JP2009133522A - Hydraulic system and food processing apparatus - Google Patents

Hydraulic system and food processing apparatus Download PDF

Info

Publication number
JP2009133522A
JP2009133522A JP2007308880A JP2007308880A JP2009133522A JP 2009133522 A JP2009133522 A JP 2009133522A JP 2007308880 A JP2007308880 A JP 2007308880A JP 2007308880 A JP2007308880 A JP 2007308880A JP 2009133522 A JP2009133522 A JP 2009133522A
Authority
JP
Japan
Prior art keywords
hot water
water
circuit
refrigerant
hydraulic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007308880A
Other languages
Japanese (ja)
Other versions
JP4976994B2 (en
Inventor
Shinpei Miyagawa
新平 宮川
Futoshi Yoshida
太志 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
Kayaba Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd filed Critical Kayaba Industry Co Ltd
Priority to JP2007308880A priority Critical patent/JP4976994B2/en
Publication of JP2009133522A publication Critical patent/JP2009133522A/en
Application granted granted Critical
Publication of JP4976994B2 publication Critical patent/JP4976994B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/90Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation
    • Y02A40/963Off-grid food refrigeration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/85Food storage or conservation, e.g. cooling or drying

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydraulic system and a food processing apparatus capable of decreasing energy consumption and reducing a load to an environment. <P>SOLUTION: This hydraulic system includes: a compressor 23 driven by a hydraulic actuator 24; a heat pump circuit 41 where a refrigerant compressed by the compressor 23 is circulated; an expansion valve 21 for reducing the pressure of the refrigerant circulated through the heat pump circuit 41; a high pressure side heat exchanger 22 for discharging the heat of the refrigerant flowing from the compressor 23 to the expansion valve 21; and a low pressure side heat exchanger 20 for applying heat to the refrigerant flowing from the expansion valve 21 to the compressor 23, wherein the low pressure side heat exchanger 20 includes a refrigerant circulating passage where the refrigerant flowing out of the expansion valve 21 in the heat pump circuit 41 is circulated, and a working water circulating passage where working water discharged from hydraulic actuators 12, 14, 24, 29 is circulated through a working water discharge circuit 52, and heat exchange is performed between the refrigerant flowing through the heat pump circuit 41 and the working water flowing through the working water discharge circuit 52. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、加圧作動水が供給されることによって水圧アクチュエータを駆動する水圧システム及び食品加工装置の改良に関するものである。   The present invention relates to an improvement in a hydraulic system and a food processing apparatus that drive a hydraulic actuator when pressurized hydraulic water is supplied.

特許文献1に開示された食品加工装置は、駆動部を水を作動流体とする水圧シリンダや水圧モータ等の水圧アクチュエータで構成し、水圧アクチュエータの駆動制御を水圧制御弁を用いて行うようになっている。   The food processing apparatus disclosed in Patent Document 1 includes a hydraulic actuator such as a hydraulic cylinder or a hydraulic motor that uses water as a working fluid, and the hydraulic actuator is controlled using a hydraulic control valve. ing.

この場合、高温洗浄水を水圧アクチュエータに噴射して洗浄することが可能となり、安全衛生面での性能を高められる。   In this case, cleaning can be performed by spraying high-temperature cleaning water onto the hydraulic actuator, and the safety and health performance can be improved.

特許文献2には、ヒートポンプを用いて温水を加熱する給湯装置が開示されている。このヒートポンプは空気から吸収した熱を温水に移送するようになっている。
特開2002−238444号公報 特開2006−105527号公報
Patent Document 2 discloses a water heater that heats hot water using a heat pump. This heat pump is adapted to transfer heat absorbed from air to hot water.
JP 2002-238444 A JP 2006-105527 A

しかしながら、従来の水圧システムを循環する作動水は、水圧アクチュエータ及び水圧制御弁にて行われる負荷動作によって温度上昇するため、作動水を冷却して水圧アクチュエータ及び水圧制御弁が過熱されないようにする必要があった。   However, since the temperature of the working water circulating in the conventional water pressure system rises due to the load operation performed by the water pressure actuator and the water pressure control valve, it is necessary to cool the water to prevent the water pressure actuator and the water pressure control valve from being overheated. was there.

一方、従来のヒートポンプを用いる給湯装置は、空気から熱を吸収する構成のため、水圧システムを循環する作動水の熱エネルギを回収することができず、作動水の熱が無駄になるという問題点があった。   On the other hand, a conventional hot water supply device using a heat pump absorbs heat from the air, and therefore cannot recover the heat energy of the working water circulating in the hydraulic system, and the heat of the working water is wasted. was there.

本発明は上記の問題点に鑑みてなされたものであり、消費エネルギを低減し、環境への負荷が低い水圧システム及び食品加工装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide a hydraulic system and a food processing apparatus that reduce energy consumption and have a low environmental load.

本発明は、加圧作動水を水圧アクチュエータに導く作動水供給回路と、水圧アクチュエータから排出される作動水を導く作動水排出回路とを備える水圧駆動装置であって、水圧アクチュエータによって駆動されるコンプレッサと、このコンプレッサによって圧縮される冷媒が循環するヒートポンプ回路と、このヒートポンプ回路を循環する冷媒を減圧する膨張弁と、コンプレッサから膨張弁へと流れる冷媒の熱を放出する高圧側熱交換器と、膨張弁からコンプレッサへと流れる冷媒に熱を与える低圧側熱交換器とを備え、この低圧側熱交換器は、ヒートポンプ回路にて膨張弁から流出する冷媒が循環する冷媒循環通路と、水圧アクチュエータから作動水排出回路を通って排出される作動水が循環する作動水循環通路とを備え、ヒートポンプ回路を流れる冷媒と作動水排出回路を流れる作動水との間で熱交換を行う構成としたことを特徴とする。   The present invention relates to a hydraulic drive device including a hydraulic water supply circuit that guides pressurized hydraulic water to a hydraulic actuator and a hydraulic water discharge circuit that guides hydraulic water discharged from the hydraulic actuator, the compressor being driven by the hydraulic actuator A heat pump circuit through which the refrigerant compressed by the compressor circulates, an expansion valve that decompresses the refrigerant that circulates through the heat pump circuit, and a high-pressure side heat exchanger that releases the heat of the refrigerant flowing from the compressor to the expansion valve, A low-pressure heat exchanger that applies heat to the refrigerant flowing from the expansion valve to the compressor. The low-pressure heat exchanger includes a refrigerant circulation passage through which the refrigerant flowing out of the expansion valve circulates in the heat pump circuit, and a hydraulic actuator. A working water circulation passage through which the working water discharged through the working water discharge circuit circulates. Characterized by being configured to perform heat exchange between the working water flowing through the refrigerant and the operating water discharge circuit flowing.

