JP7282561B2 - LIQUID-COOLED GAS COMPRESSOR AND LIQUID SUPPLY METHOD THEREOF - Google Patents

LIQUID-COOLED GAS COMPRESSOR AND LIQUID SUPPLY METHOD THEREOF Download PDF

Info

Publication number
JP7282561B2
JP7282561B2 JP2019060767A JP2019060767A JP7282561B2 JP 7282561 B2 JP7282561 B2 JP 7282561B2 JP 2019060767 A JP2019060767 A JP 2019060767A JP 2019060767 A JP2019060767 A JP 2019060767A JP 7282561 B2 JP7282561 B2 JP 7282561B2
Authority
JP
Japan
Prior art keywords
liquid
gas
temperature
compressor
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019060767A
Other languages
Japanese (ja)
Other versions
JP2020159303A (en
Inventor
雄太 梶江
正彦 高野
茂幸 頼金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2019060767A priority Critical patent/JP7282561B2/en
Publication of JP2020159303A publication Critical patent/JP2020159303A/en
Application granted granted Critical
Publication of JP7282561B2 publication Critical patent/JP7282561B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は液冷式ガス圧縮機に関し、その給液方法に関する。 The present invention relates to a liquid-cooled gas compressor, and to a liquid supply method thereof.

空気等の気体を吸込み、容積型の圧縮機構によって圧縮空気等の高圧気体を吐き出すガス圧縮機では、圧縮機構の圧縮空間に油などの液体を給液する液冷式ガス圧縮機が知られている。 Among gas compressors that suck gas such as air and discharge high-pressure gas such as compressed air using a positive displacement compression mechanism, liquid-cooled gas compressors that supply liquid such as oil to the compression space of the compression mechanism are known. there is

給液する目的は、圧縮機構の潤滑、圧縮機構同士の気体漏れに対するシール、そして、圧縮によって温度が上昇する気体の冷却である。従来、圧縮過程中の圧縮気体よりも温度が低い液体を圧縮機本体へ供給することで、圧縮気体を冷却し高効率化を図ってきた。 The purpose of the liquid supply is to lubricate the compression mechanism, seal against gas leakage between the compression mechanisms, and cool the gas whose temperature rises due to compression. Conventionally, by supplying a liquid having a lower temperature than the compressed gas during the compression process to the main body of the compressor, the compressed gas has been cooled and the efficiency has been improved.

本技術分野の背景技術として、国際公開第2016/117037号(特許文献1)がある。特許文献1は、圧縮機に吸込まれる冷媒ガスの過熱度を検出し、過熱度に基づいて油温度調整手段を制御する制御装置を備え、高過熱度運転時には、定常運転時よりも低い温度の油がスクリュー圧縮機に供給されるように油温度調整手段を制御する。これにより、吸込み過熱度が高い状態でのスクリューロータの膨張を抑制し性能の向上を図っている。 As a background art of this technical field, there is International Publication No. 2016/117037 (Patent Document 1). Patent Document 1 detects the degree of superheat of refrigerant gas sucked into a compressor, and includes a control device that controls oil temperature adjustment means based on the degree of superheat. of oil is supplied to the screw compressor. As a result, the expansion of the screw rotor is suppressed when the suction superheat is high, and the performance is improved.

国際公開第2016/117037号WO2016/117037

特許文献1では、油冷式ガス圧縮機において、圧縮途中の作動室へ圧縮過程中の圧縮気体よりも温度が低い油を給油することにより圧縮気体を冷却し高効率化を図っている。この給油方法では、圧縮機本体に給油してから吐出されるまでの時間が限られ、圧縮気体と油との熱交換時間に応じた冷却効果に限度がある。また、圧縮途中で高圧側から低圧側に漏れてくる圧縮気体によって吸込み気体が加熱され膨張するため、吸込み気体量が減少するという課題がある。 In Patent Document 1, in an oil-cooled gas compressor, the compressed gas is cooled by supplying oil having a temperature lower than that of the compressed gas during the compression process to a working chamber during compression, thereby improving the efficiency. In this oil supply method, the time from when oil is supplied to the compressor body to when the oil is discharged is limited, and there is a limit to the cooling effect according to the heat exchange time between the compressed gas and the oil. In addition, the intake gas is heated and expanded by the compressed gas leaking from the high pressure side to the low pressure side during compression, so there is a problem that the amount of the intake gas is reduced.

上記課題を解決するため、本発明は、その一例を挙げるならば、圧縮機本体により吸入された吸込み気体を圧縮し、圧縮された気体を液体により冷却する液冷式ガス圧縮機の給液方法であって、圧縮機本体から吐出された気体を圧縮気体と冷却液に分離し、分離した後の液体を冷却し、冷却した液体の一部を圧縮機本体の圧縮過程中の圧縮気体に給液するとともに、冷却した液体の一部を吸込み気体の温度以下とし、吸込み気体の温度以下とした液体を圧縮機本体により吸入される吸込み空間へ供給する。 In order to solve the above-mentioned problems, the present invention provides, for example, a liquid-supplying method for a liquid-cooled gas compressor that compresses suction gas sucked by a compressor body and cools the compressed gas with a liquid. The gas discharged from the compressor body is separated into compressed gas and cooling liquid, the separated liquid is cooled, and part of the cooled liquid is supplied to the compressed gas during the compression process of the compressor body. A part of the cooled liquid is cooled to a temperature equal to or lower than the intake gas, and the liquid whose temperature is equal to or lower than the intake gas is supplied to the intake space sucked by the compressor main body.

本発明によれば、従来よりも圧縮気体と冷却液との熱交換時間を長くし、更なる冷却効果の改善が見込め、性能向上を図ることができる。また、圧縮機内の漏れによって加熱される吸込み空間の気体の温度を低下させ気体密度を向上させることで吸込み気体量が増加し、性能を向上させることが可能である。 According to the present invention, the heat exchange time between the compressed gas and the cooling liquid can be made longer than before, further improvement of the cooling effect can be expected, and performance can be improved. In addition, by lowering the temperature of the gas in the suction space heated by the leak in the compressor and improving the gas density, the amount of suction gas increases, and the performance can be improved.

実施例1における油冷式ガス圧縮機の概略構成図である。1 is a schematic configuration diagram of an oil-cooled gas compressor in Example 1. FIG. 実施例1における吸込み性能向上効果を説明する図である。FIG. 5 is a diagram for explaining the suction performance improvement effect in Example 1; 実施例2における油冷式ガス圧縮機の概略構成図である。2 is a schematic configuration diagram of an oil-cooled gas compressor in Example 2. FIG. 実施例3における油冷式ガス圧縮機の概略構成図である。FIG. 11 is a schematic configuration diagram of an oil-cooled gas compressor in Example 3; 実施例4における油冷式ガス圧縮機の概略構成図である。FIG. 11 is a schematic configuration diagram of an oil-cooled gas compressor in Example 4; 従来の油冷式ガス圧縮機の概略構成図である。1 is a schematic configuration diagram of a conventional oil-cooled gas compressor; FIG.

以下、本発明の実施例について図面を用いて説明する。なお、以降の実施例では、冷却液として油を採用した油冷式のガス圧縮機を例として説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, an oil-cooled gas compressor using oil as a coolant will be described as an example.

まず、本実施例の前提となる、従来の油冷式ガス圧縮機について、図6を用いて説明する。図6において、圧縮機本体1に吸入された気体は、圧縮過程において圧力が上昇すると共に温度が上昇するため、油により冷却を行う。従来の油冷式ガス圧縮機では、圧縮気体と冷却油が混合された気体を分離器2によって分離し、油は熱交換器3により圧縮過程中の圧縮気体よりも低温に冷却し、再度圧縮過程中に給油することで圧縮気体の冷却を図る構造となっている。すなわち、熱交換器において冷却された油を圧縮機本体の圧縮過程中の圧縮気体に給油する油供給経路を有する。 First, a conventional oil-cooled gas compressor, which is the premise of this embodiment, will be described with reference to FIG. In FIG. 6, the gas sucked into the compressor main body 1 is cooled by oil because the pressure rises and the temperature rises during the compression process. In a conventional oil-cooled gas compressor, a gas mixture of compressed gas and cooling oil is separated by a separator 2, and the oil is cooled by a heat exchanger 3 to a lower temperature than the compressed gas during the compression process, and then compressed again. It is designed to cool the compressed gas by supplying oil during the process. That is, it has an oil supply path for supplying oil cooled in the heat exchanger to the compressed gas during the compression process of the compressor body.

次に、本実施例における油冷式ガス圧縮機について図1を用いて説明する。図1において、本実施例が従来と異なる点は、従来が熱交換器3において冷却された油を圧縮過程中に供給していたのに対し、一部の油を更に油冷却器4において冷却し、吸込み気体温度よりも低温として吸込み空間へ供給する点である。すなわち、熱交換器において冷却された油の一部を圧縮機本体の圧縮過程中の圧縮気体に給油する第1の油供給経路(給液経路)と、熱交換器において冷却された油の一部を吸込み気体の温度以下に冷却する油冷却器と、油冷却器で冷却された油を圧縮機本体により吸入される吸込み空間へ供給する第2の油供給経路(給液経路)を有する点である。なお、吸込み空間への供給は、例えば噴霧により行う。また、上記の各構成処理部は、それらの一部又は全部を、図示しない制御装置が制御する。 Next, an oil-cooled gas compressor according to this embodiment will be described with reference to FIG. In FIG. 1, the difference between this embodiment and the conventional one is that while the conventional system supplies the oil cooled in the heat exchanger 3 during the compression process, some of the oil is further cooled in the oil cooler 4. and is supplied to the suction space at a lower temperature than the suction gas temperature. That is, a first oil supply path (liquid supply path) for supplying part of the oil cooled in the heat exchanger to the compressed gas during the compression process of the compressor main body, and part of the oil cooled in the heat exchanger. and a second oil supply path (liquid supply path) that supplies the oil cooled by the oil cooler to the suction space where the compressor body sucks the oil. is. The supply to the suction space is performed by spraying, for example. A control device (not shown) controls a part or all of the constituent processing units described above.

本実施例の特徴を以下に2点記載する。1点目は、油を吸込み空間へ供給することにより従来の給油方法と比較し、より長い時間圧縮気体と油との熱交換ができる点である。熱交換時間を長くできるほど圧縮気体をより冷却できるため、性能の向上につながる。2点目は、吸込み気体温度よりも低温の油を供給することにより、吸込み空間室内の温度を従来よりも低温にできる点である。これにより、吸込み気体が収縮し気体密度が向上するため、吸込み性能の向上を図ることが可能である。 Two features of this embodiment are described below. The first point is that by supplying oil to the suction space, heat exchange between the compressed gas and the oil can be performed for a longer period of time than in the conventional oil supply method. The longer the heat exchange time, the more the compressed gas can be cooled, leading to improved performance. The second point is that the temperature in the suction space chamber can be made lower than before by supplying oil having a temperature lower than the temperature of the suction gas. As a result, the sucked gas contracts and the gas density improves, so that the suction performance can be improved.

本実施例によって得られる吸込み性能向上効果について以下記載する。例として、圧縮気体は空気として、吐出し空気量10m/minの油冷式ガス圧縮機において、総油量50L/minの内10L/minの油を吸込み気体温度20℃よりも低温とし吸込み空間へ供給した場合を考える。効果を試算する上で、油が吸込み空間内に一様に拡散し熱交換を行うという仮定を設ける。 The suction performance improvement effect obtained by this embodiment will be described below. As an example, the compressed gas is air, and in an oil-cooled gas compressor with a discharge air volume of 10 m 3 /min, 10 L / min of the total oil volume of 50 L / min is sucked in and the gas temperature is lower than 20 ° C. Consider the case of feeding into space. In order to calculate the effect, it is assumed that the oil diffuses uniformly in the suction space and exchanges heat.

図2に、吸込み空間へ供給する油の平均粒子径が0.1mmと0.3mmの場合の空気量吸込み性能向上効果を示す。図2の横軸は吸込み気体温度と油温度の差とした。図2に示すように、温度差に対する空気量増加効果はおおよそ比例関係となる。具体的な効果量として、温度差が10℃の時には平均粒子径0.3mmで0.5%、平均粒子径0.1mmで1.9%の空気量増加の効果が得られる試算となった。 FIG. 2 shows the effect of improving the air volume suction performance when the average particle diameter of the oil supplied to the suction space is 0.1 mm and 0.3 mm. The horizontal axis of FIG. 2 represents the difference between the intake gas temperature and the oil temperature. As shown in FIG. 2, the effect of increasing the amount of air with respect to the temperature difference is roughly proportional. As a specific amount of effect, when the temperature difference is 10 ° C, it was a trial calculation that an air amount increase effect of 0.5% with an average particle size of 0.3 mm and 1.9% with an average particle size of 0.1 mm was obtained. .

以上のように、本実施例によれば、従来よりも圧縮気体と油との熱交換時間を長くし、更なる冷却効果の改善が見込め、性能向上を図ることができる。また、圧縮機内の漏れによって加熱される吸込み空間の気体の温度を低下させ、気体密度を向上させることで、吸込み気体量が増加し、性能を向上させることが可能である。 As described above, according to the present embodiment, the heat exchange time between the compressed gas and the oil can be made longer than in the conventional art, and further improvement of the cooling effect can be expected, thereby improving the performance. In addition, by lowering the temperature of the gas in the suction space heated by the leak in the compressor and improving the gas density, the amount of suction gas can be increased and the performance can be improved.

図3に本実施例における油冷式ガス圧縮機の概略構成図を示す。図3において、実施例1との差異は、熱交換器3によって冷却された油の一部を、油冷却器4ではなく、熱交換器(蒸発器)5において冷却している点である。 FIG. 3 shows a schematic configuration diagram of the oil-cooled gas compressor in this embodiment. In FIG. 3 , the difference from Example 1 is that part of the oil cooled by the heat exchanger 3 is cooled not by the oil cooler 4 but by the heat exchanger (evaporator) 5 .

本実施例において、熱交換器5は、膨張器6、凝縮器7、ポンプ8によって構成されるランキンサイクルの構成部品としている。すなわち、油を吸込み気体温度以下にする際に発生する排熱を利用し、熱交換器5においてランキンサイクルの作動流体を加熱し、気化した作動流体で膨張器6(例えばタービン等)を駆動し発電を行う。発電した電力は圧縮機ユニット内の冷却ファンなどの補器に使用し、ユニットの省エネ性能の向上を図ることができる。 In this embodiment, the heat exchanger 5 is a component of a Rankine cycle composed of an expander 6, a condenser 7 and a pump 8. FIG. That is, the exhaust heat generated when the oil is sucked in and cooled below the gas temperature is used to heat the working fluid of the Rankine cycle in the heat exchanger 5, and the vaporized working fluid drives the expander 6 (for example, a turbine, etc.). generate electricity. The generated power can be used for auxiliary equipment such as the cooling fan in the compressor unit to improve the energy-saving performance of the unit.

なお、発電する際の熱サイクルは代表例としてランキンサイクルを記載しているが、他の発電サイクルを使用することも可能である。 Although the Rankine cycle is described as a representative example of the thermal cycle for power generation, it is also possible to use other power generation cycles.

図4に本実施例における油冷式ガス圧縮機の概略構成図を示す。図4において、実施例2との差異は、熱交換器3を通過した後に油を分岐するのではなく、分離器2を通った後に分岐し一部油を熱交換器5において冷却している点である。 FIG. 4 shows a schematic configuration diagram of the oil-cooled gas compressor in this embodiment. In FIG. 4, the difference from Example 2 is that the oil is not branched after passing through the heat exchanger 3, but is branched after passing through the separator 2 and part of the oil is cooled in the heat exchanger 5. It is a point.

本実施例は実施例2と比較し、熱交換器3によって冷却する油量が少なくなるため、熱交換器3で用いる冷却ファンの回転数を従来よりも低下させることができ、圧縮機の省エネ性能向上につながる。また、吸込み側への給油経路では実施例2よりも多くの排熱を回収できることからより多くの発電が可能となる。 In this embodiment, the amount of oil cooled by the heat exchanger 3 is smaller than in the second embodiment, so the number of revolutions of the cooling fan used in the heat exchanger 3 can be reduced more than before, resulting in energy saving of the compressor. This leads to improved performance. In addition, since more exhaust heat can be recovered than in the second embodiment in the oil supply route to the suction side, more power can be generated.

前記した実施例では吸込み気体温度よりも油を低温とした際に従来よりも多くドレンが発生する懸念があるが、本実施例ではその点を考慮した構成について説明する。 In the above-described embodiment, when the temperature of the oil is lower than the temperature of the intake gas, there is a concern that more drainage may occur than in the conventional case.

図5に本実施例における油冷式ガス圧縮機の概略構成図を示す。図5において、本実施例では、冷却油温度センサ(THY)9、吸込み気体温度センサ(THX)10、油冷却器4及び制御弁(三方制御弁)11の制御により管路にドレンが溜まることを防ぐように構成する。 FIG. 5 shows a schematic configuration diagram of the oil-cooled gas compressor in this embodiment. In FIG. 5, in this embodiment, the cooling oil temperature sensor (THY) 9, the suction gas temperature sensor (THX) 10, the oil cooler 4 and the control valve (three-way control valve) 11 are controlled so that the drain accumulates in the pipeline. configured to prevent

表1に、図示しない制御装置による油冷却器4及び制御弁11の制御方法を記す。 Table 1 describes a method of controlling the oil cooler 4 and the control valve 11 by a control device (not shown).

Figure 0007282561000001
Figure 0007282561000001

表1において、圧縮機起動時には、油冷却器4を圧縮機起動からΔt1秒後に起動させることで、油温度が必要以上に冷却されドレンが発生することを防ぐ。また、起動時は油が冷却されていないため、制御弁11はNO-COMとし圧縮過程中へ給油する経路に還流させる。 In Table 1, when the compressor is started, the oil cooler 4 is started Δt1 seconds after the compressor is started, thereby preventing the oil temperature from being cooled more than necessary and causing drainage. Further, since the oil is not cooled at the time of start-up, the control valve 11 is set to NO-COM so that the oil is returned to the route for oil supply during the compression process.

圧縮機の運転状態がロード運転になった際には、吸込み気体温度THXと冷却油温度THYの大小関係により給油経路を変更する。冷却油温度THYが吸込み気体温度THXよりも高温の場合には制御弁11をNO-COMとし、圧縮過程中に給油する経路に還流させる。冷却油温度THYが吸込み気体温度THXよりも低温の場合には制御弁11をNC-COMとし、吸込み空間へ給油する。 When the operating state of the compressor becomes load operation, the oil supply path is changed according to the magnitude relationship between the intake gas temperature THX and the cooling oil temperature THY. When the cooling oil temperature THY is higher than the intake gas temperature THX, the control valve 11 is set to NO-COM, and the cooling oil is returned to the route for oil supply during the compression process. When the cooling oil temperature THY is lower than the intake gas temperature THX, the control valve 11 is set to NC-COM to supply oil to the intake space.

アンロード運転時には、吸込み気体量を増加させる効果が得られないため、油冷却器4を停止させ、油が冷却されドレンが必要以上に発生することを防ぐ。制御弁11は油温度に関係なくNC-COMとし吸込み空間へ給油し、低温の油が管路内に残留することを防止する。 During the unloading operation, the effect of increasing the amount of sucked gas cannot be obtained, so the oil cooler 4 is stopped to prevent the oil from being cooled and drain more than necessary. The control valve 11 is set to NC-COM regardless of the oil temperature to supply oil to the suction space and prevent low-temperature oil from remaining in the pipeline.

圧縮機停止時には、先に油冷却器4を停止させ、Δt2秒経過後に電動機を停止する。制御弁11は油温度に関係なくNC-COMとする。油冷却器4停止からΔt2秒間電動機の運転を続けることにより、低温の油が管路内に残留することを防止する。 When the compressor is stopped, the oil cooler 4 is stopped first, and the electric motor is stopped after Δt2 seconds have passed. The control valve 11 is NC-COM regardless of the oil temperature. By continuing the operation of the motor for Δt2 seconds after the oil cooler 4 is stopped, low-temperature oil is prevented from remaining in the pipeline.

以上、本発明を実施例に基づき具体的に説明したが、本発明は上記した実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。例えば、上記した実施例は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、油冷式ガス圧縮機を実施例として挙げたが、冷却に用いることのできる液体であれば、水など油以外の液体を採用してもよい。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。また、上記制御装置は、それぞれの機能を実現するプログラムを解釈し実行することによりソフトウェアで実現してもよいし、例えば集積回路によるハードウェアで実現してもよい。 Although the present invention has been specifically described above based on the embodiments, it goes without saying that the present invention is not limited to the above-described embodiments and can be variously modified without departing from the scope of the invention. For example, the above embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the described configurations. Also, although an oil-cooled gas compressor is used as an example, any liquid other than oil, such as water, may be used as long as the liquid can be used for cooling. In addition, it is possible to replace part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Moreover, it is possible to add, delete, or replace a part of the configuration of each embodiment with another configuration. Further, the control device may be realized by software by interpreting and executing a program for realizing each function, or may be realized by hardware such as an integrated circuit.

1:圧縮機本体、2:分離器、3:熱交換器、4:油冷却器、5:熱交換器(蒸発器)、6:膨張器、7:凝縮器、8:ポンプ、9:冷却油温度センサ、10:吸込み気体温度センサ、11:制御弁(三方制御弁) 1: Compressor body, 2: Separator, 3: Heat exchanger, 4: Oil cooler, 5: Heat exchanger (evaporator), 6: Expander, 7: Condenser, 8: Pump, 9: Cooling oil temperature sensor, 10: intake gas temperature sensor, 11: control valve (three-way control valve)

Claims (6)

圧縮機本体により吸入された吸込み気体を圧縮し、該圧縮された気体を液体により冷却する液冷式ガス圧縮機であって、
前記圧縮機本体から吐出された気体を圧縮気体と冷却液に分離する分離器と、
該分離器により分離された液体を冷却する熱交換器と、
該熱交換器において冷却された液体の一部を前記圧縮機本体の圧縮過程中の圧縮気体に給液する第1の給液経路と、
前記熱交換器において冷却された液体の一部を前記吸込み気体の温度以下に冷却する液冷却器と、
該液冷却器で冷却された液体を前記圧縮機本体により吸入される吸込み空間へ供給する第2の給液経路と、
前記液冷却器で冷却された液体の冷却液温度を測定する冷却液温度センサと、
前記吸込み気体の温度を測定する吸込み気体温度センサと、
前記液冷却器で冷却された液体を、前記圧縮機本体により吸入される吸込み空間へ供給する経路と前記圧縮機本体の圧縮過程中の圧縮気体に給液する経路に変更する制御弁を有し、
前記冷却液温度と前記吸込み気体の温度の大小関係によって、前記制御弁を制御する制御装置を有することを特徴とする液冷式ガス圧縮機。
A liquid-cooled gas compressor that compresses suction gas sucked by a compressor body and cools the compressed gas with a liquid,
a separator for separating the gas discharged from the compressor main body into compressed gas and cooling liquid;
a heat exchanger that cools the liquid separated by the separator;
a first liquid supply path for supplying part of the liquid cooled in the heat exchanger to the compressed gas during the compression process of the compressor body;
a liquid cooler that cools part of the liquid cooled in the heat exchanger to a temperature equal to or lower than the temperature of the intake gas;
a second liquid supply path that supplies the liquid cooled by the liquid cooler to a suction space that is sucked by the compressor body;
a coolant temperature sensor that measures the coolant temperature of the liquid cooled by the liquid cooler;
a suction gas temperature sensor for measuring the temperature of the suction gas;
A control valve is provided for changing a route for supplying the liquid cooled by the liquid cooler to a suction space sucked by the compressor main body and a route for supplying the liquid to the compressed gas during the compression process of the compressor main body. ,
A liquid-cooled gas compressor, comprising a control device for controlling the control valve according to the magnitude relationship between the cooling liquid temperature and the intake gas temperature.
請求項1に記載の液冷式ガス圧縮機であって、
前記制御装置は、前記圧縮機本体がロード運転時において、前記冷却液温度が前記吸込み気体の温度より高い場合に、前記制御弁を、前記液冷却器で冷却された液体を前記圧縮機本体の圧縮過程中の圧縮気体に給液する経路に切り換え、前記冷却液温度が前記吸込み気体の温度より低い場合に、前記制御弁を、前記液冷却器で冷却された液体を前記圧縮機本体により吸入される吸込み空間へ供給する経路に切り換えることを特徴とする液冷式ガス圧縮機。
A liquid-cooled gas compressor according to claim 1,
When the temperature of the coolant is higher than the temperature of the intake gas during load operation of the compressor body, the control device causes the control valve to move the liquid cooled by the liquid cooler to the temperature of the compressor body. When the coolant temperature is lower than the temperature of the intake gas, the control valve is switched to a path for supplying liquid to the compressed gas during the compression process, and the liquid cooled by the liquid cooler is sucked by the compressor main body. A liquid-cooled gas compressor, characterized in that it switches to a path that supplies a suction space where the liquid is cooled.
請求項1に記載の液冷式ガス圧縮機であって、
前記制御装置は、前記圧縮機本体がアンロード運転時において、前記液冷却器の動作を停止させ、前記制御弁を、前記冷却液温度に関係なく前記液冷却器からの液体を前記圧縮機本体により吸入される吸込み空間へ供給する経路に切り換え、前記圧縮機本体が停止時には先に前記液冷却器を停止させ、所定時間経過後に前記圧縮機本体を駆動する電動機を停止し、前記制御弁を、前記冷却液温度に関係なく前記液冷却器からの液体を前記圧縮機本体により吸入される吸込み空間へ供給する経路に切り換えることを特徴とする液冷式ガス圧縮機。
A liquid-cooled gas compressor according to claim 1,
The control device stops the operation of the liquid cooler when the compressor body is in an unloaded operation, and operates the control valve to control the liquid from the liquid cooler to the compressor body regardless of the coolant temperature. When the compressor body is stopped, the liquid cooler is stopped first, the electric motor driving the compressor body is stopped after a predetermined time has elapsed, and the control valve is closed. 1. A liquid-cooled gas compressor characterized by switching to a path for supplying liquid from said liquid cooler to a suction space into which liquid is sucked by said compressor body regardless of said coolant temperature.
圧縮機本体により吸入された吸込み気体を圧縮し、該圧縮された気体を液体により冷却する液冷式ガス圧縮機の給液方法であって、
前記圧縮機本体から吐出された気体を圧縮気体と冷却液に分離し、
該分離した後の液体を冷却し、
該冷却した液体の一部を前記圧縮機本体の圧縮過程中の圧縮気体に給液するとともに、
前記冷却した液体の一部を前記吸込み気体の温度以下とし、該吸込み気体の温度以下とした液体を前記圧縮機本体により吸入される吸込み空間へ供給し、
前記吸込み気体の温度以下とした液体の冷却液温度と前記吸込み気体の温度の大小関係によって、前記吸込み気体の温度以下とした液体を、前記圧縮機本体により吸入される吸込み空間へ供給するか、前記圧縮機本体の圧縮過程中の圧縮気体に給液するかを切り替えることを特徴とする液冷式ガス圧縮機の給液方法。
A liquid-supplying method for a liquid-cooled gas compressor for compressing suction gas sucked by a compressor body and cooling the compressed gas with a liquid, comprising:
separating the gas discharged from the compressor body into compressed gas and cooling liquid;
cooling the separated liquid;
A part of the cooled liquid is supplied to the compressed gas in the compression process of the compressor main body,
making a part of the cooled liquid lower than the temperature of the suction gas, and supplying the liquid whose temperature is lower than the suction gas to a suction space sucked by the compressor main body;
Depending on the magnitude relationship between the cooling liquid temperature of the liquid below the temperature of the suction gas and the temperature of the suction gas, supplying the liquid below the temperature of the suction gas to the suction space sucked by the compressor main body; A liquid supply method for a liquid-cooled gas compressor, characterized by switching whether to supply liquid to the compressed gas during the compression process of the compressor main body.
請求項4に記載の液冷式ガス圧縮機の給液方法であって、
前記圧縮機本体がロード運転時において、前記冷却液温度が前記吸込み気体の温度より高い場合に、前記吸込み気体の温度以下とした液体を前記圧縮機本体の圧縮過程中の圧縮気体に給液する経路に切り換え、前記冷却液温度が前記吸込み気体の温度より低い場合に、前記吸込み気体の温度以下とした液体を前記圧縮機本体により吸入される吸込み空間へ供給する経路に切り換えることを特徴とする液冷式ガス圧縮機の給液方法。
A liquid supply method for a liquid-cooled gas compressor according to claim 4,
When the temperature of the cooling liquid is higher than the temperature of the intake gas when the compressor body is in load operation, liquid having a temperature equal to or lower than the temperature of the intake gas is supplied to the compressed gas during the compression process of the compressor body. and when the temperature of the cooling liquid is lower than the temperature of the suction gas, the cooling liquid is switched to the route for supplying the liquid having a temperature equal to or lower than the temperature of the suction gas to the suction space where the compressor body sucks the liquid. A method of supplying liquid to a liquid-cooled gas compressor.
請求項4に記載の液冷式ガス圧縮機の給液方法であって、
前記圧縮機本体がアンロード運転時において、前記吸込み気体の温度以下とする動作を停止させ、前記冷却液温度に関係なく前記吸込み気体の温度以下とした液体を前記圧縮機本体により吸入される吸込み空間へ供給する経路に切り換え、前記圧縮機本体が停止時には先に前記吸込み気体の温度以下とする動作を停止させ、所定時間経過後に前記圧縮機本体を駆動する電動機を停止し、前記冷却液温度に関係なく前記吸込み気体の温度以下とした液体を前記圧縮機本体により吸入される吸込み空間へ供給する経路に切り換えることを特徴とする液冷式ガス圧縮機の給液方法。
A liquid supply method for a liquid-cooled gas compressor according to claim 4,
When the compressor main body is in unloading operation, the operation of lowering the temperature of the suctioned gas or lower is stopped, and the liquid whose temperature is lower than the suctioned gas is sucked by the compressor main body regardless of the temperature of the cooling liquid. When the compressor main body is stopped, the operation of reducing the temperature to below the suction gas temperature is stopped first, and after a predetermined time has elapsed, the electric motor for driving the compressor main body is stopped, and the cooling is performed. A method of supplying liquid to a liquid-cooled gas compressor, characterized by switching to a path for supplying a liquid whose temperature is equal to or lower than that of the suction gas to a suction space sucked by the compressor body regardless of the liquid temperature.
JP2019060767A 2019-03-27 2019-03-27 LIQUID-COOLED GAS COMPRESSOR AND LIQUID SUPPLY METHOD THEREOF Active JP7282561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019060767A JP7282561B2 (en) 2019-03-27 2019-03-27 LIQUID-COOLED GAS COMPRESSOR AND LIQUID SUPPLY METHOD THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019060767A JP7282561B2 (en) 2019-03-27 2019-03-27 LIQUID-COOLED GAS COMPRESSOR AND LIQUID SUPPLY METHOD THEREOF

Publications (2)

Publication Number Publication Date
JP2020159303A JP2020159303A (en) 2020-10-01
JP7282561B2 true JP7282561B2 (en) 2023-05-29

Family

ID=72642446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019060767A Active JP7282561B2 (en) 2019-03-27 2019-03-27 LIQUID-COOLED GAS COMPRESSOR AND LIQUID SUPPLY METHOD THEREOF

Country Status (1)

Country Link
JP (1) JP7282561B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021024607A1 (en) * 2019-08-02 2021-02-11 株式会社日立産機システム Liquid-cooled gas compressor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995018945A1 (en) 1994-01-10 1995-07-13 Fresco Anthony N Cooling and sealing rotary screw compressors
JP2003184768A (en) 2001-12-12 2003-07-03 Hitachi Ltd Water jet type screw compressor
JP2011012659A (en) 2009-07-06 2011-01-20 Hitachi Industrial Equipment Systems Co Ltd Compressor
JP2015038354A (en) 2014-09-29 2015-02-26 三浦工業株式会社 Heat recovery system
WO2016117037A1 (en) 2015-01-20 2016-07-28 三菱電機株式会社 Refrigeration device
JP2018025119A (en) 2016-08-08 2018-02-15 三浦工業株式会社 Air compression system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61265381A (en) * 1985-05-20 1986-11-25 Hitachi Ltd Gas injector for screw compressor
JPH0429115Y2 (en) * 1985-11-28 1992-07-15

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995018945A1 (en) 1994-01-10 1995-07-13 Fresco Anthony N Cooling and sealing rotary screw compressors
JP2003184768A (en) 2001-12-12 2003-07-03 Hitachi Ltd Water jet type screw compressor
JP2011012659A (en) 2009-07-06 2011-01-20 Hitachi Industrial Equipment Systems Co Ltd Compressor
JP2015038354A (en) 2014-09-29 2015-02-26 三浦工業株式会社 Heat recovery system
WO2016117037A1 (en) 2015-01-20 2016-07-28 三菱電機株式会社 Refrigeration device
JP2018025119A (en) 2016-08-08 2018-02-15 三浦工業株式会社 Air compression system

Also Published As

Publication number Publication date
JP2020159303A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
US9897103B2 (en) Compressor
US10030646B2 (en) Gas compressor
US20070271956A1 (en) System and method for reducing windage losses in compressor motors
TW200533841A (en) System and method for variable speed operation of a screw compressor
KR20100115749A (en) Method and system for rotor cooling
JP7282561B2 (en) LIQUID-COOLED GAS COMPRESSOR AND LIQUID SUPPLY METHOD THEREOF
CN102678571B (en) A kind of rotor compressor pump housing cooling recirculation system
CN110953757A (en) Liquid-spraying enthalpy-increasing heat pump unit and control method thereof
CN112710041A (en) Double-pump hybrid-driven composite heat pipe energy-saving air conditioning system
CN110926060A (en) A kind of compressor
JP2021021509A (en) Air-conditioning apparatus
JP2013174374A (en) Chilling unit
CN212253206U (en) Refrigerant circulation system and air conditioner
JP2018146144A (en) Refrigeration cycle device and operating method for the same
WO2009098900A1 (en) Refrigeration system
JP2015200243A (en) compressor
JP2004020153A (en) Engine heat pump
CN111879023A (en) Refrigerant circulation system, control method thereof and air conditioner
CN106949668B (en) A kind of IDC computer room heat pump refrigerating power generator and working method
JP2010236725A (en) Heat pump device
JP6400187B2 (en) Refrigeration cycle equipment
CN206785647U (en) A kind of energy-saving oil-free huge discharge glass industry compressor
JPS59211790A (en) Refrigerating plant
KR20230067376A (en) Low load compressor
CN115978827A (en) System for preventing liquid from being carried during starting of compressor and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230517

R150 Certificate of patent or registration of utility model

Ref document number: 7282561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150