JP5664995B2 - Recovery method of phosphoric acid from incinerated sludge - Google Patents

Recovery method of phosphoric acid from incinerated sludge Download PDF

Info

Publication number
JP5664995B2
JP5664995B2 JP2009262131A JP2009262131A JP5664995B2 JP 5664995 B2 JP5664995 B2 JP 5664995B2 JP 2009262131 A JP2009262131 A JP 2009262131A JP 2009262131 A JP2009262131 A JP 2009262131A JP 5664995 B2 JP5664995 B2 JP 5664995B2
Authority
JP
Japan
Prior art keywords
phosphoric acid
sludge
incineration
carbon dioxide
filtrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009262131A
Other languages
Japanese (ja)
Other versions
JP2011105546A (en
Inventor
岳史 遠山
岳史 遠山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2009262131A priority Critical patent/JP5664995B2/en
Publication of JP2011105546A publication Critical patent/JP2011105546A/en
Application granted granted Critical
Publication of JP5664995B2 publication Critical patent/JP5664995B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02P20/121

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

本発明は、焼却汚泥から簡便な操作により、重金属をほとんど含まないリン酸又はその塩を選択的に回収する方法に関する。   The present invention relates to a method for selectively recovering phosphoric acid or a salt thereof containing almost no heavy metal from incinerated sludge by a simple operation.

現在、リン資源の枯渇が世界的に問題となっているが、その中でも特にリン肥料などの原料となるリン鉱石のほとんどを輸入に頼っている日本では、環境負荷低減とリン肥料の経済的な生産を確保するために、未利用リン資源の開発が急務となっている。一方、下水汚泥は下水道の設備率の向上や人口の増加などにより年々発生量が増大しており、その中でも生活排水汚泥は年間で3千t程度発生していると見積もられている。この汚泥はリンを多く含んでおり資源化が望まれるが、汚泥中にはその他にも多くの重金属を含んでおり、一部は肥料として緑農地に利用されているが、そのほとんどは焼却後埋め立てられているのが現状である。   Currently, the depletion of phosphorus resources is a global problem. Especially in Japan, where most of the phosphorus ore used as a raw material for phosphorus fertilizers is imported, the environmental burden is reduced and the economics of phosphorus fertilizers are reduced. In order to secure production, the development of unused phosphorus resources is urgently needed. On the other hand, the amount of sewage sludge is increasing year by year due to the improvement of the sewerage equipment rate and population, and among them, it is estimated that domestic wastewater sludge is generated about 3,000 tons per year. This sludge contains a lot of phosphorus and is expected to be recycled, but the sludge also contains a lot of heavy metals, and some of them are used as fertilizers in green farmland, but most of them are incinerated. The current situation is that it is being reclaimed.

焼却汚泥からのリン酸の回収法としては、無機酸又はアルカリで抽出する方法(特許文献1〜7)、還元溶融法(特許文献8)などが検討されている。   As a method for recovering phosphoric acid from incinerated sludge, a method of extracting with an inorganic acid or an alkali (Patent Documents 1 to 7), a reductive melting method (Patent Document 8) and the like have been studied.

特開2001−130903号公報JP 2001-130903 A 特開2004−203641号公報JP 2004-203641 A 特開2007−70217号公報JP 2007-70217 A 特開2007−261878号公報JP 2007-261878 A 特開2007−277056号公報JP 2007-277056 A 特開2008−229576号公報JP 2008-229576 A 特開2008−230940号公報JP 2008-230940 A 特開2004−223315号公報JP 2004-223315 A

しかしながら、無機酸やアルカリによる抽出方法では、リン酸水溶液中に重金属イオンも抽出されてしまうため、リン酸のアルカリ金属塩やアルカリ土類金属塩を選択的に回収するには、複雑な工程と多量の溶媒を使用しなければならないという問題がある。また、還元溶融法では、大がかりな設備と1400℃もの高温度が必要であった。
従って、焼却汚泥から、簡便かつ省エネルギー型のリン酸回収方法の開発が望まれていた。
However, in the extraction method using an inorganic acid or alkali, heavy metal ions are also extracted from the phosphoric acid aqueous solution. Therefore, a complicated process is required to selectively recover the alkali metal salt or alkaline earth metal salt of phosphoric acid. There is a problem that a large amount of solvent must be used. In addition, the reduction melting method requires large-scale equipment and a high temperature of 1400 ° C.
Therefore, development of a simple and energy-saving phosphoric acid recovery method from incinerated sludge has been desired.

そこで本発明者は、焼却汚泥中のリン酸を簡便な手段で効率良く回収すべく種々検討したところ、全く意外にも、焼却汚泥の水懸濁液に二酸化炭素を吹き込めば、リン酸のアルカリ金属塩又はアルカリ土類金属塩が選択的に溶解し、溶液中の重金属量が無機酸抽出法の場合に比べて顕著に低下し、簡便な後処理で重金属含有量の少ないリン酸又はその塩を効率良く回収できることを見出し、本発明を完成した。   Therefore, the present inventor made various studies to efficiently recover phosphoric acid in the incineration sludge by a simple means, and surprisingly, if carbon dioxide was blown into the water suspension of the incineration sludge, the alkali of phosphoric acid was Metal salt or alkaline earth metal salt is selectively dissolved, and the amount of heavy metal in the solution is significantly lower than in the case of the inorganic acid extraction method. Has been found to be efficiently recovered, and the present invention has been completed.

すなわち、本発明は、焼却汚泥の水懸濁液に二酸化炭素を吹き込み、次いで固液分離し、ろ液を回収することを特徴とするリン酸又はその塩の製造法を提供するものである。   That is, the present invention provides a method for producing phosphoric acid or a salt thereof, wherein carbon dioxide is blown into an aqueous suspension of incinerated sludge, followed by solid-liquid separation and recovery of the filtrate.

本発明によれば、特別な設備を必要とせず、簡便かつ省エネルギーの条件で、重金属含有量が低く、肥料その他の用途に直接応用可能なリン酸又はその塩を、焼却汚泥から効率良く回収することができる。   According to the present invention, phosphoric acid or a salt thereof, which requires no special equipment, is simple and energy-saving, has a low heavy metal content, and can be directly applied to fertilizer and other uses, is efficiently recovered from incineration sludge. be able to.

各種方法による焼却汚泥からろ液中へのリン酸濃度変化を示す図である。It is a figure which shows the phosphoric acid concentration change from incineration sludge to a filtrate by various methods. 二酸化炭素吹き込みによるろ液中のリン酸濃度に及ぼす懸濁液濃度の影響を示す図である。It is a figure which shows the influence of the suspension concentration on the phosphoric acid concentration in the filtrate by carbon dioxide blowing. 各種方法による焼却汚泥からろ液中へのナトリウム濃度変化を示す図である。It is a figure which shows the sodium concentration change from incineration sludge to a filtrate by various methods. 各種方法による焼却汚泥からろ液中へのカルシウム濃度変化を示す図である。It is a figure which shows the calcium concentration change from incineration sludge to a filtrate by various methods. 各種方法による焼却汚泥からろ液中へのマグネシウム濃度変化を示す図である。It is a figure which shows the magnesium concentration change from incineration sludge to a filtrate by various methods. 各種方法による焼却汚泥からろ液中へのマンガン濃度変化を示す図である。It is a figure which shows the manganese concentration change from incineration sludge to a filtrate by various methods. 各種方法による焼却汚泥からろ液中への鉄濃度変化を示す図である。It is a figure which shows the iron concentration change from incineration sludge to a filtrate by various methods. 各種方法による焼却汚泥からろ液中への銅濃度変化を示す図である。It is a figure which shows the copper concentration change from incineration sludge to a filtrate by various methods. 二酸化炭素吹き込みにより得られた析出物のX線回折図形を示す図である。It is a figure which shows the X-ray-diffraction figure of the deposit obtained by carbon dioxide blowing.

本発明に用いられる焼却汚泥には、下水処理場から排出される汚泥、工業排水処理時に排出される汚泥等を焼却したものが挙げられる。焼却条件は、通常の焼却場の焼却条件であればよく、例えば500〜1000℃で、1時間程度焼却するのが好ましい。これらの焼却汚泥は、各地方自治体の焼却場、工場の産廃等として排出されるものを用いることができる。   Examples of the incineration sludge used in the present invention include incineration of sludge discharged from a sewage treatment plant, sludge discharged during industrial wastewater treatment, and the like. The incineration conditions may be any incineration conditions of a normal incineration site, and it is preferable to incinerate at 500 to 1000 ° C. for about 1 hour, for example. As these incineration sludges, those discharged as incineration plants and factory wastes of local governments can be used.

これらの焼却汚泥は、通常リンを20〜30%含有するといわれている。また、焼却汚泥中には、ナトリウム、カリウム等のアルカリ金属及びカルシウム、マグネシウム等のアルカリ土類金属等の他、鉄、マンガン、銅、カドミウム、鉛、クロム等の重金属が含まれている。ここで重金属とは、遷移元素およびpブロック元素の典型元素をいう。   These incineration sludges are said to normally contain 20-30% phosphorus. Incinerated sludge contains heavy metals such as iron, manganese, copper, cadmium, lead, and chromium in addition to alkali metals such as sodium and potassium and alkaline earth metals such as calcium and magnesium. Here, heavy metal refers to typical elements of transition elements and p-block elements.

本発明では、まず焼却汚泥を水懸濁液とする、懸濁液中の焼却汚泥濃度は、特に限定されないが、二酸化炭素の吹き込み易さ、抽出したリン酸水溶液の焼却汚泥からの分離等の点から、0.0001〜20質量%、さらに0.0001〜10質量%が好ましい。   In the present invention, first, the incineration sludge is made into an aqueous suspension, and the concentration of the incineration sludge in the suspension is not particularly limited, but it is easy to blow carbon dioxide, separation of the extracted phosphoric acid aqueous solution from the incineration sludge, etc. From the point, 0.0001 to 20% by mass, and further 0.0001 to 10% by mass are preferable.

焼却汚泥水懸濁液に常温(5〜40℃)下で二酸化炭素を吹き込む。二酸化炭素の吹き込みは、焼却汚泥水懸濁液の量及び濃度によっても相違するが、焼却汚泥水懸濁液1Lに対して流量0.1〜10dm3/minで10分〜2時間程度で十分である。 Carbon dioxide is blown into the incineration sludge water suspension at room temperature (5 to 40 ° C.). The blowing of carbon dioxide differs depending on the amount and concentration of the incineration sludge water suspension, but about 10 minutes to 2 hours at a flow rate of 0.1 to 10 dm 3 / min is sufficient for 1 L of the incineration sludge water suspension. It is.

二酸化炭素の吹き込みによって、焼却汚泥中のリン酸のアルカリ金属塩及びアルカリ土類金属塩が水中に溶解してくる。一方、焼却汚泥中の重金属は水中にはほとんど溶解してこない。水中に溶解してくる重金属イオン濃度は、アルカリ金属イオン及びアルカリ土類金属イオンの1/20以下である。
硝酸、硫酸等の無機酸でリン酸を回収しようとした場合には、アルカリ金属イオンやアルカリ土類金属イオンと同様に鉄、マンガン、銅等の重金属イオンも水中に溶解してしまう。これに対し、本発明の二酸化炭素吹き込み法によれば、リン酸とともにアルカリ金属イオン及びアルカリ土類金属イオンは水中に溶出してくるが、鉄、マンガン、銅等の重金属イオンはほとんど水中に溶出してこない。
By blowing carbon dioxide, the alkali metal salt and alkaline earth metal salt of phosphoric acid in the incineration sludge are dissolved in water. On the other hand, heavy metals in incineration sludge are hardly dissolved in water. The concentration of heavy metal ions dissolved in water is 1/20 or less of alkali metal ions and alkaline earth metal ions.
When an attempt is made to recover phosphoric acid with an inorganic acid such as nitric acid or sulfuric acid, heavy metal ions such as iron, manganese and copper are dissolved in water as well as alkali metal ions and alkaline earth metal ions. In contrast, according to the carbon dioxide blowing method of the present invention, alkali metal ions and alkaline earth metal ions are eluted in water together with phosphoric acid, but heavy metal ions such as iron, manganese and copper are almost eluted in water. I won't do it.

従って、固液分離によりろ液を回収すれば、重金属含有量の少ないリン酸又はその塩を選択的に得ることができる。固液分離は、通常のろ過手段、例えば沈降分離を用いたろ過を採用できる。   Therefore, if the filtrate is recovered by solid-liquid separation, phosphoric acid having a heavy metal content or a salt thereof can be selectively obtained. For the solid-liquid separation, a usual filtration means, for example, filtration using sedimentation separation can be employed.

得られるろ液中の重金属イオン濃度は、アルカリ金属及びアルカリ土類金属イオン濃度の1/20以下であるから、このろ液はそのままリン酸水溶液として用いることができる。このろ液から、重金属をさらに除去する手段、例えば凝集剤沈降処理などを行って、さらに重金属を減少させてもよい。また、得られたリン酸又はその塩の水溶液は、水を留去する、あるいはアルカリを添加して沈殿させ、リン酸塩固体として利用することもできる。   Since the heavy metal ion concentration in the obtained filtrate is 1/20 or less of the alkali metal and alkaline earth metal ion concentration, this filtrate can be used as it is as an aqueous phosphoric acid solution. From this filtrate, a heavy metal may be further reduced by performing a means for further removing heavy metal, for example, a coagulant sedimentation treatment. Moreover, the obtained aqueous solution of phosphoric acid or a salt thereof can be used as a phosphate solid by distilling off water or adding an alkali to precipitate.

本発明方法により得られるリン酸又はその塩は、重金属含有量が少ないので、そのまま肥料等として利用できる他、セメント等のスラリー流動性改善のための流動化剤等にも利用することができる。   Since the phosphoric acid or salt thereof obtained by the method of the present invention has a low heavy metal content, it can be used as it is as a fertilizer or the like, and can also be used as a fluidizing agent for improving slurry fluidity such as cement.

次に実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれら実施例に何ら限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated still in detail, this invention is not limited to these Examples at all.

実施例1
(方法)
焼却汚泥を純水中に懸濁液濃度0.01〜0.8質量%となるよう浸漬させ、室温下で二酸化炭素を流量1dm3・min-1で0〜60分間吹き込みながら攪拌させ、焼却汚泥を溶解させた。その後、懸濁液はろ過を行うことで残査とリン酸を含有したろ液とに分離した。さらに、ろ液からのリン酸塩の回収は単純に溶液を加熱することにより蒸発乾固させ、粉体試料として回収した。また、比較として硝酸溶液及び純水で焼却汚泥を溶解させ同様の検討を行った。なお、得られた試料のキャラクタリゼーションはX線回折及び誘導結合プラズマ発光分析より行った。
Example 1
(Method)
Incineration sludge is immersed in pure water to a suspension concentration of 0.01 to 0.8 mass%, and stirred at room temperature while blowing carbon dioxide at a flow rate of 1 dm 3 · min −1 for 0 to 60 minutes. Sludge was dissolved. Thereafter, the suspension was separated into a residue and a filtrate containing phosphoric acid by filtration. Furthermore, the phosphate was recovered from the filtrate by evaporating to dryness by simply heating the solution and collecting it as a powder sample. For comparison, incineration sludge was dissolved with a nitric acid solution and pure water, and the same examination was performed. The obtained sample was characterized by X-ray diffraction and inductively coupled plasma emission analysis.

(結果)
各種方法により焼却汚泥を溶解させたときの、ろ液中のリン酸濃度の経時変化を図1に示す。純水中に焼却汚泥を浸漬させたときにはリン酸の溶出量はわずかであり、時間が経過しても変化は見られないが、硝酸溶液中に浸漬させた場合には速やかにリン酸が溶出し、約40ppmと高い値を示した。また、二酸化炭素吹き込みによる方法では硝酸処理よりも回収量は低いながらも、約30ppmと硝酸処理の75%程度回収することができた。なお、それぞれの溶液のpHは3(硝酸)、5.3(二酸化炭素吹き込み)、5.8(純水)であるため、二酸化炭素吹き込みにより高い回収率が得られたのは酸による効果ではないものと考えられる。また、焼却汚泥懸濁液濃度を変化させたところ、懸濁液濃度の増大にともないリン酸濃度も直線的に増大する傾向が見られた(図2)。
(result)
FIG. 1 shows changes with time of the phosphoric acid concentration in the filtrate when incineration sludge is dissolved by various methods. When incinerated sludge is immersed in pure water, the amount of phosphoric acid eluted is slight and does not change over time, but when immersed in nitric acid solution, phosphoric acid is eluted quickly. The value was as high as about 40 ppm. Further, in the method by blowing carbon dioxide, although the recovery amount was lower than that of nitric acid treatment, about 30 ppm and about 75% of nitric acid treatment could be recovered. In addition, since the pH of each solution is 3 (nitric acid), 5.3 (carbon dioxide blowing), and 5.8 (pure water), the high recovery rate was obtained by blowing carbon dioxide because of the acid effect. It is thought that there is nothing. Further, when the incineration sludge suspension concentration was changed, the phosphoric acid concentration tended to increase linearly as the suspension concentration increased (FIG. 2).

溶液中のナトリウムイオン、カルシウムイオン及びマグネシウムイオン濃度を測定した結果を、図3〜5に示す。二酸化炭素吹き込みにより、ナトリウムイオン、カルシウムイオン及びマグネシウムイオンは、リン酸とともに水中に溶出することがわかった。   The result of having measured the sodium ion, calcium ion, and magnesium ion density | concentration in a solution is shown to FIGS. It was found that sodium ion, calcium ion and magnesium ion were eluted into water together with phosphoric acid by blowing carbon dioxide.

次に、溶液中への鉄、マンガン及び銅の溶出量について測定した結果を図6〜8に示す。純水中では鉄、マンガン及び銅ともに溶出は見られないが、硝酸処理では15分程度で急激に溶出量は増大し、鉄イオン濃度1.3ppm、マンガンイオン濃度7.5ppm、銅イオン濃度2.6ppmと高い値を示した。それに対し、二酸化炭素吹き込みでは鉄、マンガン、銅イオン濃度は時間が経過してもほとんど増大せず、1時間経過後の溶液中でも鉄イオン濃度0.2ppm、マンガンイオン濃度0ppm(定量限界以下)、銅イオン濃度0.3ppmと、硝酸処理と比較して1/7程度の溶出に抑えることができた。   Next, the result of having measured about the elution amount of iron, manganese, and copper in a solution is shown to FIGS. In pure water, elution of iron, manganese, and copper is not observed, but in nitric acid treatment, the elution amount increases rapidly in about 15 minutes, and the iron ion concentration is 1.3 ppm, the manganese ion concentration is 7.5 ppm, and the copper ion concentration is 2 The value was as high as .6 ppm. In contrast, when carbon dioxide was blown, the iron, manganese, and copper ion concentrations hardly increased over time, and the iron ion concentration was 0.2 ppm and the manganese ion concentration was 0 ppm (below the limit of quantification) in the solution after 1 hour. The copper ion concentration was 0.3 ppm, and it was possible to suppress the elution to about 1/7 as compared with the nitric acid treatment.

重金属含有量の少ないリン酸塩水溶液を得ることができたので、このろ液を蒸発乾固させたところ、純水及び二酸化炭素吹き込みでは灰白色の粉体が得ることができたが、硝酸処理物では薄桃色に着色した粉体が得られた。そこで、二酸化炭素吹込みにより得られた析出物のX線回折図形を図9に示す。二酸化炭素吹き込み処理後においても残渣のX線回折図形は、多少結晶性が低下するだけで変化は見られなかった。一方、二酸化炭素吹き込み処理後のろ液を蒸発乾固させて得られた析出物は、リン酸一水素カルシウム(DCPA)であることが確認できたが、高角度側へのピークシフトも確認できた。
以上の結果から、表1に示すように、焼却汚泥に二酸化炭素を吹き込むだけの簡便なプロセスで重金属含有量の少ないリン酸塩を回収することが可能であった。
Since an aqueous phosphate solution with a low heavy metal content could be obtained, the filtrate was evaporated to dryness. When pure water and carbon dioxide were blown, an off-white powder could be obtained. Then, a light pink colored powder was obtained. Therefore, an X-ray diffraction pattern of the precipitate obtained by blowing carbon dioxide is shown in FIG. Even after the carbon dioxide blowing treatment, the X-ray diffraction pattern of the residue did not change with only a slight decrease in crystallinity. On the other hand, the precipitate obtained by evaporating and drying the filtrate after the carbon dioxide blowing treatment was confirmed to be calcium monohydrogen phosphate (DCPA), but the peak shift toward the high angle side could also be confirmed. It was.
From the above results, as shown in Table 1, it was possible to recover a phosphate having a low heavy metal content by a simple process in which carbon dioxide was blown into incineration sludge.

Figure 0005664995
Figure 0005664995

Claims (2)

重金属を含む焼却汚泥濃度0.0001〜20質量%の水懸濁液に5〜40℃で二酸化炭素を吹き込み、次いで固液分離し、ろ液を回収することを特徴とするリン酸のアルカリ金属塩又はアルカリ土類金属塩の製造法。 Blown carbon dioxide at 5 to 40 ° C. to burn却汚mud concentration from 0.0001% by weight of the aqueous suspension containing heavy metals, then solid-liquid separation, phosphoric acid and recovering the filtrate A method for producing an alkali metal salt or alkaline earth metal salt . 得られるリン酸のアルカリ金属塩又はアルカリ土類金属塩中の重金属含有量が、アルカリ金属及びアルカリ土類金属含有量の1/20以下である請求項1記載の製造法。 Heavy metals content of an alkali metal salt or an alkaline earth metal in the salt of the resulting phosphoric acid, process according to claim 1 Symbol placement is 1/20 or less of alkali metal and alkaline earth metal content.
JP2009262131A 2009-11-17 2009-11-17 Recovery method of phosphoric acid from incinerated sludge Expired - Fee Related JP5664995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009262131A JP5664995B2 (en) 2009-11-17 2009-11-17 Recovery method of phosphoric acid from incinerated sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009262131A JP5664995B2 (en) 2009-11-17 2009-11-17 Recovery method of phosphoric acid from incinerated sludge

Publications (2)

Publication Number Publication Date
JP2011105546A JP2011105546A (en) 2011-06-02
JP5664995B2 true JP5664995B2 (en) 2015-02-04

Family

ID=44229492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009262131A Expired - Fee Related JP5664995B2 (en) 2009-11-17 2009-11-17 Recovery method of phosphoric acid from incinerated sludge

Country Status (1)

Country Link
JP (1) JP5664995B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6041610B2 (en) * 1979-07-27 1985-09-18 住友金属工業株式会社 Method for recovering phosphorus and vanadium from dephosphorization slag
JPS5622613A (en) * 1979-07-27 1981-03-03 Sumitomo Metal Ind Ltd Recovering method for phosphorus from dephosphorization slag
JPS5815027A (en) * 1981-07-14 1983-01-28 Sumitomo Metal Ind Ltd Recovering method for alkali metal, vanadium and phosphorus from desulfurization and dephosphorization slag
JP2004223315A (en) * 2003-01-20 2004-08-12 Mie Prefecture Method for recovering phosphate and zeolite
JP2004267908A (en) * 2003-03-07 2004-09-30 Kurita Water Ind Ltd Device and method for processing incineration ash
JP4259270B2 (en) * 2003-10-22 2009-04-30 栗田工業株式会社 Incineration main ash treatment method
JP5213344B2 (en) * 2007-03-23 2013-06-19 メタウォーター株式会社 Method for recovering phosphorus from sewage sludge incineration ash

Also Published As

Publication number Publication date
JP2011105546A (en) 2011-06-02

Similar Documents

Publication Publication Date Title
KR101604954B1 (en) Manufacturing Method of High Purity Lithium Phosphate from The Waste Liquid of The Exhausted Litium-Ion Battery
JP5625046B2 (en) Recovery of phosphate from sludge
Xu et al. Recovery of phosphorus as struvite from sewage sludge ash
CN108698827B (en) Process for producing phosphorus products from wastewater
DK3084301T3 (en) PROCEDURE FOR TREATING ASHES FROM THE WASTE CONSUMPTION
Gorazda et al. From sewage sludge ash to calcium phosphate fertilizers
KR20200065503A (en) Method of recovery of valuable metals from scrap containing cathode materials of lithium ion battery
CN106517301B (en) A kind of method that basic copper chloride is reclaimed in the contained waste liquid from sulfuric acid system
JP2016172654A (en) Method for recovering iron phosphate
EP3041795B1 (en) Electrodialytic separation of heavy metals from particulate material
CN104609443A (en) Method and equipment for extracting potassium salt from sintering machine head electroprecipitating dust in metallurgical industry
JP2004035937A (en) Method of recovering chloride from aqueous solution
JP5118572B2 (en) Sewage treatment method
JP6260332B2 (en) Method and apparatus for treating waste-based combustion ash used in cement production
JP2011129336A (en) Recovery method of manganese from battery
JP3612543B2 (en) Method for fractional collection of aluminum and phosphorus
JP7115115B2 (en) Method for recovering phosphate from steel slag
CN110922009A (en) Treatment method of sludge containing heavy metals
JP5664995B2 (en) Recovery method of phosphoric acid from incinerated sludge
CN103014334A (en) Method for replacement dissolution of bastnaesite (bastnasite)
KR20160111875A (en) Method of producing gypsum and method of producing cement composition
KR20160124387A (en) Process of preparation for recycling coagulant based on aluminium in waste purification sludge
JP2000109938A (en) Method for recovering valuable metal from fly ash
JP2001046996A (en) Treatment of waste
KR20230122055A (en) Method for producing industrial phosphoric acid from sewage sludge ash

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141128

R150 Certificate of patent or registration of utility model

Ref document number: 5664995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees