JPS61283393A - Method for decomposing oxidizing agent - Google Patents

Method for decomposing oxidizing agent

Info

Publication number
JPS61283393A
JPS61283393A JP12060085A JP12060085A JPS61283393A JP S61283393 A JPS61283393 A JP S61283393A JP 12060085 A JP12060085 A JP 12060085A JP 12060085 A JP12060085 A JP 12060085A JP S61283393 A JPS61283393 A JP S61283393A
Authority
JP
Japan
Prior art keywords
treatment
oxidizing agent
wastewater
heavy metal
waste water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12060085A
Other languages
Japanese (ja)
Inventor
Tatsuo Igarashi
五十嵐 辰雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP12060085A priority Critical patent/JPS61283393A/en
Publication of JPS61283393A publication Critical patent/JPS61283393A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To more inexpensively treat waste water, by treating heavy metal waste water containing an oxidizing agent by using sodium bisulfite. CONSTITUTION:Waste water containing various kinds of oxidizing agents is received in a receiving tank and the pH thereof is adjusted to 2.5 or less by sulfuric acid. Subsequently, the instantaneous treatment of the oxidizing agents is performed by using an aqueous sodium bisulfite solution to decompose said oxidizing agents. Next, the treatment of a heavy metal is performed by a method wherein the pH of waste water is adjusted to 10 by lime milk to form hydroxide which is, in turn, flocculated and sedimented. By this method, treatment time can be shortened and treatment cost can be further lowered.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、重金属排水処理における完全処理に関するも
のであり、更に詳しくは1重金属排水中に含まれる酸化
物および各メッキ・エツチング工程における前処理、後
処理等に使用される酸化剤で、癩化処理工程の排水を完
全に分解する方法に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to complete treatment in heavy metal wastewater treatment, and more specifically, oxides contained in heavy metal wastewater and pretreatment in each plating/etching process. , is an oxidizing agent used in post-treatment, etc., and relates to a method for completely decomposing wastewater from the leprosy treatment process.

[従来の技術] 従来、重金属排水、例えばメッキ・エツチング作業に伴
う排水等の処理方法として、次のプロセスを行なうのが
通常である。
[Prior Art] Conventionally, as a method for treating heavy metal wastewater, such as wastewater associated with plating and etching operations, the following process is usually carried out.

まず1重金属排水中の酸化剤(例えば過酸化水素、酸性
フッ化アンモニウム、過Wt#アンモニウム等)を処理
し、その次に重金属(例えば、塩化第二銅、無クロム酸
、その他メッキ重金属類等)を処理する。
First, the oxidizing agent in the heavy metal wastewater (e.g., hydrogen peroxide, acidic ammonium fluoride, perwt# ammonium, etc.) is treated, and then the heavy metal (e.g., cupric chloride, anhydrous chromic acid, other plated heavy metals, etc.) is treated. ).

前記、酸化剤の処理方法としては、アルカリ曝気法、ア
ルカリ処理法、アルカリ活性炭法、亜硫酸法等があり、
重金属処理方法としては、イオン交換法、凝集沈殿法、
逆浸透処理法(RO) 、限外濾過法(OF)等あるが
、酸化剤処理を先に行なう理由は、まず酸化剤を完全に
処理しなければ、前記イオン交換法、RO法、UF法ま
たは、凝集沈殿法等の重金属処理がうまく適用できなく
なるということである。すなわち、酸化剤が残ったまま
で。
The above-mentioned oxidizing agent treatment methods include an alkali aeration method, an alkali treatment method, an alkali activated carbon method, a sulfurous acid method, etc.
Heavy metal treatment methods include ion exchange method, coagulation precipitation method,
There are reverse osmosis treatment methods (RO), ultrafiltration methods (OF), etc., but the reason why the oxidizing agent treatment is performed first is that if the oxidizing agent is not completely treated first, then the ion exchange method, RO method, UF method, etc. Alternatively, heavy metal treatments such as coagulation-sedimentation methods cannot be applied successfully. In other words, the oxidizing agent remains.

は、イオン交換法、RO法、UF法に於ては1重金属イ
オンを吸着、濾過する樹脂、膜類が酸化物に侵されて、
各処理法ができなくなる。また、凝集沈殿法に於ては、
アルカリ性で生成した重金属(例えばCu、 kR等)
の 水酸化物の沈殿に、酸化剤によって、酸素(02)
が付着して、水()120 )の比重より軽くなる。す
なわち、水酸化物が沈殿しなくなり、水酸化物の浮上の
基因となる。また、クロム排水の凝集沈殿法の場合、還
元処理し、水酸化物として完全処理しても、酸化剤含有
排水処理工程で、酸化剤濃度が一定濃度以上残存してい
ると、三価の水酸化クロムは、六価のクロムに再酸化さ
れ、排水処理の完全処理は行われない。以上の理由によ
り重金属処理に先立ち、酸化剤処理を行なう必要がある
In the ion exchange method, RO method, and UF method, the resin and membranes that adsorb and filter heavy metal ions are attacked by oxides.
Each processing method becomes impossible. In addition, in the coagulation-sedimentation method,
Heavy metals generated in alkaline conditions (e.g. Cu, kR, etc.)
Oxygen (02) is precipitated by an oxidizing agent into the hydroxide precipitate.
is attached, and the specific gravity becomes lighter than that of water ()120). In other words, hydroxide does not precipitate, which becomes a cause of hydroxide floating. In addition, in the case of the coagulation-sedimentation method for chromium wastewater, even if it is reduced and completely treated as hydroxide, if the oxidant concentration remains above a certain level in the oxidizing agent-containing wastewater treatment process, trivalent water Chromium oxide is reoxidized to hexavalent chromium, and complete wastewater treatment is not performed. For the above reasons, it is necessary to perform oxidizing agent treatment prior to heavy metal treatment.

[発明が解決しようとする問題点] 前記重金属排水処理工程の重要な前処理としての酸化剤
処理を行うための方法として、前に述べたアルカリ曝気
法、アルカリ法、活性炭法 、亜硫酸法について以下の
欠点がある。
[Problems to be Solved by the Invention] As methods for performing oxidizing agent treatment as an important pretreatment in the heavy metal wastewater treatment process, the following describes the alkali aeration method, alkaline method, activated carbon method, and sulfite method described above. There are drawbacks.

1)アルカリ性曝気法 前記酸化剤含有排水に例えば水酸化ナトリウムを加え1
通常水素イオン濃度(pH)を10以上に上げ、それに
エアー曝気をすることにより酸化剤は空気中の酸素〔0
2〕 と反応する。しかし、この方法は、反応時間が非
常に長くかかるという欠点がある。例えば、過酸化水素
1100ppでl113の排水を処理するのに、エアー
曝気量を排水l113に対して毎分排水量の3倍のエア
ー量を送ったとして、最低8時間必要である。
1) Alkaline aeration method For example, sodium hydroxide is added to the oxidizing agent-containing wastewater.1
Normally, by raising the hydrogen ion concentration (pH) to 10 or higher and aerating it with air, the oxidizing agent is removed from the oxygen [0] in the air.
2] Reacts with. However, this method has the disadvantage that the reaction time is very long. For example, in order to treat wastewater 1113 with 1100 pp of hydrogen peroxide, a minimum of 8 hours is required, assuming that the amount of air aeration is three times the amount of wastewater per minute to the wastewater 1113.

(2)アルカリ性処理法 前記酸化剤排水(重金属含有排水)に水酸化ナトリウム
または水酸化カルシウムを加え、pHを10以上に上げ
水酸化物を生成し凝集剤を入れることにより、水酸化物
は凝集沈殿する。しかしながらこの方法は、酸化剤の濃
度低下が非常に遅く、凝集沈殿における水酸化物の浮上
、また前に述べたように、クロム排水を還元し、硫酸ク
ロムとして水酸化ナトリウムを入れて水酸化クロムCr
C0H)3にして完全に処理しても、酸化剤処理を完全
にしないと、三価クロムは六価クロムに再酸化されてし
まうため、クロム排水処理後の排水として完全処理でき
なくなる欠点がある。また、イオン化傾向の大きい重金
属類は再溶解してしまい、再度処理をやり直す必要があ
る。
(2) Alkaline treatment method Sodium hydroxide or calcium hydroxide is added to the oxidizing wastewater (heavy metal-containing wastewater) to raise the pH to 10 or more to generate hydroxide, and by adding a coagulant, the hydroxide is coagulated. Precipitate. However, with this method, the concentration of oxidizer decreases very slowly, hydroxide floats up in coagulation and precipitation, and as mentioned earlier, chromium wastewater is reduced and sodium hydroxide is added as chromium sulfate to produce chromium hydroxide. Cr
Even if it is completely treated with C0H)3, if the oxidizing agent treatment is not completed, trivalent chromium will be re-oxidized to hexavalent chromium, so it has the disadvantage that it cannot be completely treated as wastewater after chromium wastewater treatment. . In addition, heavy metals that have a strong tendency to ionize will be redissolved, making it necessary to start the process again.

3)アルカリ−性情性炭分解法 前記酸化剤排水に水酸化ナトリウム水溶液を加え、PH
を10以上に上げ活性炭を添加することにより、活性炭
に酸化剤(過酸化水素)が接触し自己消化する。すなわ
ち、活性炭は水(H2O)を吸収しようとするため、酸
素(02)が放出し、過酸化水素(H202)は水(H
2O)に分解する。このとき−pHを強アルカリ側とし
、活性炭の添加量の多ければ多くするほど処理は速やか
に進行する。しかしながら、活性炭は非常に高価であり
、更に、pHを上げる為に水酸化ナトリウム溶液も過剰
に必要で、処理コストの問題がある。
3) Alkali-erotic carbon decomposition method: Add aqueous sodium hydroxide solution to the oxidizing agent wastewater, and adjust the PH
By raising the value to 10 or more and adding activated carbon, the activated carbon comes into contact with the oxidizing agent (hydrogen peroxide) and self-extinguishes. In other words, activated carbon tries to absorb water (H2O), so oxygen (02) is released, and hydrogen peroxide (H202) absorbs water (H2O).
2O). At this time, the -pH is set to the strongly alkaline side, and the treatment progresses more quickly as the amount of activated carbon added increases. However, activated carbon is very expensive, and furthermore, an excessive amount of sodium hydroxide solution is required to increase the pH, which poses a problem of processing cost.

また以上の活性炭法、アルカリ性処理法およびアルカリ
曝気法では、過酸化水素以外の酸化剤は処理効果を多く
望めない欠点がある。
Furthermore, the activated carbon method, alkaline treatment method, and alkaline aeration method described above have the drawback that oxidizing agents other than hydrogen peroxide do not provide much treatment effect.

4)亜硫酸ソーダ法 亜硫酸ソーダ法では、アルカリ性、酸性に関係なく反応
処理出来るが、高価であり、処理コストの問題がある。
4) Sodium sulfite method The sodium sulfite method allows reaction treatment regardless of whether it is alkaline or acidic, but it is expensive and has the problem of processing cost.

本発明は前記欠点を解決し、処理時間、処理コストを従
来より早く、より安価にする処理方、法を提供するもの
である。
The present invention solves the above-mentioned drawbacks and provides a processing method that makes processing time and processing cost faster and cheaper than before.

[問題点を解決するための手段及び作用]本発明は、酸
化剤を含有する重金属排水の処理において、前記酸化剤
を分解する為に、亜硫酸水素ナトリウムを用いた事を特
徴とする酸化剤分解法である。酸化剤のうち、過酸化水
素の処理について以下に説明する。
[Means and effects for solving the problems] The present invention provides an oxidizing agent decomposition method characterized in that sodium hydrogen sulfite is used to decompose the oxidizing agent in the treatment of heavy metal wastewater containing the oxidizing agent. It is. Among the oxidizing agents, the treatment of hydrogen peroxide will be described below.

酸化剤である過酸化水素が亜硫酸水素ナトリウムによっ
て処理されるということの原理を化学反応式に表わすと
、下記のようになる。
The principle behind the treatment of hydrogen peroxide, which is an oxidizing agent, with sodium hydrogen sulfite can be expressed as a chemical reaction equation as follows.

2H20z+H2SO4+2NaHSO3+ 2H20
+Na25Oa+2H2Sb上記反応式を説明すると、
亜硫酸イオン(SO32−)が硫酸イオン(SO42−
)になる過程で過酸化水素(l202)の酸素(0)1
個が5032−に付き5042−となり、亜硫酸水素ナ
トリウムの水素(H)により硫@ (H2SO4)にな
る、また、亜硫酸水素ナトリウムのナトリウムイオン(
Na◆)については、亜硫酸水素ナトリウムの8032
−が前記反応より5042−となり、Na・ と結合し
硫酸ナトリラム(Na2 SO4)となる。以上のこと
により、 H2O2は水(H2O)になる。
2H20z+H2SO4+2NaHSO3+ 2H20
+Na25Oa+2H2Sb To explain the above reaction formula,
Sulfite ion (SO32-) becomes sulfate ion (SO42-
) Oxygen (0)1 of hydrogen peroxide (l202)
5032- becomes 5042-, and the hydrogen (H) of sodium hydrogen sulfite becomes sulfur @ (H2SO4). Also, the sodium ion of sodium hydrogen sulfite (
For Na◆), 8032 of sodium bisulfite
- becomes 5042- through the above reaction, and combines with Na. to form sodium sulfate (Na2SO4). As a result of the above, H2O2 becomes water (H2O).

上記反応を排水処理施設においてスムーズに行わなけれ
ばいけない。そこで、各酸化剤含有排水を受槽で受け、
硫酸においてpHを2.5以下とする。ここで、酸化剤
含有排水は、 pHが2.5以下となっているので、は
とんど硫酸は必要がない0次に亜硫酸水素ナトリウム水
溶液を用いて酸化剤の瞬時処理を行なう、なおここで処
理反応を感知するために酸化還元電位計(ORPメータ
ー)を利用する。前記処理を行うことにより酸化剤が分
解される0次の重金属の処理は、例えば石灰乳でアルカ
リ性pH10とし、水酸化物を生成し凝集沈殿にするこ
とが出来る。また、イオン交換法、RO法、UF法等の
処理も出来る。尚、前記pH10にし水酸化物を生成す
るという記述で、pH10にする根拠はPHIO以下で
あれば水酸化物は生成せず、P)110以上であるとイ
オン化傾向の大きい重金属の水酸化物が再溶解し、各重
金属濃度が高くなってしまうからである。
The above reaction must be carried out smoothly in a wastewater treatment facility. Therefore, each oxidizing agent-containing wastewater is received in a receiving tank,
Adjust the pH to 2.5 or less in sulfuric acid. Here, the oxidizing agent-containing wastewater has a pH of 2.5 or less, so sulfuric acid is not necessary, and the oxidizing agent is instantaneously treated using an aqueous solution of sodium bisulfite. An oxidation-reduction potentiometer (ORP meter) is used to sense the treatment reaction. For the treatment of zero-order heavy metals, in which the oxidizing agent is decomposed by performing the above-mentioned treatment, it is possible, for example, to make the metal alkaline to pH 10 with milk of lime, and to generate hydroxide and coagulate and precipitate it. Further, treatments such as ion exchange method, RO method, UF method, etc. can also be performed. In addition, in the above description that hydroxide is generated when the pH is set to 10, the basis for setting the pH to 10 is that if it is below PHIO, hydroxide will not be formed, and if it is above 110, heavy metal hydroxides that have a strong ionization tendency will be generated. This is because the heavy metals will be redissolved and the concentration of each heavy metal will increase.

[実施例] 以上、分解の原理、処理要領を考慮し、次の実験を行な
った。
[Example] The following experiment was conducted in consideration of the principle of decomposition and the processing procedure described above.

手  順 1)化学研摩、エツチング工程の水洗水である、過酸化
水素含有排水、過硫酸アンモニウム含有排水、塩化第2
銅含有排水の計3種類の液を1fLずつ混和したものか
ら11とり、サンプルとする。
Step 1) Hydrogen peroxide-containing wastewater, ammonium persulfate-containing wastewater, and dichloromethane, which are the washing water of chemical polishing and etching processes.
A total of three types of copper-containing waste water were mixed together at 1 fL each, and 11 samples were taken as samples.

2)過酸化水素濃度を調べる。(濃度試験法は後述のH
2O2分析法による) 3)上記液を、硫酸にてpH2,5以下とし、亜硫酸水
素ナトリウム水溶液(40g/文)を、2)で調べた過
酸化水素濃度における必要量加え、ざらにH2O2分析
法により確認しながら、過酸化水素の濃度が3PP膳以
下になるまで亜硫酸水素ナトリウム溶液を2ccずつ加
えて行く。
2) Check the hydrogen peroxide concentration. (Concentration test method is described below.
3) Adjust the pH of the above solution to 2.5 or below with sulfuric acid, add the required amount of sodium hydrogen sulfite aqueous solution (40 g/liter) to the hydrogen peroxide concentration determined in 2), and roughly analyze the solution using the H2O2 analysis method. While checking, add sodium bisulfite solution 2 cc at a time until the concentration of hydrogen peroxide becomes 3PP or less.

4)3)手順操作後、酸化還元電位を計る。  (OR
Pメーターを使用) 結果 過酸化水素の濃度は約1100ppであり、計算値によ
る亜硫酸水素ナトリウム必要量は0.31gである。
4) After the procedure in 3), measure the redox potential. (OR
Using a P meter) The resulting concentration of hydrogen peroxide is approximately 1100 pp, and the calculated amount of sodium bisulfite required is 0.31 g.

しかしこの実施例では過硫酸アンモニウム及び塩化!$
2銅含有排水が混合しているので、次の様な反応がおこ
る。
However, in this example, ammonium persulfate and chloride! $
Since the two copper-containing wastewaters are mixed, the following reaction occurs.

(NH4)2S20B+CuC1’2+Cu5Oa+(
NHn)zsOn+cj’2この様に塩素が遊離し、こ
の酸化物質の生成により、上記計算値より過剰に亜硫酸
水素ナトリウムが必要となる。すなわち Chの濃度も約1100ppであったので、上記計算式
より合計的0.45gが必要量となる。40g/I!の
溶液として約11ccである。実験の結果、12ccで
過酸化水素濃度は< 1 ppmとなった。また、その
時の酸化還元電位は250+wVであった。クロム処理
に対する酸化還元電位は270mVであり、すなわち酸
化還元電位計(ORPメーター)を用いることができる
(NH4)2S20B+CuC1'2+Cu5Oa+(
NHn)zsOn+cj'2 Chlorine is liberated in this way, and due to the production of this oxidized substance, sodium bisulfite is required in excess of the above calculated value. That is, since the concentration of Ch was also about 1100 pp, the total required amount was 0.45 g from the above calculation formula. 40g/I! It is about 11 cc as a solution. As a result of the experiment, the hydrogen peroxide concentration was <1 ppm at 12 cc. Further, the oxidation-reduction potential at that time was 250+wV. The redox potential for chromium treatment is 270 mV, ie a redox potentiometer (ORP meter) can be used.

H2O2分析法 (試 薬〉 TiCRa 5.5g、(NH4)2S0410gを1
8MのH250450履!に加え加熱溶解させる。冷却
後、水175a+1!に注意深く加え250峠の定容と
する。
H2O2 analysis method (reagents) 5.5 g of TiCRa, 10 g of (NH4)2S0
8M H250450 shoes! and heat to dissolve. After cooling, water 175a+1! Add carefully to make a constant volume of 250 toge.

く試験方法) 一定の試料1〜3層i’(H20zとして10〜100
濤g)を10III!のメスフラスコにとり、チタン試
薬溶液1.0mA’ 、 i3M H,SO+ 2.5
mj)を加え、60℃で10+sin加熱する。5冷却
後足容とし、ブランク対照で407nmの吸光度を測定
する。
Test method) A certain sample 1 to 3 layers i' (10 to 100 as H20z)
10III! Transfer titanium reagent solution to a volumetric flask at 1.0 mA', i3M H,SO+ 2.5
mj) and heated at 60°C for 10+sin. After cooling for 5 minutes, the absorbance at 407 nm is measured using a blank control.

スタンダード lOルg、 50 gg、 1100J
L〈標 定〉 標準液: H2O2(35%) 0.1ai)を蒸留水
で100+wI!にうすめて標準原液とし、ヨウ素滴定
法によって濃度を標定する。
Standard lOlg, 50gg, 1100J
L〈Standard〉 Standard solution: H2O2 (35%) 0.1ai) with distilled water to 100+wI! Dilute it in water to make a standard stock solution, and standardize the concentration by iodometric titration.

25mj)共栓三角フラスコに蒸留水1OII!%(1
÷5)硫酸1III!、Kl O,2gを入れておき、
これに標準原液1.0IIi!を加え、栓をして混合し
たのち、15分間放置する。ビューレットを用いて、力
価の定まった0、0INチオ硫酸ナトリウムで滴定する
。(指示薬、デンプン) 空試験を行い、次の式によって濃度を求める。
25mj) 1OII of distilled water in a stoppered Erlenmeyer flask! %(1
÷5) Sulfuric acid 1III! , Kl O, 2g,
Add to this the standard stock solution 1.0IIi! Add, stopper, mix, and let stand for 15 minutes. Titrate with 0.0 IN sodium thiosulfate using a burette. (Indicator, starch) Perform a blank test and calculate the concentration using the following formula.

標準原液1 all = H2O20,1?mg X 
(T−B)f(T:標定値、B:空試験値、f :力価
)濃度を標定した標準原液の計算量をメスフラスコにと
り蒸留水でうすめl腸p中に10JLgH20zを含む
液に調整する。
Standard stock solution 1 all = H2O20,1? mg
(T-B) f (T: standard value, B: blank test value, f: titer) Take the calculated amount of the standard stock solution with standardized concentration into a volumetric flask and dilute with distilled water to make a solution containing 10 JLgH20z in 1 intestine p. adjust.

過硫酸アンモニウムの定 法 く試 薬) a、過硫酸アンモニウム、 d、2%アニリン硫酸溶液、 e、りん酸、 f、塩酸、 g、ベンゼン。Ammonium persulfate method trial drug) a, ammonium persulfate, d, 2% aniline sulfuric acid solution, e, phosphoric acid, f, hydrochloric acid, g, benzene.

〈機器および器具〉 a6分光光度計(日立181)、 b、振とう機、 C,ウォーターバス、 d、スターラー、 80回転子、 f、エアーポンプ、 g、メスシリンダー(100m文)、 h、ホールピペット (1,5,10層Iり、i、コマ
ゴメピペット (5mi’)、j、ビーカー(100m
文)。
<Equipment and instruments> A6 spectrophotometer (Hitachi 181), b, shaker, C, water bath, d, stirrer, 80 rotor, f, air pump, g, graduated cylinder (100 m), h, hall Pipette (1, 5, 10 layer I, i, Komagome pipette (5mi'), j, beaker (100m)
Sentence).

k、比色管(50厘1)、 1、分液ロート(100■U)。k, colorimetric tube (50 liters 1), 1. Separating funnel (100 μU).

〈フロー) 検水(100臆立) ↓ 2%アニリン硫酸溶液511I! ↓ 30+wjJに濃縮 ↓ 10hJ分液ロートに移す ↓ 塩#2taR,ベンゼン5tsR ↓ 水層を50層p比色管 ↓ 50+sj)にメスアップ ↓ 比色計 スタンダード 0 、250.500.1000.2000芦gなお、
スタンダードも同様に操作する。
<Flow) Water test (100 points) ↓ 2% aniline sulfuric acid solution 511I! ↓ Concentrate to 30+wjJ ↓ Transfer to 10hJ separatory funnel ↓ Salt #2taR, benzene 5tsR ↓ Transfer the aqueous layer to a 50-layer p colorimeter tube ↓ 50+sj) ↓ Colorimeter standard 0, 250.500.1000.2000 g In addition,
Standard operates in the same way.

[発明の効果] 還元剤である重亜硫酸ソーダの適用による効果1)酸化
剤を硫酸酸性とし、亜硫酸水素ナトリウムを必要量添加
することにより過酸化水素濃度が<lpp腸となり、酸
化還元電位としても250■V゛と適性値の範囲にある
ため、処理プロセスとして酸化還元電位計を適用するこ
とにより酸化剤が数秒で処理されて、処理時間が極端に
短縮した。また、亜硫酸水素ナトリウムを用いることに
より、従来より安価に処理ができるようになった。
[Effects of the invention] Effects of applying sodium bisulfite as a reducing agent 1) By making the oxidizing agent acidic with sulfuric acid and adding the required amount of sodium bisulfite, the hydrogen peroxide concentration becomes <lpp, and the redox potential also decreases. Since the value was within the appropriate range of 250 V, the oxidizing agent was treated in a few seconds by applying a redox electrometer as a treatment process, and the treatment time was extremely shortened. Furthermore, by using sodium bisulfite, treatment can now be performed at a lower cost than before.

2)過酸化水素含有排水である化学研摩、エツチング工
程排水に適用でき、その低重金属(塩化第二鉄)を含む
酸化剤および酸化剤含有排水が流出したときに、他の重
金属(硫酸ニッケル、塩化ニッケル、硫酸亜鉛、硫酸銅
等)工程排水が混合した後であっても酸化剤の分解処理
は出来る。また、各種酸化剤(過硫酸アンモニウム等)
関係にも適用出来ると言える。
2) Applicable to chemical polishing and etching process wastewater that contains hydrogen peroxide, and when the oxidizing agent contains low heavy metals (ferric chloride) and the oxidizing agent-containing wastewater flows out, other heavy metals (nickel sulfate, nickel sulfate, Oxidizing agents can be decomposed even after they are mixed with process wastewater (nickel chloride, zinc sulfate, copper sulfate, etc.). In addition, various oxidizing agents (ammonium persulfate, etc.)
It can also be applied to relationships.

できる、また、このことは酸化還元電位計による処理に
ついても適していると言える。
It can be said that this is also suitable for processing using a redox electrometer.

Claims (1)

【特許請求の範囲】[Claims] 酸化剤を含有する重金属排水の処理において、前記酸化
剤を分解する為に、亜硫酸水素ナトリウムを用いた事を
特徴とする酸化剤分解法。
An oxidizing agent decomposition method characterized in that sodium bisulfite is used to decompose the oxidizing agent in the treatment of heavy metal wastewater containing the oxidizing agent.
JP12060085A 1985-06-05 1985-06-05 Method for decomposing oxidizing agent Pending JPS61283393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12060085A JPS61283393A (en) 1985-06-05 1985-06-05 Method for decomposing oxidizing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12060085A JPS61283393A (en) 1985-06-05 1985-06-05 Method for decomposing oxidizing agent

Publications (1)

Publication Number Publication Date
JPS61283393A true JPS61283393A (en) 1986-12-13

Family

ID=14790268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12060085A Pending JPS61283393A (en) 1985-06-05 1985-06-05 Method for decomposing oxidizing agent

Country Status (1)

Country Link
JP (1) JPS61283393A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2629446A3 (en) * 1988-03-31 1989-10-06 Crouzet Sa Process for the purification of effluents containing metal ions
JPH01297198A (en) * 1988-05-26 1989-11-30 Nec Corp Treatment of waste water
JP2010517745A (en) * 2007-02-05 2010-05-27 エドワーズ リミテッド Method for treating liquid waste
JP2015151613A (en) * 2014-02-19 2015-08-24 住友大阪セメント株式会社 Method and equipment for processing combustion ash of waste for use in cement production
JP2016019956A (en) * 2014-07-15 2016-02-04 栗田工業株式会社 Treatment method of hydrogen peroxide-containing water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2629446A3 (en) * 1988-03-31 1989-10-06 Crouzet Sa Process for the purification of effluents containing metal ions
JPH01297198A (en) * 1988-05-26 1989-11-30 Nec Corp Treatment of waste water
JP2010517745A (en) * 2007-02-05 2010-05-27 エドワーズ リミテッド Method for treating liquid waste
JP2015151613A (en) * 2014-02-19 2015-08-24 住友大阪セメント株式会社 Method and equipment for processing combustion ash of waste for use in cement production
JP2016019956A (en) * 2014-07-15 2016-02-04 栗田工業株式会社 Treatment method of hydrogen peroxide-containing water

Similar Documents

Publication Publication Date Title
US4416786A (en) Process for the treatment of continuous waste water streams having changing contents of different oxidizable materials with hydrogen peroxide
JP4894403B2 (en) Cyanide-containing wastewater treatment method and apparatus
JPS5845909B2 (en) Arsenic removal method from aqueous media
US3896209A (en) Reduction of hexavalent chromium
JPS61283393A (en) Method for decomposing oxidizing agent
IL281874B2 (en) Systems for reducing hydrogen peroxide in wastewater
CN105967383A (en) Method for treating dimethyl sulfoxide in waste water by oxidization
CN109987749B (en) Control method for promoting Fenton oxidation mediated by calcium and organic acid complex
Gurol et al. Oxidation of cyanides in industrial wastewaters by ozone
JP4666275B2 (en) Treatment method for wastewater containing sulfite ions
CN114291886A (en) Method for treating refractory organic matters in water by combining sulfite with chlorine dioxide
EP0432250B1 (en) Process for reducing the cyanide content of a solution
TWI583634B (en) A method for reducing chemical oxygen demand of the waste water
JPS6017595B2 (en) Treatment method for wastewater containing oxidizable substances
JP4423734B2 (en) Cyanide wastewater treatment method
JP6165898B1 (en) Method for treating water containing reducing sulfur component
JPH1099874A (en) Reduction of hexavalent selenium
JP2001259688A (en) Waste liquid treating method
JP7454096B1 (en) Wastewater treatment method
JP2001212597A (en) Method and apparatus for treating wastewater containing sulfoxide compounds
TWI692449B (en) Method for treating organic wastewater
JPS5932194B2 (en) Treatment method for wastewater containing iron cyano complex salts
JP2000254665A (en) Treatment of hexavalent chromium-containing waste water
JP3631515B2 (en) Production of basic ferric sulfate solution from iron salt solution
JPS59162995A (en) Treatment of waste water containing cod component