JP2015152379A - 斜入射干渉計 - Google Patents

斜入射干渉計 Download PDF

Info

Publication number
JP2015152379A
JP2015152379A JP2014025307A JP2014025307A JP2015152379A JP 2015152379 A JP2015152379 A JP 2015152379A JP 2014025307 A JP2014025307 A JP 2014025307A JP 2014025307 A JP2014025307 A JP 2014025307A JP 2015152379 A JP2015152379 A JP 2015152379A
Authority
JP
Japan
Prior art keywords
unit
measurement
index
light
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014025307A
Other languages
English (en)
Inventor
怜也 大峠
Satoya Otoge
怜也 大峠
栗山 豊
Yutaka Kuriyama
豊 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2014025307A priority Critical patent/JP2015152379A/ja
Priority to US14/617,018 priority patent/US20150226538A1/en
Publication of JP2015152379A publication Critical patent/JP2015152379A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02022Interferometers characterised by the beam path configuration contacting one object by grazing incidence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/306Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces for measuring evenness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02075Reduction or prevention of errors; Testing; Calibration of particular errors
    • G01B9/02078Caused by ambiguity
    • G01B9/02079Quadrature detection, i.e. detecting relatively phase-shifted signals
    • G01B9/02081Quadrature detection, i.e. detecting relatively phase-shifted signals simultaneous quadrature detection, e.g. by spatial phase shifting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02083Interferometers characterised by particular signal processing and presentation
    • G01B9/02085Combining two or more images of different regions

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】測定精度の低下を抑制しつつ測定範囲を拡大できる斜入射干渉計を提供する。【解決手段】斜入射干渉計1は、測定領域Aが重なる重複領域ALに指標部52を表示する目盛付器具50を備え、測定部は、測定領域Aの撮像位置ごとに、測定領域Aおよび指標部52を表す干渉縞画像を取得する画像取得部と、互いに隣り合う測定領域Aの干渉縞画像に基づく測定結果を、当該干渉縞画像の測定領域Aに含まれる同一の指標部52が一致するように繋ぎ合わせることで、表面形状を算出する形状算出部とを備える。【選択図】図1

Description

本発明は、斜入射干渉計に関する。
通常の垂直入射の干渉計は、光の長さを基準とした高精度な測定手法である反面、波長の半分以上の不連続な段差や、画像の隣り合う画素間で波長の半分以上の高さの変化があるような大きなうねりを持った測定対象物の形状は測定できない。
これに対し、大きな凹凸を測定できるものとして、斜入射干渉計が知られている(例えば、特許文献1参照)。
斜入射干渉計では、光を斜め方向から照射し、反射光を得ることで、見かけ上の波長を長くすることが可能で、測定対象物の凹凸に対する波面の変化量を意図的に小さくすることができる。また、測定光を斜めから入射させることで、反射光の方向が揃うため、粗面でも光沢面の場合のような鮮明な干渉縞が得られる。
斜入射干渉計において、1波長分の光路長差を表す距離は一般的に縞感度と呼ばれ、干渉縞1本あたり高低差Λ=λ/2cosθ(μm)で表わされる(λは測定光の波長、θは入射角度)。
この縞感度は、測定光の入射角度と、光源となるレーザの波長とによって決まる。例えば、レーザの波長を固定とみなすと、縞感度は入射角度のみによって決まる。そのため、入射角度は、測定対象物の表面性状や要求される測定精度を考慮して設定される。
斜入射干渉計の測定対象としては、前述のように、垂直入射干渉計では測定が困難な比較的大きなうねりを持つ面、または、粗面(非鏡面)が想定される。各種ウェハやFPD(フラットパネルディスプレイ)用ガラスなどがその例である。これらの大型化が進んでいるワークの加工において、一般的に研磨前段階での平面度管理が重要であるとされており、大型・高精度非鏡面の平面度を管理したいというニーズが高い。
特開2010−32342号公報
前述のような大型・高精度非鏡面の平面度を管理するために、斜入射干渉計を用いて広域を測定する場合を考える。この場合、以下の二つの方法が考えられる。
その測定方法の一つは、測定光の入射角度を大きくする方法である。
この方法の場合、入射角度を大きくすると、前述したように、レーザ光束は直径よりも縦方向に広がった楕円となり、測定領域が拡大される。しかし、一方、測定分解能も同時に低下するため、この方法は好ましくない場合がある。
別の方法として、斜入射干渉計で走査測定する方法がある。
この方法の場合、測定面を何箇所かに分割し、順次測定した後、測定結果を繋ぎ合わせて全面の形状を算出することができ、高さ方向の分解能を維持したまま測定できる。しかし、測定結果を繋ぎ合わせる時の接続誤差により、測定精度が低下してしまうといった問題が生じる。
本発明の目的は、測定精度の低下を抑制しつつ測定範囲を拡大できる斜入射干渉計を提供することにある。
本発明の斜入射干渉計は、光源と、前記光源からの原光を測定光と参照光とに分割する光束分割部と、前記測定光を被測定面の測定領域に対して斜めに照射する照射部と、前記被測定面で反射された前記測定光と前記参照光とを合成して合成光束を形成する光束合成部と、前記合成光束に基づいて、前記測定領域の干渉縞画像を撮像する撮像部と、前記光源、前記光束分割部、前記照射部、前記光束合成部および前記撮像部が設置された干渉計本体と、前記被測定面を有する測定対象物を保持する基台と、複数の測定領域が並びかつ互いに隣り合う測定領域の一部が重なるように、前記干渉計本体と前記基台とを相対移動させる相対移動機構と、前記複数の測定領域の前記干渉縞画像に基づく測定結果を繋ぎ合わせて、前記被測定面の表面形状を算出する測定部とを備えた斜入射干渉計であって、前記測定領域が重なる位置に指標部を表示する指標表示部を備え、前記測定部は、前記測定領域の撮像位置ごとに、前記測定領域および前記指標部を表す前記干渉縞画像を取得する画像取得部と、前記互いに隣り合う測定領域の前記干渉縞画像に基づく測定結果を、当該干渉縞画像の測定領域に含まれる同一の前記指標部が一致するように繋ぎ合わせることで、前記表面形状を算出する形状算出部とを備えることを特徴とする。
本発明によれば、測定部が、隣り合う測定領域の干渉縞画像に含まれる同一の指標部が一致するように、複数の干渉縞画像に基づく測定結果を繋ぎ合わせることで、被測定面の測定結果を算出するため、測定結果の接続誤差を無くすことができ、測定精度の低下を抑制できる。また、複数の測定結果を繋ぎ合わせることで測定範囲を拡大できるため、入射角度を大きくする必要がなく、測定分解能の低下も抑制できる。
本発明の斜入射干渉計において、前記指標表示部は、前記被測定面に前記指標部を投射する指標投射部を備えることが好ましい。
ここで、指標表示部として、金属などの測定対象物とは別体の部材に、指標部を溝加工や蒸着により設けたものを用いることが考えられる。しかし、この場合、撮像時の焦点を被測定面に合わせる必要があるため、指標部が被測定面と同一面上に位置するように指標表示部を設置する必要がある。また、測定対象物と指標表示部との両方を撮像する必要があるため、測定範囲が小さくなってしまう。
本発明によれば、指標投射部により指標部を投射することにより、指標部の高さ位置を調整することなく、常に被測定面に表示させることができる。また、測定対象物のみを撮像することができ、測定範囲が小さくなることを抑制できる。
本発明の斜入射干渉計において、前記光源からの原光を前記撮像部に入射させかつ前記指標投射部からの投射光を前記撮像部に入射させない第1の撮像状態、および、前記原光および前記投射光のうち少なくとも前記投射光を前記撮像部に入射させる第2の撮像状態を切り替え可能に構成された撮像状態切替部を備え、前記画像取得部は、前記測定領域の撮像位置ごとに前記撮像状態切替部を制御して、前記第1の撮像状態の際に撮像され、前記測定領域が表されかつ前記指標部が表されていない第1の前記干渉縞画像と、前記第2の撮像状態の際に撮像され、前記指標部が表された第2の前記干渉縞画像とを取得し、前記形状算出部は、前記互いに隣り合う測定領域の前記第2の干渉縞画像について、当該第2の干渉縞画像に含まれる同一の前記指標部が一致するような位置関係を演算し、この位置関係に基づいて前記互いに隣り合う測定領域の前記第1の干渉縞画像に基づく測定結果を繋ぎ合わせることが好ましい。
ここで、指標部が表された測定結果を繋ぎ合わせて表面形状を算出する場合、指標部の部分が欠損してしまい、撮像された測定領域の全域について測定結果を得ることができない。
本発明によれば、測定部は、隣り合う測定領域の第2の干渉縞画像に含まれる同一の指標部が一致するような位置関係を演算し、この位置関係に基づいて、指標部が表されていない第1の干渉縞画像の測定結果を繋ぎ合わせる。このため、指標部に対応する部分が欠損していない表面形状を算出することができ、撮像された測定領域の全域について測定結果を得ることができる。
本発明の斜入射干渉計において、前記光源からの原光の波長は、第1の波長に設定され、前記指標投射部からの投射光の波長は、前記第1の波長と異なる第2の波長に設定され、前記撮像状態切替部は、前記第1の波長の光を透過させかつ前記第2の波長の光を透過させないフィルタと、前記フィルタを前記合成光束の光路上に移動させることで前記第1の撮像状態とするとともに、前記フィルタを前記合成光束の光路から外れた位置に移動させることで前記第2の撮像状態とするフィルタ移動部とを備えることが好ましい。
また、本発明の斜入射干渉計は、光源と、前記光源からの原光を測定光と参照光とに分割する光束分割部と、前記測定光を被測定面の測定領域に対して斜めに照射する照射部と、前記被測定面で反射された前記測定光と前記参照光とを合成して合成光束を形成する光束合成部と、前記合成光束に基づいて、前記測定領域の干渉縞画像を撮像する撮像部と、前記光源、前記光束分割部、前記照射部、前記光束合成部および前記撮像部が設置された干渉計本体と、前記被測定面を有する測定対象物を保持する基台と、複数の測定領域が並びかつ互いに隣り合う測定領域の一部が重なるように、前記干渉計本体と前記基台とを相対移動させる相対移動機構と、前記複数の測定領域の前記干渉縞画像に基づく測定結果を繋ぎ合わせて、前記被測定面の表面形状を算出する測定部とを備えた斜入射干渉計であって、前記測定領域が重なる位置に指標部を投射する指標投射部を有する指標表示部と、前記干渉計本体における前記合成光束が入射されない位置に配置され、前記測定領域に含まれる前記指標部の指標画像を撮像する指標撮像部と、前記測定領域が表されかつ前記指標部が表されていない前記干渉縞画像を前記撮像部が撮像可能であるとともに、前記指標部が表された前記指標画像を前記指標撮像部が撮像可能な状態にする撮像状態設定部とを備え、前記測定部は、前記測定領域の撮像位置ごとに前記干渉縞画像および前記指標画像を取得する画像取得部と、前記互いに隣り合う測定領域の前記指標画像について、当該指標画像に含まれる同一の前記指標部が一致するような位置関係を演算し、この位置関係に基づいて前記互いに隣り合う測定領域の前記干渉縞画像に基づく測定結果を繋ぎ合わせることで、前記表面形状を算出する形状算出部とを備えることを特徴とする。
本発明によれば、測定部が、隣り合う指標画像に含まれる同一の指標部が一致するような位置関係を演算し、この位置関係に基づいて、当該指標画像に対応する干渉縞画像に基づく測定結果を繋ぎ合わせることで、被測定面の測定結果を算出する。このため、測定結果の接続誤差を無くすことができ、測定精度の低下を抑制できる。また、複数の測定結果を繋ぎ合わせることで測定範囲を拡大できるため、入射角度を大きくする必要がなく、測定分解能の低下も抑制できる。さらに、指標部が表されていない干渉縞画像に基づく測定結果を繋ぎ合わせるため、指標部に対応する部分が欠損していない表面形状を算出することができる。
本発明の斜入射干渉計において、前記光源からの原光の波長は、第1の波長に設定され、前記指標投射部からの投射光の波長は、前記第1の波長と異なる第2の波長に設定され、前記撮像状態設定部は、前記合成光束の光路上に配置され、前記第1の波長の光を前記撮像部に入射させかつ前記第2の波長の光を前記撮像部に入射させない波長選択部を備えることが好ましい。
本発明によれば、指標投射部による投射の継続により被測定面に指標部が表示されたままであっても、指標部が表されておらずかつ指標部に対応する部分が欠損していない干渉縞画像と、指標部が表された指標画像とを撮像することができ、撮像された測定領域の全域について測定結果を得ることができる。また、撮像部と指標撮像部とによって、干渉縞画像と指標画像とを同時に撮像することができ、測定時間を短縮できる。
本発明の第1実施形態に係る斜入射干渉計の全体構成を示す斜視図。 前記第1実施形態の干渉計本体内部を示す模式図。 前記第1実施形態の測定結果を繋ぎ合わせる処理の説明図。 本発明の第2実施形態に係る斜入射干渉計の干渉計本体内部を示す模式図。 前記第2実施形態の指標投射部を示す斜視図。 前記第2実施形態の指標投射部および指標撮像部を示す側面図。 前記第2実施形態の干渉縞画像および指標画像、本発明の第3実施形態の第1,第2の干渉縞画像を示す模式図。 本発明の第3実施形態に係る斜入射干渉計の干渉計本体内部を示す模式図。 本発明の第4実施形態に係る斜入射干渉計の干渉計本体内部を示す模式図。 本発明の変形例に係る指標投射部を示す斜視図。 本発明の他の変形例に係る撮像状態切替部を示す模式図。
[第1実施形態]
まず、本発明の第1実施形態に係る斜入射干渉計について説明する。
図1において、斜入射干渉計1は、被測定面Sを有する測定対象物Wを保持する基台10と、基台10に設置された相対移動機構20と、相対移動機構20に支持された干渉計本体30と、指標表示部としての目盛付器具50とを備えている。
基台10は、三次元測定機等に用いられる定盤と同様のものであり、上面は正確な水平面とされている。
相対移動機構20は、基台10の上面に立設された一対のコラム21と、同コラム21間に架け渡されたビーム22とを有し、ビーム22に沿ってY軸方向に移動可能なキャリッジ(図示省略)を有する。
ビーム22には、キャリッジを駆動する駆動機構と、キャリッジの移動位置を検出するエンコーダとが内蔵されている(各々図示省略)。このため、相対移動機構20は、駆動機構によってキャリッジをビーム22に沿った任意位置へと移動させるとともに、エンコーダによって基台10に対するキャリッジの正確な現在位置を取得することができる。
干渉計本体30は、相対移動機構20のキャリッジに支持されたケース31を有し、ケース31には、図2に示すような測定光学系40を構成する光学要素が設置されている。
測定光学系40は、光源41と、光束分割部42と、照射部43と、光束合成部44と、撮像部45とを有する。
光源41は、干渉可能な原光Lgを発生する。
光束分割部42は、光源41からの原光Lgを測定光Lmと参照光Lrとに分割する。
照射部43は、測定光Lmを被測定面Sの測定領域Aに対して斜めに照射する。
光束合成部44は、被測定面Sで反射された測定光Lmと光束分割部42からの参照光Lrとを合成して、合成光束Ldを形成する。
撮像部45は、光束合成部44で合成された合成光束Ldを受光し、この合成光束Ldに基づいて、測定領域Aの干渉縞画像を撮像する。
これらの測定光学系40を構成する光学要素については後に詳述する。
このような測定光学系40が干渉計本体30に設置されていることで、干渉計本体30は測定対象物Wの被測定面Sの表面形状を算出することができる。
この際、干渉計本体30を一定位置に停止させた状態で測定できる被測定面Sの範囲は図1に示す測定領域Aとなる。この測定領域Aは、測定対象物Wの被測定面Sよりも小さいが、干渉計本体30を相対移動機構20により、複数の測定領域Aが一方向に並びかつ互いに隣り合う測定領域Aの一部が重なるように複数位置へ移動させ、各位置で測定を行うことにより、各位置において得られる測定領域A分の測定結果を繋ぎ合わせることで、被測定面Sの全体の表面形状を得ることができる(走査測定)。
目盛付器具50は、図1に示すように、測定対象物Wに接触するように、または、接触しないが近傍に設置され、少なくとも測定領域Aが重なる位置である重複領域ALに指標部52を表示する。
具体的に、目盛付器具50は、金属やガラス等により略棒状に形成された器具本体51を備えている。器具本体51の上面には、複数の指標部52が測定領域Aが並ぶ方向に沿って略等間隔に、かつ、1つの重複領域ALに1つの指標部52が含まれるように設けられている。指標部52は、平面視で四角形状に形成されており、溝加工や蒸着により、被測定面Sと同一面上に位置するように設けられている。
光源41としては、例えば、He−Neレーザ等、良好な可干渉性を有し、斜入射干渉計1の光学系に入射した際にp偏光とs偏光の成分比が時間的に変化しないレーザ光を出射する光源などが好ましい。
光源41から照射された原光Lgは、第1レンズ411および第2レンズ412によってビーム径がより大きな平行光とされた後、光束分割部42に入射される。なお、原光Lgの波長は、第1の波長に設定されている。
光束分割部42は、例えば偏光ビームスプリッタ等で構成され、光源41からの原光Lgを偏光方向が90度ずれた2つの偏光光束に分割し、各々を測定光Lm、参照光Lrとして送り出す。
偏光ビームスプリッタは、例えば2枚の板状の光学ガラス板で偏光依存性を持つ偏光膜を挟んで構成される。偏光膜は、平行光のうちS波偏光成分を反射し、P波偏光成分を透過させる光学特性を有する。したがって、この偏光膜に原光Lgを斜めに入射することで、偏光軸が90度ずれた測定光Lm、参照光Lrに分割することができる。
光束分割部42としては、光学ガラスで形成された2個の直角プリズムで上記偏光膜を挟んで形成した直方体の偏光ビームスプリッタを用いてもよい。
分割された光束のうち、測定光Lmは、照射部43へ送られて被測定面Sに照射されたのち、光束合成部44に入射される。参照光Lrは、光束合成部44へと直接送られる。
照射部43は、第1対物ミラー431および第2対物ミラー432を有する。
第1対物ミラー431は、光束分割部42からの測定光Lmを折り曲げて、被測定面Sに対して所定角度で入射させるものであり、被測定面Sに対する入射角度は測定精度が十分に得られるように調整される。
第2対物ミラー432は、被測定面Sで反射された測定光Lmを折り曲げて、光束合成部44に入射させるものであり、第1対物ミラー431と同様に被測定面Sに対する傾きを適宜調整される。
このような第1対物ミラー431および第2対物ミラー432は、設置高さおよび設置角度を同一とし、つまり被測定面Sに対する入射側と出射側とを対称とすることが好ましい。
光束合成部44は、例えば光束分割部42と同様な偏光ビームスプリッタ等で構成され、照射部43からの測定光Lmと光束分割部42からの参照光Lrとを互いの光軸が重なるように合成し、合成光束Ldとして撮像部45へと送り出す。
撮像部45は、1/4波長板451と、レンズ452と、三分割プリズム453と、偏光板454A〜454Cと、撮像素子455A〜455Cとを備え、光束合成部44からの合成光束Ldを干渉縞画像として撮像する。
1/4波長板451は、三分割プリズム453の入射側に配置され、光束合成部44から送られる合成光束Ldを円偏光に変換する。
三分割プリズム453は、例えば、3つのプリズムの平面を貼り合わせて形成されており、プリズム張り合わせ面において光を反射および透過させることで上記合成光を3つの分割光に分割する。
偏光板454A〜454Cおよび撮像素子455A〜455Cは、三分割プリズム453により互いに異なる3方向に分割された光にそれぞれ対応するよう設置されている。偏光板454A〜454Cは、偏光軸の方向を互いに異ならせて配置されており、偏光板454A〜454Cを透過して互いに異なる量だけ位相をシフトさせられた干渉縞の干渉縞画像が撮像素子455A〜455Cにより撮像されるようになっている。
撮像部45には、パーソナルコンピュータ等を利用した測定部46が接続されている。
測定部46は、複数の測定領域Aの干渉縞画像に基づく測定結果を繋ぎ合わせて、被測定面Sの表面形状を算出する。測定部46は、図2に示すように、画像取得部461と、形状算出部462とを備えている。
画像取得部461は、測定領域Aの撮像位置ごとに、測定領域Aおよび指標部52を表す干渉縞画像を取得する。そして、画像取得部461は、干渉縞画像の干渉縞に基づいて公知の位相シフト法に準じた演算処理を行うとともに、登録された動作制御プログラムに基づいて、相対移動機構20および干渉計本体30を制御し、被測定面Sの複数の測定領域Aに対する走査測定を実行させる。
形状算出部462は、互いに隣り合う測定領域Aの干渉縞画像に基づく測定結果を、当該干渉縞画像の測定領域Aに含まれる同一の指標部52が一致するように繋ぎ合わせることで、被測定面Sの表面形状を算出する。
第1実施形態における動作を説明する。
先ず、測定部46を起動し、画像取得部461が干渉計本体30を相対移動機構20より移動させて最初の測定位置(測定領域Aを測定可能な撮像位置)に停止させ、測定領域Aの干渉縞画像を撮像して、被測定面Sの測定を行う。次に、画像取得部461は、干渉計本体30を別の測定位置に移動させ、同様に被測定面Sの測定を行い、同様の処理を順次繰り返す。
例えば、図3(A)に示すように、測定領域A1,A2,A3に指標部521〜523,523〜525,525〜527が表示され、測定領域A1と測定領域A2との重複領域AL1に指標部523が表示され、測定領域A2と測定領域A3との重複領域AL2に指標部525が表示されている場合を考える。この場合、画像取得部461は、図3(B)に示すように、測定領域A1および指標部521,522,523を表す干渉縞画像P1と、測定領域A2および指標部523,524,525を表す干渉縞画像P2と、測定領域A3および指標部525,526,527を表す干渉縞画像P3とを順次取得する。そして、画像取得部461は、干渉縞画像P1,P2,P3に基づいて、測定領域A1,A2,A3の測定結果を求める。
全ての測定が完了したら、測定部46の形状算出部462は、指標部52に基づいて、隣り合う測定領域Aの干渉縞画像に基づく測定結果を繋ぎ合わせ、被測定面S全体の測定結果を算出する。
例えば、形状算出部462は、図3(C)に示すように、干渉縞画像P1と干渉縞画像P2との両方に含まれる指標部523が一致するような干渉縞画像P1と干渉縞画像P2との位置関係を演算し、この位置関係に基づいて、干渉縞画像P1に基づく測定結果と干渉縞画像P2に基づく測定結果とを繋ぎ合わせる。ここで、「干渉縞画像P1の指標部523と干渉縞画像P2の指標部523とが一致する」とは、各画像P1,P2の指標部523がずれることなく完全に重なることを意味する。また、形状算出部462は、指標部525が一致するような干渉縞画像P2と干渉縞画像P3との位置関係に基づいて、干渉縞画像P2に基づく測定結果と干渉縞画像P3に基づく測定結果とを繋ぎ合わせる。形状算出部462は、他の測定領域についても同様の処理を行うことにより、被測定面Sの表面形状を算出する。
このような第1実施形態によれば、以下のような効果が得られる。
(1)測定部46は、隣り合う測定領域Aの干渉縞画像に含まれる同一の指標部52が一致するように、複数の干渉縞画像に基づく測定結果を繋ぎ合わせて、被測定面Sの測定結果を算出する。このため、測定結果の接続誤差を無くすことができ、測定精度の低下を抑制できる。また、複数の測定結果を繋ぎ合わせることで測定範囲を拡大できるため、入射角度を大きくする必要がなく、測定分解能の低下も抑制できる。
[第2実施形態]
次に、本発明の第2実施形態に係る斜入射干渉計について説明する。
なお、第1実施形態と同じ構成については、同一の符号を付し説明を省略する。
図4および図5において、斜入射干渉計1Aは、第1実施形態の斜入射干渉計1に対し、測定部46および目盛付器具50の代わりに測定部46Aおよび指標表示部50Aを設けた点と、指標撮像部60Aおよび撮像状態設定部70Aを新たに設けた点とが相違する。
指標表示部50Aは、図4〜図6に示すように、被測定面S上に複数の指標部52を一度に投射して表示する指標投射部53Aを備えている。指標投射部53Aは、基台10上の測定対象物Wの被測定面Sよりも上方かつ測定対象物Wより+X方向側に設置され、少なくとも測定領域Aが重なる位置である重複領域ALに指標部52を表示する。
ここで、測定対象物Wの被測定面Sが鏡面の場合、投射光Lpが被測定面Sで反射し、被測定面Sに指標部52が表示されないが、通常、斜入射干渉計1Aの主な測定対象物Wの被測定面Sは粗面である。このため、投射光Lpが被測定面Sで乱反射し、指標部52が表示される。
なお、指標投射部53Aからの投射光Lpの波長は、原光Lgの波長と同じであってもよいし、異なっていてもよい。
指標撮像部60Aは、干渉計本体30における合成光束Ldが入射されない位置に配置され、測定領域Aに含まれる指標部52の指標画像を撮像する。例えば、指標撮像部60Aは、CCD(Charge-Coupled Device)カメラにより構成され、測定領域Aの真上において被測定面Sと対向するように配置されている。なお、指標撮像部60Aの撮像範囲および撮像部45の撮像範囲の大きさは、同じであってもよいし異なっていてもよい。
撮像状態設定部70Aは、指標投射部53Aの電源をオンオフすることで、投射光Lpを明滅可能に構成されている。撮像状態設定部70Aは、指標投射部53Aの電源をオフにして投射光Lpの投射を停止することで、測定領域Aが表されかつ指標部52が表されていない干渉縞画像を撮像部45が撮像可能な状態にする。また、撮像状態設定部70Aは、指標投射部53Aの電源をオンにして投射光Lpの投射を行うことで、指標部52が表された指標画像を指標撮像部60Aが撮像可能な状態にする。
測定部46Aは、画像取得部461Aと、形状算出部462Aとを備えている。
画像取得部461Aは、測定領域Aの撮像位置ごとに、撮像状態設定部70Aを制御して、測定領域Aが表されかつ指標部52が表されていない干渉縞画像を撮像部45に撮像させ、当該干渉縞画像を取得する。また、この干渉縞画像の取得前あるいは取得後に、画像取得部461Aは、撮像状態設定部70Aを制御して、指標部52が表された指標画像を指標撮像部60Aに撮像させ、当該指標画像を取得する。
そして、画像取得部461Aは、相対移動機構20、干渉計本体30および撮像状態設定部70Aを制御し、被測定面Sの複数の測定領域Aに対する走査測定を実行させる。
形状算出部462Aは、互いに隣り合う測定領域Aの指標画像について、当該指標画像に含まれる同一の指標部52が一致するような位置関係を演算し、この位置関係に基づいて互いに隣り合う測定領域Aの干渉縞画像に基づく測定結果を繋ぎ合わせることで、被測定面Sの表面形状を算出する。
第2実施形態における動作を説明する。
先ず、画像取得部461Aは、干渉計本体30を相対移動機構20より移動させて最初の測定位置に停止させる。そして、画像取得部461Aは、撮像状態設定部70Aに指標投射部53Aの電源をオンオフさせることで、測定領域Aが表されかつ指標部52が表されていない干渉縞画像を撮像部45から取得するとともに、指標部52が表された指標画像を指標撮像部60Aから取得して、被測定面Sの測定を行う。画像取得部461Aは、測定位置についても同様の処理を順次繰り返す。
例えば、図3(A)に示すように、測定領域A1,A2,A3に、指標部521〜523,523〜525,525〜527が表示されている場合を考える。この場合、画像取得部461Aは、図7(A)に示すように、測定領域A1が表されかつ指標部521,522,523が表されていない干渉縞画像P11を取得する。また、画像取得部461Aは、図7(B)に示すように、測定領域A1および指標部521,522,523の両方が表された指標画像Q11を取得する。また、画像取得部461Aは、測定領域A2,A3についても、同様の干渉縞画像および指標画像を順次取得する。そして、画像取得部461Aは、干渉縞画像に基づいて、測定領域A1,A2,A3の測定結果を求める。
全ての測定が完了したら、形状算出部462Aは、指標部52に基づいて、隣り合う測定領域Aの干渉縞画像に基づく測定結果を繋ぎ合わせ、被測定面S全体の測定結果を算出する。
例えば、形状算出部462Aは、測定領域A1の指標画像Q11と測定領域A2の指標画像との両方に含まれる指標部523が一致するような指標画像の位置関係を演算し、この位置関係に基づいて、測定領域A1の干渉縞画像P11に基づく測定結果と測定領域A2の干渉縞画像に基づく測定結果とを繋ぎ合わせる。形状算出部462Aは、他の測定領域についても同様の処理を行うことにより、被測定面Sの表面形状を算出する。
このような第2実施形態によれば、以下のような効果が得られる。
(2)測定部46Aは、隣り合う指標画像に含まれる同一の指標部52が一致するような位置関係に基づいて、当該指標画像に対応する干渉縞画像に基づく測定結果を繋ぎ合わせることで、被測定面Sの測定結果を算出する。このため、上記第1実施形態と同様に、測定精度の低下と測定分解能の低下とを抑制できる。また、指標部52が表されていない干渉縞画像に基づく測定結果を繋ぎ合わせるため、指標部52に対応する部分が欠損していない表面形状を算出することができる。
(3)指標投射部53Aで指標部52を投射して表示するため、指標部52を常に被測定面Sに表示させることができる。
(4)撮像状態設定部70Aは、指標投射部53Aの電源をオンオフ可能に構成されている。このため、指標投射部53Aの電源をオンオフするだけの簡単な構成で、指標部52が表されていない干渉縞画像と、指標部52が表された指標画像とを撮像することができる。
[第3実施形態]
次に、本発明の第3実施形態に係る斜入射干渉計について説明する。
なお、第2実施形態と同じ構成については、同一の符号を付し説明を省略する。
図8において、斜入射干渉計1Bは、第2実施形態の斜入射干渉計1Aに対し、測定部46A、指標表示部50Aおよび撮像状態設定部70Aの代わりに測定部46B、指標表示部50Bおよび撮像状態設定部70Bを設けた点が相違する。
指標表示部50Bは、第2実施形態の指標投射部53Aと同様の位置に配置されかつ同様に構成された指標投射部53Bを備えている。指標投射部53Bからの投射光Lpの波長は、光源41からの原光Lgの波長(第1の波長)と異なる第2の波長に設定されている。
撮像状態設定部70Bは、合成光束Ldの光路上に配置され、第1の波長の光を撮像部45に入射させかつ第2の波長の光を撮像部45に入射させない波長選択部としてのフィルタ71Bを備えている。フィルタ71Bは、光束合成部44と、1/4波長板451との間に配置され、第2の波長の光を吸収または反射するように構成されている。このようなフィルタ71Bを設けることで、指標投射部53Bからの投射の継続により被測定面Sに指標部52が表示されたままであっても、撮像部45には、指標部52を表示する第2の波長の光が入射することが無く、当該指標部52の表示部分に入射する第1の波長の測定光Lmが入射するようになっている。すなわち、指標部52が表されておらずかつ指標部52に対応する部分が欠損していない干渉縞画像を、撮像部45が撮像できるようになっている。
測定部46Bは、画像取得部461Bと、形状算出部462Aとを備えている。
画像取得部461Bは、測定領域Aの撮像位置ごとに、測定領域Aが表されかつ指標部52が表されていない干渉縞画像を撮像部45に撮像させ、指標部52が表された指標画像を指標撮像部60Aに撮像させる。このとき、上述のように、指標投射部53Bによる投射を継続したままでも、撮像部45において、指標部52が表されておらずかつ指標部52に対応する部分が欠損していない干渉縞画像を撮像することができるため、画像取得部461Bは、第2実施形態の画像取得部461Aとは異なり、指標投射部53Bの電源をオンにしたままで、干渉縞画像および指標画像を取得する。
また、画像取得部461Bは、相対移動機構20および干渉計本体30を制御し、被測定面Sの複数の測定領域Aに対する走査測定を実行させる。
第3実施形態における動作を説明する。
先ず、画像取得部461Bは、最初の測定位置において、指標投射部53Bの電源をオンにすることで、指標部52が表されていない干渉縞画像を撮像部45から取得するとともに、指標部52が表された指標画像を指標撮像部60Aから取得して、被測定面Sの測定を行う。画像取得部461Bは、他の測定位置についても同様の処理を順次繰り返す。
例えば、図3(A)に示すように、測定領域A1,A2,A3に、指標部521〜523,523〜525,525〜527が表示されている場合、画像取得部461Bは、測定領域A1について、図7(A)に示すような干渉縞画像P11と、図7(B)に示すような指標画像Q11とを取得し、測定を行う。
全ての測定が完了したら、形状算出部462Aは、第2実施形態と同様の処理により、指標部52に基づいて、隣り合う測定領域Aの干渉縞画像に基づく測定結果を繋ぎ合わせ、被測定面S全体の表面形状を算出する。
このような第3実施形態によれば、第2実施形態の(2)、(3)と同様の効果に加えて、以下のような効果が得られる。
(5)投射光Lpの波長を原光Lgの第1の波長と異なる第2の波長に設定するとともに、合成光束Ldの光路上に、第1の波長の光を撮像部45に入射させかつ第2の波長の光を撮像部45に入射させないフィルタ71Bを設けている。このため、指標投射部53Bによる投射の継続により、被測定面Sに指標部52が表示されたままであっても、指標部52が表されておらずかつ指標部52に対応する部分が欠損していない干渉縞画像と、指標部52が表された指標画像とを撮像することができ、撮像された測定領域の全域について測定結果を得ることができる。また、撮像部45と指標撮像部60Aとによって、干渉縞画像と指標画像とを同時に撮像することができ、測定時間を短縮できる。
[第4実施形態]
次に、本発明の第4実施形態に係る斜入射干渉計について説明する。
なお、第1実施形態と同じ構成については、同一の符号を付し説明を省略する。
図9において、斜入射干渉計1Cは、第1実施形態の斜入射干渉計1に対し、測定部46および目盛付器具50の代わりに測定部46Cおよび指標表示部50Bを設けた点と、撮像状態切替部80Cを新たに設けた点とが相違する。
撮像状態切替部80Cは、光源41からの原光Lgを撮像部45に入射させかつ指標投射部53Bからの投射光Lpを撮像部45に入射させない第1の撮像状態、および、原光Lgおよび投射光Lpのうち少なくとも投射光Lpを撮像部45に入射させる第2の撮像状態を切り替え可能に構成されている。撮像状態切替部80Cは、フィルタ81Cと、フィルタ移動部82Cとを備えている。
フィルタ81Cは、第1の波長の光を透過させかつ第2の波長の光を透過させないように構成されている。フィルタ81Cとしては、第3実施形態のフィルタ71Bと同様のものを採用することができる。
フィルタ移動部82Cは、図8中実線で示すように、フィルタ81Cを合成光束Ldの光路上に移動させることで第1の撮像状態とするとともに、同図中二点鎖線で示すように、フィルタ81Cを合成光束Ldの光路から外れた位置に移動させることで第2の撮像状態とするように構成されている。フィルタ移動部82Cとしては、フィルタ81CをX軸方向またはY軸方向に水平に移動させる構成や、Z軸と平行な軸を中心に旋回させる構成を採用することができる。
第3実施形態のフィルタ71Bと同様のフィルタ81Cを設けることで、指標投射部53Bからの投射の継続により被測定面Sに指標部52が表示されたままであっても、第3実施形態と同様に、指標部52が表されておらずかつ指標部52に対応する部分が欠損していない第1の干渉縞画像を、撮像部45が撮像できるようになっている。
測定部46Cは、画像取得部461Cと、形状算出部462Cとを備えている。
画像取得部461Cは、測定領域Aの撮像位置ごとに、撮像状態切替部80Cのフィルタ移動部82Cを制御して第1の撮像状態とすることで、測定領域Aが表されかつ指標部52が表されていない第1の干渉縞画像を撮像部45に撮像させる。また、この第1の干渉縞画像の取得前あるいは取得後に、画像取得部461Cは、フィルタ移動部82Cを制御して第2の撮像状態とすることで、指標部52が表された第2の干渉縞画像を撮像部45に撮像させる。
そして、画像取得部461Cは、相対移動機構20、干渉計本体30および撮像状態切替部80Cを制御し、被測定面Sの複数の測定領域Aに対する走査測定を実行させる。
形状算出部462Cは、互いに隣り合う測定領域Aの第2の干渉縞画像について、当該第2の干渉縞画像に含まれる同一の指標部52が一致するような位置関係を演算し、この位置関係に基づいて互いに隣り合う測定領域Aの第1の干渉縞画像に基づく測定結果を繋ぎ合わせることで、被測定面Sの表面形状を算出する。
第4実施形態における動作を説明する。
先ず、画像取得部461Cは、最初の測定位置において、フィルタ移動部82Cを制御して、合成光束Ldの光路上にフィルタ81Cを出し入れすることで、測定領域Aが表されかつ指標部52が表されていない第1の干渉縞画像と、測定領域Aおよび指標部52の両方が表された第2の干渉縞画像とを撮像部45から取得して、被測定面Sの測定を行う。画像取得部461Cは、他の測定位置についても同様の処理を順次繰り返す。
例えば、図3(A)に示すように、測定領域A1,A2,A3に、指標部521〜523,523〜525,525〜527が表示されている場合、画像取得部461Cは、測定領域A1について、図7(A)に示すような第1の干渉縞画像P21と、図7(B)に示すような第2の干渉縞画像P22とを取得し、測定を行う。
全ての測定が完了したら、形状算出部462Cは、第2干渉縞画像の指標部52に基づいて、隣り合う測定領域Aの第1の干渉縞画像に基づく測定結果を繋ぎ合わせ、被測定面S全体の測定結果を算出する。
例えば、形状算出部462Cは、測定領域A1の第2の干渉縞画像P22と測定領域A2の第2の干渉縞画像との両方に含まれる指標部523が一致するような第2の干渉縞画像の位置関係を演算し、この位置関係に基づいて、測定領域A1の第1の干渉縞画像P21に基づく測定結果と測定領域A2の第1の干渉縞画像に基づく測定結果とを繋ぎ合わせる。形状算出部462Cは、他の測定領域についても同様の処理を行うことにより、被測定面Sの表面形状を算出する。
このような第4実施形態によれば、第1実施形態の(1)、第2実施形態の(3)と同様の効果に加えて、以下のような効果が得られる。
(6)測定部46Cは、隣り合う測定領域Aの第2の干渉縞画像に含まれる同一の指標部52が一致するような位置関係に基づいて、指標部52が表されていない第1の干渉縞画像の測定結果を繋ぎ合わせる。このため、指標部52に対応する部分が欠損していない表面形状を算出することができ、撮像された測定領域Aの全域について測定結果を得ることができる。
(7)82Cは、フィルタ81Cを合成光束Ldの光路上に出し入れ可能に構成されている。このため、指標投射部53Bで投射光Lpの投射を継続したままであっても、フィルタ81Cを移動させるだけの簡単な構成で、指標部52が表されていない第1の干渉縞画像と、指標部52が表された第2の干渉縞画像とを撮像することができる。
[変形例]
なお、本発明は、前記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は、本発明に含まれる。
例えば、第2〜第4実施形態において、指標表示部50A,50Bの代わりに、図10に示すような指標表示部50Dを設けてもよい。
指標表示部50Dは、被測定面S上に1つの指標部52を一度に投射して表示する指標投射部53Dと、指標投射部53Dを回動させることで指標部52の表示位置を変更する投射位置変更部54Dとを備えている。また、指標投射部53Dからの投射光Lpの波長は、第2実施形態に適用する場合は、原光Lgと同じ波長を含む任意の波長に設定され、第3,第4実施形態に適用する場合は、フィルタ71B,81Cを透過しない第2の波長に設定されている。そして、指標表示部50Dは、測定位置の移動に応じて、指標投射部53Dを回動させることで、指標部52の表示位置を変更する(指標部52を走査する)ことで、第2〜第4実施形態と同様の効果が得られる。
第2実施形態では、1つの測定領域Aについて、指標部52が表された指標画像と、指標部52が表されていない干渉縞画像とを撮像する方法としては、以下のような制御を行ってもよい。例えば、干渉計本体30が測定領域A11を測定可能な位置に到達し、かつ、指標投射部53Dが重複領域AL11に指標部521を表示可能な向きになっている状態において、指標投射部53Dの電源をオンオフして、重複領域AL11に指標部521が表された測定領域A11の指標画像と、重複領域AL11に指標部521が表されていない測定領域A11の干渉縞画像とを撮像する。その後、投射位置変更部54Dが指標投射部53Dの向きを変えることで重複領域AL12に指標部522を表示させ、重複領域AL12に指標部522が表された測定領域A11の指標画像を撮像する。
なお、上述のような指標画像と干渉縞画像とを撮像する方法としては、指標投射部53Dの電源をオンにしたまま、以下のような制御をしてもよい。例えば、重複領域AL10に指標部520を表示させた状態で、測定領域A11を測定可能な位置に干渉計本体30を移動させ、重複領域AL11に指標部521が表されていない測定領域A11の干渉縞画像を撮像する。その後、指標投射部53Dの電源をオンにしたまま当該指標投射部53Dの向きを変えて、重複領域AL11に指標部521を表示させ、指標部521が表された測定領域A11の指標画像を撮像する。さらに、指標投射部53Dの電源をオンにしたまま当該指標投射部53Dの向きを変えて、重複領域AL12に指標部522を表示させ、指標部522が表された測定領域A11の指標画像を撮像する。その後、指標投射部53Dの電源をオンにしたまま、投射位置変更部54Dが指標投射部53Dの向きを変えて重複領域AL11に指標部521を表示させるとともに、測定領域A12を測定可能な位置に干渉計本体30を移動させ、重複領域AL12に指標部522が表されていない測定領域A12の干渉縞画像を撮像する。
また、第3実施形態では、1つの測定領域Aについて、指標部52が表された指標画像と、指標部52が表されていない干渉縞画像とを撮像する方法としては、以下のような制御を行ってもよい。例えば、干渉計本体30が測定領域A11を測定可能な位置に到達している状態において、指標投射部53Dで重複領域AL11に指標部521を表示させ、重複領域AL11に指標部521が表された測定領域A11の指標画像と、重複領域AL11に指標部521が表されていない測定領域A11の干渉縞画像とを撮像する。その後、指標投射部53Dの電源をオンにしたまま、投射位置変更部54Dが指標投射部53Dの向きを変えて重複領域AL12に指標部522を表示させ、重複領域AL12に指標部522が表された測定領域A11の指標画像を撮像する。
さらに、第4実施形態では、1つの測定領域Aについて、指標部52が表されていない第1の干渉縞画像と、指標部52が表された第2の干渉縞画像とを撮像する方法としては、以下のような制御を行ってもよい。例えば、干渉計本体30が測定領域A11を測定可能な位置に到達し、かつ、フィルタ81Cが合成光束Ldの光路上に位置している状態において、指標投射部53Dで重複領域AL11に指標部521を表示させ、重複領域AL11に指標部521が表されていない測定領域A11の第1の干渉縞画像を撮像する。その後、指標部521の表示を継続したまま、フィルタ81Cを合成光束Ldの光路から外れた位置に移動させ、重複領域AL11に指標部521が表された測定領域A11の第2の干渉縞画像を撮像する。さらに、指標投射部53Dの電源をオンにしたまま、投射位置変更部54Dが指標投射部53Dの向きを変えて重複領域AL12に指標部522を表示させ、重複領域AL12に指標部522が表された測定領域A11の第2の干渉縞画像を撮像する。
なお、本発明の投射位置変更部としては、指標投射部53DをY軸方向に直線的に移動させる構成としてもよい。さらに、指標部52を走査する構成としては、光スキャナ技術として知られている、ミラーを共振させて走査する(MEMS(Micro Electro Mechanical System)ミラーを用いる)構成や、光学素子に電圧を加え屈折率を変更することで操作する構成を適用してもよい。
さらに、第4実施形態において、撮像状態切替部80Cの代わりに、図11(A),(B)に示すような撮像状態切替部80Eを設けてもよい。
撮像状態切替部80Eは、分光部81Eと、絞り82Eとを備えている。分光部81Eは、合成光束Ldの光路上に配置され、第1の波長の光を撮像部45に導きかつ第2の波長の光を第1の波長の光から離れる方向に導く。絞り82Eは、分光部81Eと撮像部45との間に配置されている。絞り82Eは、図11(A)に示すように、第1の波長の光を通過させかつ第2の波長の光を通過させない開口状態とすることで第1の撮像状態とするとともに、図11(B)に示すように、第1の波長の光および第2の波長の光を通過させる開口状態とすることで第2の撮像状態とするように構成されている。なお、絞り82Eの開口状態の調整は、人手であってもよいし、装置で行ってもよい。
また、フィルタ71B,81Cを設ける第3,第4実施形態や、図11(A),(B)に示す撮像状態切替部80Eを設ける構成において、指標表示部50B,50Cの代わりに、第2の波長に対応する色で指標部52が表示された目盛付器具50を設けてもよい。
さらに、フィルタ71B,81Cを設ける第3,第4実施形態において、当該フィルタ71B,81Cを撮像部45内における撮像素子455A〜455Cの手前に設けてもよい。
また、第4実施形態において、フィルタ移動部82Cを設けずに人手でフィルタ81Cを合成光束Ldの光路上に出し入れしてもよい。
さらに、第2実施形態において、投射光Lpの明滅は、指標投射部53Bの電源のオンオフではなく、遮光部材の出し入れで行ってもよい。
また、第2実施形態において、指標撮像部60Aを設けずに、投射光Lpを明滅させることにより、撮像部45が本発明の第1の干渉縞画像と第2の干渉縞画像とを撮像してよい。
さらに、第3実施形態において、撮像状態設定部70Bを設けずに、撮像部45の代わりに撮像部としてのカラーカメラを設けてもよい。この場合、測定部は、RGBの信号成分による画像処理を行う。例えば、赤色の指標部52を表示させた場合、当該指標部52が表示された干渉縞画像を赤、緑、青に色分解した後、緑または青のチャンネルのみを対象とした画像に変換することで、指標部52が表されていない干渉縞画像を取得することができる。
また、第3実施形態において、撮像状態設定部70Bを設けずに、図11(A)の状態で開口した撮像状態切替部80Eを設けてもよい。
各実施形態および各変形例において、指標部52としては、測定結果を繋げる向きを特定できる態様であれば、図形や文字あるいはこれらの組み合わせなど、いかなる態様であってもよい。ただし、指標部52として、2つの測定領域Aの重複領域ALに1個の図形のみを表示させる場合には、真円以外の図形であることが好ましく、2個以上の図形を表示させる場合には、真円であってもよい。また、指標部52の表示間隔は、同じであってもよいし、異なっていてもよい。さらに、指標部52は、重複領域AL以外の領域に表示されなくてもよい。
また、各実施形態および各変形例において、干渉計本体30を移動させずに測定対象物Wを移動させてもよい。
1,1A,1B,1C…斜入射干渉計
10…基台
20…相対移動機構
30…干渉計本体
41…光源
42…光束分割部
43…照射部
44…光束合成部
45…撮像部
46,46A,46B,46C…測定部
50…目盛付器具(指標表示部)
50A,50B,50D…指標表示部
52,520,521,522,523,524,525,526,527…指標部
53A,53B,53D…指標投射部
60A…指標撮像部
70A,70B…撮像状態設定部
71B…フィルタ(波長選択部)
80C,80E…撮像状態切替部
81C…フィルタ
82C…フィルタ移動部
461,461A,461B,461C…画像取得部
462,462A,462C…形状算出部
A,A1,A2,A3,A11,A12…測定領域、
AL,AL1,AL2,AL10,AL11,AL12…重複領域(測定領域が重なる位置)
Ld…合成光束
Lg…原光
Lm…測定光
Lp…投射光
Lr…参照光
P1,P2,P3,P11…干渉縞画像
P21…第1の干渉縞画像
P22…第2の干渉縞画像
Q11…指標画像
S…被測定面
W…測定対象物

Claims (6)

  1. 光源と、
    前記光源からの原光を測定光と参照光とに分割する光束分割部と、
    前記測定光を被測定面の測定領域に対して斜めに照射する照射部と、
    前記被測定面で反射された前記測定光と前記参照光とを合成して合成光束を形成する光束合成部と、
    前記合成光束に基づいて、前記測定領域の干渉縞画像を撮像する撮像部と、
    前記光源、前記光束分割部、前記照射部、前記光束合成部および前記撮像部が設置された干渉計本体と、
    前記被測定面を有する測定対象物を保持する基台と、
    複数の測定領域が並びかつ互いに隣り合う測定領域の一部が重なるように、前記干渉計本体と前記基台とを相対移動させる相対移動機構と、
    前記複数の測定領域の前記干渉縞画像に基づく測定結果を繋ぎ合わせて、前記被測定面の表面形状を算出する測定部とを備えた斜入射干渉計であって、
    前記測定領域が重なる位置に指標部を表示する指標表示部を備え、
    前記測定部は、
    前記測定領域の撮像位置ごとに、前記測定領域および前記指標部を表す前記干渉縞画像を取得する画像取得部と、
    前記互いに隣り合う測定領域の前記干渉縞画像に基づく測定結果を、当該干渉縞画像の測定領域に含まれる同一の前記指標部が一致するように繋ぎ合わせることで、前記表面形状を算出する形状算出部とを備えることを特徴とする斜入射干渉計。
  2. 請求項1に記載の斜入射干渉計において、
    前記指標表示部は、前記被測定面に前記指標部を投射する指標投射部を備えることを特徴とする斜入射干渉計。
  3. 請求項2に記載の斜入射干渉計において、
    前記光源からの原光を前記撮像部に入射させかつ前記指標投射部からの投射光を前記撮像部に入射させない第1の撮像状態、および、前記原光および前記投射光のうち少なくとも前記投射光を前記撮像部に入射させる第2の撮像状態を切り替え可能に構成された撮像状態切替部を備え、
    前記画像取得部は、前記測定領域の撮像位置ごとに前記撮像状態切替部を制御して、前記第1の撮像状態の際に撮像され、前記測定領域が表されかつ前記指標部が表されていない第1の前記干渉縞画像と、前記第2の撮像状態の際に撮像され、前記指標部が表された第2の前記干渉縞画像とを取得し、
    前記形状算出部は、前記互いに隣り合う測定領域の前記第2の干渉縞画像について、当該第2の干渉縞画像に含まれる同一の前記指標部が一致するような位置関係を演算し、この位置関係に基づいて前記互いに隣り合う測定領域の前記第1の干渉縞画像に基づく測定結果を繋ぎ合わせることを特徴とする斜入射干渉計。
  4. 請求項3に記載の斜入射干渉計において、
    前記光源からの原光の波長は、第1の波長に設定され、
    前記指標投射部からの投射光の波長は、前記第1の波長と異なる第2の波長に設定され、
    前記撮像状態切替部は、
    前記第1の波長の光を透過させかつ前記第2の波長の光を透過させないフィルタと、
    前記フィルタを前記合成光束の光路上に移動させることで前記第1の撮像状態とするとともに、前記フィルタを前記合成光束の光路から外れた位置に移動させることで前記第2の撮像状態とするフィルタ移動部とを備えることを特徴とする斜入射干渉計。
  5. 光源と、
    前記光源からの原光を測定光と参照光とに分割する光束分割部と、
    前記測定光を被測定面の測定領域に対して斜めに照射する照射部と、
    前記被測定面で反射された前記測定光と前記参照光とを合成して合成光束を形成する光束合成部と、
    前記合成光束に基づいて、前記測定領域の干渉縞画像を撮像する撮像部と、
    前記光源、前記光束分割部、前記照射部、前記光束合成部および前記撮像部が設置された干渉計本体と、
    前記被測定面を有する測定対象物を保持する基台と、
    複数の測定領域が並びかつ互いに隣り合う測定領域の一部が重なるように、前記干渉計本体と前記基台とを相対移動させる相対移動機構と、
    前記複数の測定領域の前記干渉縞画像に基づく測定結果を繋ぎ合わせて、前記被測定面の表面形状を算出する測定部とを備えた斜入射干渉計であって、
    前記測定領域が重なる位置に指標部を投射する指標投射部を有する指標表示部と、
    前記干渉計本体における前記合成光束が入射されない位置に配置され、前記測定領域に含まれる前記指標部の指標画像を撮像する指標撮像部と、
    前記測定領域が表されかつ前記指標部が表されていない前記干渉縞画像を前記撮像部が撮像可能であるとともに、前記指標部が表された前記指標画像を前記指標撮像部が撮像可能な状態にする撮像状態設定部とを備え、
    前記測定部は、
    前記測定領域の撮像位置ごとに前記干渉縞画像および前記指標画像を取得する画像取得部と、
    前記互いに隣り合う測定領域の前記指標画像について、当該指標画像に含まれる同一の前記指標部が一致するような位置関係を演算し、この位置関係に基づいて前記互いに隣り合う測定領域の前記干渉縞画像に基づく測定結果を繋ぎ合わせることで、前記表面形状を算出する形状算出部とを備えることを特徴とする斜入射干渉計。
  6. 請求項5に記載の斜入射干渉計において、
    前記光源からの原光の波長は、第1の波長に設定され、
    前記指標投射部からの投射光の波長は、前記第1の波長と異なる第2の波長に設定され、
    前記撮像状態設定部は、前記合成光束の光路上に配置され、前記第1の波長の光を前記撮像部に入射させかつ前記第2の波長の光を前記撮像部に入射させない波長選択部を備えることを特徴とする斜入射干渉計。
JP2014025307A 2014-02-13 2014-02-13 斜入射干渉計 Pending JP2015152379A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014025307A JP2015152379A (ja) 2014-02-13 2014-02-13 斜入射干渉計
US14/617,018 US20150226538A1 (en) 2014-02-13 2015-02-09 Grazing incidence interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014025307A JP2015152379A (ja) 2014-02-13 2014-02-13 斜入射干渉計

Publications (1)

Publication Number Publication Date
JP2015152379A true JP2015152379A (ja) 2015-08-24

Family

ID=53774666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014025307A Pending JP2015152379A (ja) 2014-02-13 2014-02-13 斜入射干渉計

Country Status (2)

Country Link
US (1) US20150226538A1 (ja)
JP (1) JP2015152379A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018004467A (ja) * 2016-07-04 2018-01-11 株式会社神戸製鋼所 表面形状測定装置および該方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170094251A1 (en) * 2015-09-30 2017-03-30 Faro Technologies, Inc. Three-dimensional imager that includes a dichroic camera
TWI601938B (zh) * 2016-06-28 2017-10-11 國立清華大學 即時檢測全場厚度的光學裝置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018004467A (ja) * 2016-07-04 2018-01-11 株式会社神戸製鋼所 表面形状測定装置および該方法

Also Published As

Publication number Publication date
US20150226538A1 (en) 2015-08-13

Similar Documents

Publication Publication Date Title
JP6271493B2 (ja) 三次元計測装置
TWI743200B (zh) 用於最佳化以成像為基礎之疊對度量之聚焦的系統及方法
JP2020016898A (ja) アライメントシステム
JP6363382B2 (ja) 膜厚測定装置及び方法
JP6415281B2 (ja) プローブ装置及びプローブ方法
JP2006329751A (ja) 表面形状測定方法及び表面形状測定装置
JP5584099B2 (ja) 物体表面の形状測定装置、その形状測定方法及び部品キット
JP4133753B2 (ja) 迂曲面の光波干渉測定方法および迂曲面測定用の干渉計装置
JP2005189069A (ja) 表面形状測定方法及び表面形状測定装置
KR101116295B1 (ko) 입체 형상 측정장치
JP2015152379A (ja) 斜入射干渉計
KR101920349B1 (ko) 측정 대상물의 입체형상을 측정하는 입체형상 측정장치
JP2016148569A (ja) 画像測定方法、及び画像測定装置
US9041907B2 (en) Drawing device and drawing method
JP2003042734A (ja) 表面形状測定方法及び表面形状測定装置
KR101333299B1 (ko) 투영격자의 진폭을 적용한 3차원 형상 측정장치 및 방법
JP2012242085A (ja) 曲率半径測定機の被測定体保持位置補正方法および曲率半径測定機
US8797537B2 (en) Interferometer with a virtual reference surface
JP2010223775A (ja) 干渉計
JP2020153992A (ja) 白色干渉計による形状測定装置
KR20070015310A (ko) 반도체 소자의 오버레이 측정장치
US20140368635A1 (en) On-axis focus sensor and method
JP3848586B2 (ja) 表面検査装置
JP5793355B2 (ja) 斜入射干渉計
JP3883145B2 (ja) 干渉計のアライメント装置