本発明によると、低圧側熱交換器では、膨張弁によって減圧された冷媒が冷媒循環通路を流れる過程で液体から気体へと気化し、このとき冷媒に吸収される熱が作動水循環通路を流れる作動水から奪われ、冷媒を加熱することと、作動水を冷却することとが行われる。これにより、水圧アクチュエータ及び水圧制御弁にて行われる負荷動作によって温度上昇した作動水の熱を有効に利用することが可能となる。   According to the present invention, in the low pressure side heat exchanger, the refrigerant depressurized by the expansion valve is vaporized from liquid to gas in the process of flowing through the refrigerant circulation passage, and at this time, the heat absorbed by the refrigerant flows through the working water circulation passage. Deprived of water, heating the refrigerant and cooling the working water. This makes it possible to effectively use the heat of the working water whose temperature has increased due to the load operation performed by the water pressure actuator and the water pressure control valve.

ヒートポンプ回路のコンプレッサを水圧アクチュエータによって駆動し、水圧アクチュエータの負荷動作により温度上昇した作動水の熱エネルギによってヒートポンプ回路の冷媒を加熱するため、冷媒を加熱するのに必要な消費エネルギを低減し、環境への負荷が低い水圧システムを提供することができる。同時にヒートポンプシステムで有効回収された熱よって加熱した温水を用いて食品加工装置の洗浄、消毒、殺菌を行うことが可能となる。   The compressor of the heat pump circuit is driven by a water pressure actuator, and the heat energy of the heat pump circuit is heated by the heat energy of the working water whose temperature has been increased by the load operation of the water pressure actuator. It is possible to provide a hydraulic system with a low load on the vehicle. At the same time, it becomes possible to clean, disinfect, and sterilize the food processing apparatus using hot water heated by heat effectively recovered by the heat pump system.

以下、本発明の実施の形態を添付図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

図1は、例えば食肉等の加工を自動的に行う食品加工装置30の構成図である。   FIG. 1 is a configuration diagram of a food processing apparatus 30 that automatically processes, for example, meat.

食品加工装置30は、食肉等のワークを水平移動するコンベア31と、ワークを昇降するテーブル32と、コンベア31やテーブル32によって運ばれるワークに切断等の加工を行う加工機(図示せず)とを備え、コンベア31やテーブル32の作動はコントローラ50によって制御され、ワークの加工が自動的に行われる(特許文献1参照)。   The food processing apparatus 30 includes a conveyor 31 that horizontally moves a workpiece such as meat, a table 32 that raises and lowers the workpiece, and a processing machine (not shown) that performs processing such as cutting on the conveyor 31 and the workpiece carried by the table 32. The operation of the conveyor 31 and the table 32 is controlled by the controller 50, and the workpiece is automatically processed (see Patent Document 1).

なお、食品加工装置30が行う負荷動作は、上記したワークの水平移動、上昇、下降に限らず、例えば、ワークの回転、保持、洗浄、殺菌等が行われる。   Note that the load operation performed by the food processing apparatus 30 is not limited to the horizontal movement, ascent, and descent of the workpiece, and for example, rotation, holding, cleaning, sterilization, and the like of the workpiece are performed.

コンベア31やテーブル32は水圧アクチュエータによって駆動される。コンベア31を駆動する水圧アクチュエータとして水圧モータ14が設けられる。テーブル32を駆動する水圧アクチュエータとして水圧シリンダ12が設けられる。   The conveyor 31 and the table 32 are driven by a hydraulic actuator. A hydraulic motor 14 is provided as a hydraulic actuator that drives the conveyor 31. A hydraulic cylinder 12 is provided as a hydraulic actuator for driving the table 32.

これらの水圧アクチュエータ12、14に加圧作動水を供給する水圧源として水圧ユニット1が設けられる。   A water pressure unit 1 is provided as a water pressure source for supplying pressurized hydraulic water to these water pressure actuators 12 and 14.

水圧ユニット1は、作動水を貯留する水圧タンク10と、水圧タンク10の作動水を吸い込んで加圧する水圧ポンプ2とを備える。水圧タンク10に給水する手段として、水圧タンク10には電磁弁36を介して給水回路34が接続される。電磁弁36の開閉はコントローラ50によって制御され、水圧タンク10の貯水量が所定値より低下すると電磁弁36が開弁し、給水回路34からの水が水圧タンク10に供給される。   The hydraulic unit 1 includes a hydraulic tank 10 that stores working water, and a hydraulic pump 2 that sucks and pressurizes the working water in the hydraulic tank 10. As means for supplying water to the water pressure tank 10, a water supply circuit 34 is connected to the water pressure tank 10 via an electromagnetic valve 36. The opening and closing of the electromagnetic valve 36 is controlled by the controller 50. When the amount of water stored in the hydraulic tank 10 falls below a predetermined value, the electromagnetic valve 36 is opened, and water from the water supply circuit 34 is supplied to the hydraulic tank 10.

食品加工装置30の動力源として電動モータ3が設けられ、この電動モータ3によって水圧ポンプ2が駆動される。電動モータ3は他の機器とは隔離して設けられ、ワークや加工機を洗浄する温水等にさらされないようにする。   An electric motor 3 is provided as a power source for the food processing apparatus 30, and the hydraulic pump 2 is driven by the electric motor 3. The electric motor 3 is provided separately from other devices so as not to be exposed to warm water or the like for cleaning the workpiece or the processing machine.

なお、食品加工装置30の動力源は、上記電動モータ3に限らず、水圧モータ、空気圧モータ等を用いても良い。   The power source of the food processing apparatus 30 is not limited to the electric motor 3, and a hydraulic motor, a pneumatic motor, or the like may be used.

水圧ユニット1と水圧アクチュエータ12、14との間には作動水供給回路51と作動水排出回路52とが配設される。水圧ポンプ2から吐出される加圧作動水が作動水供給回路51を通って水圧アクチュエータ12、14に供給され、水圧アクチュエータ12、14から排出される作動水が作動水排出回路52を通って水圧タンク10に戻される。作動水供給回路51には電磁弁5、6等が介装され、水圧アクチュエータ12、14に導かれる加圧作動水の流量が調節される。   A working water supply circuit 51 and a working water discharge circuit 52 are disposed between the water pressure unit 1 and the water pressure actuators 12 and 14. Pressurized hydraulic water discharged from the hydraulic pump 2 is supplied to the hydraulic actuators 12 and 14 through the hydraulic water supply circuit 51, and hydraulic water discharged from the hydraulic actuators 12 and 14 passes through the hydraulic water discharge circuit 52 to water pressure Returned to the tank 10. In the working water supply circuit 51, electromagnetic valves 5, 6 and the like are interposed, and the flow rate of the pressurized working water guided to the water pressure actuators 12, 14 is adjusted.

なお、作動水排出回路52は、水圧タンク10に戻す構成に限らず、水圧アクチュエータ12、14から排出される作動水を外部に排出する構成としてもよい。   The working water discharge circuit 52 is not limited to the configuration that returns to the hydraulic tank 10, and the working water discharged from the hydraulic actuators 12 and 14 may be discharged to the outside.

作動水供給回路51と作動水排出回路52とを連通するバイパス回路53が配設され、このバイパス回路53には圧力調整弁7が介装される。この圧力調整弁7は、作動水供給回路51の圧力が所定値を超えて上昇すると開弁し、これにより作動水供給回路51の圧力が所定値に維持される。   A bypass circuit 53 that communicates the working water supply circuit 51 and the working water discharge circuit 52 is disposed, and the pressure regulating valve 7 is interposed in the bypass circuit 53. The pressure regulating valve 7 opens when the pressure of the working water supply circuit 51 rises above a predetermined value, whereby the pressure of the working water supply circuit 51 is maintained at a predetermined value.

ワークや加工機の高温洗浄、高温殺菌を行う手段として、ワークや加工機に温水を噴射するノズル11と、この温水を貯留する貯湯ユニット26と、この貯湯ユニット26の温水を加熱するヒートポンプユニット19とを備える。   As means for performing high-temperature cleaning and high-temperature sterilization of workpieces and processing machines, a nozzle 11 that injects hot water onto the workpieces and processing machines, a hot water storage unit 26 that stores the hot water, and a heat pump unit 19 that heats the hot water of the hot water storage unit 26. With.

貯湯ユニット26は、温水を貯留する貯湯タンク27と、この貯湯タンク27の温水をヒートポンプユニット19との間で循環させる循環ポンプ28とを備える。   The hot water storage unit 26 includes a hot water storage tank 27 that stores hot water, and a circulation pump 28 that circulates the hot water in the hot water storage tank 27 with the heat pump unit 19.

貯湯タンク27に給水する手段として、貯湯タンク27には電磁弁18を介して給水回路34が接続される。電磁弁18の開閉はコントローラ50によって制御され、貯湯タンク27の貯水量が所定値より低下すると電磁弁18が開弁し、給水回路34からの水が貯湯タンク27に供給される。   As a means for supplying water to the hot water storage tank 27, a hot water supply circuit 34 is connected to the hot water storage tank 27 via an electromagnetic valve 18. The opening and closing of the solenoid valve 18 is controlled by the controller 50. When the amount of water stored in the hot water storage tank 27 falls below a predetermined value, the electromagnetic valve 18 is opened, and water from the water supply circuit 34 is supplied to the hot water storage tank 27.

ノズル11には温度調整弁16を介して温水供給回路35と作動水供給回路51とが接続される。温水供給回路35はノズル11に貯湯タンク27からの温水を導く一方、作動水供給回路51はノズル11に水圧ユニット1からの冷水を導く。   A hot water supply circuit 35 and a working water supply circuit 51 are connected to the nozzle 11 via the temperature adjustment valve 16. The hot water supply circuit 35 guides hot water from the hot water storage tank 27 to the nozzle 11, while the working water supply circuit 51 guides cold water from the water pressure unit 1 to the nozzle 11.

温度調整弁16はコントローラ50からの指令に基づいてノズル11に対する温水供給回路35の開度と作動水供給回路51の開度をそれぞれ調整する。温度調整弁16によって温水供給回路35から導かれる温水と作動水供給回路51から導かれる冷水とが混合してノズル11に供給され、ノズル11から所定の温度に調整された温水が噴射される。これにより、ワークや加工機の高温洗浄、高温殺菌が行われる。   The temperature adjustment valve 16 adjusts the opening degree of the hot water supply circuit 35 and the opening degree of the working water supply circuit 51 with respect to the nozzle 11 based on a command from the controller 50. Hot water guided from the hot water supply circuit 35 and cold water guided from the working water supply circuit 51 are mixed by the temperature adjustment valve 16 and supplied to the nozzle 11, and hot water adjusted to a predetermined temperature is injected from the nozzle 11. As a result, high temperature cleaning and high temperature sterilization of the workpiece and the processing machine are performed.

温水供給回路35と給水回路34を結ぶバイパス回路37が配設され、バイパス回路37に温度調整弁17が介装される。温度調整弁17はコントローラ50からの指令に基づいてバイパス回路37の開度を調整する。温度調整弁17によって給水回路34から導かれる冷水が貯湯タンク27から導かれる温水と混合し、ノズル38から所定の温度に調整された温水が供給される。   A bypass circuit 37 connecting the hot water supply circuit 35 and the water supply circuit 34 is provided, and the temperature adjustment valve 17 is interposed in the bypass circuit 37. The temperature adjustment valve 17 adjusts the opening degree of the bypass circuit 37 based on a command from the controller 50. The cold water guided from the water supply circuit 34 by the temperature adjusting valve 17 is mixed with the hot water guided from the hot water storage tank 27, and hot water adjusted to a predetermined temperature is supplied from the nozzle 38.

貯湯タンク27の温水を加熱する手段として、貯湯タンク27とヒートポンプユニット19とを結ぶ加熱回路33が設けられ、この加熱回路33に循環ポンプ28が介装される。循環ポンプ28によって温水が図中矢印で示すように加熱回路33を通って貯湯タンク27とヒートポンプユニット19の間を循環する。   As means for heating the hot water in the hot water storage tank 27, a heating circuit 33 that connects the hot water storage tank 27 and the heat pump unit 19 is provided, and a circulation pump 28 is interposed in the heating circuit 33. The hot water is circulated between the hot water storage tank 27 and the heat pump unit 19 through the heating circuit 33 by the circulation pump 28 as indicated by an arrow in the figure.

循環ポンプ28を駆動する水圧アクチュエータとして水圧モータ29が設けられる。水圧モータ29に水圧ユニット1からの加圧作動水を導く作動水供給回路51の通路には電磁弁15が介装され、この電磁弁15の開閉はコントローラ50によって制御される。これにより、貯湯タンク27に貯留される温水の温度を所定値に保つように循環ポンプ28が作動する。   A hydraulic motor 29 is provided as a hydraulic actuator for driving the circulation pump 28. An electromagnetic valve 15 is interposed in the passage of the hydraulic water supply circuit 51 that guides the pressurized hydraulic water from the hydraulic unit 1 to the hydraulic motor 29, and the opening and closing of the electromagnetic valve 15 is controlled by the controller 50. Thereby, the circulation pump 28 operates so as to keep the temperature of the hot water stored in the hot water storage tank 27 at a predetermined value.

ところで、水圧ユニット1と水圧アクチュエータ12、14、24、29の間で循環する作動水は、電磁弁5、6、15、圧力調整弁7を通る過程で発生する熱によって温度上昇するとともに、水圧アクチュエータ12、14、24、29の作動負荷により発生する熱によって温度上昇する。   Meanwhile, the operating water circulating between the hydraulic unit 1 and the hydraulic actuators 12, 14, 24, 29 rises in temperature due to heat generated in the process of passing through the electromagnetic valves 5, 6, 15 and the pressure regulating valve 7, and The temperature rises due to heat generated by the operating load of the actuators 12, 14, 24, and 29.

このため、従来は、水圧アクチュエータ12、14、24、29から流出して温度上昇した作動水の熱を大気に放熱する熱交換器が設けられ、水圧アクチュエータ12、14、24、29等が過熱されることを防止するようになっていた。   For this reason, conventionally, a heat exchanger that dissipates the heat of the working water that has flowed out of the hydraulic actuators 12, 14, 24, and 29 and increased in temperature to the atmosphere is provided, and the hydraulic actuators 12, 14, 24, and 29 are overheated. It was supposed to be prevented.

本願発明は、水圧アクチュエータ12、14、24、29から流出して温度上昇した作動水の熱を有効に利用するため、水圧アクチュエータ12、14、24、29から排出される作動水の熱を加熱回路33を循環する温水に移送するヒートポンプユニット19を設けるものである。   In the present invention, the heat of the working water discharged from the hydraulic actuators 12, 14, 24, and 29 is heated in order to effectively use the heat of the working water that has flowed out of the hydraulic actuators 12, 14, 24, and 29 and increased in temperature. A heat pump unit 19 for transferring to the hot water circulating through the circuit 33 is provided.

ヒートポンプユニット19は、ヒートポンプ回路41にコンプレッサ23、高圧側熱交換器22、膨張弁21、低圧側熱交換器20が介装される。冷媒がヒートポンプ回路41を循環することにより、低圧側熱交換器20にて吸収した熱を高圧側熱交換器22に移送して放熱する。   In the heat pump unit 19, a compressor 23, a high-pressure side heat exchanger 22, an expansion valve 21, and a low-pressure side heat exchanger 20 are interposed in a heat pump circuit 41. As the refrigerant circulates through the heat pump circuit 41, the heat absorbed by the low-pressure side heat exchanger 20 is transferred to the high-pressure side heat exchanger 22 to dissipate heat.

コンプレッサ23は、冷媒を吸引して圧縮することにより、冷媒の温度を上昇させる働きをする。   The compressor 23 works to raise the temperature of the refrigerant by sucking and compressing the refrigerant.

コンプレッサ23を駆動する水圧アクチュエータとして水圧モータ24が設けられる。水圧モータ24に水圧ユニット1からの加圧作動水を導く作動水供給回路51の通路には電磁弁25が介装され、この電磁弁25の開閉はコントローラ50によって制御される。これにより、貯湯タンク27に貯留される温水の温度を所定値に保つようにコンプレッサ23が作動する。   A hydraulic motor 24 is provided as a hydraulic actuator that drives the compressor 23. An electromagnetic valve 25 is interposed in the passage of the hydraulic water supply circuit 51 that guides pressurized hydraulic water from the hydraulic unit 1 to the hydraulic motor 24, and the opening and closing of the electromagnetic valve 25 is controlled by the controller 50. Thereby, the compressor 23 operates so as to keep the temperature of the hot water stored in the hot water storage tank 27 at a predetermined value.

高圧側熱交換器22は、ヒートポンプ回路41にてコンプレッサ23から吐出される冷媒が循環する冷媒循環通路と、加熱回路33にて循環ポンプ28から吐出される温水が循環する温水循環通路とを備え、ヒートポンプ回路41を循環する冷媒と加熱回路33を循環する温水との間で熱交換が行われる。   The high-pressure side heat exchanger 22 includes a refrigerant circulation passage through which the refrigerant discharged from the compressor 23 circulates in the heat pump circuit 41 and a hot water circulation passage through which the hot water discharged from the circulation pump 28 circulates in the heating circuit 33. The heat exchange is performed between the refrigerant circulating in the heat pump circuit 41 and the hot water circulating in the heating circuit 33.

高圧側熱交換器22にて、コンプレッサ23によって加圧された冷媒が冷媒循環通路を流れる過程で気体から液体へと凝固し、このとき冷媒から発生する熱が温水循環通路を流れる温水に伝えられ、温水の温度が高められる。   In the high pressure side heat exchanger 22, the refrigerant pressurized by the compressor 23 solidifies from gas to liquid in the process of flowing through the refrigerant circulation passage, and at this time, the heat generated from the refrigerant is transmitted to the hot water flowing through the hot water circulation passage. , Warm water temperature is raised.

膨張弁21は、高圧冷媒を減圧し、冷媒の温度を低下させる働きをする。   The expansion valve 21 functions to depressurize the high-pressure refrigerant and lower the temperature of the refrigerant.

低圧側熱交換器20は、ヒートポンプ回路41にて膨張弁21から流出する冷媒が循環する冷媒循環通路と、水圧アクチュエータ12、14、24、29から作動水排出回路52を通って排出される作動水が循環する作動水循環通路とを備え、ヒートポンプ回路41を循環する冷媒と作動水排出回路52を循環する作動水との間で熱交換が行われる。低圧側熱交換器20では、膨張弁21によって減圧された冷媒が冷媒循環通路を流れる過程で液体から気体へと気化し、このとき冷媒に吸収される熱が作動水循環通路を流れる作動水から奪われ、冷媒を加熱することと、作動水を冷却することとが行われる。   The low pressure side heat exchanger 20 is discharged from the refrigerant circulation passage through which the refrigerant flowing out of the expansion valve 21 circulates in the heat pump circuit 41 and the hydraulic water discharge circuit 52 from the water pressure actuators 12, 14, 24, 29. A working water circulation passage through which water circulates is provided, and heat exchange is performed between the refrigerant circulating in the heat pump circuit 41 and the working water circulating in the working water discharge circuit 52. In the low pressure side heat exchanger 20, the refrigerant decompressed by the expansion valve 21 is vaporized from liquid to gas in the process of flowing through the refrigerant circulation passage, and at this time, the heat absorbed by the refrigerant is taken away from the working water flowing through the working water circulation passage. The refrigerant is heated and the working water is cooled.

コントローラ50は、電動モータ3、各電磁弁4〜6、15、切換制御弁13、温度調整弁17、16の作動を制御し、ワークの搬送、加工、ワークや加工の高温洗浄、高温殺菌が自動的に行われる。   The controller 50 controls the operation of the electric motor 3, the electromagnetic valves 4 to 6, 15, the switching control valve 13, and the temperature adjustment valves 17, 16, so Done automatically.

食品加工装置30は、以上のように構成されて、次に作用及び効果について説明する。   The food processing apparatus 30 is comprised as mentioned above, and demonstrates an effect | action and effect next.

水圧ユニット1の作動水は、電磁弁5、6、15、圧力調整弁7を通る過程で発生する熱によって温度上昇するとともに、水圧アクチュエータ12、14、24、29の作動負荷により発生する熱によって温度上昇するが、作動水排出回路52を通って水圧タンク10に戻される過程でヒートポンプユニット19を介して冷却されることにより、その温度が下げられ、水圧アクチュエータ12、14、24、29が過熱されることを抑えられ、ワークの搬送、加工、ワークや加工、ヒートポンプユニット19の作動等が円滑に行われる。   The operating water of the hydraulic unit 1 rises in temperature due to heat generated in the process of passing through the solenoid valves 5, 6, 15 and the pressure regulating valve 7, and is also generated by heat generated by the operating load of the hydraulic actuators 12, 14, 24, 29. Although the temperature rises, the temperature is lowered by cooling through the heat pump unit 19 in the process of returning to the hydraulic tank 10 through the working water discharge circuit 52, and the hydraulic actuators 12, 14, 24, 29 are overheated. Thus, the transfer of the workpiece, the processing, the workpiece and the processing, the operation of the heat pump unit 19 and the like are performed smoothly.

一方、加熱回路33を循環する温水は、ヒートポンプユニット19を介して加熱され、貯湯タンク27に貯留される温水の温度が所定値以上に高められる。ヒートポンプユニット19は、作動水排出回路52を通る作動水の熱エネルギを回収して加熱回路33の温水を加熱するため、温水を加熱するのに空気を熱源として熱エネルギをくみ上げる従来のヒートポンプ給湯装置に比べて消費エネルギを大幅に低減し、環境への負荷が低い水圧システムを提供することができる。   On the other hand, the hot water circulating through the heating circuit 33 is heated via the heat pump unit 19 and the temperature of the hot water stored in the hot water storage tank 27 is increased to a predetermined value or more. The heat pump unit 19 collects the thermal energy of the working water passing through the working water discharge circuit 52 and heats the hot water in the heating circuit 33. Therefore, the conventional heat pump hot water supply device pumps up the thermal energy using air as a heat source to heat the hot water. Compared to the above, it is possible to provide a hydraulic system that significantly reduces energy consumption and has a low environmental impact.

食品加工装置30は、ワークを搬送するコンベア31、テーブル32、ワークの加工機(図示せず)、温水を循環させる貯湯ユニット26、冷媒を循環させるヒートポンプユニット19に設けられる全てのアクチュエータ12、14、24、29を水圧ユニット1から供給される作動水圧によって作動する構成としたため、電動アクチュエータ、空気圧アクチュエータのようにオイルミスト等が発生せず、食品加工装置30に要求される安全衛生面での性能を確保できるとともに、これらのアクチュエータを用いるよりも応答性がよく、高性能化がはかれる。   The food processing apparatus 30 includes all the actuators 12 and 14 provided in a conveyor 31 that conveys workpieces, a table 32, a workpiece processing machine (not shown), a hot water storage unit 26 that circulates hot water, and a heat pump unit 19 that circulates refrigerant. , 24 and 29 are configured to be operated by the hydraulic pressure supplied from the hydraulic unit 1, so that no oil mist or the like is generated unlike an electric actuator or a pneumatic actuator, and safety and hygiene aspects required for the food processing apparatus 30 The performance can be ensured, the response is better than using these actuators, and the performance can be improved.

また、水圧アクチュエータ12、14、24、29を用いることにより、油圧アクチュエータのように油が漏れて周囲環境を汚染することがなく、防油、防火を行う必要がない安全なシステムを提供できる。   Further, by using the hydraulic actuators 12, 14, 24, and 29, it is possible to provide a safe system that does not leak oil and contaminate the surrounding environment unlike the hydraulic actuator, and does not need to be oil-proofed or fire-proofed.

また、水圧アクチュエータ12、14、24、29を用いることにより、空気圧アクチュエータに比べてエネルギロスが少ない、高効率のシステムを提供できる。   Further, by using the hydraulic actuators 12, 14, 24, 29, it is possible to provide a highly efficient system with less energy loss than the pneumatic actuator.

各水圧アクチュエータ12、14、24、29を洗浄するのに、電動アクチュエータ、油圧アクチュエータ、空気圧アクチュエータのように分解作業等を行うことなく、各水圧アクチュエータ12、14、24、29を作動させながら高圧温水で洗浄することが可能となる。これにより、食品加工装置30を連続稼働させて、生産性を高められる。   The water pressure actuators 12, 14, 24, 29 are cleaned while the water pressure actuators 12, 14, 24, 29 are operated without performing disassembly work, such as an electric actuator, a hydraulic actuator, and a pneumatic actuator. It becomes possible to wash with warm water. Thereby, the food processing apparatus 30 can be operated continuously and productivity can be improved.

各水圧アクチュエータ12、14、24、29は、電動アクチュエータ、油圧アクチュエータ、空気圧アクチュエータのように防水、防滴を行う必要がなく、食品加工装置30の構造を簡素化し、小型化がはかれる。   The hydraulic actuators 12, 14, 24, and 29 do not need to be waterproof and drip-proof unlike the electric actuators, hydraulic actuators, and pneumatic actuators, simplifying the structure of the food processing apparatus 30 and reducing the size.

食品加工装置30の駆動系に水圧アクチュエータ12、14、24、29を用いることにより、メンテナンスの技術が統一され、保守、点検が容易に行える。   By using the hydraulic actuators 12, 14, 24, and 29 in the drive system of the food processing apparatus 30, the maintenance technology is unified, and maintenance and inspection can be performed easily.

本実施の形態では、加圧作動水を水圧アクチュエータ12、14、24、29に導く作動水供給回路51と、水圧アクチュエータ12、14、24、29から排出される作動水を導く作動水排出回路52とを備える水圧駆動装置であって、水圧アクチュエータ24によって駆動されるコンプレッサ23と、このコンプレッサ23によって圧縮される冷媒が循環するヒートポンプ回路41と、このヒートポンプ回路41を循環する冷媒を減圧する膨張弁21と、コンプレッサ23から膨張弁21へと流れる冷媒の熱を放出する高圧側熱交換器22と、膨張弁21からコンプレッサ23へと流れる冷媒に熱を与える低圧側熱交換器20とを備え、この低圧側熱交換器20は、ヒートポンプ回路41にて膨張弁21から流出する冷媒が循環する冷媒循環通路と、水圧アクチュエータ12、14、24、29から作動水排出回路52を通って排出される作動水が循環する作動水循環通路とを備え、ヒートポンプ回路41を流れる冷媒と作動水排出回路52を流れる作動水との間で熱交換を行う構成とした。   In the present embodiment, a working water supply circuit 51 that guides pressurized working water to the hydraulic actuators 12, 14, 24, and 29, and a working water discharge circuit that guides working water discharged from the hydraulic actuators 12, 14, 24, and 29. 52, a compressor 23 driven by a hydraulic actuator 24, a heat pump circuit 41 in which a refrigerant compressed by the compressor 23 circulates, and an expansion for depressurizing the refrigerant circulated in the heat pump circuit 41. A valve 21, a high-pressure side heat exchanger 22 that releases heat of refrigerant flowing from the compressor 23 to the expansion valve 21, and a low-pressure side heat exchanger 20 that supplies heat to the refrigerant flowing from the expansion valve 21 to the compressor 23. The low-pressure heat exchanger 20 is a refrigerant in which the refrigerant flowing out of the expansion valve 21 circulates in the heat pump circuit 41. And a working water circulation passage through which the working water discharged from the hydraulic actuators 12, 14, 24, and 29 passes through the working water discharge circuit 52, and the refrigerant flowing through the heat pump circuit 41 and the working water discharge circuit 52 are provided. It was set as the structure which heat-exchanges with the flowing working water.

上記構成に基づき、低圧側熱交換器20では、膨張弁21によって減圧された冷媒が冷媒循環通路を流れる過程で液体から気体へと気化し、このとき冷媒に吸収される熱が作動水循環通路を流れる作動水から奪われ、冷媒を加熱することと、作動水を冷却することとが行われる。これにより、水圧アクチュエータ12、14、24、29の負荷動作により温度上昇した作動水の熱を有効に利用することが可能となる。   Based on the above configuration, in the low pressure side heat exchanger 20, the refrigerant decompressed by the expansion valve 21 is vaporized from liquid to gas in the process of flowing through the refrigerant circulation passage, and at this time, the heat absorbed by the refrigerant passes through the working water circulation passage. Deprived from the flowing working water, heating the refrigerant and cooling the working water are performed. This makes it possible to effectively use the heat of the working water whose temperature has increased due to the load operation of the hydraulic actuators 12, 14, 24, and 29.

本実施の形態では、ヒートポンプ回路41のコンプレッサ23を水圧アクチュエータ24によって駆動し、水圧アクチュエータ24の負荷動作により温度上昇した作動水の熱エネルギによってヒートポンプ回路41の冷媒を加熱するため、冷媒を加熱するのに必要な消費エネルギを低減し、かつ、作動水を冷却するのに必要な消費エネルギを低減し、環境への負荷が低い水圧システムを提供することができる。   In the present embodiment, the compressor 23 of the heat pump circuit 41 is driven by the hydraulic actuator 24, and the refrigerant of the heat pump circuit 41 is heated by the heat energy of the working water whose temperature has increased due to the load operation of the hydraulic actuator 24, so the refrigerant is heated. Therefore, it is possible to provide a hydraulic system that reduces the energy consumption required for the operation, reduces the energy consumption required for cooling the working water, and has a low environmental load.

本実施の形態では、水圧アクチュエータ29によって駆動される循環ポンプ28と、この循環ポンプ28によって温水が循環する加熱回路33とを備え、高圧側熱交換器22は、ヒートポンプ回路41にてコンプレッサ23から吐出される冷媒が循環する冷媒循環通路と、加熱回路33の温水が循環する温水循環通路とを備え、ヒートポンプ回路41を循環する冷媒と加熱回路33を循環する温水との間で熱交換が行われる構成とした。   In the present embodiment, a circulation pump 28 driven by a hydraulic actuator 29 and a heating circuit 33 through which hot water is circulated by the circulation pump 28 are provided. The high-pressure heat exchanger 22 is connected to the compressor 23 by a heat pump circuit 41. A refrigerant circulation passage through which the discharged refrigerant circulates and a hot water circulation passage through which the hot water of the heating circuit 33 circulates, and heat exchange is performed between the refrigerant that circulates through the heat pump circuit 41 and the hot water that circulates through the heating circuit 33. It was set as the structure.

上記構成に基づき、高圧側熱交換器22では、コンプレッサ23によって加圧された冷媒が冷媒循環通路を流れる過程で気体から液体へと凝固し、このとき冷媒から発生する熱が温水循環通路を流れる温水に伝えられ、温水の温度が高められる。   Based on the above configuration, in the high pressure side heat exchanger 22, the refrigerant pressurized by the compressor 23 solidifies from gas to liquid in the process of flowing through the refrigerant circulation passage, and at this time, the heat generated from the refrigerant flows through the hot water circulation passage. It is transmitted to warm water and the temperature of warm water is raised.

本実施の形態では、加熱回路33の循環ポンプ28を水圧アクチュエータ29によって駆動し、水圧アクチュエータ29の負荷動作により温度上昇した作動水の熱エネルギを回収して加熱回路33の温水を加熱するため、この温水を加熱するのに必要な消費エネルギを低減し、環境への負荷が低い水圧システムを提供することができる。   In the present embodiment, the circulation pump 28 of the heating circuit 33 is driven by the hydraulic actuator 29 to recover the thermal energy of the working water whose temperature has been increased by the load operation of the hydraulic actuator 29 to heat the hot water of the heating circuit 33. It is possible to provide a water pressure system that reduces energy consumption necessary for heating the hot water and has a low environmental load.

本実施の形態では、温水を噴射するノズル11と、この温水を貯留する貯湯ユニット26と、この貯湯ユニット26に貯留される温水をノズル11に供給する温水供給回路35と備え、貯湯ユニット26に加熱回路33を接続し、ヒートポンプ回路41を循環する冷媒と加熱回路33を循環する貯湯ユニット26の温水との間で熱交換が行われる構成とした。   In the present embodiment, the nozzle 11 for injecting hot water, the hot water storage unit 26 for storing the hot water, and the hot water supply circuit 35 for supplying the hot water stored in the hot water storage unit 26 to the nozzle 11 are provided. The heating circuit 33 is connected, and heat exchange is performed between the refrigerant circulating in the heat pump circuit 41 and the hot water of the hot water storage unit 26 circulating in the heating circuit 33.

上記構成に基づき、水圧アクチュエータ12、14、24、29の負荷動作により温度上昇した作動水の熱エネルギを回収して加熱回路33の温水を加熱するため、ノズル11から噴射される温水を加熱するに必要な消費エネルギを低減し、環境への負荷が低い水圧システムを提供することができる。   Based on the above configuration, the hot water sprayed from the nozzle 11 is heated in order to recover the thermal energy of the working water whose temperature has been raised by the load operation of the hydraulic actuators 12, 14, 24, 29 and to heat the hot water in the heating circuit 33. Therefore, it is possible to provide a hydraulic system that reduces energy consumption required for the environment and has a low environmental load.

本実施の形態では、ノズル11に対して温水供給回路35と作動水供給回路51とを接続する温度調整弁16を備え、この温度調整弁16によって温水供給回路35から導かれる温水と作動水供給回路51から導かれる冷水とが混合してノズル11に供給される構成とした。   In the present embodiment, the temperature adjustment valve 16 that connects the hot water supply circuit 35 and the working water supply circuit 51 to the nozzle 11 is provided, and the hot water and the working water supplied from the hot water supply circuit 35 by the temperature adjustment valve 16 are provided. The configuration is such that cold water guided from the circuit 51 is mixed and supplied to the nozzle 11.

上記構成に基づき、ノズル11から所定の温度に調整された温水が噴射される。これにより、ワークや加工機の高温洗浄、高温殺菌が行われる。   Based on the above configuration, hot water adjusted to a predetermined temperature is ejected from the nozzle 11. As a result, high temperature cleaning and high temperature sterilization of the workpiece and the processing machine are performed.

本発明は上記の実施の形態に限定されずに、その技術的な思想の範囲内において種々の変更がなしうることは明白である。   The present invention is not limited to the above-described embodiment, and it is obvious that various modifications can be made within the scope of the technical idea.

本発明の水圧システムは、食品加工装置に限らず、洗浄、殺菌等、安全、衛生、クリーンが要求される医療、医業、化粧品等に関連する他の装置、設備等に利用できる。   The water pressure system of the present invention can be used not only for food processing apparatuses but also for other apparatuses and facilities related to medical care, medical work, cosmetics, etc. that require safety, hygiene, and cleanliness, such as washing and sterilization.

本発明の実施の形態を示す食品加工装置のシステム図。The system diagram of the food processing apparatus which shows embodiment of this invention.

符号の説明Explanation of symbols

1 水圧ユニット
2 水圧ポンプ
11 ノズル
12、14、24、29 水圧アクチュエータ
16 温度調整弁
20 低圧側熱交換器
21 膨張弁
22 高圧側熱交換器
23 コンプレッサ
28 循環ポンプ
30 食品加工装置
33 加熱回路
41 ヒートポンプ回路
52 作動水排出回路
DESCRIPTION OF SYMBOLS 1 Water pressure unit 2 Water pressure pump 11 Nozzle 12, 14, 24, 29 Water pressure actuator 16 Temperature control valve 20 Low pressure side heat exchanger 21 Expansion valve 22 High pressure side heat exchanger 23 Compressor 28 Circulation pump 30 Food processing apparatus 33 Heating circuit 41 Heat pump Circuit 52 Hydraulic water discharge circuit

Claims (5)

加圧作動水を水圧アクチュエータに導く作動水供給回路と、
前記水圧アクチュエータから排出される作動水を導く作動水排出回路とを備える水圧駆動装置であって、
前記水圧アクチュエータによって駆動されるコンプレッサと、
このコンプレッサによって圧縮される冷媒が循環するヒートポンプ回路と、
このヒートポンプ回路を循環する冷媒を減圧する膨張弁と、
前記コンプレッサから前記膨張弁へと流れる冷媒の熱を放出する高圧側熱交換器と、
前記膨張弁から前記コンプレッサへと流れる冷媒に熱を与える低圧側熱交換器とを備え、
この低圧側熱交換器は、
前記ヒートポンプ回路にて前記膨張弁から流出する冷媒が循環する冷媒循環通路と、
前記水圧アクチュエータから前記作動水排出回路を通って排出される作動水が循環する作動水循環通路とを備え、
前記ヒートポンプ回路を流れる冷媒と前記作動水排出回路を流れる作動水との間で熱交換を行う構成としたことを特徴とする水圧システム。
A working water supply circuit for guiding pressurized working water to a hydraulic actuator;
A hydraulic drive device comprising a hydraulic water discharge circuit for guiding hydraulic water discharged from the hydraulic actuator,
A compressor driven by the hydraulic actuator;
A heat pump circuit in which the refrigerant compressed by the compressor circulates;
An expansion valve for decompressing the refrigerant circulating in the heat pump circuit;
A high-pressure side heat exchanger that releases heat of refrigerant flowing from the compressor to the expansion valve;
A low pressure side heat exchanger that applies heat to the refrigerant flowing from the expansion valve to the compressor,
This low-pressure side heat exchanger
A refrigerant circulation passage through which refrigerant flowing out of the expansion valve circulates in the heat pump circuit;
A working water circulation passage through which the working water discharged from the hydraulic actuator through the working water discharge circuit circulates,
A hydraulic system characterized in that heat exchange is performed between the refrigerant flowing through the heat pump circuit and the working water flowing through the working water discharge circuit.
前記水圧アクチュエータによって駆動される循環ポンプと、
この循環ポンプによって温水が循環する加熱回路とを備え、
前記高圧側熱交換器は、
前記ヒートポンプ回路にて前記コンプレッサから吐出される冷媒が循環する冷媒循環通路と、
前記加熱回路の温水が循環する温水循環通路とを備え、
前記ヒートポンプ回路を循環する冷媒と前記加熱回路を循環する温水との間で熱交換が行われる構成としたことを特徴とする請求項1に記載の水圧システム。
A circulating pump driven by the hydraulic actuator;
With a heating circuit through which hot water circulates by this circulation pump,
The high-pressure side heat exchanger is
A refrigerant circulation passage through which refrigerant discharged from the compressor circulates in the heat pump circuit;
A hot water circulation passage through which hot water of the heating circuit circulates,
The water pressure system according to claim 1, wherein heat exchange is performed between the refrigerant circulating in the heat pump circuit and the hot water circulating in the heating circuit.
温水を噴射するノズルと、
この温水を貯留する貯湯ユニットと、
この貯湯ユニットに貯留される温水を前記ノズルに供給する温水供給回路とを備え、
この貯湯ユニットに前記加熱回路を接続し、
前記ヒートポンプ回路を循環する冷媒と前記加熱回路を循環する貯湯ユニットの温水との間で熱交換が行われる構成としたことを特徴とする請求項2に記載の水圧システム。
A nozzle for injecting hot water;
A hot water storage unit for storing this hot water,
A hot water supply circuit for supplying hot water stored in the hot water storage unit to the nozzle,
Connect the heating circuit to this hot water storage unit,
The water pressure system according to claim 2, wherein heat exchange is performed between the refrigerant circulating in the heat pump circuit and the hot water of the hot water storage unit circulating in the heating circuit.
前記ノズルに対して前記温水供給回路と前記作動水供給回路とを接続する温度調整弁を備え、
この温度調整弁によって前記温水供給回路から導かれる温水と前記作動水供給回路から導かれる冷水とが混合して前記ノズルに供給される構成としたことを特徴とする請求項3に記載の水圧システム。
A temperature adjustment valve for connecting the hot water supply circuit and the working water supply circuit to the nozzle;
The water pressure system according to claim 3, wherein hot water guided from the hot water supply circuit and cold water guided from the working water supply circuit are mixed and supplied to the nozzle by the temperature control valve. .
請求項1から4のいずれか一つに記載の水圧システムを備えることを特徴とする食品加工装置。   A food processing apparatus comprising the hydraulic system according to any one of claims 1 to 4.
JP2007308880A 2007-11-29 2007-11-29 Water pressure system and food processing equipment Active JP4976994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007308880A JP4976994B2 (en) 2007-11-29 2007-11-29 Water pressure system and food processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007308880A JP4976994B2 (en) 2007-11-29 2007-11-29 Water pressure system and food processing equipment

Publications (2)

Publication Number Publication Date
JP2009133522A true JP2009133522A (en) 2009-06-18
JP4976994B2 JP4976994B2 (en) 2012-07-18

Family

ID=40865571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007308880A Active JP4976994B2 (en) 2007-11-29 2007-11-29 Water pressure system and food processing equipment

Country Status (1)

Country Link
JP (1) JP4976994B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191910A (en) * 2011-03-17 2012-10-11 Tokyo Electric Power Co Inc:The Sterilization system
JP2012200718A (en) * 2011-03-28 2012-10-22 Kyb Co Ltd Hydraulic pressure system and food processing apparatus
CN111023251A (en) * 2019-12-18 2020-04-17 宁波奥克斯电气股份有限公司 Multi-connected system for refrigerating, heating, domestic hot water and heat preservation of food and control method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182950A (en) * 1984-03-02 1985-09-18 三菱電機株式会社 Sterilization apparatus
JPS60184333A (en) * 1984-03-02 1985-09-19 三菱電機株式会社 Nutritive solution culture apparatus
JP2001002371A (en) * 1999-06-25 2001-01-09 Kobe Steel Ltd Actuator drive device for construction machine
JP2002238444A (en) * 2001-02-14 2002-08-27 Ebara Corp Automatically bone-removing treatment system for upper half chicken meat carcass
JP2003184768A (en) * 2001-12-12 2003-07-03 Hitachi Ltd Water jet type screw compressor
JP2004350588A (en) * 2003-05-29 2004-12-16 Mayekawa Mfg Co Ltd Meat producing system equipped with hydraulically driven device
JP2006105527A (en) * 2004-10-07 2006-04-20 Matsushita Electric Ind Co Ltd Heat pump device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182950A (en) * 1984-03-02 1985-09-18 三菱電機株式会社 Sterilization apparatus
JPS60184333A (en) * 1984-03-02 1985-09-19 三菱電機株式会社 Nutritive solution culture apparatus
JP2001002371A (en) * 1999-06-25 2001-01-09 Kobe Steel Ltd Actuator drive device for construction machine
JP2002238444A (en) * 2001-02-14 2002-08-27 Ebara Corp Automatically bone-removing treatment system for upper half chicken meat carcass
JP2003184768A (en) * 2001-12-12 2003-07-03 Hitachi Ltd Water jet type screw compressor
JP2004350588A (en) * 2003-05-29 2004-12-16 Mayekawa Mfg Co Ltd Meat producing system equipped with hydraulically driven device
JP2006105527A (en) * 2004-10-07 2006-04-20 Matsushita Electric Ind Co Ltd Heat pump device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191910A (en) * 2011-03-17 2012-10-11 Tokyo Electric Power Co Inc:The Sterilization system
JP2012200718A (en) * 2011-03-28 2012-10-22 Kyb Co Ltd Hydraulic pressure system and food processing apparatus
CN111023251A (en) * 2019-12-18 2020-04-17 宁波奥克斯电气股份有限公司 Multi-connected system for refrigerating, heating, domestic hot water and heat preservation of food and control method thereof

Also Published As

Publication number Publication date
JP4976994B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP2019076999A (en) Cutting fluid supply device of machine tool
JP4976994B2 (en) Water pressure system and food processing equipment
JP5756072B2 (en) Vacuum cleaning device
JP4891690B2 (en) Processing water temperature controller
US20090229793A1 (en) Cooling device for a working fluid
JP6513007B2 (en) Method for sterilizing beverage supply device, and beverage supply device
JP2011143493A (en) Working machine equipment
US20170022579A1 (en) Cooling device and multi-chamber heat treatment device
JPWO2017163732A1 (en) Cooling device and heat treatment device
JP2011200468A (en) Food machine
JP6229887B2 (en) Sterilizer
JP5190670B2 (en) Cooling machine sterilization method
JP6039883B2 (en) Water pressure system and food processing equipment
JP6283926B2 (en) Sterilizer
JP2011043275A (en) Vacuum dryer
WO2017119266A1 (en) Beverage supply device
JP2009017893A (en) Cooling system for thermal sterilization device
JP5826617B2 (en) Heat sterilizer
JP2015130824A (en) Sterilizing apparatus
JP5945349B2 (en) Vacuum cleaning device
JP3061067U (en) Heat exchange equipment
JP2004350588A (en) Meat producing system equipped with hydraulically driven device
JP4055677B2 (en) Food machinery
CN112720040B (en) Cooling device and cooling control method
JP2014073454A (en) Vacuum washing device and method for operation of vacuum washing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120413

R151 Written notification of patent or utility model registration

Ref document number: 4976994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350