過熱が増加し、中間圧への膨張後のフラッシュガス部分の割合が減じ、これにより2段階式の膨張の第1の膨張段階の中間圧が、中間圧が著しく冷媒の臨界点における圧力よりも低くなるまで低下される。   Due to the technical features according to the invention, the circulating mass flow is reduced by the evaporator. This is because the superheat on the suction side increases and the proportion of the flash gas portion after expansion to the intermediate pressure decreases, so that the intermediate pressure in the first expansion stage of the two-stage expansion is significantly reduced. Until the pressure is lower than the pressure at the critical point.

図1のlog p-h 線図では、点1がエバポレータ出口における状態を示している。点2における圧縮機手前の冷媒の流入状態は、内部熱交換器通過後の冷媒の流出状態である。冷媒は比較的高く過熱されていて、圧縮機によって吸入される質量流量は減じられる。室体積、例えばスクリュー圧縮機の考慮されるスクリュー溝容積はこの点で最大の値を有している。この最大の室サイズでは吸入過程は終了され、エコノマイザ接続開口による作業室への流れ接続が開始される。圧力は作業室において、流入するフラッシュガス部分によって中間圧力Pzにまで上昇する。比較的冷たいフラッシュガスと点2で既に吸入された冷媒との混合(点3)により、冷媒は圧縮され、冷却される。混合過程は点4で終了する。点4ではエコノマイザ接続開口も閉じ、点5で吸入ガスとフラッシュガス部分との吐出圧への圧縮が開始される。冷媒は、冷却剤、例えば冷却水によって冷媒蒸気を冷却するために負荷されるガスクーラを通過する。このガスクーラを出る際には、冷媒は点6の状態にある。内部熱交換器が冷却装置の2つの冷媒流を通って通じている第2の熱交換器では、冷媒が点6から点7へと冷却される。この場合、点6から点7への冷却のために内部熱交換器を通って案内される別の冷媒流が点1から点2へと加熱される。ここまで冷却された冷媒流は点7から点8へと膨張され中間圧力となる。この場合、冷媒蒸気は、点3の比較的小さいフラッシュガス部分と、点9の比較的大きい液体部分へと分かれる。フラッシュガス部分の割合は本発明による付加的な冷却により、エコノマイザ接続部の中間圧力が十分に臨界点から離れるまで減じられている。これにより2つの利点が得られる。
・冷却能力の増大による冷却装置の高い経済性。
・液体とフラッシュガスの間の密度差の拡大(中間圧力分離器における両相の分離)。
In the log ph diagram of FIG. 1, point 1 indicates the state at the evaporator outlet. The refrigerant inflow state before the compressor at point 2 is the refrigerant outflow state after passing through the internal heat exchanger. The refrigerant is relatively high and superheated, reducing the mass flow rate drawn by the compressor. The chamber volume, for example the screw groove volume considered for the screw compressor, has a maximum value in this respect. At this maximum chamber size, the inhalation process is terminated and a flow connection to the working chamber via the economizer connection opening is started. The pressure rises to an intermediate pressure Pz in the working chamber by the flowing flash gas portion. By mixing the relatively cool flash gas with the refrigerant already sucked at point 2 (point 3), the refrigerant is compressed and cooled. The mixing process ends at point 4. At point 4, the economizer connection opening is also closed, and at point 5, compression of the suction gas and the flash gas portion to the discharge pressure is started. The refrigerant passes through a gas cooler that is loaded to cool the refrigerant vapor with a coolant, such as cooling water. When leaving the gas cooler, the refrigerant is in the state of point 6. In the second heat exchanger, where the internal heat exchanger is in communication through the two refrigerant streams of the cooling device, the refrigerant is cooled from point 6 to point 7. In this case, another refrigerant stream guided through the internal heat exchanger for cooling from point 6 to point 7 is heated from point 1 to point 2. The refrigerant flow cooled to this point is expanded from point 7 to point 8 to an intermediate pressure. In this case, the refrigerant vapor is divided into a relatively small flash gas portion at point 3 and a relatively large liquid portion at point 9. The fraction of the flash gas part is reduced by the additional cooling according to the invention until the intermediate pressure at the economizer connection is sufficiently far from the critical point. This provides two advantages.
・ High economic efficiency of cooling equipment due to increased cooling capacity.
Enlarging the density difference between the liquid and the flash gas (separation of both phases in the intermediate pressure separator).

図2に示した遷臨界運転のための冷却装置は、ガスクーラ13と、内部熱交換器14と、フラッシュガスと液体の分離のための液体分離器として形成された中間圧力容器12と、熱交換器18と液体分離器17とを備えたエバポレータシステムと、ジオメトリック制御された入口開口および出口開口を有するスクリュー圧縮機11と、絞り装置15,16と、これらの構成部分間の接続管路とを有している。スクリュー圧縮機11には運転状態で、スクリュー圧縮機11の吸入側24では吸入圧が、吐出側25では吐出圧がかけられており、この場合、吐出側25の圧力は、冷媒の臨界点における圧力よりも大きい。スクリュー圧縮機11はケーシングにエコノマイザ接続開口21を有しており、このエコノマイザ接続開口21は、吐出圧と吸入圧の間の圧力を有する中間圧力容器12への流れ接続部を有する。スクリュー圧縮機11における吸入側24の手前には、2つの流路を備えた内部熱交換器14が配置されていて、その2つの流路には熱交換面が配置されている。この場合、一方の流路10は下流側でガスクーラ13の出口と、液体分離器として形成されている中間圧力容器12の手前の絞り装置15との間に配置されていて、他方の流路23は下流側でエバポレータ出口とスクリュー圧縮機11の吸入側24との間に配置されている。温度レベルが異なることに基づき、内部熱交換器14において、液体分離器17から出た冷媒蒸気が加熱され、ガスクーラ13から出る冷媒蒸気はさらに冷却される。このような冷却により、中間圧力容器12における中間圧力レベルへの引き続き行われる膨張の間、フラッシュガスの割合は減少する。膨張された冷媒の相対的な湿度も増大する。フラッシュガスが僅かであることにより、圧縮機のエコノマイザ接続開口21における中間圧力は著しく減じられ、これにより既にある構造の圧縮機をこのような形式の冷却装置のために使用することができ、冷却装置は改善された経済性で運転できる。   The cooling device for transcritical operation shown in FIG. 2 includes a gas cooler 13, an internal heat exchanger 14, an intermediate pressure vessel 12 formed as a liquid separator for separation of flash gas and liquid, and heat exchange. An evaporator system comprising a vessel 18 and a liquid separator 17, a screw compressor 11 with geometrically controlled inlet and outlet openings, throttle devices 15, 16, and connecting lines between these components have. The screw compressor 11 is in operation, and suction pressure is applied to the suction side 24 of the screw compressor 11 and discharge pressure is applied to the discharge side 25. In this case, the pressure of the discharge side 25 is at the critical point of the refrigerant. Greater than pressure. The screw compressor 11 has an economizer connection opening 21 in the casing, and the economizer connection opening 21 has a flow connection to the intermediate pressure vessel 12 having a pressure between the discharge pressure and the suction pressure. An internal heat exchanger 14 having two flow paths is disposed in front of the suction side 24 in the screw compressor 11, and a heat exchange surface is disposed in the two flow paths. In this case, one flow path 10 is arranged on the downstream side between the outlet of the gas cooler 13 and the expansion device 15 in front of the intermediate pressure vessel 12 formed as a liquid separator, and the other flow path 23. Is arranged on the downstream side between the evaporator outlet and the suction side 24 of the screw compressor 11. Based on the different temperature levels, the refrigerant vapor emitted from the liquid separator 17 is heated in the internal heat exchanger 14, and the refrigerant vapor emitted from the gas cooler 13 is further cooled. Such cooling reduces the flash gas fraction during subsequent expansion to an intermediate pressure level in the intermediate pressure vessel 12. The relative humidity of the expanded refrigerant also increases. Due to the small amount of flash gas, the intermediate pressure in the economizer connection opening 21 of the compressor is significantly reduced, so that an already structured compressor can be used for this type of cooling device, The device can be operated with improved economy.

図3のlog p-h線図では、点1がエバポレータ出口における状態を示している。点2におけるスクリュー圧縮機11の手前の冷媒の流入状態は、内部熱交換器14(図4)通過後の冷媒の流出状態である。冷媒は比較的高く過熱されていて、圧縮機によって吸い込まれる質量流量は減じられる。室容積、例えばスクリュー圧縮機の考慮されるスクリュー溝容積はこの点で最大の値を有している。この最大の室サイズでは吸入過程は終了され、エコノマイザ接続開口による作業室への流れ接続が開始される。冷媒流と点2で既に吸入された冷媒との混合(点26)により、冷媒は中間圧力Pzにまで圧縮され、冷却される。混合過程は点4で終了する。点4ではエコノマイザ接続開口も閉じ、点27で吸入ガスと内部熱交換器19からの冷媒との吐出圧への圧縮が開始される。冷媒は、冷却剤、例えば冷却水によって冷媒蒸気を冷却するために負荷されるガスクーラ13を通過する。このガスクーラ13を出る際には、冷媒は点28の状態にある。冷却装置の2つの冷媒流が貫流する内部熱交換器14では、冷媒が28から点29へと冷却される。この場合、点28から点29への冷却のために内部熱交換器14によって案内される別の冷媒流が点1から点2へと加熱される。ここまで冷却された冷媒流は、2つの部分流へと膨張し、一方は絞り装置20によって中間圧力へと膨張し(点33)、絞り装置34によって点30から点31へと膨張する。絞り装置20では冷却効果が生じ、これにより流路35の冷媒流の点29から点30への冷却が行われる。点32の飽和温度と内部熱交換器19における点30の流出温度との間の温度差は、内部熱交換器19のサイズに依存していてほぼ5Kである。内部熱交換器19における点29から点30への冷媒の冷却により、高圧から吸入圧への冷媒の膨張の際にフラッシュガス部分が減じられる。点28から点29への内部熱交換器14における冷媒質量流の冷却により、点29から点33へ膨張する冷媒流の体積的な冷却効率が増大し、これにより点29から点30への高圧ガスの冷却のために僅かな冷媒蒸気が生じ、ひいてはエコノマイザ接続開口における中間圧力が臨界点から十分に離される。これにより2つの利点が得られる。
・冷却能力の増大による冷却装置の高い経済性。
・エコノマイザ接続部を有した公知のスクリュー圧縮機の使用。
In the log ph diagram of FIG. 3, point 1 shows the state at the evaporator outlet. The refrigerant inflow state before the screw compressor 11 at point 2 is the refrigerant outflow state after passing through the internal heat exchanger 14 (FIG. 4). The refrigerant is relatively high and superheated, reducing the mass flow drawn by the compressor. The chamber volume, for example the screw groove volume considered for the screw compressor, has a maximum value in this respect. At this maximum chamber size, the inhalation process is terminated and a flow connection to the working chamber via the economizer connection opening is started. By mixing the refrigerant flow with the refrigerant already sucked at point 2 (point 26), the refrigerant is compressed to an intermediate pressure Pz and cooled. The mixing process ends at point 4. At point 4, the economizer connection opening is also closed, and at point 27, compression of the suction gas and the refrigerant from the internal heat exchanger 19 to the discharge pressure is started. The refrigerant passes through a gas cooler 13 that is loaded to cool the refrigerant vapor with a coolant, such as cooling water. When leaving the gas cooler 13, the refrigerant is in the state of point 28. In the internal heat exchanger 14 through which the two refrigerant flows of the cooling device flow, the refrigerant is cooled from 28 to point 29. In this case, another refrigerant stream guided by the internal heat exchanger 14 for cooling from point 28 to point 29 is heated from point 1 to point 2. The refrigerant stream cooled so far expands into two partial flows, one expands to an intermediate pressure by the expansion device 20 (point 33) and expands from point 30 to point 31 by the expansion device. The expansion device 20 has a cooling effect, whereby cooling from the point 29 to the point 30 of the refrigerant flow in the flow path 35 is performed. The temperature difference between the saturation temperature at point 32 and the outlet temperature at point 30 in the internal heat exchanger 19 depends on the size of the internal heat exchanger 19 and is approximately 5K. Cooling of the refrigerant from point 29 to point 30 in the internal heat exchanger 19 reduces the flash gas portion during expansion of the refrigerant from high pressure to suction pressure. Cooling of the refrigerant mass flow in the internal heat exchanger 14 from point 28 to point 29 increases the volumetric cooling efficiency of the refrigerant flow expanding from point 29 to point 33, thereby increasing the high pressure from point 29 to point 30. A small amount of refrigerant vapor is generated for the cooling of the gas, and the intermediate pressure at the economizer connection opening is sufficiently separated from the critical point. This provides two advantages.
・ High economic efficiency of cooling equipment due to increased cooling capacity.
Use of a known screw compressor with an economizer connection.

図4に示した遷臨界運転のための冷却装置は、ガスクーラ13と、熱交換器18と液体分離器17とを備えたエバポレータシステムと、スクリュー圧縮機11と、絞り装置20と34と、構成部分間の接続管路とを有していて、圧縮機はケーシングにエコノマイザ接続開口21を有している。第1の内部熱交換器19と第2の内部熱交換器14とは、熱交換面における2つの流路22,35を持った、冷却装置またはエアコンディショナの第1の内部熱交換器19への流れ接続部が形成されるように配置されている。この場合、一方の流路35はガスクーラ13からの高圧下にある冷媒流を第2の内部熱交換器14を通ってエバポレータシステムへと供給し、他方の流路22は高圧下にある冷媒の部分流を供給する。この流路22は、高圧下にある冷媒を中間圧力レベルに膨張させるための絞り装置20を介して、第1の内部熱交換器19に流れ的に接続されていて、下流側で他方の流路35の高圧下にある冷媒蒸気を冷却し、熱交換面が配置されている2つの流路を備えた第2の内部熱交換器14が圧縮機の吸入側の手前に配置されている。この場合、その一方の流路23は下流側で、冷却装置の最も低い圧力レベルを有した液体分離器17とスクリュー圧縮機11の吸入側との間に配置されていて、他方の流路22は下流側でガスクーラ流出部と、第1の内部熱交換器19の手前の絞り装置20及び流路35との間に配置されている。   The cooling device for transcritical operation shown in FIG. 4 includes a gas cooler 13, an evaporator system including a heat exchanger 18 and a liquid separator 17, a screw compressor 11, expansion devices 20 and 34, and a configuration. The compressor has an economizer connection opening 21 in the casing. The first internal heat exchanger 19 and the second internal heat exchanger 14 are a first internal heat exchanger 19 of a cooling device or an air conditioner having two flow paths 22 and 35 on the heat exchange surface. Is arranged so that a flow connection to is formed. In this case, one flow path 35 supplies the refrigerant flow under high pressure from the gas cooler 13 to the evaporator system through the second internal heat exchanger 14, and the other flow path 22 supplies the refrigerant under high pressure. Supply partial flow. This flow path 22 is connected to the first internal heat exchanger 19 through a throttle device 20 for expanding the refrigerant under high pressure to an intermediate pressure level, and the other flow is downstream. A second internal heat exchanger 14 having two flow paths for cooling the refrigerant vapor under the high pressure in the passage 35 and having a heat exchange surface is arranged in front of the suction side of the compressor. In this case, one of the flow paths 23 is arranged on the downstream side between the liquid separator 17 having the lowest pressure level of the cooling device and the suction side of the screw compressor 11, and the other flow path 22. Is arranged on the downstream side between the gas cooler outflow portion and the expansion device 20 and the flow path 35 in front of the first internal heat exchanger 19.

本発明による冷却装置またはエアコンディショナのlog p-h線図である。1 is a log p-h diagram of a cooling device or an air conditioner according to the present invention. 圧縮機と熱交換器の配置をこれらに所属の管接続部と制御装置と共に示した概略図である。It is the schematic which showed arrangement | positioning of a compressor and a heat exchanger with the pipe connection part and control apparatus which belong to these. 本発明による冷却装置またはエアコンディショナのlog p-h線図である。1 is a log p-h diagram of a cooling device or an air conditioner according to the present invention. 本発明による別の冷却装置のための圧縮機と熱交換器の配置をこれらに所属の管接続部と制御装置と共に示した概略図である。It is the schematic which showed arrangement | positioning of the compressor and heat exchanger for another cooling device by this invention with the pipe connection part and control apparatus which belong to these.

Claims (2)

遷臨界運転のための冷却装置であって、少なくとも1つのガスクーラと、内部熱交換器と、中間圧力容器と、エバポレータと、ジオメトリック制御された入口開口及び出口開口とを有した圧縮機、例えばスクリュー圧縮機またはスクロール圧縮機と、絞り装置と、これら構成部分間の接続管路とを有しており、運転状態で吸入圧が圧縮機の吸入側に、吐出圧が圧縮機の吐出側にかけられており、吐出側の圧力が、冷媒の臨界点における圧力よりも大きくて、圧縮機のケーシングにエコノマイザ接続開口が設けられていて、エコノマイザ接続開口が冷却装置またはエアコンディショナの中間圧力容器への流れ接続部を有しており、前記中間圧力容器の圧力は吐出圧と吸入圧の間である形式のものにおいて、
絞り装置は、前記中間圧力容器と前記内部熱交換器とを接続する接続管路に設けられ、
前記内部熱交換器は2つの流路を備え、前記2つの流路に熱交換面が配置されており、
一方の流路がガスクーラ出口と前記絞り装置との間に配置されており、他方の流路がエバポレータ出口と圧縮機の吸入側との間に配置されていることを特徴とする、遷臨界運転のための冷却装置。
Cooling device for transcritical operation, a compressor having at least one gas cooler, an internal heat exchanger, an intermediate pressure vessel, an evaporator, and geometrically controlled inlet and outlet openings, for example It has a screw compressor or scroll compressor, a throttling device, and a connecting pipe line between these components. In operation, suction pressure is applied to the compressor suction side and discharge pressure is applied to the compressor discharge side. The pressure on the discharge side is greater than the pressure at the critical point of the refrigerant, the compressor casing has an economizer connection opening, and the economizer connection opening is connected to the intermediate pressure vessel of the cooling device or air conditioner. In the type in which the pressure of the intermediate pressure vessel is between the discharge pressure and the suction pressure,
The expansion device is provided in a connection pipe line connecting the intermediate pressure vessel and the internal heat exchanger,
The internal heat exchanger includes two flow paths, and a heat exchange surface is disposed in the two flow paths,
Transcritical operation, characterized in that one flow path is arranged between the gas cooler outlet and the throttling device , and the other flow path is arranged between the evaporator outlet and the suction side of the compressor Cooling system for.
遷臨界運転のための冷却装置であって、少なくとも1つのガスクーラと、エバポレータと、ジオメトリック制御された入口開口及び出口開口とを有した圧縮機、例えばスクリュー圧縮機またはスクロール圧縮機と、絞り装置と、これら構成部分間の接続管路とを有しており、圧縮機がケーシングにエコノマイザ接続開口を有している形式のものにおいて、
上記構成部分に加えて付加的に、熱交換面を備えた第1の内部熱交換器と第2の内部熱交換器とが設けられていて、これらの内部熱交換器が、冷却装置またはエアコンディショナの第1の内部熱交換器への、2つの流路を持った流れ接続が形成されるように配置されており、
前記第1の内部熱交換器における一方の流路がガスクーラからの高圧下にある冷媒流を第2の内部熱交換器を通してエバポレータへと供給し、他方の流路が高圧下にある冷媒の部分流を供給し、高圧下にある冷媒を中間圧力レベルに膨張させるための絞り装置を介して接続されており、圧縮機のエコノマイザ接続部に接続されており、他方の流路の高圧下にある冷媒蒸気を冷却し、圧縮機の吸入側の手前に、熱交換面が配置された2つの流路を備えた第2の内部熱交換器が配置されており、
前記第2の内部熱交換器における一方の流路が冷却装置の最も低い圧力レベルを有した液体分離器と圧縮機の吸入側との間に配置されていて、他方の流路がガスクーラ流出部と前記絞り装置との間に配置されていることを特徴とする、遷臨界運転のための冷却装置。
Cooling device for transcritical operation comprising at least one gas cooler, an evaporator, a compressor with geometrically controlled inlet and outlet openings, for example a screw compressor or scroll compressor, and a throttling device And a connecting pipe line between these components, and the compressor has an economizer connection opening in the casing.
In addition to the above-described components, a first internal heat exchanger and a second internal heat exchanger having a heat exchange surface are additionally provided, and these internal heat exchangers serve as a cooling device or an air conditioner. Arranged to form a flow connection with two flow paths to the first internal heat exchanger of the conditioner;
A portion of the refrigerant in which one flow path in the first internal heat exchanger is supplied to the evaporator through the second internal heat exchanger to the evaporator while the flow path is under high pressure from the gas cooler. Connected through a throttling device for supplying a flow and expanding refrigerant under high pressure to an intermediate pressure level, connected to the economizer connection of the compressor and under high pressure in the other flow path Cooling the refrigerant vapor, a second internal heat exchanger having two flow paths with heat exchange surfaces arranged in front of the suction side of the compressor is arranged,
One flow path in the second internal heat exchanger is disposed between the liquid separator having the lowest pressure level of the cooling device and the suction side of the compressor, and the other flow path is a gas cooler outflow portion. And a cooling device for transcritical operation, wherein the cooling device is disposed between the throttle device and the throttle device.
JP2007557313A 2005-03-03 2005-03-03 Cooling device for transcritical operation with economizer Expired - Fee Related JP5090932B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/DE2005/000359 WO2006092108A1 (en) 2005-03-03 2005-03-03 Refrigeration plant for transcritical operation with an economiser

Publications (2)

Publication Number Publication Date
JP2008531969A JP2008531969A (en) 2008-08-14
JP5090932B2 true JP5090932B2 (en) 2012-12-05

Family

ID=35094175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007557313A Expired - Fee Related JP5090932B2 (en) 2005-03-03 2005-03-03 Cooling device for transcritical operation with economizer

Country Status (4)

Country Link
EP (1) EP1893924A1 (en)
JP (1) JP5090932B2 (en)
GB (1) GB2438794B (en)
WO (1) WO2006092108A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11035595B2 (en) * 2017-08-18 2021-06-15 Rolls-Royce North American Technologies Inc. Recuperated superheat return trans-critical vapor compression system
CN110806035A (en) * 2019-11-06 2020-02-18 上海复璐帝流体技术有限公司 Transcritical carbon dioxide refrigeration method and device thereof
CN110986408A (en) * 2019-12-13 2020-04-10 中国科学院合肥物质科学研究院 Integrated neon refrigerator and refrigeration method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5095712A (en) * 1991-05-03 1992-03-17 Carrier Corporation Economizer control with variable capacity
JPH11142007A (en) * 1997-11-06 1999-05-28 Nippon Soken Inc Refrigerating cycle
US6189335B1 (en) * 1998-02-06 2001-02-20 Sanyo Electric Co., Ltd. Multi-stage compressing refrigeration device and refrigerator using the device
JP2001091071A (en) * 1999-09-24 2001-04-06 Sanyo Electric Co Ltd Multi-stage compression refrigerating machine
DE10001470A1 (en) * 2000-01-15 2001-07-19 Max Karsch Method for operating climate control in vehicles involves connecting precipitate collector in on input side of evaporator which is mainly loaded with coolant from same
US6385980B1 (en) * 2000-11-15 2002-05-14 Carrier Corporation High pressure regulation in economized vapor compression cycles
TWI301188B (en) * 2002-08-30 2008-09-21 Sanyo Electric Co Refrigeant cycling device and compressor using the same

Also Published As

Publication number Publication date
GB0718655D0 (en) 2007-10-31
GB2438794B (en) 2011-02-23
JP2008531969A (en) 2008-08-14
EP1893924A1 (en) 2008-03-05
GB2438794A (en) 2007-12-05
WO2006092108A1 (en) 2006-09-08

Similar Documents

Publication Publication Date Title
JP5698160B2 (en) Air conditioner
WO2010064427A1 (en) Refrigeration device
US20130251505A1 (en) Ejector Cycle
JP2008039383A (en) Unit provided on cooling device for transcritical operation
WO2009147826A1 (en) Refrigeration cycle device
KR101220741B1 (en) Freezing device
JP2011133209A (en) Refrigerating apparatus
JP2009257706A (en) Refrigerating apparatus
KR101220663B1 (en) Freezing device
JP6080031B2 (en) Refrigeration equipment
KR101190317B1 (en) Freezing device
JP2003121018A (en) Refrigerating apparatus
KR101332478B1 (en) Freezing device
US8511112B2 (en) Refrigeration cycle apparatus
JP2838917B2 (en) Refrigeration cycle
JP5090932B2 (en) Cooling device for transcritical operation with economizer
JP2013155972A (en) Refrigeration device
JP6253370B2 (en) Refrigeration cycle equipment
WO2010035419A1 (en) Refrigerating apparatus
JP2011133208A (en) Refrigerating apparatus
JP2000292016A (en) Refrigerating cycle
JP2014159950A (en) Freezer
JP2014149103A (en) Refrigeration cycle device
JP7189423B2 (en) refrigeration cycle equipment
KR20220035172A (en) Chiller system with multiple compressors

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100721

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101021

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101028

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101122

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101130

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101221

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120829

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees