JP2015151613A - Method and equipment for processing combustion ash of waste for use in cement production - Google Patents

Method and equipment for processing combustion ash of waste for use in cement production Download PDF

Info

Publication number
JP2015151613A
JP2015151613A JP2014029236A JP2014029236A JP2015151613A JP 2015151613 A JP2015151613 A JP 2015151613A JP 2014029236 A JP2014029236 A JP 2014029236A JP 2014029236 A JP2014029236 A JP 2014029236A JP 2015151613 A JP2015151613 A JP 2015151613A
Authority
JP
Japan
Prior art keywords
combustion ash
vanadium
solution
waste
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014029236A
Other languages
Japanese (ja)
Other versions
JP6260332B2 (en
Inventor
眞一 濱平
Shinichi Hamahira
眞一 濱平
孝幸 黒岩
Takayuki Kuroiwa
孝幸 黒岩
利和 飯田
Toshikazu Iida
利和 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2014029236A priority Critical patent/JP6260332B2/en
Publication of JP2015151613A publication Critical patent/JP2015151613A/en
Application granted granted Critical
Publication of JP6260332B2 publication Critical patent/JP6260332B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and equipment for processing combustion ash of waste for use in cement production facilities, capable of easily removing vanadium in the combustion ash, in particular, in heavy oil combustion ash, the vanadium having undesirable effects on cement production facilities.SOLUTION: The method for processing combustion ash of waste for use in cement production includes the steps of: adding combustion ash to an oxidizer solution and agitating the solution at a liquid temperature of 50°C or lower so as to dissolve vanadium contained in the combustion ash; solid-liquid separating the combustion ash and the solution; adding a reductant aqueous solution to the liquid in which the solid-liquid separated vanadium is dissolved; subsequently adding a sulfide to the liquid so as to precipitate a sulfide compound of vanadium; adding a polymer coagulant to aggregate and precipitate the sulfide compound of vanadium; and collecting the precipitates by solid liquid separation.

Description

本発明は、セメント製造に用いる廃棄物系燃焼灰の処理方法及び処理装置に関し、詳細には、セメント製造に用いる石油系燃焼灰、特に重油系燃焼灰に含まれるバナジウムを除去するための処理方法及び処理装置に関するものである。   The present invention relates to a method and apparatus for treating waste-based combustion ash used in cement production, and more particularly, a treatment method for removing vanadium contained in petroleum-based combustion ash, particularly heavy oil-based combustion ash used in cement production. And a processing apparatus.

近年、セメント製造設備においては、重油系燃焼灰、建設発生土、汚泥、煤塵、食品系廃棄物、廃プラスチックなどの廃棄物の有効利用を図るため、これらを原燃料として活用している。しかし、セメント製造原単位に占める廃棄物系原燃料の増加に伴い、これらの廃棄物に含まれる微量成分の影響により、セメント製造設備の操業状態が不安定となることがあった。   In recent years, cement production facilities have been using these as raw fuels in order to effectively use wastes such as heavy oil-based combustion ash, construction soil, sludge, dust, food waste, and waste plastics. However, with the increase of waste-based raw fuel in the cement production unit, the operation state of cement production facilities may become unstable due to the influence of trace components contained in these wastes.

特にバナジウム等の重金属を含む産業廃棄物などをセメント原燃料として利用する場合に、重油燃焼灰中のバナジウムの濃度が高い場合には、高温で起こりうるセメント設備装置の金属腐食(高温腐食)の懸念が発生し、セメント製造設備の操業に悪影響を及ぼす可能性がある。従って、セメント製造に用いる石油系燃焼灰から重金属、特にバナジウムを除去する必要が生じてくる   In particular, when industrial waste containing heavy metals such as vanadium is used as raw material for cement, if the concentration of vanadium in heavy oil combustion ash is high, metal corrosion (high temperature corrosion) of cement equipment that can occur at high temperatures. Concerns may arise and adversely affect the operation of cement production facilities. Therefore, it becomes necessary to remove heavy metals, especially vanadium, from petroleum-based combustion ash used for cement production.

重油燃焼灰中のバナジウムを除去する方法としては、従来より、燃焼した燃焼灰にアルカリ剤を加えて酸化焙焼し、バナジウムを可溶性塩に代えて水浸出する方法や、水に可溶な成分のみを浸出した浸出液からバナジウムを回収する種々の方法が提案されている。
例えば特許第3188138号公報(特許文献1)には、石油系燃焼灰と水とを混合した混合液に、硫酸及びヒドラジンを添加して該混合液のpHを2〜3に、またORPを200〜400mVに制御して該燃焼灰よりバナジウムの溶出率を高めて該混合液より固形物を分離除去した後、該固形物分離溶液にアンモニア水及びヒドラジンを添加して該溶液のpHを5〜7に、またORPを−100〜100mVに制御してバナジウムイオンをVまたはV・2HOとして沈澱させて採取することを特徴とする石油系燃焼灰からバナジウムを回収する方法が開示されている。
As a method of removing vanadium in heavy oil combustion ash, conventionally, an alkali agent is added to burnt combustion ash and oxidized and roasted, and vanadium is replaced with a soluble salt and water is leached. Various methods have been proposed for recovering vanadium from the leachate that has only been leached.
For example, in Japanese Patent No. 3188138 (Patent Document 1), sulfuric acid and hydrazine are added to a mixed liquid obtained by mixing petroleum combustion ash and water, and the pH of the mixed liquid is adjusted to 2-3, and ORP is set to 200. After controlling to ˜400 mV to increase the elution rate of vanadium from the combustion ash and separating and removing solids from the mixed solution, aqueous ammonia and hydrazine are added to the solids separating solution to adjust the pH of the solution to 5 to 5. 7 and recovering vanadium from petroleum combustion ash, wherein the ORP is controlled to −100 to 100 mV and vanadium ions are precipitated as V 2 O 4 or V 2 O 4 .2H 2 O and collected. A method is disclosed.

また、「重油系燃焼灰からのバナジウムおよびニッケルを回収するプロセス」(第12回廃棄物学会研究発表会講演論文集2001 503ページ 産業技術総合研究所)(非特許文献1)には、過酸化水素溶液により燃焼灰を浸出し、まず浸出液から有機溶媒TOMAC及びHNAPOによりバナジウムを抽出分離し、次にニッケルを抽出してマグネシウムと分離し、アルコールにより金属塩として析出回収する技術が開示されている。
更に「特集 バナジウム資源の供給ポテンシャル(3)重油燃焼灰からのバナジウム回収」(金属資源レポート2011年9月号48ページ)(非特許文献2)には、水酸化ナトリウム及び塩酸によるリーチング等によってバナジウムを除去する方法が提案されている。
In addition, “Process for recovering vanadium and nickel from heavy oil-based combustion ash” (Proceedings of the 12th Annual Meeting of the Waste Science Society of Japan 2001, page 503, National Institute of Advanced Industrial Science and Technology) (Non-patent Document 1) includes peroxidation. A technique is disclosed in which combustion ash is leached with a hydrogen solution, vanadium is first extracted and separated from the leachate with organic solvents TOMAC and HNAPO, then nickel is extracted and separated from magnesium, and precipitated and recovered as a metal salt with alcohol. .
Furthermore, “Special feature: Vanadium resource supply potential (3) Vanadium recovery from heavy oil combustion ash” (Metal Resource Report, September 2011, page 48) (Non-patent Document 2) includes vanadium by leaching with sodium hydroxide and hydrochloric acid. There has been proposed a method for removing the above.

しかし、これらの従来の方法は、その工程が複雑であり、生産性の向上という観点からは改良が必要であり、工業的には有効に使用できる方法ではなかった。
また、特に上記非特許文献2に記載の方法では、アンモニウム塩でバナジウムを回収するため、余剰に添加されたアンモニウム塩の除去が困難であるという問題があった。
However, these conventional methods have complicated processes, and need to be improved from the viewpoint of improving productivity, and are not industrially effective methods.
In particular, the method described in Non-Patent Document 2 has a problem in that it is difficult to remove excess ammonium salt because vanadium is recovered with an ammonium salt.

特許第3188138号公報Japanese Patent No. 3188138

「重油系燃焼灰からのバナジウムおよびニッケルを回収するプロセス」(第12回廃棄物学会研究発表会講演論文集2001 503ページ 産業技術総合研究所)"Recovery process of vanadium and nickel from heavy oil combustion ash" (Proceedings of the 12th Annual Meeting of the Waste Science Society of Japan 2001, page 503, National Institute of Advanced Industrial Science and Technology) 「特集 バナジウム資源の供給ポテンシャル(3)重油燃焼灰からのバナジウム回収」(金属資源レポート2011年9月号48ページ)“Special Feature Vanadium Resources Supply Potential (3) Vanadium Recovery from Heavy Oil Combustion Ash” (Metal Resource Report September 2011, page 48)

本発明の目的は、上記課題を解決するためになされたものであって、燃焼灰、特に重油系焼却灰を用いる際に、セメント製造設備に好ましくない影響を与える燃焼灰中のバナジウムを簡便で有効に除去することができる、セメント製造設備に用いる廃棄物系燃焼灰の処理方法及び処理装置を提供することである。   An object of the present invention is to solve the above-mentioned problems. When using combustion ash, particularly heavy oil-based incineration ash, vanadium in the combustion ash, which has an undesirable effect on cement production facilities, can be easily obtained. It is an object of the present invention to provide a waste combustion ash treatment method and treatment apparatus that can be effectively removed and used in a cement production facility.

本発明の請求項1のセメント製造に用いる廃棄物系燃焼灰の処理方法は、
燃焼灰を酸化剤溶液に添加撹拌し、該溶液の液温を50℃以下として燃焼灰中に含まれるバナジウムを溶解させる工程、
燃焼灰と該溶液とを固液分離する工程、
固液分離後のバナジウムが溶解している液に還元剤水溶液を添加する工程、
次いで該液に硫化物を添加してバナジウムの硫化化合物を析出させる工程、
高分子凝集剤を添加してバナジウムの硫化化合物を凝集させて沈殿させる工程、
固液分離して沈殿物を回収する工程を有する
ことを特徴とする、セメント製造に用いる廃棄物系燃焼灰の処理方法である。
A method for treating waste-based combustion ash used in cement production according to claim 1 of the present invention is as follows.
Adding and stirring the combustion ash to the oxidant solution, dissolving the vanadium contained in the combustion ash at a liquid temperature of 50 ° C. or lower;
Solid-liquid separation of combustion ash and the solution;
Adding a reducing agent aqueous solution to a solution in which vanadium is dissolved after solid-liquid separation;
Next, a step of adding a sulfide to the liquid to precipitate a sulfide compound of vanadium,
Adding a polymer flocculant to aggregate and precipitate the vanadium sulfide compound;
It is a processing method of the waste type combustion ash used for cement manufacture characterized by having a process of solid-liquid separation and collecting sediment.

請求項2記載のセメント製造に用いる廃棄物系燃焼灰の処理方法は、請求項1記載のセメント製造に用いる廃棄物系燃焼灰の処理方法において、
前記燃焼灰は重油系燃焼灰であることを特徴とする、セメント製造に用いる廃棄物系燃焼灰の処理方法である。
請求項3記載のセメント製造に用いる廃棄物系燃焼灰の処理方法は、請求項1又は2記載のセメント製造に用いる廃棄物系燃焼灰の処理方法において、
硫化物を添加してバナジウムの硫化化合物を析出させる前記工程では、硫化物を添加する前の液のpHは1〜3であり、更に硫化物を添加した後、バナジウムの硫化化合物を析出させる際のpHが6〜9であることを特徴とする、セメント製造に用いる廃棄物系燃焼灰の処理方法である。
The method for treating waste-based combustion ash used in cement production according to claim 2 is the method for treating waste-based combustion ash used in cement production according to claim 1,
The method according to claim 1, wherein the combustion ash is heavy oil combustion ash.
The method for treating waste-based combustion ash used in cement production according to claim 3 is the method for treating waste-based combustion ash used in cement production according to claim 1 or 2,
In the above-described step of depositing the sulfide to precipitate the vanadium sulfide compound, the pH of the solution before adding the sulfide is 1 to 3, and when the sulfide is further added, the vanadium sulfide compound is precipitated. This is a method for treating waste-based combustion ash used for cement production, characterized in that the pH of the waste is 6-9.

請求項4記載のセメント製造に用いる廃棄物系燃焼灰の処理方法は、請求項1乃至3いずれかの項記載のセメント製造に用いる廃棄物系燃焼灰の処理方法において、前記還元剤水溶液を添加する工程の後に、活性炭吸着工程を有することを特徴とする、セメント製造に用いる廃棄物系燃焼灰の処理方法である。
請求項5記載のセメント製造に用いる廃棄物系燃焼灰の処理方法は、請求項1乃至4いずれかの項記載のセメント製造に用いる廃棄物系燃焼灰の処理方法において、
燃焼灰を固液分離した後の液の一部を、前記燃焼灰に含まれるバナジウムを溶解させる工程における酸化剤溶液の液として用いられるように再循環させることを特徴とする、セメント製造に用いる廃棄物系燃焼灰の処理方法である。
The method for treating waste-based combustion ash used in cement production according to claim 4 is the method for treating waste-based combustion ash used in cement production according to any one of claims 1 to 3, wherein the reducing agent aqueous solution is added. It is the processing method of the waste type | system | group combustion ash used for cement manufacture characterized by having an activated carbon adsorption | suction process after the process to do.
The method for treating waste-based combustion ash used in cement production according to claim 5 is the method for treating waste-based combustion ash used in cement production according to any one of claims 1 to 4,
A part of the liquid after solid-liquid separation of the combustion ash is recirculated so that it can be used as an oxidant solution liquid in the step of dissolving vanadium contained in the combustion ash. This is a method for treating waste combustion ash.

また、本発明の請求項6に記載のセメント製造に用いる廃棄物系燃焼灰の処理装置は、
燃焼灰と酸化剤溶液とを撹拌し、該溶液の液温を50℃以下として燃焼灰中に含まれるバナジウムを溶解させる溶解槽、
燃焼灰と該溶液とを固液分離する固液分離槽、
固液分離後のバナジウムが溶解している液に還元剤水溶液を添加する還元剤添加槽、
該液に硫化物を添加してバナジウムの硫化化合物を析出させる反応槽、
高分子凝集剤を添加してバナジウムの硫化化合物を凝集させて沈殿させる凝集槽、
固液分離して沈殿物を回収する凝集沈殿槽を備える
ことを特徴とする、セメント製造に用いる廃棄物系燃焼灰の処理装置である。
Moreover, the waste-based combustion ash treatment apparatus used for cement production according to claim 6 of the present invention is
A dissolution tank in which the combustion ash and the oxidant solution are stirred, and the temperature of the solution is 50 ° C. or lower to dissolve vanadium contained in the combustion ash;
A solid-liquid separation tank for solid-liquid separation of combustion ash and the solution;
A reducing agent addition tank for adding an aqueous reducing agent solution to a solution in which vanadium after solid-liquid separation is dissolved,
A reaction vessel in which sulfide is added to the liquid to precipitate a sulfide compound of vanadium;
A coagulation tank in which a polymer flocculant is added to agglomerate and precipitate vanadium sulfide compounds;
A waste-based combustion ash treatment apparatus for use in cement production, comprising a coagulation sedimentation tank that separates solid and liquid and collects sediment.

請求項7記載のセメント製造に用いる廃棄物系燃焼灰の処理装置は、請求項6記載のセメント製造に用いる廃棄物系燃焼灰の処理装置において、
前記反応槽の後に、活性炭濾過塔を備えることを特徴とする、セメント製造に用いる廃棄物系燃焼灰の処理装置である。
請求項8記載のセメント製造に用いる廃棄物系燃焼灰の処理装置は、請求項6又は7記載のセメント製造に用いる廃棄物系燃焼灰の処理装置において、
前記反応槽の前に、液のpHを1〜3に調整するpH調整槽を備え、また凝集槽の前に液のpHを6〜9に調整する別のpH調整槽を備えることを特徴とする、セメント製造に用いる廃棄物系燃焼灰の処理装置である。
The waste-based combustion ash treatment apparatus used for cement production according to claim 7 is the waste-based combustion ash treatment apparatus used for cement production according to claim 6,
An apparatus for treating waste-based combustion ash used for cement production, comprising an activated carbon filter tower after the reaction tank.
The waste combustion ash treatment apparatus used for cement production according to claim 8 is the waste combustion ash treatment apparatus used for cement production according to claim 6 or 7,
A pH adjusting tank for adjusting the pH of the liquid to 1 to 3 is provided in front of the reaction tank, and another pH adjusting tank for adjusting the pH of the liquid to 6 to 9 is provided in front of the aggregation tank. This is a waste-based combustion ash treatment device used for cement production.

本発明のセメント製造に用いる廃棄物系燃焼灰の処理方法によれば、特に重油系燃焼灰に含まれるバナジウムを簡便な方法で効率よく回収することができ、セメント製造設備に用いる重油系燃焼灰からバナジウムを除去することが可能となるため、セメント製造設備の装置の劣化が抑制することができ、セメント製造装置寿命を長くすることが可能となる。
またバナジウムを効率良く回収することができるため、回収したバナジウムを再利用することも可能である。
According to the method for treating waste-based combustion ash used in cement production of the present invention, it is possible to efficiently recover vanadium contained in heavy oil-based combustion ash by a simple method, particularly, heavy oil-based combustion ash used in cement manufacturing facilities. Therefore, it is possible to remove vanadium from the steel, so that deterioration of the equipment of the cement production facility can be suppressed, and the life of the cement production equipment can be extended.
Moreover, since vanadium can be efficiently recovered, the recovered vanadium can be reused.

また、本発明のセメント製造に用いる廃棄物系燃焼灰の処理装置によれば、上記本発明のセメント製造に用いる廃棄物系燃焼灰の処理方法を効率よく適用することができ、また簡易に、経済的に重油系燃焼灰からバナジウムを除去回収することができる。   In addition, according to the waste combustion ash treatment apparatus used in the cement production of the present invention, the waste combustion ash treatment method used in the cement production of the present invention can be efficiently applied, and simply, Economically, vanadium can be removed and recovered from heavy oil combustion ash.

本発明の一実施形態の、セメント製造に用いる廃棄物系燃焼灰の処理方法及び処理装置を模式的に示す図である。It is a figure which shows typically the processing method and processing apparatus of the waste type combustion ash used for cement manufacture of one Embodiment of this invention.

本発明のセメント製造に用いる廃棄物系燃焼灰の処理方法及び処理装置の例について、図面に基づき説明するが、これらによって本発明は限定されるものではない。
本発明のセメント製造に用いる廃棄物系燃焼灰の処理方法は、
燃焼灰を酸化剤溶液に添加撹拌し、該溶液の液温を50℃以下として燃焼灰中に含まれるバナジウムを溶解させる工程、
燃焼灰と該溶液とを固液分離する工程、
固液分離後のバナジウムが溶解している液に還元剤水溶液を添加する工程、
次いで該液に硫化物を添加してバナジウムの硫化化合物を析出させる工程、
高分子凝集剤を添加してバナジウムの硫化化合物を凝集させて沈殿させる工程、
固液分離して沈殿物を回収する工程を有する、
セメント製造に用いる廃棄物系燃焼灰の処理方法である。
Although the example of the processing method and processing apparatus of the waste type combustion ash used for cement manufacture of the present invention is explained based on a drawing, the present invention is not limited by these.
The method for treating waste-based combustion ash used for cement production of the present invention is as follows:
Adding and stirring the combustion ash to the oxidant solution, dissolving the vanadium contained in the combustion ash at a liquid temperature of 50 ° C. or lower;
Solid-liquid separation of combustion ash and the solution;
Adding a reducing agent aqueous solution to a solution in which vanadium is dissolved after solid-liquid separation;
Next, a step of adding a sulfide to the liquid to precipitate a sulfide compound of vanadium,
Adding a polymer flocculant to aggregate and precipitate the vanadium sulfide compound;
Having a step of collecting the precipitate by solid-liquid separation,
This is a method for treating waste combustion ash used in cement production.

本発明に用いることができる燃焼灰としては、バナジウムを含む廃棄物系燃焼灰、特に重油系燃焼灰を適用することができる。
重油系燃焼灰には、重油、石油ピッチ、石油コークス、タール、アスファルト等の重油系燃料を燃焼した際に生じる灰が含まれ、火力発電所や各種の工業プラント等のボイラー等の重油系燃焼から排出される灰を対象とすることができる。
かかる重油系燃焼灰には、多量のバナジウムが含まれており、通常5〜10質量%(V)含まれている。
As the combustion ash that can be used in the present invention, waste combustion ash containing vanadium, particularly heavy oil combustion ash can be applied.
Heavy oil-based combustion ash includes ash generated when burning heavy oil-based fuels such as heavy oil, petroleum pitch, petroleum coke, tar, asphalt, etc., and heavy oil-based combustion such as boilers in thermal power plants and various industrial plants The ash discharged from can be targeted.
Such heavy oil-based combustion ash contains a large amount of vanadium, and usually contains 5 to 10% by mass (V 2 O 5 ).

重油系燃焼灰を例にして、各工程につき図1を参照しながら、以下、詳細に説明する。
以下に、本発明の排水からのバナジウムの除去方法及び除去回収装置の好適例について、図1に基づき説明する。
1は溶解槽、2は固液分離槽(例:脱水装置)、3は還元剤添加槽、4は活性炭濾過塔、5及び7はpH調整槽、6は反応槽、8は凝集槽、9は凝集沈殿槽を示す。
A heavy oil combustion ash is taken as an example and will be described in detail below with reference to FIG. 1 for each step.
Below, the suitable example of the removal method of vanadium from the waste_water | drain of this invention and a removal collection | recovery apparatus is demonstrated based on FIG.
1 is a dissolution tank, 2 is a solid-liquid separation tank (eg, dehydrator), 3 is a reducing agent addition tank, 4 is an activated carbon filtration tower, 5 and 7 are pH adjustment tanks, 6 is a reaction tank, 8 is a coagulation tank, 9 Indicates a coagulation sedimentation tank.

A.バナジウム抽出工程
(1)バナジウム溶解工程
重油系燃焼灰を、酸化剤を含む水溶液に添加して、撹拌し、燃焼灰中に含まれるバナジウムを溶液中に溶解させる。
酸化剤を含む水溶液としては、過酸化水素、次亜塩素酸塩、亜塩素酸塩、塩素酸塩、クロム酸、クロム酸塩、重クロム酸塩、過マンガン酸塩、硝酸カリウム等の水溶液やオゾン水などを用いることも可能である。好適には過酸化水素の水溶液を用いることができる。
過酸化水素の水溶液の濃度は特に限定されないが、燃焼灰を酸化剤溶液に添加撹拌した際の該溶液の液温が50℃を超えるようにならないように調整することが望ましく、例えば、過酸化水素の水溶液は0.5〜8質量%の溶液を用いることが好適である。
溶液の液温が50℃を超えると、過酸化水素による酸化が急激に進むため、すべてのバナジウムの酸化反応を均一に行うためには、液温を50℃以下に制御する。
A. Vanadium extraction step (1) Vanadium dissolution step Heavy oil-based combustion ash is added to an aqueous solution containing an oxidizing agent, and stirred to dissolve vanadium contained in the combustion ash in the solution.
Examples of aqueous solutions containing oxidizing agents include hydrogen peroxide, hypochlorite, chlorite, chlorate, chromic acid, chromate, dichromate, permanganate, potassium nitrate, and other aqueous solutions and ozone. It is also possible to use water or the like. Preferably, an aqueous solution of hydrogen peroxide can be used.
The concentration of the aqueous solution of hydrogen peroxide is not particularly limited, but it is desirable to adjust the temperature of the solution so as not to exceed 50 ° C. when the combustion ash is added to the oxidant solution and stirred. It is preferable to use an aqueous solution of hydrogen of 0.5 to 8% by mass.
When the liquid temperature of the solution exceeds 50 ° C., the oxidation with hydrogen peroxide proceeds rapidly. Therefore, the liquid temperature is controlled to 50 ° C. or lower in order to uniformly oxidize all vanadium.

燃焼灰と、例えば過酸化水素水のような上記酸化剤を含む水溶液とを撹拌混合することにより、燃焼灰中に含まれるバナジウムが酸化されて、5価となり、水へ溶解するバナジウムが増大する。
これは、バナジウムには2価のバナジウムと5価のバナジウムとが存在するが、5価のバナジウムのほうが水への溶解度が高いため、溶出するバナジウムの量が増加するからである。
By stirring and mixing the combustion ash and an aqueous solution containing the above oxidizing agent such as hydrogen peroxide, vanadium contained in the combustion ash is oxidized to become pentavalent, and the amount of vanadium dissolved in water increases. .
This is because vanadium includes divalent vanadium and pentavalent vanadium, but pentavalent vanadium has higher solubility in water, and thus the amount of vanadium to be eluted increases.

燃焼灰に含まれるバナジウムを酸化剤溶液中に溶解させる方法は特に限定されないが、酸化剤を含む水溶液を充填した攪拌機付き溶解槽、振動篩の上でのシャワリング、トロンメル、骨材用水洗機等の溶解槽1を例示することができる。なかでも、酸化剤を含む水溶液を充填した攪拌機付き溶解槽での処理が好ましい。
また、燃焼灰を酸化剤に含む水溶液に添加して処理する際のpHは、2〜5とすることが好ましく、3〜4とすることがより好ましい。pHがかかる範囲となることで、より効率よくバナジウムの溶解を促進することができる。
The method for dissolving vanadium contained in combustion ash in the oxidizer solution is not particularly limited, but a dissolution tank with a stirrer filled with an aqueous solution containing an oxidizer, showering on a vibrating sieve, trommel, and an aggregate washing machine An example of the dissolution tank 1 is as follows. Especially, the process in the dissolution tank with a stirrer filled with the aqueous solution containing an oxidizing agent is preferable.
Moreover, it is preferable to set it as 2-5, and, as for pH at the time of adding and processing to the aqueous solution which contains combustion ash in an oxidizing agent, it is more preferable to set it as 3-4. When the pH is in this range, vanadium dissolution can be more efficiently promoted.

(2)固液分離工程
次いで、燃焼灰中のバナジウムが酸化剤溶液に溶解したスラリーを固液分離する。固液分離の方法は公知の手段を用いることができ、例えば公知の脱水装置や濾過機2を用いることができる。
固液分離した固体(焼却灰)は、燃焼灰中のバナジウムの量が低減された燃焼灰原料としてセメント製造工程に用いることができる。
上記工程(1)及び(2)は、簡便な操作であるため、低コスト化を実現することができる。
かかる固液分離工程により得られた濾液は、下記のバナジウム回収工程に搬送されるが、濾液の一部は、上記(1)バナジウム溶解工程における酸化剤水溶液の溶液として循環して用いることもできる。
(2) Solid-liquid separation step Next, the slurry in which vanadium in the combustion ash is dissolved in the oxidant solution is subjected to solid-liquid separation. As a method of solid-liquid separation, known means can be used, for example, a known dehydrator or filter 2 can be used.
The solid (incinerated ash) separated into solid and liquid can be used in the cement manufacturing process as a combustion ash raw material in which the amount of vanadium in the combustion ash is reduced.
Since the steps (1) and (2) are simple operations, cost reduction can be realized.
The filtrate obtained by the solid-liquid separation step is conveyed to the following vanadium recovery step, but a part of the filtrate can also be circulated and used as a solution of the oxidizing agent aqueous solution in the above (1) vanadium dissolution step. .

B.バナジウム回収工程
(3)還元剤水溶液添加工程
上記(2)の固液分離工程で得られた濾液からバナジウムを回収する。
まず、焼却灰を濾過することで除去し、得られたバナジウムを含む濾液(水溶液)を還元剤添加槽3に導入して、還元剤を添加し、余剰の過酸化水素を還元する。還元剤としては、例えば、重亜硫酸ソーダ、塩化第一鉄、亜硫酸塩、シュウ酸、ホルムアルデヒド等を用いることができ、重亜硫酸ソーダを用いることが望ましい。
B. Vanadium recovery step (3) reducing agent aqueous solution addition step Vanadium is recovered from the filtrate obtained in the solid-liquid separation step (2) above.
First, the incinerated ash is removed by filtration, and the obtained filtrate (aqueous solution) containing vanadium is introduced into the reducing agent addition tank 3 and a reducing agent is added to reduce excess hydrogen peroxide. As the reducing agent, for example, sodium bisulfite, ferrous chloride, sulfite, oxalic acid, formaldehyde and the like can be used, and it is desirable to use sodium bisulfite.

(4)活性炭吸着工程
更に好ましくは、上記(1)工程で添加した過剰の酸化剤を取り除くため、上記(3)還元剤水溶液添加工程の後に、活性炭濾過塔4を設けて活性炭に未還元の酸化剤を還元させる工程を設けることが望ましい。これにより残存する酸化剤を完全に還元することができる。
(4) Activated carbon adsorption step More preferably, in order to remove the excess oxidizing agent added in the above step (1), after the above (3) reducing agent aqueous solution addition step, an activated carbon filtration tower 4 is provided so that the activated carbon is not reduced. It is desirable to provide a step of reducing the oxidizing agent. As a result, the remaining oxidizing agent can be completely reduced.

(5)pH調整工程
過剰の過酸化水素を取り除いたバナジウムを含む溶液をpH調整槽5に導入して、pHを1〜3に調整する。
(5) pH adjustment step A solution containing vanadium from which excess hydrogen peroxide has been removed is introduced into the pH adjustment tank 5 to adjust the pH to 1 to 3.

(6)反応工程
pHを1〜3に調整した溶液を反応槽6に導入して、硫化物塩を添加し、硫化バナジウムを生成させる。
(7)pH調整槽
硫化バナジウムを生成させた溶液を、pH調整槽7に導入して、例えば苛性ソーダ等を添加して、溶液中のpHを中性域、例えばpH6〜9、好ましくは7〜8に調整する。これにより、硫化バナジウムが析出する。
(8)凝集沈殿工程
析出した硫化バナジウムを凝集させて沈殿させるため、凝集槽8で、高分子凝集剤を添加し、硫化バナジウムを凝集沈殿させる。
(6) Reaction process The solution which adjusted pH to 1-3 is introduce | transduced into the reaction tank 6, a sulfide salt is added, and vanadium sulfide is produced | generated.
(7) pH adjustment tank The solution in which vanadium sulfide is generated is introduced into the pH adjustment tank 7, and for example, caustic soda is added to adjust the pH in the solution to a neutral range, for example, pH 6 to 9, preferably 7 to 7. Adjust to 8. Thereby, vanadium sulfide precipitates.
(8) Aggregation and precipitation step In order to aggregate and precipitate the precipitated vanadium sulfide, a polymer flocculant is added in the aggregation tank 8 to aggregate and precipitate the vanadium sulfide.

(9)回収工程
得られた凝集沈殿物を、例えば凝集沈殿槽9にて固液分離し、回収することで、バナジウム化合物を回収することができる。
固液分離工程は、上記(2)の固液分離工程と同様に実施することができ、任意の工程の濾過方法及び濾過装置を用いることができる。このような工程を経ることで、燃焼灰中のバナジウムを硫化物として効率よく回収することができる。
(9) Recovery step The obtained aggregate precipitate is subjected to solid-liquid separation in, for example, the aggregation precipitation tank 9 and recovered, whereby the vanadium compound can be recovered.
The solid-liquid separation step can be performed in the same manner as the solid-liquid separation step (2) above, and a filtration method and a filtration device in any step can be used. Through these steps, vanadium in the combustion ash can be efficiently recovered as sulfides.

(5)水処理工程
バナジウムを回収した後の濾液は、下水または河川に放流するために、水処理工程に移される。硫化物塩の添加によって、濾液中には余剰に添加した硫化物塩が残存しており、環境基準に合致させて放流可能とするために、公知の水処理方法を適用することができ、例えば塩化第二鉄等の鉄化合物を添加することで、鉄の水酸化物と共に余剰に添加した硫化物塩とを共沈させる方法がある。これにより硫化物塩が除去され、下水あるいは河川に放流することが可能となる。
(5) Water treatment process The filtrate after recovering vanadium is transferred to a water treatment process in order to discharge it into sewage or rivers. Due to the addition of the sulfide salt, an excessively added sulfide salt remains in the filtrate, and a known water treatment method can be applied to enable discharge in conformity with environmental standards, for example, There is a method in which an iron compound such as ferric chloride is added to coprecipitate the iron hydroxide and an excessively added sulfide salt. This removes the sulfide salt and allows it to be discharged into sewage or rivers.

以上説明したように、本実施形態のセメント製造に用いる廃棄物系燃焼灰の処理方法及び処理装置によれば、重油系焼却灰からバナジウムを効率よく簡単な操作及び装置で回収することができる。従って、バナジウムを再度利用することも可能となる。さらに、重油系焼却灰からバナジウムを除去回収するための時間を軽減し、コストも安価にすることができる。   As described above, according to the method and apparatus for treating waste-based combustion ash used in cement production according to the present embodiment, vanadium can be efficiently and easily recovered from heavy oil-based incineration ash with simple operations and apparatuses. Therefore, it becomes possible to use vanadium again. Furthermore, the time for removing and recovering vanadium from the heavy oil-based incineration ash can be reduced, and the cost can be reduced.

以下、本発明のセメント製造に用いる廃棄物系燃焼灰の処理方法及び処理装置について、以下の模式的な実施例及び比較例により具体的に説明するが、これらによって何ら制限されるものではない。なお、実施例及び比較例は常温常圧で実施した。
(使用材料)
過酸化水素水:関東化学社製試薬1級
重亜硫酸ソーダ(亜硫酸水素ナトリウム):関東化学社試薬1級
粉末活性炭:商品名 FY−1 (株)キャタラー
塩酸:関東化学社製試薬1級を用いて5質量%溶液に調整
硫化物塩:硫化剤 LEC−V、レックインダストリーズ社製
苛性ソーダ:関東化学社製試薬1級を用いて10質量%水溶液
高分子凝集剤:商品名 アコフロックA−150、MTアクアポリマー製。アニオン系高分子凝集剤
Hereinafter, although the processing method and processing apparatus of the waste type combustion ash used for cement manufacture of the present invention are explained concretely with the following typical examples and comparative examples, they are not limited at all. In addition, the Example and the comparative example were implemented at normal temperature normal pressure.
(Materials used)
Hydrogen peroxide water: Reagent grade 1 manufactured by Kanto Chemical Co., Ltd. Sodium bisulfite (sodium hydrogen sulfite): Reagent grade 1 Kanto Chemical Co. Powdered activated carbon: Trade name FY-1 Cataler Hydrochloric acid: Reagent grade 1 manufactured by Kanto Chemical Co., Ltd. was used. To 5% by weight solution Sulfide salt: Sulfurizing agent LEC-V, manufactured by REC Industries, Inc. Caustic soda: 10% by weight aqueous solution using reagent grade 1 manufactured by Kanto Chemical Co., Ltd. Polymer flocculant: Product name AKOFLOK A-150, MT Made of aquapolymer. Anionic polymer flocculant

(実施例1)
重油系燃焼灰(V:1.0質量%、Ni:0.5質量%、Mg:0.4質量%、Fe:0.5質量%)1kgを、4.0質量%に調整した過酸化水素水6kgに添加して、1時間撹拌した後に、ブフナーロートを用いて濾過した。1時間撹拌する間の攪拌溶液の最高到達温度は、36℃であった。得られた濾液5.2kgに、重亜硫酸ソーダ35質量%水溶液を2.6g添加し、0.5時間混合した後、さらに粉末活性炭を5.2g添加し、1時間攪拌混合し、次いで、該粉末活性炭を濾過して取り除いた。該濾過により得られた濾液に対して塩酸を添加して、該濾液のpHを2に調整し、硫化物塩を100mg/Lで添加し、0.5時間混合した。混合液に苛性ソーダを添加して、pHを8に調整し、次いで、高分子凝集剤0.1質量%水溶液を15.6ml添加した。1時間静置後、沈殿物を濾過し、回収した。回収した沈殿物を乾燥することで、バナジウムを12.2質量%含む粉体を41.0g得た(回収率50.02%)。
Example 1
Peroxide obtained by adjusting 1 kg of heavy oil combustion ash (V: 1.0 mass%, Ni: 0.5 mass%, Mg: 0.4 mass%, Fe: 0.5 mass%) to 4.0 mass% After adding to 6 kg of hydrogen water and stirring for 1 hour, it filtered using the Buchner funnel. The maximum reached temperature of the stirring solution during stirring for 1 hour was 36 ° C. To 5.2 kg of the obtained filtrate, 2.6 g of a 35% by weight aqueous sodium bisulfite solution was added and mixed for 0.5 hour, and then 5.2 g of powdered activated carbon was further added and stirred and mixed for 1 hour. The powdered activated carbon was removed by filtration. Hydrochloric acid was added to the filtrate obtained by the filtration to adjust the pH of the filtrate to 2, and a sulfide salt was added at 100 mg / L and mixed for 0.5 hour. Caustic soda was added to the mixture to adjust the pH to 8, and then 15.6 ml of a 0.1% by mass aqueous polymer flocculant solution was added. After standing for 1 hour, the precipitate was filtered and collected. The recovered precipitate was dried to obtain 41.0 g of powder containing 12.2% by mass of vanadium (recovery rate 50.02%).

(実施例2)
重油燃焼灰(V:1.0質量%、Ni:0.5質量%、Mg:0.4質量%、Fe:0.5質量%)1kgを、4.0質量%に調整した過酸化水素水24kgに添加して、1時間撹拌した後に、ブフナーロートを用いて濾過した。1時間撹拌する間の攪拌溶液の最高到達温度は、30℃であった。得られた濾液23kgに、重亜硫酸ソーダ35質量%水溶液を11.5g添加し、0.5時間混合した後、さらに粉末活性炭を23g添加し、1時間攪拌混合し、次いで、該粉末活性炭を濾過して取り除いた。該濾過により得られた濾液に対して塩酸を添加して、該濾液のpHを2に調整し、硫化物塩を100mg/Lで添加し、0.5時間混合した。混合液に苛性ソーダを添加して、pHを8に調整し、次いで、高分子凝集剤0.1質量%水溶液を69ml添加した。1時間静置後、沈殿物を濾過し、回収した。回収した沈殿物を乾燥することで、バナジウムを10.5質量%含む粉体を40.5g得た(回収率42.52%)。
(Example 2)
Hydrogen peroxide obtained by adjusting 1 kg of heavy oil combustion ash (V: 1.0 mass%, Ni: 0.5 mass%, Mg: 0.4 mass%, Fe: 0.5 mass%) to 4.0 mass% After adding to 24 kg of water and stirring for 1 hour, it was filtered using a Buchner funnel. The maximum reached temperature of the stirring solution during stirring for 1 hour was 30 ° C. After adding 11.5 g of a 35% by weight aqueous solution of sodium bisulfite to 23 kg of the obtained filtrate and mixing for 0.5 hour, 23 g of powdered activated carbon was further added and stirred and mixed for 1 hour, and then the powdered activated carbon was filtered. And removed. Hydrochloric acid was added to the filtrate obtained by the filtration to adjust the pH of the filtrate to 2, and a sulfide salt was added at 100 mg / L and mixed for 0.5 hour. Caustic soda was added to the mixture to adjust the pH to 8, and then 69 ml of a 0.1% by mass aqueous polymer flocculant solution was added. After standing for 1 hour, the precipitate was filtered and collected. The recovered precipitate was dried to obtain 40.5 g of a powder containing 10.5% by mass of vanadium (recovery rate: 42.52%).

(実施例3)
重油燃焼灰(V:1.0質量%、Ni:0.5質量%、Mg:0.4質量%、Fe:0.5質量%)1kgを、8.0質量%に調整した過酸化水素水12kgに添加して、1時間撹拌した後に、ブフナーロートを用いて濾過した。1時間撹拌する間の攪拌溶液の最高到達温度は、32℃であった。得られた濾液11kgに、重亜硫酸ソーダ35質量%水溶液を5.5g添加し、0.5時間混合した後、さらに粉末活性炭を11g添加し、1時間攪拌混合し、次いで、該粉末活性炭を濾過して取り除いた。該濾過により得られた濾液に対して、塩酸を添加して、該濾液のpHを2に調整し、硫化物塩を100mg/Lで添加し、0.5時間混合した。混合液に苛性ソーダを用いて、pHを8に調整し、次いで、高分子凝集剤0.1質量%水溶液を33ml添加した。1時間静置後、沈殿物を濾過し、回収した。回収した沈殿物を乾燥することで、バナジウムを10.7質量%含む粉体を41.5g得た(回収率44.405%)。
(Example 3)
Hydrogen peroxide obtained by adjusting 1 kg of heavy oil combustion ash (V: 1.0 mass%, Ni: 0.5 mass%, Mg: 0.4 mass%, Fe: 0.5 mass%) to 8.0 mass% After adding to 12 kg of water and stirring for 1 hour, it was filtered using a Buchner funnel. The maximum reached temperature of the stirring solution during stirring for 1 hour was 32 ° C. To 11 kg of the obtained filtrate, 5.5 g of a 35% by weight aqueous sodium bisulfite solution was added and mixed for 0.5 hour, and then 11 g of powdered activated carbon was further added, stirred and mixed for 1 hour, and then the powdered activated carbon was filtered. And removed. To the filtrate obtained by the filtration, hydrochloric acid was added to adjust the pH of the filtrate to 2, and a sulfide salt was added at 100 mg / L and mixed for 0.5 hour. The mixture was adjusted to pH 8 using caustic soda, and then 33 ml of a 0.1% by weight polymer flocculent aqueous solution was added. After standing for 1 hour, the precipitate was filtered and collected. The recovered precipitate was dried to obtain 41.5 g of a powder containing 10.7% by mass of vanadium (recovery rate 44.405%).

(実施例4)
重油燃焼灰(V:1.0質量%、Ni:0.5質量%、Mg:0.4質量%、Fe:0.5質量%)1kgを、0.5質量%に調整した過酸化水素水12kgに添加して、1時間撹拌した後に、ブフナーロートを用いて濾過した。1時間撹拌する間の攪拌溶液の最高到達温度は、25℃であった。得られた濾液11kgに重亜硫酸ソーダ35質量%水溶液を5.5g添加し、0.5時間混合した後、さらに粉末活性炭を11g添加し、1時間攪拌混合し、次いで、該粉末活性炭を濾過して取り除いた。該濾過により得られた濾液に対して、塩酸を添加して、該濾液のpHを2に調整し、次いで硫化物塩を100mg/Lで添加し0.5時間混合した。混合液に苛性ソーダを用いて、pHを8に調整し、次いで、高分子凝集剤0.1質量%水溶液を33ml添加した。1時間静置後、沈殿物を濾過し、回収した。回収した沈殿物を乾燥することで、バナジウムを10.2質量%含む粉体を31.0g得た(回収率31.62%)。
Example 4
Hydrogen peroxide prepared by adjusting 1 kg of heavy oil combustion ash (V: 1.0 mass%, Ni: 0.5 mass%, Mg: 0.4 mass%, Fe: 0.5 mass%) to 0.5 mass% After adding to 12 kg of water and stirring for 1 hour, it was filtered using a Buchner funnel. The maximum reached temperature of the stirring solution during stirring for 1 hour was 25 ° C. To 11 kg of the obtained filtrate, 5.5 g of a 35% by weight aqueous solution of sodium bisulfite was added and mixed for 0.5 hour, and then 11 g of powdered activated carbon was further added and stirred for 1 hour. The powdered activated carbon was then filtered. Removed. To the filtrate obtained by the filtration, hydrochloric acid was added to adjust the pH of the filtrate to 2, and then a sulfide salt was added at 100 mg / L and mixed for 0.5 hours. The mixture was adjusted to pH 8 using caustic soda, and then 33 ml of a 0.1% by weight polymer flocculent aqueous solution was added. After standing for 1 hour, the precipitate was filtered and collected. The recovered precipitate was dried to obtain 31.0 g of powder containing 10.2% by mass of vanadium (recovery rate 31.62%).

(実施例5)
重油燃焼灰(V:0.5質量%、Ni:0.4質量%、Mg:0.3質量%、Fe:0.3質量%)1kgを、4.0質量%に調整した過酸化水素水6kgに添加して、1時間撹拌した後に、ブフナーロートを用いて濾過した。1時間撹拌する間の攪拌溶液の最高到達温度は、35℃であった。得られた濾液5.3kgに重亜硫酸ソーダ35質量%水溶液を2.7g添加し、0.5時間混合した後、さらに粉末活性炭を5.3g添加し、1時間攪拌混合し、次いで、該粉末活性炭を濾過して取り除いた。該濾過により得られた濾液に対して、塩酸を添加して、該濾液のpHを2に調整し、次いで硫化物塩を100mg/Lで添加し0.5時間混合した。混合液に苛性ソーダを用いて、pHを8に調整し、次いで、高分子凝集剤0.1質量%水溶液を15.9ml添加した。1時間静置後、沈殿物を濾過し、回収した。回収した沈殿物を乾燥することで、バナジウムを11.5質量%含む粉体を21.0g得た(回収率48.3%)。
(Example 5)
Hydrogen peroxide prepared by adjusting 1 kg of heavy oil combustion ash (V: 0.5 mass%, Ni: 0.4 mass%, Mg: 0.3 mass%, Fe: 0.3 mass%) to 4.0 mass% After adding to 6 kg of water and stirring for 1 hour, it was filtered using a Buchner funnel. The maximum reached temperature of the stirred solution during stirring for 1 hour was 35 ° C. After adding 2.7 g of a 35% by weight aqueous sodium bisulfite solution to 5.3 kg of the obtained filtrate and mixing for 0.5 hour, 5.3 g of powdered activated carbon was further added and stirred and mixed for 1 hour. The activated carbon was removed by filtration. To the filtrate obtained by the filtration, hydrochloric acid was added to adjust the pH of the filtrate to 2, and then a sulfide salt was added at 100 mg / L and mixed for 0.5 hours. The pH of the mixture was adjusted to 8 using caustic soda, and then 15.9 ml of a 0.1% by weight aqueous solution of a polymer flocculant was added. After standing for 1 hour, the precipitate was filtered and collected. The recovered precipitate was dried to obtain 21.0 g of a powder containing 11.5% by mass of vanadium (recovery rate: 48.3%).

(実施例6)
重油燃焼灰(V:0.2質量%、Ni:0.5質量%、Mg:0.3質量%、Fe:0.5質量%)1kgを、4.0質量%に調整した過酸化水素水6kgに添加して、1時間撹拌した後に、ブフナーロートを用いて濾過した。1時間撹拌する間の攪拌溶液の最高到達温度は、34℃であった。得られた濾液5.4kgに重亜硫酸ソーダ35質量%水溶液を2.7g添加し、0.5時間混合した後、さらに粉末活性炭を5.4g添加し、1時間攪拌混合し、次いで、該粉末活性炭を濾過して取り除いた。該濾過により得られた濾液に対して、塩酸を添加して、該濾液のpHを2に調整し、硫化物塩を100mg/Lで添加し0.5時間混合した。混合液に苛性ソーダを用いて、pHを8に調整し、次いで、高分子凝集剤0.1質量%水溶液を16.2ml添加した。1時間静置後、沈殿物を濾過し、回収した。回収した沈殿物を乾燥することで、バナジウムを12.0質量%含む粉体を8.5g得た(回収率51%)。
(Example 6)
Hydrogen peroxide prepared by adjusting 1 kg of heavy oil combustion ash (V: 0.2 mass%, Ni: 0.5 mass%, Mg: 0.3 mass%, Fe: 0.5 mass%) to 4.0 mass% After adding to 6 kg of water and stirring for 1 hour, it was filtered using a Buchner funnel. The maximum reached temperature of the stirred solution during stirring for 1 hour was 34 ° C. 2.7 g of a 35% by weight aqueous sodium bisulfite solution was added to 5.4 kg of the obtained filtrate, mixed for 0.5 hour, further added with 5.4 g of powdered activated carbon, stirred for 1 hour, and then mixed with the powder. The activated carbon was removed by filtration. To the filtrate obtained by the filtration, hydrochloric acid was added to adjust the pH of the filtrate to 2, and a sulfide salt was added at 100 mg / L and mixed for 0.5 hours. The pH of the mixture was adjusted to 8 using caustic soda, and then 16.2 ml of a 0.1% by mass aqueous polymer flocculant solution was added. After standing for 1 hour, the precipitate was filtered and collected. The collected precipitate was dried to obtain 8.5 g of a powder containing 12.0% by mass of vanadium (recovery rate: 51%).

(比較例1)
重油燃焼灰(V:1.0質量%、Ni:0.5質量%、Mg:0.4質量%、Fe:0.5質量%)1kgを、13.0質量%に調整した過酸化水素水6kgに添加して、1時間撹拌した後に、ブフナーロートを用いて濾過した。1時間撹拌する間の攪拌溶液の最高到達温度は、80℃であった。得られた濾液5.2kgに重亜硫酸ソーダ35質量%水溶液を2.6g添加し、0.5時間混合した後、さらに粉末活性炭を5.2g添加し、1時間攪拌混合し、次いで、該粉末活性炭を濾過して取り除いた。該濾過により得られた濾液に対して、塩酸を添加して、pHを2に調整し、硫化物塩を100mg/Lで添加し0.5時間混合した。混合液に苛性ソーダを用いて、pHを8に調整し、次いで、高分子凝集剤0.1質量%水溶液を15.6ml添加した。1時間静置後、沈殿物を濾過し、回収した。回収した沈殿物を乾燥することで、バナジウムを8.0質量%含む粉体を17.0g得た(回収率13.6%)。
(Comparative Example 1)
Hydrogen peroxide obtained by adjusting 1 kg of heavy oil combustion ash (V: 1.0 mass%, Ni: 0.5 mass%, Mg: 0.4 mass%, Fe: 0.5 mass%) to 13.0 mass% After adding to 6 kg of water and stirring for 1 hour, it was filtered using a Buchner funnel. The maximum reached temperature of the stirring solution during stirring for 1 hour was 80 ° C. To 5.2 kg of the obtained filtrate, 2.6 g of a 35% by weight aqueous solution of sodium bisulfite was added and mixed for 0.5 hour. Then, 5.2 g of powdered activated carbon was further added and stirred and mixed for 1 hour. The activated carbon was removed by filtration. To the filtrate obtained by the filtration, hydrochloric acid was added to adjust the pH to 2, and a sulfide salt was added at 100 mg / L and mixed for 0.5 hour. The mixture was adjusted to pH 8 using caustic soda, and then 15.6 ml of a polymer flocculant 0.1 mass% aqueous solution was added. After standing for 1 hour, the precipitate was filtered and collected. The recovered precipitate was dried to obtain 17.0 g of powder containing 8.0% by mass of vanadium (recovery rate: 13.6%).

(比較例2)
重油燃焼灰(V:1.0質量%、Ni:0.5質量%、Mg:0.4質量%、Fe:0.5質量%)1kgを、0.3質量%に調整した過酸化水素水24kgに添加して、1時間撹拌した後に、ブフナーロートを用いて濾過した。1時間撹拌する間の攪拌溶液の最高到達温度は、23℃であった。得られた濾液23kgに重亜硫酸ソーダ35質量%水溶液を11.5g添加し、0.5時間混合した後、さらに粉末活性炭を23g添加し、1時間攪拌混合し、次いで。該粉末活性炭を濾過して取り除いた。該濾過により得られた濾液に対して、塩酸を添加して、pHを2に調整し、硫化物塩を100mg/Lで添加し0.5時間混合した。混合液に苛性ソーダを用いて、pHを8に調整し、次いで、高分子凝集剤0.1質量%水溶液を69ml添加した。1時間静置後、沈殿物を濾過し、回収した。回収した沈殿物を乾燥することで、バナジウムを9.5質量%含む粉体を18.6g得た(回収率17.67%)。
(Comparative Example 2)
Hydrogen peroxide obtained by adjusting 1 kg of heavy oil combustion ash (V: 1.0 mass%, Ni: 0.5 mass%, Mg: 0.4 mass%, Fe: 0.5 mass%) to 0.3 mass% After adding to 24 kg of water and stirring for 1 hour, it was filtered using a Buchner funnel. The maximum reached temperature of the stirring solution during stirring for 1 hour was 23 ° C. After adding 11.5 g of 35 mass% aqueous solution of sodium bisulfite to 23 kg of the obtained filtrate and mixing for 0.5 hour, 23 g of powdered activated carbon was further added and stirred and mixed for 1 hour. The powdered activated carbon was removed by filtration. To the filtrate obtained by the filtration, hydrochloric acid was added to adjust the pH to 2, and a sulfide salt was added at 100 mg / L and mixed for 0.5 hour. The mixture was adjusted to pH 8 using caustic soda, and then 69 ml of a 0.1% by weight polymer flocculent aqueous solution was added. After standing for 1 hour, the precipitate was filtered and collected. The recovered precipitate was dried to obtain 18.6 g of powder containing 9.5% by mass of vanadium (recovery rate: 17.67%).

上記実施例及び比較例より、本発明の方法を適用することで、重油燃焼灰中に含まれるバナジウムを効率よく回収することが可能であることがわかる。   From the above Examples and Comparative Examples, it is understood that vanadium contained in heavy oil combustion ash can be efficiently recovered by applying the method of the present invention.

本発明は、重油系燃焼灰、建設発生土、汚泥、煤塵、食品系廃棄物、廃プラスチックなどの廃棄物、特に重油系燃焼灰に含まれるバナジウムの除去回収に有効に適用することができ、バナジウムを除去した重油系燃焼灰をセメント製造設備に利用することができる。また、回収されたバナジウムを利用分野への再利用が図られる。   The present invention can be effectively applied to the removal and recovery of vanadium contained in heavy oil-based combustion ash, construction generated soil, sludge, dust, food-based waste, waste plastics, etc., particularly heavy oil-based combustion ash, Heavy oil combustion ash from which vanadium has been removed can be used in cement production facilities. In addition, the recovered vanadium can be reused in the application field.

1 溶解槽
2 固液分離槽(脱水装置)
3 還元剤添加槽
4 活性炭濾過塔
5、7 pH調整槽
6 反応槽
8 凝集槽
9 凝集沈殿槽
1 Dissolution tank 2 Solid-liquid separation tank (dehydration equipment)
3 Reducing agent addition tank 4 Activated carbon filtration tower 5, 7 pH adjustment tank 6 Reaction tank 8 Coagulation tank 9 Coagulation sedimentation tank

Claims (8)

セメント製造に用いる廃棄物系燃焼灰の処理方法であって、
燃焼灰を酸化剤溶液に添加撹拌し、該溶液の液温を50℃以下として燃焼灰中に含まれるバナジウムを溶解させる工程、
燃焼灰と該溶液とを固液分離する工程、
固液分離後のバナジウムが溶解している液に還元剤水溶液を添加する工程、
次いで該液に硫化物を添加してバナジウムの硫化化合物を析出させる工程、
高分子凝集剤を添加してバナジウムの硫化化合物を凝集させて沈殿させる工程、
固液分離して沈殿物を回収する工程を有する
ことを特徴とする、セメント製造に用いる廃棄物系燃焼灰の処理方法。
A method for treating waste-based combustion ash used in cement production,
Adding and stirring the combustion ash to the oxidant solution, dissolving the vanadium contained in the combustion ash at a liquid temperature of 50 ° C. or lower;
Solid-liquid separation of combustion ash and the solution;
Adding a reducing agent aqueous solution to a solution in which vanadium is dissolved after solid-liquid separation;
Next, a step of adding a sulfide to the liquid to precipitate a sulfide compound of vanadium,
Adding a polymer flocculant to aggregate and precipitate the vanadium sulfide compound;
A method for treating waste-based combustion ash used for cement production, comprising a step of solid-liquid separation to collect a precipitate.
請求項1記載のセメント製造に用いる廃棄物系燃焼灰の処理方法において、
前記燃焼灰は重油系燃焼灰であることを特徴とする、セメント製造に用いる廃棄物系燃焼灰の処理方法。
In the processing method of the waste type combustion ash used for cement manufacture according to claim 1,
The method for treating waste-based combustion ash used for cement production, wherein the combustion ash is heavy oil-based combustion ash.
請求項1又は2記載のセメント製造に用いる廃棄物系燃焼灰の処理方法において、
硫化物を添加してバナジウムの硫化化合物を析出させる前記工程では、硫化物を添加する前の液のpHは1〜3であり、更に硫化物を添加した後、バナジウムの硫化化合物を析出させる際のpHが6〜9であることを特徴とする、セメント製造に用いる廃棄物系燃焼灰の処理方法。
In the processing method of the waste type combustion ash used for the cement manufacture according to claim 1 or 2,
In the above-described step of depositing the sulfide to precipitate the vanadium sulfide compound, the pH of the solution before adding the sulfide is 1 to 3, and when the sulfide is further added, the vanadium sulfide compound is precipitated. PH of 6-9 is a processing method of the waste type combustion ash used for cement manufacture characterized by the above-mentioned.
請求項1乃至3いずれかの項記載のセメント製造に用いる廃棄物系燃焼灰の処理方法において、前記還元剤水溶液を添加する工程の後に、活性炭により濾過する工程を有することを特徴とする、セメント製造に用いる廃棄物系燃焼灰の処理方法。   The method for treating waste-based combustion ash used in cement production according to any one of claims 1 to 3, further comprising a step of filtering with activated carbon after the step of adding the reducing agent aqueous solution. A method for treating waste combustion ash used in manufacturing. 請求項1乃至4いずれかの項記載のセメント製造に用いる廃棄物系燃焼灰の処理方法において、
燃焼灰を固液分離した後の液の一部を、前記燃焼灰に含まれるバナジウムを溶解させる工程における酸化剤溶液の液として用いられるように再循環させることを特徴とする、セメント製造に用いる廃棄物系燃焼灰の処理方法。
In the processing method of the waste type combustion ash used for the cement manufacture according to any one of claims 1 to 4,
A part of the liquid after solid-liquid separation of the combustion ash is recirculated so that it can be used as an oxidant solution liquid in the step of dissolving vanadium contained in the combustion ash. Waste-based combustion ash treatment method.
セメント製造に用いる廃棄物系燃焼灰の処理装置であって、
燃焼灰と酸化剤溶液とを撹拌し、該溶液の液温を50℃以下として燃焼灰中に含まれるバナジウムを溶解させる溶解槽、
燃焼灰と該溶液とを固液分離する固液分離槽、
固液分離後のバナジウムが溶解している液に還元剤水溶液を添加する還元剤添加槽、
該液に硫化物を添加してバナジウムの硫化化合物を析出させる反応槽、
高分子凝集剤を添加してバナジウムの硫化化合物を凝集させて沈殿させる凝集槽、
固液分離して沈殿物を回収する凝集沈殿槽を備える
ことを特徴とする、セメント製造に用いる廃棄物系燃焼灰の処理装置。
A waste-based combustion ash treatment device used for cement production,
A dissolution tank in which the combustion ash and the oxidant solution are stirred, and the temperature of the solution is 50 ° C. or lower to dissolve vanadium contained in the combustion ash;
A solid-liquid separation tank for solid-liquid separation of combustion ash and the solution;
A reducing agent addition tank for adding an aqueous reducing agent solution to a solution in which vanadium after solid-liquid separation is dissolved,
A reaction vessel in which sulfide is added to the liquid to precipitate a sulfide compound of vanadium;
A coagulation tank in which a polymer flocculant is added to agglomerate and precipitate vanadium sulfide compounds;
An apparatus for treating waste-based combustion ash used for cement production, comprising a coagulation sedimentation tank that collects sediment by solid-liquid separation.
請求項6記載のセメント製造に用いる廃棄物系燃焼灰の処理装置において、
前記反応槽の後に、活性炭濾過塔を備えることを特徴とする、セメント製造に用いる廃棄物系燃焼灰の処理装置。
In the processing apparatus of the waste type combustion ash used for the cement manufacture of Claim 6,
An apparatus for treating waste combustion ash used for cement production, comprising an activated carbon filter tower after the reaction tank.
請求項6又は7記載のセメント製造に用いる廃棄物系燃焼灰の処理装置において、
前記反応槽の前に、液のpHを1〜3に調整するpH調整槽を備え、また凝集槽の前に液のpHを6〜9に調整する別のpH調整槽を備えることを特徴とする、セメント製造に用いる廃棄物系燃焼灰の処理装置。
In the processing apparatus of the waste type combustion ash used for cement manufacture of Claim 6 or 7,
A pH adjusting tank for adjusting the pH of the liquid to 1 to 3 is provided in front of the reaction tank, and another pH adjusting tank for adjusting the pH of the liquid to 6 to 9 is provided in front of the aggregation tank. Waste-based combustion ash treatment equipment used for cement production.
JP2014029236A 2014-02-19 2014-02-19 Method and apparatus for treating waste-based combustion ash used in cement production Active JP6260332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014029236A JP6260332B2 (en) 2014-02-19 2014-02-19 Method and apparatus for treating waste-based combustion ash used in cement production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014029236A JP6260332B2 (en) 2014-02-19 2014-02-19 Method and apparatus for treating waste-based combustion ash used in cement production

Publications (2)

Publication Number Publication Date
JP2015151613A true JP2015151613A (en) 2015-08-24
JP6260332B2 JP6260332B2 (en) 2018-01-17

Family

ID=53894193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014029236A Active JP6260332B2 (en) 2014-02-19 2014-02-19 Method and apparatus for treating waste-based combustion ash used in cement production

Country Status (1)

Country Link
JP (1) JP6260332B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017069223A1 (en) * 2015-10-20 2017-04-27 Leシステム株式会社 Method for producing vanadium electrolytic solution for redox flow cell
WO2017104360A1 (en) * 2015-12-18 2017-06-22 株式会社ギャラキシー Vanadium recovery processing method and use of vanadium
CN107354304A (en) * 2017-07-25 2017-11-17 安徽工业大学 A kind of method of Porous Medium Adsorption separation Vanadium in Vanadium Residue resource

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111170493B (en) * 2018-11-12 2021-06-18 南京大学 Sewage treatment equipment and method for preventing blockage and hardening of adsorbent

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5159009A (en) * 1974-11-20 1976-05-22 Ube Industries
JPS51150868A (en) * 1975-06-17 1976-12-24 Sumitomo Chem Co Ltd Process for the dis posal of waste water containing vanadium and other heavy metals
JPS57104639A (en) * 1980-12-22 1982-06-29 Dowa Mining Co Ltd Fractional recovery method for valuable metal
JPS6019086A (en) * 1983-07-12 1985-01-31 Kashima Kita Kyodo Hatsuden Kk Treatment of heavy oil ash
JPS61283393A (en) * 1985-06-05 1986-12-13 Canon Electronics Inc Method for decomposing oxidizing agent
JP2000343090A (en) * 1999-04-01 2000-12-12 Kurita Water Ind Ltd Treatment of organic matter-containing water
JP2002166244A (en) * 2000-11-30 2002-06-11 Taiheiyo Cement Corp Method for treating petroleum combustion ash
JP2004136171A (en) * 2002-10-16 2004-05-13 Nichia Chem Ind Ltd Treatment method for heavy metal-containing waste liquid and treatment agent used therein

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5159009A (en) * 1974-11-20 1976-05-22 Ube Industries
JPS51150868A (en) * 1975-06-17 1976-12-24 Sumitomo Chem Co Ltd Process for the dis posal of waste water containing vanadium and other heavy metals
JPS57104639A (en) * 1980-12-22 1982-06-29 Dowa Mining Co Ltd Fractional recovery method for valuable metal
JPS6019086A (en) * 1983-07-12 1985-01-31 Kashima Kita Kyodo Hatsuden Kk Treatment of heavy oil ash
JPS61283393A (en) * 1985-06-05 1986-12-13 Canon Electronics Inc Method for decomposing oxidizing agent
JP2000343090A (en) * 1999-04-01 2000-12-12 Kurita Water Ind Ltd Treatment of organic matter-containing water
JP2002166244A (en) * 2000-11-30 2002-06-11 Taiheiyo Cement Corp Method for treating petroleum combustion ash
JP2004136171A (en) * 2002-10-16 2004-05-13 Nichia Chem Ind Ltd Treatment method for heavy metal-containing waste liquid and treatment agent used therein

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017069223A1 (en) * 2015-10-20 2017-04-27 Leシステム株式会社 Method for producing vanadium electrolytic solution for redox flow cell
WO2017104360A1 (en) * 2015-12-18 2017-06-22 株式会社ギャラキシー Vanadium recovery processing method and use of vanadium
JPWO2017104360A1 (en) * 2015-12-18 2017-12-21 株式会社ギャラキシー Vanadium recovery processing method and use of vanadium
CN107354304A (en) * 2017-07-25 2017-11-17 安徽工业大学 A kind of method of Porous Medium Adsorption separation Vanadium in Vanadium Residue resource
CN107354304B (en) * 2017-07-25 2019-07-02 安徽工业大学 A kind of method of Porous Medium Adsorption separation Vanadium in Vanadium Residue resource

Also Published As

Publication number Publication date
JP6260332B2 (en) 2018-01-17

Similar Documents

Publication Publication Date Title
JP5003786B2 (en) Method and apparatus for treating chlorine-containing waste as a raw material for cement
JP4907950B2 (en) Method and apparatus for removing metal from waste water
JP6260332B2 (en) Method and apparatus for treating waste-based combustion ash used in cement production
JP5709199B2 (en) Method and apparatus for treating incinerated fly ash and cement kiln combustion gas bleed dust
CN105296757A (en) Treating method for tin stripping waste solution
CN106517301A (en) Method for recovering basic cupric chloride from waste cupric liquor of sulfuric acid system
JP5685456B2 (en) Method for producing polyferric sulfate
CN104178630A (en) Treatment method of cupriferous sludge
JP5118572B2 (en) Sewage treatment method
JP2011129336A (en) Recovery method of manganese from battery
TW580484B (en) Method for treating sludge containing heavy metals
JP5063013B2 (en) Recycling method of multi-component plating waste sludge
JP2011011103A (en) Method and apparatus for removing and recovering thallium from wastewater
JP2013056328A (en) Treatment method and treatment apparatus of cyanide-containing water
JP3831805B2 (en) Treatment method for petroleum combustion ash
JP6555182B2 (en) Wastewater treatment method
JP5719320B2 (en) Zinc recovery method from galvanizing waste liquid
JP5660461B2 (en) Wastewater treatment method and treatment apparatus using membrane separation
JP4999904B2 (en) Waste recycling method
JP2009240952A (en) Waste treatment method
JP5664995B2 (en) Recovery method of phosphoric acid from incinerated sludge
JP4336882B2 (en) Mining wastewater treatment method using strong alkaline water.
KR20230122055A (en) Method for producing industrial phosphoric acid from sewage sludge ash
RU2466105C1 (en) Method processing sludge residue
JP2013056327A (en) Treatment method and treatment apparatus of cyanide-containing water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170418

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171127

R150 Certificate of patent or registration of utility model

Ref document number: 6260332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150