JP2003184768A - Water jet type screw compressor - Google Patents

Water jet type screw compressor

Info

Publication number
JP2003184768A
JP2003184768A JP2001378007A JP2001378007A JP2003184768A JP 2003184768 A JP2003184768 A JP 2003184768A JP 2001378007 A JP2001378007 A JP 2001378007A JP 2001378007 A JP2001378007 A JP 2001378007A JP 2003184768 A JP2003184768 A JP 2003184768A
Authority
JP
Japan
Prior art keywords
water
water supply
rotors
injected
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001378007A
Other languages
Japanese (ja)
Other versions
JP3801041B2 (en
Inventor
Takashi Saito
隆史 齋藤
Fumio Takeda
文夫 武田
Yasushi Takatsu
恭 高津
Seiji Tsuru
誠司 鶴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001378007A priority Critical patent/JP3801041B2/en
Publication of JP2003184768A publication Critical patent/JP2003184768A/en
Application granted granted Critical
Publication of JP3801041B2 publication Critical patent/JP3801041B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide high performance for a water jet type screw compressor by improving the effect of water jetting. <P>SOLUTION: This water jet type screw compressor includes a male screw rotor 1, a female screw rotor 2, and a casing 3 storing the rotors. The casing is formed with a first water feed section 36 for injecting water into a compression-operating chamber 11a formed of the pair of rotors and the casing, and a second water feed section 33 for injecting water into a suction section 31 which communicates with the compression-operating chamber and sucks operating gas from the outside. Thus, an atomizing means sprays atomized water to the sucked air from the second water feed section. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空気等のガスを圧
縮するスクリュー圧縮機に係り、特に1対のロータとケ
ーシング間に形成される圧縮作動室に水を噴射する水噴
射式スクリュー圧縮機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a screw compressor for compressing gas such as air, and more particularly to a water injection type screw compressor for injecting water into a compression working chamber formed between a pair of rotors and a casing. Regarding

【0002】[0002]

【従来の技術】電子関連、食品、化学などの油分の混入
を嫌う産業分野においては、吐出ガスに油分が混入しな
いオイルフリー圧縮機が多用される。このオイルフリー
圧縮機では、ロータ同士またはロータとケーシングとの
接触を防止するために油冷式圧縮機で用いる潤滑油を使
用できない。したがって、ロータ同士またはロータとケ
ーシング間の隙間が増大し、圧縮機の効率が低下する。
この不具合を解消するために、作動ガスに混入されても
プロセスがほとんど影響を受けない水を油の代わりに圧
縮作動室に噴射し、ロータ間やロータとケーシング間の
シールと潤滑を兼用させる方法が各種提案されている。
2. Description of the Related Art In the industrial fields such as electronics, foods, chemicals, etc. where the oil content is not admixed, an oil-free compressor in which the oil content is not mixed in the discharge gas is often used. In this oil-free compressor, the lubricating oil used in the oil-cooled compressor cannot be used in order to prevent contact between rotors or between the rotor and the casing. Therefore, the gap between the rotors or between the rotor and the casing increases, and the efficiency of the compressor decreases.
In order to solve this problem, the process is hardly affected even if it is mixed with the working gas. Instead of oil, water is injected into the compression working chamber to perform both sealing and lubrication between rotors and between the rotor and casing. Have been proposed.

【0003】この水噴射式スクリュー圧縮機の例が、特
開平10−141262号公報に記載されている。この
公報では、水潤滑式スクリュー圧縮機の密封性を高める
ためと、タイミングギアを不用にするために、雄スクリ
ューロータは、金属製中心軸の外周に熱硬化性合成樹脂
のロータ歯部を一体に設けている。雄スクリューロータ
の中心軸に原動機から動力が伝達される。これにより、
雄側のロータ歯部とメス側のロータ歯部およびシリンダ
との密封性が向上し、粘度が低く密封性に劣る水を潤滑
液に使用して、密封性を向上させている。
An example of this water injection type screw compressor is described in Japanese Patent Laid-Open No. 10-141262. In this publication, in order to improve the sealing performance of a water-lubricated screw compressor and to eliminate the need for a timing gear, a male screw rotor has a rotor tooth portion made of a thermosetting synthetic resin integrated with the outer periphery of a metal central shaft. It is provided in. Power is transmitted from the prime mover to the central axis of the male screw rotor. This allows
The sealability between the male rotor tooth portion, the female rotor tooth portion, and the cylinder is improved, and water having low viscosity and poor sealability is used as the lubricating liquid to improve the sealability.

【0004】水噴射式スクリュー圧縮機の他の例が、特
表平10-512938号公報に開示されている。この
公報では、気体媒体の環境的に許容できる圧縮を可能に
するために、コンプレッサ設備は添加剤の無いオイルレ
ス冷却水で冷却されている。そして、コンプレッサ内へ
の冷却水の噴射は、圧縮が略等温になるように容量決定
されている。
Another example of a water injection type screw compressor is disclosed in Japanese Patent Publication No. 10-512938. In this publication, the compressor equipment is cooled with additive-free oilless cooling water in order to enable environmentally acceptable compression of the gaseous medium. The capacity of the injection of the cooling water into the compressor is determined so that the compression becomes substantially isothermal.

【0005】[0005]

【発明が解決しようとする課題】圧縮作動室内に水を噴
射する水噴射式スクリュー圧縮機では、水の粘性が低い
ので十分なシール効果を高めるために、圧縮作動室内に
多量の水を注入する。圧縮作動室内に多量の水を注入す
ると、圧縮作動室内における水の攪拌損失が増大してエ
ネルギー効率が低下する。また、スクリューロータが高
速回転する圧縮機では、噴射された微粒子の水と圧縮空
気とが熱交換するのに必要な時間を圧縮行程において十
分には確保できず、所期の冷却効果を得ることが困難で
ある。
In the water injection type screw compressor for injecting water into the compression working chamber, since the viscosity of water is low, a large amount of water is injected into the compression working chamber in order to enhance a sufficient sealing effect. . When a large amount of water is injected into the compression working chamber, the stirring loss of water in the compression working chamber is increased and the energy efficiency is reduced. Further, in a compressor in which the screw rotor rotates at high speed, the time required for heat exchange between the sprayed water particles and the compressed air cannot be secured sufficiently in the compression stroke, and the desired cooling effect can be obtained. Is difficult.

【0006】つまり、特開平10−141262号公報
においては、圧縮機の圧縮過程で発熱して合成樹脂製の
ロータの歯部が変形するのを、水噴射により低減できる
という効果がある。また、これによりロータ同士または
ロータとシリンダ間のシール性能を向上できる。しかし
ながら、この公報に記載のものでは、樹脂製のロータを
用いているので圧縮熱による変形量は金属製に比べて大
となり、ロータ間やロータとシリンダ間に熱変形を考慮
して組み立てるために形成される隙間も大きくならざる
を得ない。
That is, in Japanese Patent Laid-Open No. 10-141262, there is an effect that it is possible to reduce the deformation of the tooth portion of the rotor made of synthetic resin due to heat generation during the compression process of the compressor by the water injection. Further, this can improve the sealing performance between the rotors or between the rotor and the cylinder. However, in the one described in this publication, since the rotor made of resin is used, the amount of deformation due to compression heat is larger than that made of metal, and in order to assemble in consideration of thermal deformation between rotors and between rotor and cylinder, The gap formed is inevitably large.

【0007】また、特表平10-512938号公報に
おいては、冷却水分配装置を用いて冷却水を取り込みダ
クトとコンプレッサハウジングに噴射して、コンプレッ
サ内空気を100%飽和させて作動ガスの圧縮過程を等
温変化に近づけている。しかしながらこの公報に記載の
ものでは、等温変化を生じるためには圧縮過程に作動ガ
スが留まる時間を長時間必要とし、圧縮機を高速化して
小型化するというニーズを満足することが困難である。
Further, in Japanese Patent Publication No. 10-512938, a cooling water distributor is used to take in cooling water and inject it into a duct and a compressor housing to saturate the air in the compressor to 100% to compress the working gas. Is approaching an isothermal change. However, the one described in this publication requires a long time for the working gas to remain in the compression process in order to cause an isothermal change, and it is difficult to satisfy the needs for speeding up and downsizing the compressor.

【0008】本発明は、上記従来技術の不具合に鑑みな
されたものであり、その目的は、オイルフリースクリュ
ー圧縮機を高速小型化することにある。本発明の他の目
的は水噴射式スクリュー圧縮機において、圧縮機の性能
を向上させることにある。本発明のさらに他の目的は、
安価で高効率のオイルフリースクリュー圧縮機を実現す
ることにある。そして、本発明はこれら目的の少なくと
も1つを達成することを目的とする。
The present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to downsize an oil-free screw compressor at a high speed. Another object of the present invention is to improve the performance of a water injection type screw compressor. Still another object of the present invention is to
It is to realize an inexpensive and highly efficient oil-free screw compressor. And the present invention aims to achieve at least one of these objectives.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
の本発明の特徴は、1対の雄スクリューロータと雌スク
リューロータと、これらロータを収容するケーシングと
を有し、ケーシングに1対のロータとケーシングにより
形成される圧縮作動室に水を注入する第1の給水部を形
成し、圧縮作動室に連通し作動ガスを外部から吸入する
吸入部に水を注入する第2の給水部を形成し、この第2
の給水部に注入される水を微粒化させる微粒化手段を設
け、微粒化手段で微粒化した水を第2の給水部から吸入
空気に噴霧させるものである。
A feature of the present invention for achieving the above object is to have a pair of male screw rotors and female screw rotors, and a casing for accommodating these rotors. A first water supply section for injecting water into a compression working chamber formed by the rotor and the casing is formed, and a second water supply section for injecting water into a suction section communicating with the compression working chamber and sucking working gas from the outside is provided. Forming this second
The atomization means for atomizing the water injected into the water supply part is provided, and the water atomized by the atomization means is sprayed from the second water supply part to the intake air.

【0010】そしてこの特徴において、第2の給水部か
ら注入される水の平均粒径は、第1の給水部から噴霧さ
れる水の平均粒径よりも小であることが望ましい。さら
に、1対のスクリューロータの一方のロータ歯部を熱硬
化性樹脂製とし、他方を金属としてもよく、雄ロータの
歯部を熱硬化性樹脂製としてもよく、両ロータを金属製
とし、その歯面に潤滑膜をコーティングまたはメッキし
てもよい。また、第1の給水部から水を注入する位置
を、作動ガス温度が注入される水の温度以上になる位置
とするのが好ましく、第2の給水部から注入される水の
温度を、この圧縮機の吸入部から吸込まれる作動ガス温
度以下としてもよい。さらに、吸入部に噴霧する水の平
均粒径を200μm以下とし、質量比で作動ガスの20
%以下とするのが好ましい。
In this feature, it is desirable that the average particle size of the water injected from the second water supply part is smaller than the average particle size of the water sprayed from the first water supply part. Further, one rotor tooth portion of the pair of screw rotors may be made of thermosetting resin, the other may be made of metal, the male rotor tooth portion may be made of thermosetting resin, and both rotors are made of metal. The tooth surface may be coated or plated with a lubricating film. Further, it is preferable that the position where the water is injected from the first water supply unit is set to a position where the working gas temperature is equal to or higher than the temperature of the injected water, and the temperature of the water injected from the second water supply unit is The temperature may be lower than or equal to the temperature of the working gas sucked from the suction section of the compressor. Furthermore, the average particle size of water sprayed on the suction part is set to 200 μm or less, and the mass ratio of the working gas is 20 μm.
% Or less is preferable.

【0011】上記目的を達成するための本発明の他の特
徴は、1対の雄スクリューロータと雌スクリューロータ
と、これらロータを収容するケーシングとを有し、1対
のロータ間に形成される圧縮作動室に水を注入する第1
の給水部と、作動ガスを外部から吸入してこの圧縮機に
導くための吸入部に水を注入する第2の給水部とをそれ
ぞれ形成し、この第2の給水部にノズルを設け、このノ
ズルは微粒化した水を吸入空気に噴霧させるものであ
る。
Another feature of the present invention for attaining the above object is to have a pair of male screw rotor and female screw rotor, and a casing for accommodating these rotors, and to be formed between the pair of rotors. First to inject water into the compression working chamber
And a second water supply part for injecting water into the suction part for sucking the working gas from the outside and guiding it to the compressor, and providing a nozzle in the second water supply part. The nozzle is for spraying atomized water into the intake air.

【0012】そしてこの特徴において、第2の給水部か
ら注入される水の平均粒径が、第1の給水部から噴霧さ
れる水の平均粒径よりも小であることが望ましい。さら
に、第1の給水部から圧縮作動室に注入される水の注入
位置を、ケーシングに形成した作動ガスの排出位置であ
る吐出ポートに連通しない歯溝位置である、圧縮過程に
ある密閉空間に設けるのが望ましい。
In this feature, it is desirable that the average particle size of the water injected from the second water supply part is smaller than the average particle size of the water sprayed from the first water supply part. Furthermore, the injection position of the water injected from the first water supply unit into the compression working chamber is set to a tooth space position that does not communicate with the discharge port that is the discharge position of the working gas formed in the casing. It is desirable to provide it.

【0013】上記目的を達成するための本発明のさらに
他の特徴は、1対の雄スクリューロータと雌スクリュー
ロータと、これらロータを収容するケーシングとを有
し、ケーシングに、1対のロータ間に形成される圧縮作
動室に水を注入する第1の給水部を、作動ガスを外部か
ら吸入してこの圧縮機に導くための吸入部に、水を注入
する第2の給水部をそれぞれ形成し、この第2の給水部
に微粒化した水を吸入空気に噴霧させるノズルを形成
し、第1の給水部から注入される水量をノズルから噴霧
される水量よりも大としたものである。
Still another feature of the present invention for attaining the above object is to have a pair of male screw rotors and female screw rotors, and a casing for accommodating these rotors. The first water supply section for injecting water into the compression working chamber formed in the above is formed, and the second water supply section for injecting water is formed in the suction section for sucking the working gas from the outside and guiding it to the compressor. However, a nozzle for spraying atomized water to the intake air is formed in the second water supply section, and the amount of water injected from the first water supply section is made larger than the amount of water sprayed from the nozzle.

【0014】[0014]

【発明の実施の形態】以下、本発明に係る水噴射式スク
リュー圧縮機の一実施例を図面を用いて説明する。図1
は、水噴射式スクリュー圧縮機の模式図であり、図2は
そのA−A断面図である。図1では、圧縮機本体11を
縦断面図で示してあり、ガスおよび潤滑水の流れ系統を
も同時に示している。なお、作動ガスには空気を用いて
いる。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a water injection type screw compressor according to the present invention will be described below with reference to the drawings. Figure 1
[Fig. 2] is a schematic view of a water injection type screw compressor, and Fig. 2 is a sectional view taken along line AA. In FIG. 1, the compressor body 11 is shown in a vertical sectional view, and the flow system of gas and lubricating water is also shown. Air is used as the working gas.

【0015】水噴射式スクリュー圧縮機12は圧縮機本
体11と圧縮機本体11で圧縮された空気から水を分離
し、分離した水を貯えるレシーバタンク14とを備えて
いる。レシーバタンク14の上部には、圧縮空気供給配
管17が接続されている。レシーバタンク14の底面近
くの側壁部に、詳細を後述する潤滑およびシールのため
の水を圧縮機本体11に供給する給水配管18が接続さ
れている。給水配管18の途中には、バルブ27が設け
られている。バルブ27の下流側には切換え弁30が設
けられ、この切換え弁30の一方は圧縮機本体11に給
水する配管20に、他方はバルブ28を介在させた配管
19に接続されている。配管19の端部は、外部給水源
13に接続されている。
The water injection type screw compressor 12 includes a compressor body 11 and a receiver tank 14 for separating water from the air compressed by the compressor body 11 and storing the separated water. A compressed air supply pipe 17 is connected to the upper part of the receiver tank 14. A water supply pipe 18 for supplying water for lubrication and sealing, which will be described in detail later, to the compressor body 11 is connected to a side wall portion near the bottom surface of the receiver tank 14. A valve 27 is provided in the middle of the water supply pipe 18. A switching valve 30 is provided on the downstream side of the valve 27. One of the switching valves 30 is connected to a pipe 20 for supplying water to the compressor body 11, and the other is connected to a pipe 19 with a valve 28 interposed. The end of the pipe 19 is connected to the external water supply source 13.

【0016】圧縮機本体11に給水する配管20は、さ
らに分岐部29で2系統に分けられる。一系統はバルブ
25を介在させた配管24を経て圧縮機本体11の吸込
み側に給水する。他方は、配管21、バルブ22および
配管23を経て圧縮機本体11のスクリューロータ部に
給水する。圧縮機本体11に給水された水は、圧縮空気
に混じって圧縮空気吐出配管16からレシーバタンク1
4に導かれる。レシーバタンク14の下部には、レシー
バタンク14内で圧縮空気と分離した水が溜められる。
溜まった水は、圧縮機本体11から吐出される圧縮空気
により加圧され、給水配管18へと導かれる。
The pipe 20 for supplying water to the compressor body 11 is further divided into two systems by a branch part 29. One system supplies water to the suction side of the compressor body 11 via a pipe 24 with a valve 25 interposed. The other water is supplied to the screw rotor portion of the compressor body 11 through the pipe 21, the valve 22 and the pipe 23. The water supplied to the compressor body 11 mixes with the compressed air, and the compressed air is discharged from the compressed air discharge pipe 16 to the receiver tank 1.
Guided to 4. Water separated from the compressed air in the receiver tank 14 is stored in the lower part of the receiver tank 14.
The accumulated water is pressurized by the compressed air discharged from the compressor body 11 and guided to the water supply pipe 18.

【0017】圧縮機本体11は、図2にその詳細を示す
ように、1対の噛み合わされた雄スクリューロータ1と
雌スクリューロータとを備えており、ケーシング3にこ
れら両ロータ1、2は収容されている。雄ロータ1の両
軸端部は、軸受7、8で支持されている。同様に、雌ロ
ータ2の両軸端部も軸受で支持されている。雄ロータ1
の外周部には4枚の歯1aがネジ状に形成されている。
軸受7と雄ロータ歯1a部の間にはシール9が、軸受8
と雄ロータ歯1a部の間にはシール10がそれぞれ設け
られており、軸受7、8部と圧縮作動室11aとの間の
漏れを防止する。シール9及び軸受7は、吸入側ケーシ
ング4に保持されている。吸入側ケーシング4とケーシ
ング3とは、フランジ部でボルト締結されている。
As shown in detail in FIG. 2, the compressor main body 11 is provided with a pair of intermeshing male screw rotors 1 and female screw rotors, and the casing 3 accommodates both rotors 1 and 2. Has been done. Both shaft ends of the male rotor 1 are supported by bearings 7 and 8. Similarly, both shaft ends of the female rotor 2 are also supported by bearings. Male rotor 1
Four teeth 1a are formed in a screw shape on the outer peripheral portion of.
A seal 9 is provided between the bearing 7 and the male rotor tooth 1a,
A seal 10 is provided between the male rotor tooth 1a and the male rotor tooth 1a to prevent leakage between the bearings 7 and 8 and the compression working chamber 11a. The seal 9 and the bearing 7 are held by the suction side casing 4. The suction side casing 4 and the casing 3 are bolted together at a flange portion.

【0018】ケーシング3には、ボアと呼ばれる一部重
複する円筒状の穴が2本形成されている。この穴に雄雌
両ロータ1、2を収容することにより、ロータ歯溝間と
ケーシング3の壁面間に圧縮作動室11aが形成され
る。吸入側ケーシング4の側部には、ケーシングカバー
6がボルト締結されている。軸受7の側部は軸受押え板
34で押えられており、軸受押え板34はケーシング4
に取り付けられている。軸受押え板34の中央部に形成
された穴を貫通して、雄ロータ1の駆動軸1bが機外に
延びている。駆動軸1bは図示しないカップリングを介
して電動機に接続される。軸受8の側部も軸受押え板3
5で押さえられており、軸受押え板35はケーシング3
に取り付けられている。
The casing 3 is formed with two overlapping cylindrical holes called a bore. By accommodating the male and female rotors 1 and 2 in this hole, the compression working chamber 11a is formed between the rotor tooth spaces and the wall surface of the casing 3. A casing cover 6 is bolted to the side portion of the suction side casing 4. The side portion of the bearing 7 is pressed by a bearing pressing plate 34, and the bearing pressing plate 34 is attached to the casing 4
Is attached to. The drive shaft 1b of the male rotor 1 extends to the outside of the machine through a hole formed in the center of the bearing retainer plate 34. The drive shaft 1b is connected to the electric motor via a coupling (not shown). The side of the bearing 8 is also the bearing retainer plate 3.
The bearing retainer plate 35 is held by the casing 3
Is attached to.

【0019】図3に、雄ロータ1および雌ロータ2の展
開図を示す。この展開図は、各ロータ1、2の外周円筒
面を横軸に展開した図である。吸入側ケーシング4のケ
ーシング3との接続面側には、各ロータ1、2の回転軸
部の外周の大部分にわたって吸入口31が形成されてい
る。この吸入口31には、図示しないフィルターを経た
空気が本体空気吸入配管15を介して吸入される。一
方、ケーシング3のシール10側には、雄ロータ1と雌
ロータ2との接触部付近に吐出口32が設けられてい
る。圧縮機本体11の圧縮作動室11aで圧縮された空
気は、水と混合してこの吐出口32から本体空気吐出配
管16を経て、レシーバタンク14に吐出される。
FIG. 3 shows a developed view of the male rotor 1 and the female rotor 2. This development view is a view in which the outer peripheral cylindrical surfaces of the rotors 1 and 2 are developed along the horizontal axis. On the connection surface side of the suction side casing 4 with the casing 3, a suction port 31 is formed over most of the outer circumference of the rotary shafts of the rotors 1 and 2. Air that has passed through a filter (not shown) is sucked into the suction port 31 through the main body air suction pipe 15. On the other hand, on the seal 10 side of the casing 3, a discharge port 32 is provided near the contact portion between the male rotor 1 and the female rotor 2. The air compressed in the compression working chamber 11a of the compressor body 11 is mixed with water and discharged from the discharge port 32 to the receiver tank 14 through the body air discharge pipe 16.

【0020】図2、3に示すように、ケーシング3の中
間部であって複数箇所A,B,C,Dに、圧縮作動室1
1aに給水する給水部36が形成されている。この給水
部36は、圧縮作動室11aが密閉空間を形成する位置
に形成される。つまり、圧縮作動室11aの端部が吸入
口31にも吐出口32にもかからず、ケーシング3、4
により密封される場所にあるときの、圧縮作動室に対応
するケーシング3の壁面部に給水部36を形成する。
As shown in FIGS. 2 and 3, the compression working chamber 1 is provided at a plurality of points A, B, C and D in the middle portion of the casing 3.
A water supply unit 36 for supplying water to 1a is formed. The water supply unit 36 is formed at a position where the compression working chamber 11a forms a closed space. That is, the end of the compression working chamber 11a does not cover the suction port 31 or the discharge port 32, and the casings 3, 4
The water supply portion 36 is formed on the wall surface portion of the casing 3 corresponding to the compression working chamber when it is in the place sealed by.

【0021】給水部36の詳細を図4に示す。中央部に
先止まり穴36bが形成された給水部材36aの底部
に、角度θだけ傾斜させて外部と連通する複数の小孔3
6cを形成する。吸水部材36aの外側の底面中央部に
は窪み部36dが形成さている。これにより、先止まり
穴36bに導かれた水は、小孔36cから圧縮作動室1
1aに広範囲にわたって噴射され(36e)る。
The details of the water supply unit 36 are shown in FIG. A plurality of small holes 3 which are inclined by an angle θ and communicate with the outside are provided at the bottom of the water supply member 36a having a blind hole 36b formed at the center.
6c is formed. A recess 36d is formed in the center of the bottom surface outside the water absorbing member 36a. As a result, the water guided to the blind hole 36b is discharged from the small hole 36c into the compression working chamber 1
It is jetted over a wide area to 1a (36e).

【0022】このケーシング3の中間部に設けた給水部
36から噴射される水は、圧縮機本体11内の1対のス
クリューロータ1、2間及びスクリューロータ1、2と
ケーシング3間の空気の漏れをシールする。また、1対
のスクリューロータ1、2とケーシング3との金属接触
をも防止し、さらに、両ロータ1、2の円滑な回転を促
進する潤滑剤の役目も果たす。給水部36に供給された
水は、圧縮作動室11a内のボア部側面から粒化状態で
噴射される。圧縮空気の漏れをシールすることにより、
体積効率が向上し漏れによる動力の損失が低減される。
The water injected from the water supply portion 36 provided in the middle portion of the casing 3 is the air between the pair of screw rotors 1 and 2 in the compressor body 11 and between the screw rotors 1 and 2 and the casing 3. Seal the leak. Further, it also prevents metal contact between the pair of screw rotors 1 and 2 and the casing 3, and also serves as a lubricant that promotes smooth rotation of the rotors 1 and 2. The water supplied to the water supply unit 36 is jetted in a granulated state from the side surface of the bore portion inside the compression working chamber 11a. By sealing the leakage of compressed air,
Volume efficiency is improved and power loss due to leakage is reduced.

【0023】なお、圧縮作動室11aに水を噴射するタ
イミングは、噴射する水の温度まで作動空気温度が上昇
した後とする。雌雄両ロータ1、2により作動空気が圧
縮されると、圧縮作動室11a内の空気は吸込口31か
ら吐出口32へ向けて温度上昇する。そこで、例えば吸
込口31での空気温度が40℃であって、給水路36か
ら給水される水の温度が50℃のときは、圧縮作動室1
1a内の圧縮空気の温度が50℃になるタイミングで圧
縮作動室11aに水を噴射する。これにより、吸入空気
温度より低い温度の物質の注入による圧縮性能の低下を
防止できる。
The timing of injecting water into the compression working chamber 11a is assumed to be after the operating air temperature has risen to the temperature of the water to be injected. When the working air is compressed by the male and female rotors 1 and 2, the temperature of the air in the compression working chamber 11 a rises from the suction port 31 toward the discharge port 32. Therefore, for example, when the air temperature at the suction port 31 is 40 ° C. and the temperature of the water supplied from the water supply passage 36 is 50 ° C., the compression working chamber 1
Water is injected into the compression working chamber 11a at the timing when the temperature of the compressed air in 1a reaches 50 ° C. As a result, it is possible to prevent the compression performance from deteriorating due to the injection of the substance having a temperature lower than the intake air temperature.

【0024】給水配管24には、熱交換器41が取付け
られており、圧縮機本体11の吸入口31部に供給され
る水の温度を所定温度以下にしている。具体的には、圧
縮機本体11の吸入口31に吸込まれる作動空気の温度
以下にする。そのため、図示しない吸込み温度センサの
出力に基づいて、熱交換器41の熱交換量を制御する。
熱交換して温度が低下した水は、バルブ25及び給水配
管26を経て超音波を用いた微粒化装置40に導かれ
る。
A heat exchanger 41 is attached to the water supply pipe 24 to keep the temperature of the water supplied to the suction port 31 of the compressor body 11 below a predetermined temperature. Specifically, the temperature of the working air sucked into the suction port 31 of the compressor body 11 is set to be equal to or lower than the temperature of the working air. Therefore, the heat exchange amount of the heat exchanger 41 is controlled based on the output of the suction temperature sensor (not shown).
The water whose temperature has dropped due to heat exchange is guided to the atomizer 40 using ultrasonic waves through the valve 25 and the water supply pipe 26.

【0025】微粒化装置40は、作動空気と水とが熱交
換して冷却効果が促進されるよう、水の平均粒子径を5
0μm以下にする。微粒子化された水は、ノズル33か
ら空気吸入配管15内に噴霧されて吸入空気と混合され
る。吸入空気と混合した水の一部は圧縮行程中に気化し
て発生熱を奪い、理論的には断熱圧縮とされるスクリュ
ー圧縮機の圧縮行程を等温圧縮に近づける。この結果、
圧縮動力が低減される。なお、上記実施例では微粒化装
置40をノズル33と別体化しているが、ノズルと微粒
化装置とを一体化、またはノズル33が微粒化機能を有
するようにしてもよい。さらに、微粒化手段は超音波に
限るものではない。
The atomizer 40 has an average particle diameter of water of 5 so that the working air and water exchange heat with each other to promote the cooling effect.
It is set to 0 μm or less. The atomized water is sprayed from the nozzle 33 into the air intake pipe 15 and mixed with the intake air. A part of the water mixed with the intake air is vaporized during the compression stroke to remove the generated heat, and theoretically brings the compression stroke of the screw compressor closer to isothermal compression into adiabatic compression. As a result,
The compression power is reduced. Although the atomization device 40 is separated from the nozzle 33 in the above embodiment, the nozzle and the atomization device may be integrated or the nozzle 33 may have the atomization function. Furthermore, the atomizing means is not limited to ultrasonic waves.

【0026】このように構成した本実施例の動作を説明
する。図示しない電動機により雄スクリューロータ1が
起動されると、この雄ロータ1の歯と雌ロータ2の歯が
噛み合い、雄ロータ1と雌ロータ2とが同期回転する。
両ロータ1、2が回転すると、吸入口31から吸込まれ
た空気は両ロータ1、2とケーシング3の壁面により形
成される圧縮作動室11aに導かれる。吸入空気には吸
入口31直前で微粒化した水を噴霧させる。この微粒化
した水は圧縮作動室内で圧縮行程中に空気と熱交換す
る。微粒化した水の一部は気化し、圧縮空気から圧縮熱
を奪う。
The operation of this embodiment thus configured will be described. When the male screw rotor 1 is started by an electric motor (not shown), the teeth of the male rotor 1 and the teeth of the female rotor 2 mesh with each other, and the male rotor 1 and the female rotor 2 rotate synchronously.
When both rotors 1 and 2 rotate, the air sucked from the suction port 31 is guided to the compression working chamber 11 a formed by the rotors 1 and 2 and the wall surface of the casing 3. The atomized water is sprayed on the intake air immediately before the intake port 31. The atomized water exchanges heat with air in the compression working chamber during the compression stroke. Part of the atomized water vaporizes, and the heat of compression is taken from the compressed air.

【0027】これは、以下の原理による。水の粒子径を
d(mm)、圧縮空気と水の温度差をΔT(℃)、熱伝達可
能時間をΔt(sec)、水粒子の熱交換量をQ(J)とす
ると、 Q=k・(πd)・ΔT・Δt で表される。この式から、熱伝達可能時間である圧縮時
間(おおよそ5msec)を考慮し、熱交換量を水粒子の気
化熱に等しいとすると、最適な粒子径が求まる。本実施
例では最適な粒子径の値は1μm以下であるが、現実に
1μm以下の粒子の発生が困難であるから、できるだけ
小さな粒径とすることが望ましい。吸入口から供給する
水の粒径が大ならば、水を除く作動ガス量が減少して性
能が低下する。そこで水の粒径を小さくして圧縮機に供
給するが、粒径を小さくすると噴射のために、噴射粒子
が飛散して壁にぶつからないような広い空間を必要とす
る。圧縮過程にある流路ではそのような広い空間を確保
できないが、吸込み側であればそのような空間を形成で
きるので、吸込み側に微粒子の水を供給している。
This is based on the following principle. If the particle diameter of water is d (mm), the temperature difference between compressed air and water is ΔT (° C), the heat transferable time is Δt (sec), and the heat exchange amount of water particles is Q (J), then Q = k・ (Πd 2 ) · ΔT · Δt From this equation, the optimum particle size can be obtained by considering the compression time (approximately 5 msec) which is the heat transferable time and the heat exchange amount being equal to the heat of vaporization of water particles. In this embodiment, the optimum value of the particle diameter is 1 μm or less, but it is difficult to actually generate particles of 1 μm or less, so it is desirable to make the particle diameter as small as possible. If the particle size of the water supplied from the suction port is large, the amount of working gas excluding water will decrease and the performance will deteriorate. Therefore, the particle size of water is reduced and supplied to the compressor. However, if the particle size is reduced, a large space is required for spraying because sprayed particles do not scatter and collide with the wall. Such a wide space cannot be secured in the flow path in the compression process, but such a space can be formed on the suction side, and therefore fine particle water is supplied to the suction side.

【0028】圧縮作動室11aはスクリューロータ1、
2の回転と共に体積を減少するが、その際、圧縮作動室
11aに給水部36から加圧水が供給され、ロータ1、
2を冷却する。この加圧水はロータ1、2間やロータ
1、2とケーシング3間の隙間をシールもする。さら
に、ロータ1、2間を潤滑して、ロータ1、2同士やロ
ータ1、2とケーシング3壁面との焼き付けも防止す
る。
The compression working chamber 11a includes a screw rotor 1,
The volume decreases with the rotation of 2, but at that time, pressurized water is supplied from the water supply section 36 to the compression working chamber 11a, and the rotor 1,
Cool 2. The pressurized water also seals the gap between the rotors 1 and 2 and the gap between the rotors 1 and 2 and the casing 3. Further, the space between the rotors 1 and 2 is lubricated to prevent the rotors 1 and 2 from being seized and the rotors 1 and 2 and the casing 3 wall surface from being seized.

【0029】ところで、圧縮機本体11に形成される圧
縮作動室11aの中間部に供給される水は、圧縮機が高
速小型の場合、圧縮作動室11a内の熱交換にほとんど
寄与しないことが本発明者らの実験的研究により明らか
になった。例えば、ロータ径が75mm程度で、回転速
度が1万回転/分を超えるような圧縮機では、噴射され
た水が圧縮作動室内に留まる時間が、6ms程度となる
ため、熱交換に必要な時間を確保できない。このため、
従来の水噴射圧縮機では、回転速度を低くして噴射され
た水が圧縮作動室内に留まる時間を長くするか、圧縮作
動室をでた後に熱交換して温度低下させるかしていた。
前者の場合には、圧縮機を高速小型化できないし、後者
の場合には圧縮ガスの温度は下がるものの圧縮過程は断
熱過程に非常に近いものになり、圧縮機の効率を向上で
きない。
By the way, the water supplied to the intermediate portion of the compression working chamber 11a formed in the compressor body 11 hardly contributes to the heat exchange in the compression working chamber 11a when the compressor is high speed and small. It became clear by the inventors' experimental research. For example, in a compressor with a rotor diameter of about 75 mm and a rotation speed of over 10,000 rpm, the time that the injected water stays in the compression working chamber is about 6 ms, so the time required for heat exchange is Cannot be secured. For this reason,
In the conventional water injection compressor, the rotational speed is reduced to lengthen the time during which the injected water stays in the compression working chamber, or heat is exchanged after leaving the compression working chamber to lower the temperature.
In the former case, the compressor cannot be downsized at high speed, and in the latter case, although the temperature of the compressed gas decreases, the compression process becomes very close to the adiabatic process, and the efficiency of the compressor cannot be improved.

【0030】本発明では、この矛盾する課題を解決する
ために、圧縮機本体の吸入側と中間部とに2系統の水注
入系を設け、吸入側に注入する水は熱交換を促進するた
め微粒化し、中間部に注入する水はシール効果を高める
ために比較的大粒系の水としている。つまり、圧縮機本
体の吸入側に注入する水の平均粒径は50μm程度以下
とし、中間部に注入する水の平均粒径は200μm程度
とする。また、注入する水の流量も圧縮機本体の吸入側
を少なく、中間部側を多量にする。
In the present invention, in order to solve this contradictory problem, two water injection systems are provided on the suction side and the intermediate portion of the compressor body, and the water injected to the suction side promotes heat exchange. The water that is atomized and injected into the middle portion is a relatively large amount of water in order to enhance the sealing effect. That is, the average particle size of water injected into the suction side of the compressor body is about 50 μm or less, and the average particle size of water injected into the middle part is about 200 μm. Also, the flow rate of water to be injected is small on the suction side of the compressor body and large on the intermediate side.

【0031】上述した実施例は例示的なものであり、本
発明を限定的に解釈するためのものではない。本発明の
範囲は特許請求の範囲に示されており、その請求項の意
味の中に入る全ての変形例は本発明に含まれる。
The above-mentioned embodiments are illustrative, and are not intended to limit the present invention. The scope of the invention is set forth in the claims, and all variations that come within the meaning of the claims are included in the invention.

【0032】[0032]

【発明の効果】以上述べたように本発明によれば、水噴
射式スクリュー圧縮機において、吸込み側から注入する
水の粒子と、ロータ部にある作動ガスに注入する水の粒
子径とを変えて圧縮機に水を注入したので作動ガスの水
との熱交換が促進され、圧縮機の高速小型化が可能にな
る。また、圧縮機の効率を向上でき、オイルフリー圧縮
機の性能を改善できる。
As described above, according to the present invention, in the water injection type screw compressor, the particle size of water injected from the suction side and the particle size of water injected into the working gas in the rotor part are changed. Since water is injected into the compressor by the heat, the heat exchange of the working gas with water is promoted, and the compressor can be downsized at high speed. In addition, the efficiency of the compressor can be improved and the performance of the oil-free compressor can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る水噴射式スクリュー圧縮機の一実
施例の系統図である。
FIG. 1 is a system diagram of an embodiment of a water injection type screw compressor according to the present invention.

【図2】スクリュー圧縮機本体の横断面図である。FIG. 2 is a cross-sectional view of a screw compressor body.

【図3】水の注入位置を説明する図である。FIG. 3 is a diagram illustrating a pouring position of water.

【図4】水を注入する水注入部形状を示す断面図であ
る。
FIG. 4 is a cross-sectional view showing a shape of a water injection part for injecting water.

【符号の説明】[Explanation of symbols]

1…雄スクリューロータ、2…雌スクリューロータ、
3、4…ケーシング、7、8…軸受、9、10…レシー
バタンク、11…圧縮機本体、11a…圧縮作動室、1
2…水噴射式スクリュー圧縮機、31…吸入口、32…
吐出口、33…第2給水部、36…第1給水部、40…
微粒化装置。
1 ... Male screw rotor, 2 ... Female screw rotor,
3, 4 ... Casing, 7, 8 ... Bearing, 9, 10 ... Receiver tank, 11 ... Compressor body, 11a ... Compression working chamber, 1
2 ... Water injection type screw compressor, 31 ... Suction port, 32 ...
Discharge port, 33 ... Second water supply part, 36 ... First water supply part, 40 ...
Atomizer.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高津 恭 茨城県土浦市神立町603番地 株式会社日 立製作所産業機械システム事業部内 (72)発明者 鶴 誠司 茨城県土浦市神立町603番地 株式会社日 立製作所産業機械システム事業部内 Fターム(参考) 3H029 AA03 AA24 AB02 BB01 BB16 CC03 CC05 CC23    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor K. Takatsu             603 Jinmachi-cho, Tsuchiura-shi, Ibaraki Japan Co., Ltd.             Tate Manufacturing Industrial Machinery Systems Division (72) Inventor Seiji Tsuru             603 Jinmachi-cho, Tsuchiura-shi, Ibaraki Japan Co., Ltd.             Tate Manufacturing Industrial Machinery Systems Division F term (reference) 3H029 AA03 AA24 AB02 BB01 BB16                       CC03 CC05 CC23

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】1対の雄スクリューロータと雌スクリュー
ロータと、これらロータを収容するケーシングとを有
し、前記ケーシングに前記1対のロータとケーシングに
より形成される圧縮作動室に水を注入する第1の給水部
を形成し、前記圧縮作動室に連通し作動ガスを外部から
吸入する吸入部に水を注入する第2の給水部を形成し、
この第2の給水部に注入される水を微粒化させる微粒化
手段を設け、前記微粒化手段で微粒化した水を第2の給
水部から吸入空気に噴霧させることを特徴とする水噴射
式スクリュー圧縮機。
1. A pair of male and female screw rotors, and a casing for housing these rotors, wherein water is injected into a compression working chamber formed by the pair of rotors and the casing. Forming a first water supply portion, forming a second water supply portion communicating with the compression working chamber and injecting water into a suction portion for sucking a working gas from the outside,
A water injection type characterized in that atomizing means for atomizing the water injected into the second water supply part is provided, and the water atomized by the atomizing means is sprayed from the second water supply part to the intake air. Screw compressor.
【請求項2】前記第1の給水部から注入される水の平均
粒径は、第2の給水部から噴霧される水の平均粒径より
も大であることを特徴とする請求項1に記載の水噴射式
スクリュー圧縮機。
2. The average particle size of water injected from the first water supply unit is larger than the average particle size of water sprayed from the second water supply unit. The described water injection type screw compressor.
【請求項3】前記1対のスクリューロータの一方のロー
タ歯部を熱硬化性樹脂製とし、他方を金属としたことを
特徴とする請求項1または2に記載の水噴射式スクリュ
ー圧縮機。
3. The water injection type screw compressor according to claim 1, wherein one rotor tooth portion of the pair of screw rotors is made of thermosetting resin and the other is made of metal.
【請求項4】前記雄ロータの歯部を熱硬化性樹脂製とし
たことを特徴とする請求項1または2に記載の水噴射式
スクリュー圧縮機。
4. The water injection type screw compressor according to claim 1, wherein the teeth of the male rotor are made of thermosetting resin.
【請求項5】前記第1の給水部から水を注入する位置
を、作動ガス温度が注入される水の温度以上になる位置
としたことを特徴とする請求項1または2に記載の水噴
射式スクリュー圧縮機。
5. The water jet according to claim 1, wherein the position at which water is injected from the first water supply unit is set at a position at which the temperature of the working gas becomes equal to or higher than the temperature of water to be injected. Screw compressor.
【請求項6】前記第2の給水部から注入される水の温度
を、この圧縮機の吸入部から吸込まれる作動ガス温度以
下としたことを特徴とする請求項1または2に記載の水
噴射式スクリュー圧縮機。
6. The water according to claim 1, wherein the temperature of the water injected from the second water supply unit is set to be equal to or lower than the temperature of the working gas sucked from the suction unit of the compressor. Injection type screw compressor.
【請求項7】吸入部に噴霧する水の平均粒径を200μ
m以下とし、質量比で作動ガスの20%以下としたこと
を特徴とする請求項1または2に記載の水噴射式スクリ
ュー圧縮機。
7. The average particle size of water sprayed on the suction part is 200 μm.
The water-injection type screw compressor according to claim 1 or 2, wherein m or less and 20% or less of the working gas in mass ratio.
【請求項8】1対の雄スクリューロータと雌スクリュー
ロータと、これらロータを収容するケーシングとを有
し、前記1対のロータ間に形成される圧縮作動室に水を
注入する第1の給水部と、作動ガスを外部から吸入して
この圧縮機に導くための吸入部に水を注入する第2の給
水部とをそれぞれ形成し、この第2の給水部にノズルを
設け、このノズルは微粒化した水を吸入空気に噴霧させ
ることを特徴とする水噴射式スクリュー圧縮機。
8. A first water supply having a pair of male screw rotors and female screw rotors, and a casing accommodating the rotors, for injecting water into a compression working chamber formed between the pair of rotors. Part and a second water supply part for injecting water into a suction part for sucking a working gas from the outside and guiding it to the compressor, and a nozzle is provided in the second water supply part. A water injection type screw compressor characterized in that atomized water is sprayed on intake air.
【請求項9】前記第2の給水部から注入される水の平均
粒径が、前記第1の給水部から噴霧される水の平均粒径
よりも小であることを特徴とする請求項8に記載の水噴
射式スクリュー圧縮機。
9. The average particle size of water injected from the second water supply unit is smaller than the average particle size of water sprayed from the first water supply unit. The water-jet type screw compressor described in.
【請求項10】前記第1の給水部から圧縮作動室に注入
される水の注入位置を、前記ケーシングに形成した作動
ガスの排出位置である吐出ポートに連通しない歯溝位置
に設けたことを特徴とする請求項8または9に記載の水
噴射式スクリュー圧縮機。
10. An injection position of water injected from the first water supply part into the compression working chamber is provided at a tooth groove position which is not a communication port with a discharge port which is a discharge position of the working gas formed in the casing. The water injection type screw compressor according to claim 8 or 9.
【請求項11】1対の雄スクリューロータと雌スクリュ
ーロータと、これらロータを収容するケーシングとを有
し、前記ケーシングに、前記1対のロータ間に形成され
る圧縮作動室に水を注入する第1の給水部を、作動ガス
を外部から吸入してこの圧縮機に導くための吸入部に水
を注入する第2の給水部をそれぞれ形成し、この第2の
給水部に微粒化した水を吸入空気に噴霧させるノズルを
形成し、前記第1の給水部から注入される水量が、前記
ノズルから噴霧される水量よりも大であることを特徴と
する水噴射式スクリュー圧縮機。
11. A pair of male and female screw rotors and a casing for housing these rotors are provided, and water is injected into a compression working chamber formed between the pair of rotors in the casing. The first water supply section is formed with second water supply sections for injecting water into the suction section for sucking the working gas from the outside and guiding it to the compressor, and the second water supply section is provided with atomized water. A water injection type screw compressor, wherein a water amount injected from the first water supply unit is larger than an amount of water sprayed from the nozzle.
JP2001378007A 2001-12-12 2001-12-12 Water jet screw compressor Expired - Fee Related JP3801041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001378007A JP3801041B2 (en) 2001-12-12 2001-12-12 Water jet screw compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001378007A JP3801041B2 (en) 2001-12-12 2001-12-12 Water jet screw compressor

Publications (2)

Publication Number Publication Date
JP2003184768A true JP2003184768A (en) 2003-07-03
JP3801041B2 JP3801041B2 (en) 2006-07-26

Family

ID=27590834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001378007A Expired - Fee Related JP3801041B2 (en) 2001-12-12 2001-12-12 Water jet screw compressor

Country Status (1)

Country Link
JP (1) JP3801041B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005033519A1 (en) * 2003-10-01 2005-04-14 City University Plural screw positive displacement machines
JP2009133522A (en) * 2007-11-29 2009-06-18 Kayaba Ind Co Ltd Hydraulic system and food processing apparatus
JP2010007591A (en) * 2008-06-27 2010-01-14 Mitsui Seiki Kogyo Co Ltd Water circulation type compressor containing negative ion in compressed air
CN103850941A (en) * 2012-11-29 2014-06-11 珠海格力电器股份有限公司 Compressor oil-injection device, compressor, compressor lubrication system and refrigeration system
JP2015155652A (en) * 2014-02-20 2015-08-27 日立アプライアンス株式会社 Screw fluid machine and refrigeration cycle apparatus
JP2016211519A (en) * 2015-05-13 2016-12-15 隆逸 小林 Manufacturing method and use method of high-density air
WO2018038070A1 (en) * 2016-08-23 2018-03-01 株式会社日立産機システム Fluid machine
WO2019044390A1 (en) 2017-09-04 2019-03-07 株式会社日立産機システム Screw compressor
WO2019093106A1 (en) * 2017-11-09 2019-05-16 株式会社神戸製鋼所 Liquid-cooled screw compressor
WO2019124045A1 (en) 2017-12-20 2019-06-27 株式会社日立産機システム Liquid supply mechanism
JP2020033912A (en) * 2018-08-29 2020-03-05 株式会社日立産機システム Screw compressor
WO2020095608A1 (en) * 2018-11-08 2020-05-14 株式会社日立産機システム Liquid screw compressor
JP2020159303A (en) * 2019-03-27 2020-10-01 株式会社日立産機システム Liquid-cooled gas compressor and method of supplying liquid thereto
JP2020200837A (en) * 2020-09-16 2020-12-17 株式会社日立産機システム Screw compressor comprising liquid supply mechanism
US11149733B2 (en) * 2016-08-01 2021-10-19 Atlas Copco Airpower, Naamloze Vennootschap Liquid-injected compressor or expander element and method for controlling the liquid injection of a compressor or expander device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109826793B (en) * 2019-03-18 2020-02-14 嘉兴学院 Efficient refrigerator compressor capable of improving volume efficiency

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63500048A (en) * 1985-06-07 1988-01-07 スベンスカ・ロツタア・マスキナア・アクチボラグ Oil-free rotary gas compressor
JPH10141262A (en) * 1996-11-05 1998-05-26 Hokuetsu Kogyo Co Ltd Water lubricating-type screw compressor
JPH10512938A (en) * 1994-12-29 1998-12-08 キルステン,ギンター Compressor equipment
JP2001153073A (en) * 1999-11-24 2001-06-05 Hitachi Ltd Oil feed type screw compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63500048A (en) * 1985-06-07 1988-01-07 スベンスカ・ロツタア・マスキナア・アクチボラグ Oil-free rotary gas compressor
JPH10512938A (en) * 1994-12-29 1998-12-08 キルステン,ギンター Compressor equipment
JPH10141262A (en) * 1996-11-05 1998-05-26 Hokuetsu Kogyo Co Ltd Water lubricating-type screw compressor
JP2001153073A (en) * 1999-11-24 2001-06-05 Hitachi Ltd Oil feed type screw compressor

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005033519A1 (en) * 2003-10-01 2005-04-14 City University Plural screw positive displacement machines
JP2009133522A (en) * 2007-11-29 2009-06-18 Kayaba Ind Co Ltd Hydraulic system and food processing apparatus
JP2010007591A (en) * 2008-06-27 2010-01-14 Mitsui Seiki Kogyo Co Ltd Water circulation type compressor containing negative ion in compressed air
CN103850941A (en) * 2012-11-29 2014-06-11 珠海格力电器股份有限公司 Compressor oil-injection device, compressor, compressor lubrication system and refrigeration system
CN103850941B (en) * 2012-11-29 2017-06-06 珠海格力电器股份有限公司 Compressor fueling injection equipment, compressor, compressor lubrication system and refrigeration system
JP2015155652A (en) * 2014-02-20 2015-08-27 日立アプライアンス株式会社 Screw fluid machine and refrigeration cycle apparatus
JP2016211519A (en) * 2015-05-13 2016-12-15 隆逸 小林 Manufacturing method and use method of high-density air
US11149733B2 (en) * 2016-08-01 2021-10-19 Atlas Copco Airpower, Naamloze Vennootschap Liquid-injected compressor or expander element and method for controlling the liquid injection of a compressor or expander device
WO2018038070A1 (en) * 2016-08-23 2018-03-01 株式会社日立産機システム Fluid machine
JP2020169646A (en) * 2016-08-23 2020-10-15 株式会社日立産機システム Fluid machine
JPWO2018038070A1 (en) * 2016-08-23 2019-06-20 株式会社日立産機システム Fluid machine
US11149734B2 (en) 2016-08-23 2021-10-19 Hitachi Industrial Equipment Systems Co., Ltd. Fluid machine
US11231036B2 (en) 2017-09-04 2022-01-25 Hitachi Industrial Equipment Systems Co., Ltd. Screw compressor having an opening of a fluid supply portion between the compression intersection line and a trajectory line
TWI675149B (en) * 2017-09-04 2019-10-21 日商日立產機系統股份有限公司 Screw compressor
WO2019044390A1 (en) 2017-09-04 2019-03-07 株式会社日立産機システム Screw compressor
WO2019093106A1 (en) * 2017-11-09 2019-05-16 株式会社神戸製鋼所 Liquid-cooled screw compressor
CN111448001A (en) * 2017-12-20 2020-07-24 株式会社日立产机系统 Liquid supply mechanism
JP2019108874A (en) * 2017-12-20 2019-07-04 株式会社日立産機システム Liquid supply mechanism
WO2019124045A1 (en) 2017-12-20 2019-06-27 株式会社日立産機システム Liquid supply mechanism
CN114810602B (en) * 2017-12-20 2024-03-29 株式会社日立产机系统 Screw compressor
CN111448001B (en) * 2017-12-20 2022-05-13 株式会社日立产机系统 Liquid supply mechanism
US11359626B2 (en) 2017-12-20 2022-06-14 Hitachi Industrial Equipment Systems Co., Ltd. Screw compressor having a plurality of branch paths with intersects and central axes
CN114810602A (en) * 2017-12-20 2022-07-29 株式会社日立产机系统 Screw compressor
JP2020033912A (en) * 2018-08-29 2020-03-05 株式会社日立産機システム Screw compressor
JP2020076376A (en) * 2018-11-08 2020-05-21 株式会社日立産機システム Liquid supply type screw compressor
WO2020095608A1 (en) * 2018-11-08 2020-05-14 株式会社日立産機システム Liquid screw compressor
JP7141918B2 (en) 2018-11-08 2022-09-26 株式会社日立産機システム Feed screw compressor
JP7282561B2 (en) 2019-03-27 2023-05-29 株式会社日立産機システム LIQUID-COOLED GAS COMPRESSOR AND LIQUID SUPPLY METHOD THEREOF
JP2020159303A (en) * 2019-03-27 2020-10-01 株式会社日立産機システム Liquid-cooled gas compressor and method of supplying liquid thereto
JP2020200837A (en) * 2020-09-16 2020-12-17 株式会社日立産機システム Screw compressor comprising liquid supply mechanism
JP7000522B2 (en) 2020-09-16 2022-01-19 株式会社日立産機システム Screw compressor with liquid supply mechanism

Also Published As

Publication number Publication date
JP3801041B2 (en) 2006-07-26

Similar Documents

Publication Publication Date Title
JP3801041B2 (en) Water jet screw compressor
US4497185A (en) Oil atomizing compressor working fluid cooling system for gas/vapor/helical screw rotary compressors
CN102032177B (en) Fully-closed horizontal oil-injection scroll compressor
CN111094750B (en) Screw compressor
TWI537471B (en) Compressor and oil supply method thereof
JP2001317480A (en) Screw compressor
WO2002061285A1 (en) Scroll compressor
JP2005054716A (en) Electric compressor
JPH10141262A (en) Water lubricating-type screw compressor
KR101474460B1 (en) Scoroll compressor and refrigsrator having the same
JP2002310079A (en) Water lubricated screw compressor
CN215949822U (en) Oil injection screw vacuum pump
JPH11336683A (en) Oil-cooled screw compressor
JPH08543Y2 (en) Oil-cooled screw compressor
CN115217760A (en) Low pressure chamber rotary compressor and air conditioner
CN112855544A (en) Water-lubricated single-screw compressor water-spraying atomization device
WO1997009534A1 (en) High-pressure dome type compressor
JPH1122665A (en) Hermetic electric scroll compressor
JPH02264189A (en) Horizontal type rotary compressor
CN214887705U (en) Single screw compressor sealing system and single screw compressor
TW201945643A (en) Liquid supply type screw compressor
JP2001323887A (en) Oil feed type screw compressor
CN202579187U (en) Compressor with direct discharge end cover
JPH088312Y2 (en) Oil-cooled rotary compressor
JPS6123392B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060424

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees