JP2015144997A - Method for treating wastewater containing sulfate ions and boron, and equipment for treating the same - Google Patents

Method for treating wastewater containing sulfate ions and boron, and equipment for treating the same Download PDF

Info

Publication number
JP2015144997A
JP2015144997A JP2014018881A JP2014018881A JP2015144997A JP 2015144997 A JP2015144997 A JP 2015144997A JP 2014018881 A JP2014018881 A JP 2014018881A JP 2014018881 A JP2014018881 A JP 2014018881A JP 2015144997 A JP2015144997 A JP 2015144997A
Authority
JP
Japan
Prior art keywords
boron
sulfate ions
sulfate
concentrated water
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014018881A
Other languages
Japanese (ja)
Other versions
JP6105500B2 (en
Inventor
長谷川 進
Susumu Hasegawa
進 長谷川
年博 松田
Toshihiro Matsuda
年博 松田
斉藤 彰
Akira Saito
彰 斉藤
紘史 丸野
Hiroshi Maruno
紘史 丸野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2014018881A priority Critical patent/JP6105500B2/en
Publication of JP2015144997A publication Critical patent/JP2015144997A/en
Application granted granted Critical
Publication of JP6105500B2 publication Critical patent/JP6105500B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide, when treating wastewater containing sulfate ions and boron, a treatment method capable of increasing a rate of adsorption of boron on a laminar double hydroxide.SOLUTION: The treatment method comprises: a first step of passing raw water (wastewater) containing sulfate ions and boron through a reverse osmosis membrane (RO membrane) module of a reverse osmosis membrane device and thereby having sulfate ions removed from raw water (wastewater) containing sulfate ions and boron; and, thereafter, a second step of supplying permeated water (wastewater) having sulfate ions removed and containing boron to an LDH adsorption tower 2, thereby contacting the permeated water and laminar double hydroxide, and having boron in the permeated water adsorbed by the laminae double hydroxide and thereby removed.

Description

本発明は、硫酸イオンおよびホウ素を含有する排水からホウ素を除去する技術に関する。   The present invention relates to a technique for removing boron from wastewater containing sulfate ions and boron.

石炭火力発電所、窯業所などで発生する脱硫排水には、硫酸イオンとともにホウ素が多量に含まれている。   Desulfurization effluents generated at coal-fired power plants, ceramics plants, etc. contain a large amount of boron together with sulfate ions.

ここで、ホウ素含有排水からホウ素を除去する方法として、例えば、特許文献1に記載の方法がある。特許文献1に記載の方法は、まず、ホウ素含有水を蒸発濃縮法などにより濃縮してホウ素濃縮水とする。その後、このホウ素濃縮水を層状無機水酸化物と接触させ、ホウ素濃縮水中のホウ素を層状無機水酸化物に吸着させて除去する。   Here, as a method of removing boron from boron-containing wastewater, for example, there is a method described in Patent Document 1. In the method described in Patent Document 1, first, boron-containing water is concentrated by an evaporation concentration method or the like to obtain boron-concentrated water. Thereafter, the boron-enriched water is brought into contact with the layered inorganic hydroxide, and boron in the boron-enriched water is adsorbed and removed by the layered inorganic hydroxide.

特許文献1には、ホウ素含有水を濃縮した後に層状無機水酸化物に接触させてホウ素を除去することで、ホウ素含有水を濃縮しないで層状無機水酸化物に接触させてホウ素を除去する場合よりも、ホウ素除去率が向上する、と記載されている(特許文献1の明細書の段落0079)。   In Patent Document 1, when boron is removed by concentrating boron-containing water and then contacting with the layered inorganic hydroxide to remove boron, the boron-containing water is contacted with the layered inorganic hydroxide without concentrating the boron-containing water. It is described that the boron removal rate is improved more than that (paragraph 0079 of the specification of Patent Document 1).

特許第5214756号公報Japanese Patent No. 5214756

しかしながら、石炭火力発電所などで発生する例えば脱硫排水(ホウ素だけでなく硫酸イオンも含有する排水)に、特許文献1に記載の方法を適用するのは問題である。硫酸イオンおよびホウ素を含有する排水を層状無機水酸化物と接触させると、ホウ素よりも硫酸イオンが優先的に層状無機水酸化物に吸着される。そのため、硫酸イオンおよびホウ素を含有する排水では、層状無機水酸化物へのホウ素の吸着量が極端に低下する。   However, it is problematic to apply the method described in Patent Document 1 to, for example, desulfurization wastewater (drainage containing not only boron but also sulfate ions) generated in a coal-fired power plant or the like. When waste water containing sulfate ions and boron is brought into contact with the layered inorganic hydroxide, sulfate ions are preferentially adsorbed on the layered inorganic hydroxide over boron. Therefore, in wastewater containing sulfate ions and boron, the amount of boron adsorbed on the layered inorganic hydroxide is extremely reduced.

特許文献1では、ホウ素含有水を濃縮してホウ素濃縮水とし、このホウ素濃縮水を層状無機水酸化物と接触させる。この場合、ホウ素含有水に硫酸イオンが含まれている場合、当該ホウ素含有水の濃縮操作により、ホウ素だけでなく硫酸イオンも濃縮される。この濃縮水を層状無機水酸化物と接触させると、ホウ素よりも硫酸イオンが優先的に層状無機水酸化物に吸着されるので、ホウ素の吸着量が極端に低下してしまう。結果として、層状無機水酸化物が安価であるとはいえ、多量の層状無機水酸化物が必要となる。また、層状無機水酸化物の充填量が少なければ、所望のホウ素濃度の処理水(排水)を得ることができない。   In Patent Document 1, boron-containing water is concentrated to form boron-enriched water, and this boron-enriched water is brought into contact with the layered inorganic hydroxide. In this case, when the boron-containing water contains sulfate ions, not only boron but also sulfate ions are concentrated by the concentration operation of the boron-containing water. When this concentrated water is brought into contact with the layered inorganic hydroxide, sulfate ions are preferentially adsorbed to the layered inorganic hydroxide over boron, so that the amount of boron adsorbed extremely decreases. As a result, a large amount of layered inorganic hydroxide is required even though layered inorganic hydroxide is inexpensive. Further, if the amount of the layered inorganic hydroxide is small, treated water (drainage) having a desired boron concentration cannot be obtained.

なお、層状無機水酸化物は、層状複水酸化物(Layered Double Hydroxides)とも呼ばれる。   The layered inorganic hydroxide is also referred to as layered double hydroxides (Layered Double Hydroxides).

本発明は、上記実情に鑑みてなされたものであって、その目的は、硫酸イオンおよびホウ素を含有する排水を処理するに際し、層状複水酸化物へのホウ素の吸着率を高めることができる処理方法を提供することである。   The present invention has been made in view of the above circumstances, and its purpose is to improve the adsorption rate of boron to the layered double hydroxide when treating wastewater containing sulfate ions and boron. Is to provide a method.

本発明は、硫酸イオンおよびホウ素を含有する排水の処理方法である。この処理方法は、前記排水から硫酸イオンを除去する第1工程と、硫酸イオンが除去された前記排水を層状複水酸化物と接触させて、当該排水中のホウ素を層状複水酸化物に吸着させることで除去する第2工程と、を備える。   The present invention is a method for treating waste water containing sulfate ions and boron. In this treatment method, the first step of removing sulfate ions from the waste water, the waste water from which sulfate ions have been removed are brought into contact with the layered double hydroxide, and boron in the waste water is adsorbed on the layered double hydroxide. And removing the second step.

また、本発明は、硫酸イオンおよびホウ素を含有する排水の処理設備に関するものでもある。この処理設備は、前記排水から硫酸イオンを除去する硫酸イオン除去装置と、前記硫酸イオン除去装置の下流側に配置され、硫酸イオンが除去された前記排水を層状複水酸化物と接触させて、当該排水中のホウ素を層状複水酸化物に吸着させることで除去するLDH吸着塔と、を備える。   The present invention also relates to a wastewater treatment facility containing sulfate ions and boron. This treatment equipment is arranged on the downstream side of the sulfate ion removing device for removing sulfate ions from the waste water, and the waste water from which the sulfate ions have been removed is brought into contact with the layered double hydroxide, And an LDH adsorption tower that removes boron in the wastewater by adsorbing the layered double hydroxide to the layered double hydroxide.

本発明によると、硫酸イオンおよびホウ素を含有する排水を処理するに際し、公知のホウ素含有排水処理技術よりも、層状複水酸化物へのホウ素の吸着率を格段に高めることができる。   According to the present invention, when treating wastewater containing sulfate ions and boron, the adsorption rate of boron to the layered double hydroxide can be remarkably increased as compared with a known boron-containing wastewater treatment technique.

本発明の第1実施形態に係る排水処理設備を示すブロック図である。It is a block diagram which shows the waste water treatment facility which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る排水処理設備を示すブロック図である。It is a block diagram which shows the waste water treatment facility which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る排水処理設備を示すブロック図である。It is a block diagram which shows the waste water treatment facility which concerns on 3rd Embodiment of this invention. 吸着剤として層状複水酸化物を用いた場合の、硫酸イオンおよびホウ素を含有する被処理水(原水)中の硫酸イオン濃度と、ホウ素吸着量との関係を示すグラフである。It is a graph which shows the relationship between the sulfate ion density | concentration in the to-be-processed water (raw water) containing a sulfate ion and a boron at the time of using a layered double hydroxide as an adsorbent, and a boron adsorption amount. 吸着剤として層状複水酸化物を用いた場合の、硫酸イオンおよびホウ素を含有する被処理水(原水)中のホウ素濃度と、ホウ素吸着量との関係を示すグラフである。It is a graph which shows the relationship between the boron density | concentration in the to-be-processed water (raw water) containing a sulfate ion and a boron at the time of using a layered double hydroxide as an adsorbent, and a boron adsorption amount.

以下、本発明を実施するための形態について図面を参照しつつ説明する。以下の説明では、本発明の実施形態に係る排水処理設備の構成について説明する中で、硫酸イオンおよびホウ素を含有する排水の処理方法における各工程について説明する。
ここで、ホウ素は水に溶解したホウ素イオンをいい、例えばホウ酸イオンの形態や水酸化物イオンの形態などで存在する。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. In the following description, in describing the configuration of the wastewater treatment facility according to the embodiment of the present invention, each step in the method for treating wastewater containing sulfate ions and boron will be described.
Here, boron refers to boron ions dissolved in water, and exists in the form of borate ions or hydroxide ions, for example.

(第1実施形態の排水処理設備の構成)
図1に示すように、第1実施形態の排水処理設備100は、その処理工程の上流側から順に、逆浸透膜装置1、およびLDH吸着塔2を備えている。なお、原水(排水)中の硫酸イオンの濃度は、例えば、2000mg/Lであり、ホウ素の濃度は、例えば、200〜500mg/Lである。また、石炭火力発電所などで発生する排ガス中にはSOxが含まれており、この排ガスを水洗すると、SOxは、水中に硫酸イオンとして溶け込む。
(Configuration of wastewater treatment facility of the first embodiment)
As shown in FIG. 1, the wastewater treatment facility 100 of the first embodiment includes a reverse osmosis membrane device 1 and an LDH adsorption tower 2 in order from the upstream side of the treatment process. In addition, the density | concentration of the sulfate ion in raw | natural water (drainage) is 2000 mg / L, for example, and the density | concentration of boron is 200-500 mg / L, for example. Further, SOx is contained in exhaust gas generated at a coal-fired power plant or the like. When this exhaust gas is washed with water, SOx dissolves in the water as sulfate ions.

<逆浸透膜装置(硫酸イオン除去装置)>
逆浸透膜装置1は、RO膜(逆浸透膜)が組み込まれた逆浸透膜モジュール、当該逆浸透膜モジュールへ原水(排水)を供給するポンプなどを具備してなる装置である。
<Reverse osmosis membrane device (sulfate ion removal device)>
The reverse osmosis membrane device 1 is a device comprising a reverse osmosis membrane module in which an RO membrane (reverse osmosis membrane) is incorporated, a pump for supplying raw water (drainage) to the reverse osmosis membrane module, and the like.

硫酸イオンおよびホウ素を含有する原水(排水)を逆浸透膜装置1の逆浸透膜モジュール(RO膜)に通すことで、硫酸イオンおよびホウ素を含有する原水(排水)から硫酸イオンを除去する(第1工程)。当該原水を配管11経由で逆浸透膜装置1の逆浸透膜モジュールに通すと、原水中の硫酸イオンはRO膜で阻止され、硫酸イオンを含有する濃縮水となって配管13を流れる。一方、原水中のホウ素は、硫酸イオンよりもRO膜を透過し易いので、ホウ素を含有する透過水として配管12を流れる。   By passing raw water (drainage) containing sulfate ions and boron through the reverse osmosis membrane module (RO membrane) of the reverse osmosis membrane device 1, sulfate ions are removed from the raw water (drainage) containing sulfate ions and boron (first) 1 step). When the raw water is passed through the reverse osmosis membrane module of the reverse osmosis membrane device 1 via the pipe 11, sulfate ions in the raw water are blocked by the RO membrane and flow through the pipe 13 as concentrated water containing sulfate ions. On the other hand, since boron in raw water is easier to permeate the RO membrane than sulfate ions, it flows through the pipe 12 as permeated water containing boron.

なお、RO膜ではなく、NF膜(ナノろ過膜)を用いて(NF膜により)、硫酸イオンおよびホウ素を含有する排水から硫酸イオンを除去してもよい。さらには、RO膜、NF膜のような膜分離法ではなく、凝集沈殿処理(凝集沈殿法)、電気透析、蒸発濃縮処理(蒸発濃縮法)などにより、硫酸イオンおよびホウ素を含有する排水から硫酸イオンを除去してもよい。   Note that sulfate ions may be removed from wastewater containing sulfate ions and boron by using NF membranes (nanofiltration membranes) instead of RO membranes (by NF membranes). Furthermore, instead of membrane separation methods such as RO membranes and NF membranes, sulfuric acid is removed from wastewater containing sulfate ions and boron by coagulation sedimentation treatment (coagulation sedimentation method), electrodialysis, evaporation concentration treatment (evaporation concentration method), etc. Ions may be removed.

また、処理(第1工程、および後述する第2工程)時のpHとしては特に限定されないがpH5〜pH11で処理することができる。ホウ素イオン除去の観点からは中性〜弱アルカリ性が好ましく、pH7〜9.5更にはpH8〜9で処理される。一方で、逆浸透膜等の膜を利用する場合(第1工程)、pH5〜7程度に調整することによりスケールを抑制することもできる。pHを5〜7に調整した場合、後述するLDH吸着塔における処理(第2工程)前にpHを中性〜弱アルカリ性(例えばpH7〜9.5、更にはpH8〜9)に調整することが好ましい。   Moreover, it is although it does not specifically limit as pH at the time of a process (1st process and the 2nd process mentioned later), It can process by pH 5-pH11. From the viewpoint of removing boron ions, neutral to weak alkaline is preferable, and the treatment is performed at pH 7 to 9.5 and further pH 8 to 9. On the other hand, when a membrane such as a reverse osmosis membrane is used (first step), the scale can be suppressed by adjusting the pH to about 5 to 7. When the pH is adjusted to 5 to 7, the pH can be adjusted to neutral to weakly alkaline (for example, pH 7 to 9.5, further pH 8 to 9) before the treatment in the LDH adsorption tower (second step) described later. preferable.

硫酸イオンを排水から完全に除去する必要は無いが、硫酸イオンの濃度が1000mg/L以下となるように逆浸透膜装置1により硫酸イオンを排水から除去することが好ましい。これは被処理水中の硫酸イオン濃度を1000mg/L以下とすることでLDHへのホウ素吸着量を高めることができるためである。   Although it is not necessary to completely remove sulfate ions from the wastewater, it is preferable to remove sulfate ions from the wastewater by the reverse osmosis membrane device 1 so that the concentration of sulfate ions is 1000 mg / L or less. This is because the boron adsorption amount to LDH can be increased by setting the sulfate ion concentration in the water to be treated to 1000 mg / L or less.

<LDH吸着塔>
逆浸透膜装置1の下流側に配置されたLDH吸着塔2は、層状複水酸化物(LDH)が内部に充填されてなる吸着塔である。なお、層状複水酸化物(Layered Double Hydroxides 略称 LDH)は、陰イオン交換能を有する、無機の骨格(金属水酸化物層)を持った層状化合物であり、次の一般式で表される。
[M2+ 1−x3+ (OH)][An− x/n・mHO]
<LDH adsorption tower>
The LDH adsorption tower 2 disposed on the downstream side of the reverse osmosis membrane device 1 is an adsorption tower in which a layered double hydroxide (LDH) is filled. Note that layered double hydroxide (abbreviation LDH) is a layered compound having an anion exchange ability and an inorganic skeleton (metal hydroxide layer), and is represented by the following general formula.
[M 2+ 1-x M 3+ x (OH) 2] [A n- x / n · mH 2 O]

逆浸透膜装置1により硫酸イオンが除去されたホウ素を含有する透過水(排水)をLDH吸着塔2に供給することで、当該透過水と層状複水酸化物とを接触させ、当該透過水中のホウ素を層状複水酸化物に吸着させることで除去する(第2工程)。ホウ素が除去された透過水(排水)は、処理水として配管14を流れる。   By supplying permeated water (drainage) containing boron ions from which sulfate ions have been removed by the reverse osmosis membrane device 1 to the LDH adsorption tower 2, the permeated water and the layered double hydroxide are brought into contact with each other. Boron is removed by adsorbing to the layered double hydroxide (second step). The permeated water (drainage) from which boron has been removed flows through the pipe 14 as treated water.

ここで、図4は、吸着剤として層状複水酸化物を用いた場合の、硫酸イオンおよびホウ素を含有する被処理水(原水)中の硫酸イオン濃度と、ホウ素吸着量との関係を示すグラフである。図5は、吸着剤として層状複水酸化物を用いた場合の、硫酸イオンおよびホウ素を含有する被処理水(原水)中のホウ素濃度と、ホウ素吸着量との関係を示すグラフである。   Here, FIG. 4 is a graph showing the relationship between the sulfate ion concentration in the treated water (raw water) containing sulfate ions and boron and the boron adsorption amount when the layered double hydroxide is used as the adsorbent. It is. FIG. 5 is a graph showing the relationship between the boron concentration in the water to be treated (raw water) containing sulfate ions and boron and the boron adsorption amount when layered double hydroxide is used as the adsorbent.

まず、図5より、硫酸イオンおよびホウ素を含有する被処理水中のホウ素濃度に関しては、被処理水中のホウ素濃度が高くなるのにほぼ比例して、LDHへのホウ素吸着量も増加することがわかる。これに対して、硫酸イオンおよびホウ素を含有する被処理水中の硫酸イオン濃度に関しては、被処理水中の硫酸イオン濃度が2000mg/Lと高いと、硫酸イオン濃度が1000mg/L以下の場合に比べて、LDHへのホウ素吸着量が極端に低下することがわかる。   First, as shown in FIG. 5, regarding the boron concentration in the water to be treated containing sulfate ions and boron, it can be seen that the amount of boron adsorbed on LDH increases in proportion to the increase in the boron concentration in the water to be treated. . On the other hand, regarding the sulfate ion concentration in the treated water containing sulfate ions and boron, when the sulfate ion concentration in the treated water is as high as 2000 mg / L, compared to the case where the sulfate ion concentration is 1000 mg / L or less. It can be seen that the amount of boron adsorbed on LDH is extremely reduced.

(作用・効果)
本実施形態の排水処理設備100によると、層状無機水酸化物にホウ素よりも優先的に吸着される硫酸イオンを除去した排水を層状複水酸化物と接触させることで、層状複水酸化物にホウ素を吸着させて除去するので、層状複水酸化物へのホウ素の吸着率を高めることができる。そのため、特許文献1に記載の処理方法よりも、ホウ素の吸着量を高めることができる。
(Action / Effect)
According to the wastewater treatment facility 100 of the present embodiment, the layered double hydroxide is brought into contact with the layered double hydroxide by contacting the wastewater from which sulfate ions preferentially adsorbed on the layered inorganic hydroxide with boron are contacted with the layered double hydroxide. Since boron is adsorbed and removed, the adsorption rate of boron to the layered double hydroxide can be increased. Therefore, the adsorption amount of boron can be increased as compared with the processing method described in Patent Document 1.

ここで、硫酸イオンの除去方法としては、本実施形態のようにRO膜(逆浸透膜)またはNF膜(ナノろ過膜)を用いた方が好ましい。凝集沈殿処理(凝集沈殿法)、電気透析、蒸発濃縮処理(蒸発濃縮法)などの方法によっても、硫酸イオンおよびホウ素を含有する排水から硫酸イオンを除去することができるが、例えば、凝集沈殿処理(凝集沈殿法)によると、注入する薬剤が多く必要であり、処理コストの面で不利である。また、電気透析、蒸発濃縮処理(蒸発濃縮法)によると、必要な電力量が大きく、同様に処理コストの面で不利である。薬剤注入が特に必要でなく、且つ電力量も比較的小さくて済む、RO膜(逆浸透膜)またはNF膜(ナノろ過膜)を用いた処理のほうが処理コストを低減することができる。   Here, as a method for removing sulfate ions, it is preferable to use an RO membrane (reverse osmosis membrane) or an NF membrane (nanofiltration membrane) as in this embodiment. Sulfate ions can also be removed from waste water containing sulfate ions and boron by methods such as coagulation precipitation treatment (coagulation precipitation method), electrodialysis, and evaporation concentration treatment (evaporation concentration method). According to the (aggregation precipitation method), a large amount of drug to be injected is required, which is disadvantageous in terms of processing costs. In addition, according to electrodialysis and evaporative concentration treatment (evaporation concentration method), the amount of electric power required is large, which is similarly disadvantageous in terms of processing costs. Treatment using an RO membrane (reverse osmosis membrane) or NF membrane (nanofiltration membrane), which does not require chemical injection and requires only a relatively small amount of electric power, can reduce the treatment cost.

また、本実施形態においては硫酸イオンを2000mg/L含む原水を利用したが、原水中の硫酸イオン濃度は、これに限定されることはない。硫酸イオンを1500mg/L以上含む原水に対して本処理方法を適用することがで、ホウ素の吸着量を高めることができるという効果が大きく発揮される。なお、飽和状態である2000mg/L以上含む原水についてより好適に本処理方法を適用することが出来る。
また、本願でいうLDHは、ナノ層状復水酸化物も含むものである。
In this embodiment, raw water containing 2000 mg / L of sulfate ions is used, but the concentration of sulfate ions in the raw water is not limited to this. By applying this treatment method to raw water containing 1500 mg / L or more of sulfate ions, the effect of increasing the amount of boron adsorbed is greatly exhibited. In addition, this process method can be applied more suitably about the raw | natural water containing 2000 mg / L or more which is a saturated state.
Further, the LDH referred to in the present application includes nano-layered condensed hydroxide.

(第2実施形態の排水処理設備の構成)
図2を参照しつつ、第2実施形態の排水処理設備101について説明する。なお、図2に示す排水処理設備101において、図1に示した排水処理設備100を構成する機器・配管と同様の機器・配管については、同じ符号を付している。
(Configuration of wastewater treatment facility of the second embodiment)
The waste water treatment facility 101 of the second embodiment will be described with reference to FIG. In addition, in the waste water treatment facility 101 shown in FIG. 2, the same code | symbol is attached | subjected about the apparatus and piping similar to the equipment and piping which comprise the waste water treatment facility 100 shown in FIG.

逆浸透膜装置1にて分離された配管15を流れる濃縮水(第1工程において除去された硫酸イオンの濃縮水)中には、ホウ素が含有されている。ホウ素は、硫酸イオンよりもRO膜を透過し易いが、RO膜を透過せずに配管15に流れ出るものもあるからである。第2実施形態の排水処理設備101は、RO膜を透過せずに配管15に流れ出たホウ素も、層状複水酸化物で吸着除去しようとするものである。   Boron is contained in the concentrated water flowing through the pipe 15 separated by the reverse osmosis membrane device 1 (the concentrated water of sulfate ions removed in the first step). This is because boron is easier to permeate the RO membrane than sulfate ions, but some flows out to the pipe 15 without permeating the RO membrane. The wastewater treatment facility 101 according to the second embodiment intends to adsorb and remove boron that has flowed into the pipe 15 without passing through the RO membrane with the layered double hydroxide.

逆浸透膜装置1の濃縮水側には、その処理工程の上流側から順に、硫酸イオン除去槽3、および第2LDH吸着塔4が設置される。逆浸透膜装置1と硫酸イオン除去槽3とは配管15で接続され、硫酸イオン除去槽3と第2LDH吸着塔4とは配管16で接続されている。また、透過水側のLDH吸着塔2下流側の配管14と、濃縮水側の硫酸イオン除去槽3と第2LDH吸着塔4とを結ぶ配管16とは配管18で接続されている。   A sulfate ion removal tank 3 and a second LDH adsorption tower 4 are installed on the concentrated water side of the reverse osmosis membrane device 1 in order from the upstream side of the treatment process. The reverse osmosis membrane device 1 and the sulfate ion removal tank 3 are connected by a pipe 15, and the sulfate ion removal tank 3 and the second LDH adsorption tower 4 are connected by a pipe 16. A pipe 14 on the downstream side of the LDH adsorption tower 2 on the permeate water side and a pipe 16 connecting the sulfate ion removal tank 3 on the concentrated water side and the second LDH adsorption tower 4 are connected by a pipe 18.

<硫酸イオン除去槽>
硫酸イオン除去槽3は、槽本体と、槽本体にPAC(ポリ塩化アルミニウム)などの凝集剤(薬剤)を注入する装置などを具備してなる凝集沈殿槽である。
<Sulfate ion removal tank>
The sulfate ion removal tank 3 is a coagulation sedimentation tank comprising a tank body and a device for injecting a flocculant (chemical) such as PAC (polyaluminum chloride) into the tank body.

<第2LDH吸着塔>
硫酸イオン除去槽3の下流側に配置された第2LDH吸着塔4は、透過水側のLDH吸着塔2と同じく、層状複水酸化物(LDH)が内部に充填されてなる吸着塔である。
<Second LDH adsorption tower>
The second LDH adsorption tower 4 arranged on the downstream side of the sulfate ion removal tank 3 is an adsorption tower in which a layered double hydroxide (LDH) is filled inside, like the LDH adsorption tower 2 on the permeate side.

本実施形態では、逆浸透膜装置1(第1工程)にて除去された硫酸イオンの濃縮水を硫酸イオン除去槽3に投入するとともに、硫酸イオン除去槽3にPAC(凝集剤)を注入することで、当該濃縮水中の硫酸イオンを硫酸カルシウム(硫酸塩)として凝集させる。そして凝集した硫酸カルシウムを槽底から引き抜いて除去する。なお、硫酸カルシウムのカルシウム源は、濃縮水中に元々含まれているカルシウムである。   In this embodiment, the concentrated water of sulfate ions removed by the reverse osmosis membrane device 1 (first step) is introduced into the sulfate ion removal tank 3 and PAC (flocculating agent) is injected into the sulfate ion removal tank 3. Thus, the sulfate ions in the concentrated water are aggregated as calcium sulfate (sulfate). Then, the agglomerated calcium sulfate is pulled out from the tank bottom and removed. In addition, the calcium source of calcium sulfate is calcium originally contained in the concentrated water.

その後、硫酸イオンが除去されたホウ素を含有する濃縮水を配管16経由で第2LDH吸着塔4に供給することで、当該濃縮水と層状複水酸化物とを接触させ、当該濃縮水中のホウ素を層状複水酸化物に吸着させることで除去する(硫酸イオン濃縮水処理工程)。ホウ素が除去された濃縮水(排水)は、処理水として配管17を流れる。   Thereafter, the concentrated water containing boron from which sulfate ions have been removed is supplied to the second LDH adsorption tower 4 via the pipe 16 so that the concentrated water and the layered double hydroxide are brought into contact with each other. It is removed by adsorbing to the layered double hydroxide (sulfate ion concentrated water treatment step). The concentrated water (drainage) from which boron has been removed flows through the pipe 17 as treated water.

ここで、本実施形態では、透過水側のLDH吸着塔2を出てホウ素が除去された透過水の一部を配管18経由で配管16に送り、硫酸イオン除去槽3を出た濃縮水を希釈している。その後、第2LDH吸着塔4にてホウ素を吸着除去している。すなわち、硫酸イオン濃縮水処理工程において、硫酸イオン除去槽3にて硫酸イオンが除去された濃縮水を、第2工程で得られた処理水で希釈した後、第2LDH吸着塔4にて層状複水酸化物と接触させて、当該濃縮水中のホウ素を層状複水酸化物に吸着させることで除去している。   Here, in this embodiment, a part of the permeated water that has exited the permeated water side LDH adsorption tower 2 and from which boron has been removed is sent to the pipe 16 via the pipe 18, and the concentrated water that has exited the sulfate ion removal tank 3 is supplied. It is diluted. Thereafter, boron is adsorbed and removed by the second LDH adsorption tower 4. That is, in the sulfate ion concentrated water treatment step, the concentrated water from which sulfate ions have been removed in the sulfate ion removal tank 3 is diluted with the treated water obtained in the second step, and then the second LDH adsorption tower 4 is used to form a layered composite. In contact with the hydroxide, boron in the concentrated water is removed by adsorbing the layered double hydroxide.

(作用・効果)
本実施形態では、逆浸透膜装置1(第1工程)において除去された硫酸イオンの濃縮水にPAC(凝集剤)を注入することで、当該濃縮水中の硫酸イオンを硫酸塩として凝集させて除去し、その後、層状複水酸化物と接触させて、硫酸イオンが除去された濃縮水中のホウ素を層状複水酸化物に吸着させることで除去する。この構成によると、RO膜などの膜を透過せずに濃縮水側に流れ出たホウ素も、その吸着率を高めて、層状複水酸化物で吸着除去することができる。
(Action / Effect)
In this embodiment, by injecting PAC (flocculating agent) into the concentrated sulfate ion water removed in the reverse osmosis membrane device 1 (first step), the sulfate ions in the concentrated water are aggregated and removed as sulfate. Then, it is brought into contact with the layered double hydroxide and removed by adsorbing boron in the concentrated water from which sulfate ions have been removed to the layered double hydroxide. According to this configuration, boron that has flowed to the concentrated water side without passing through a membrane such as the RO membrane can also be adsorbed and removed by the layered double hydroxide with an increased adsorption rate.

なお、硫酸イオン除去槽3にPAC(凝集剤)ではなく、消石灰(Ca(OH))などの薬剤を注入して、濃縮水中の硫酸イオンを硫酸カルシウム(硫酸塩)として析出させて除去し、その後、層状複水酸化物と接触させて、硫酸イオンが除去された濃縮水中のホウ素を層状複水酸化物に吸着させることで除去してもよい。 In addition, not PAC (flocculating agent) but a chemical such as slaked lime (Ca (OH) 2 ) is injected into the sulfate ion removal tank 3 to precipitate and remove sulfate ions in the concentrated water as calcium sulfate (sulfate). Then, it may be removed by contacting with the layered double hydroxide and adsorbing boron in the concentrated water from which sulfate ions have been removed to the layered double hydroxide.

また、本実施形態では、硫酸イオン除去槽3にて硫酸イオンが除去された濃縮水を、透過水側のLDH吸着塔2で得られた処理水で希釈した後、第2LDH吸着塔4にて層状複水酸化物と接触させて、当該濃縮水中のホウ素を層状複水酸化物に吸着させることで除去している。この構成によると、第2LDH吸着塔4に供給される濃縮水が処理水で希釈されるので、硫酸イオン除去槽3を出た濃縮水が硫酸イオンを2000mg/L以上含む場合であっても、第2LDH吸着塔4に入る前に希釈されることにより硫酸イオン濃度が低下するので(例えば、硫酸イオン濃度が1000mg/L以下となるように濃縮水中の硫酸イオン濃度を低下させる)、第2LDH吸着塔4において、硫酸イオンによってホウ素吸着が阻害されることを防止することができる(第3実施形態においても同様)。   In the present embodiment, the concentrated water from which sulfate ions have been removed in the sulfate ion removal tank 3 is diluted with treated water obtained in the LDH adsorption tower 2 on the permeate side, and then the second LDH adsorption tower 4 is used. In contact with the layered double hydroxide, boron in the concentrated water is removed by adsorbing the layered double hydroxide to the layered double hydroxide. According to this configuration, since the concentrated water supplied to the second LDH adsorption tower 4 is diluted with the treated water, even if the concentrated water exiting the sulfate ion removal tank 3 contains 2000 mg / L or more of sulfate ions, Since the sulfate ion concentration is lowered by being diluted before entering the second LDH adsorption tower 4 (for example, the sulfate ion concentration in the concentrated water is lowered so that the sulfate ion concentration is 1000 mg / L or less), the second LDH adsorption is performed. In the tower 4, it is possible to prevent boron adsorption from being inhibited by sulfate ions (the same applies to the third embodiment).

(第3実施形態の排水処理設備の構成)
図3を参照しつつ、第3実施形態の排水処理設備102について説明する。なお、図3に示す排水処理設備102において、図2に示した排水処理設備101を構成する機器・配管と同様の機器・配管については、同じ符号を付している。
(Configuration of wastewater treatment facility of the third embodiment)
The waste water treatment facility 102 of the third embodiment will be described with reference to FIG. In addition, in the waste water treatment facility 102 shown in FIG. 3, the same code | symbol is attached | subjected about the apparatus and piping similar to the device and piping which comprise the waste water treatment facility 101 shown in FIG.

<硫酸イオン除去槽>
第2実施形態と第3実施形態との主な相違点は、硫酸イオン除去槽にある。第2実施形態の硫酸イオン除去槽3は、PAC(ポリ塩化アルミニウム)などの凝集剤(薬剤)を注入する装置を具備しているが、本実施形態の硫酸イオン除去槽5は、薬剤の注入装置を特に有さない。本実施形態の硫酸イオン濃縮水処理工程は、晶析法による工程であり、薬剤を特に必要としない工程である。また、硫酸イオン除去槽5は、硫酸イオンの濃縮水中の硫酸イオンを、晶析法により除去する槽である。
<Sulfate ion removal tank>
The main difference between the second embodiment and the third embodiment is the sulfate ion removal tank. The sulfate ion removal tank 3 of the second embodiment includes a device for injecting an aggregating agent (drug) such as PAC (polyaluminum chloride), but the sulfate ion removal tank 5 of the present embodiment is an injection of a drug. Does not have any equipment. The sulfate ion concentrated water treatment process of this embodiment is a process by a crystallization method, and is a process that does not particularly require a chemical. The sulfate ion removal tank 5 is a tank for removing sulfate ions in concentrated sulfate ion water by a crystallization method.

<戻し配管>
逆浸透膜装置1(第1工程)において除去された硫酸イオンの濃縮水の一部を、逆浸透膜装置1(第1工程)の上流側に戻すための配管19を、本実施形態の排水処理設備102は有する。配管19は、逆浸透膜装置1と硫酸イオン除去槽3とを接続する配管15から分岐し、原水を逆浸透膜装置1に供給する配管11に下流端が接続されている。
<Return piping>
The pipe 19 for returning a part of the concentrated sulfate ion water removed in the reverse osmosis membrane device 1 (first step) to the upstream side of the reverse osmosis membrane device 1 (first step) is drained in the present embodiment. The processing facility 102 has. The pipe 19 branches from a pipe 15 that connects the reverse osmosis membrane device 1 and the sulfate ion removal tank 3, and a downstream end is connected to a pipe 11 that supplies raw water to the reverse osmosis membrane device 1.

本実施形態では、逆浸透膜装置1(第1工程)にて除去された硫酸イオンの濃縮水を硫酸イオン除去槽5に投入し、当該濃縮水中の硫酸イオンを硫酸カルシウム(硫酸塩)として晶析させる。そして晶析した硫酸カルシウムを槽底から引き抜いて除去する。なお、硫酸カルシウムのカルシウム源は、例えば、濃縮水中に元々含まれているカルシウムである。また、配管15を流れる濃縮水は、逆浸透膜装置1での濃縮操作により、硫酸イオンが過飽和となっている状態とされる。過飽和の状態とは、硫酸イオンが飽和値以上になっているが、析出していない状態のことをいう。   In this embodiment, the concentrated water of sulfate ions removed by the reverse osmosis membrane device 1 (first step) is put into the sulfate ion removal tank 5, and the sulfate ions in the concentrated water are crystallized as calcium sulfate (sulfate). Analyze. Then, the crystallized calcium sulfate is pulled out from the tank bottom and removed. The calcium source of calcium sulfate is, for example, calcium originally contained in the concentrated water. Further, the concentrated water flowing through the pipe 15 is in a state in which sulfate ions are supersaturated by the concentration operation in the reverse osmosis membrane device 1. The supersaturated state means a state in which sulfate ions are not less than the saturated value but not precipitated.

その後、硫酸イオンが除去されたホウ素を含有する濃縮水を配管16経由で第2LDH吸着塔4に供給することで、当該濃縮水と層状複水酸化物とを接触させ、当該濃縮水中のホウ素を層状複水酸化物に吸着させることで除去する(硫酸イオン濃縮水処理工程)。ホウ素が除去された濃縮水(排水)は、処理水として配管17を流れる。   Thereafter, the concentrated water containing boron from which sulfate ions have been removed is supplied to the second LDH adsorption tower 4 via the pipe 16 so that the concentrated water and the layered double hydroxide are brought into contact with each other. It is removed by adsorbing to the layered double hydroxide (sulfate ion concentrated water treatment step). The concentrated water (drainage) from which boron has been removed flows through the pipe 17 as treated water.

ここで、本実施形態では、逆浸透膜装置1(第1工程)において除去された硫酸イオンの濃縮水の一部を、硫酸イオン除去槽5(硫酸イオン濃縮水処理工程)に送るとともに、残りを、逆浸透膜装置1(第1工程)の上流側に戻している。硫酸イオン除去槽3に送る濃縮水の量と、逆浸透膜装置1の上流側に戻す濃縮水の量との比は、例えば、1:10である。   Here, in the present embodiment, a portion of the concentrated sulfate ion water removed in the reverse osmosis membrane device 1 (first step) is sent to the sulfate ion removal tank 5 (sulfate ion concentrated water treatment step) and the rest. Is returned to the upstream side of the reverse osmosis membrane device 1 (first step). The ratio of the amount of concentrated water sent to the sulfate ion removal tank 3 and the amount of concentrated water returned to the upstream side of the reverse osmosis membrane device 1 is, for example, 1:10.

(作用・効果)
本実施形態では、逆浸透膜装置1(第1工程)において除去された硫酸イオンの濃縮水中の硫酸イオンを、晶析法により除去し、その後、層状複水酸化物と接触させて、硫酸イオンが除去された濃縮水中のホウ素を層状複水酸化物に吸着させることで除去する。この構成によると、凝集剤などの薬剤を特に用いないので、処理コストを低減することができる。また、凝集剤を添加しない分、発生する沈殿物(固形廃棄物)の量も少ない。この観点からも処理コストを低減することができる。
(Action / Effect)
In the present embodiment, sulfate ions in the concentrated water of sulfate ions removed in the reverse osmosis membrane device 1 (first step) are removed by crystallization, and then contacted with the layered double hydroxide to produce sulfate ions. Is removed by adsorbing boron in the concentrated water from which water is removed to the layered double hydroxide. According to this configuration, since a chemical such as a flocculant is not used, the processing cost can be reduced. In addition, the amount of precipitate (solid waste) generated is small because no flocculant is added. Also from this viewpoint, the processing cost can be reduced.

また、本実施形態では、逆浸透膜装置1(第1工程)において除去された硫酸イオンの濃縮水の一部を、硫酸イオン除去槽5(硫酸イオン濃縮水処理工程)に送るとともに、残りを、逆浸透膜装置1(第1工程)の上流側に戻している。ここで、逆浸透膜装置1(第1工程)において除去された硫酸イオンの濃縮水の全てを、硫酸イオン除去槽5に送って晶析処理する場合、マテリアルバランスから、逆浸透膜装置1からLDH吸着塔2へ送る水量よりも、非常に大きな水量の濃縮水を硫酸イオン除去槽5へ送る必要が生じる。上記したように、逆浸透膜装置1において除去された硫酸イオンの濃縮水の一部を、硫酸イオン除去槽5に送るとともに、残りを、逆浸透膜装置1(第1工程)の上流側に戻せば、逆浸透膜装置1からLDH吸着塔2へ送る水量と、逆浸透膜装置1から硫酸イオン除去槽5へ送る水量との差を小さくすることができる。その結果、硫酸イオン除去槽5から第2LDH吸着塔4へ送る濃縮水を、透過水側のLDH吸着塔2で得られた処理水で十分に希釈することができる。   Moreover, in this embodiment, while sending a part of sulfate ion concentrated water removed in the reverse osmosis membrane device 1 (first step) to the sulfate ion removal tank 5 (sulfate ion concentrated water treatment step), the rest The reverse osmosis membrane device 1 (first step) is returned to the upstream side. Here, when all of the concentrated sulfate ion water removed in the reverse osmosis membrane device 1 (first step) is sent to the sulfate ion removal tank 5 for crystallization treatment, from the material balance, from the reverse osmosis membrane device 1 It is necessary to send concentrated water having a much larger amount of water than the amount of water sent to the LDH adsorption tower 2 to the sulfate ion removal tank 5. As described above, a portion of the concentrated sulfate ion water removed in the reverse osmosis membrane device 1 is sent to the sulfate ion removal tank 5, and the rest is sent upstream of the reverse osmosis membrane device 1 (first step). If it returns, the difference between the amount of water sent from the reverse osmosis membrane device 1 to the LDH adsorption tower 2 and the amount of water sent from the reverse osmosis membrane device 1 to the sulfate ion removal tank 5 can be reduced. As a result, the concentrated water sent from the sulfate ion removal tank 5 to the second LDH adsorption tower 4 can be sufficiently diluted with the treated water obtained in the LDH adsorption tower 2 on the permeate side.

1:逆浸透膜装置(硫酸イオン除去装置)
2:ベルト式濃縮機
3、5:硫酸イオン除去槽
4:第2LDH吸着塔
11〜19:配管
100、101、102:排水処理設備
1: Reverse osmosis membrane device (sulfuric acid ion removal device)
2: belt type concentrator 3, 5: sulfate ion removal tank 4: second LDH adsorption towers 11-19: piping 100, 101, 102: waste water treatment equipment

Claims (10)

硫酸イオンおよびホウ素を含有する排水の処理方法であって、
前記排水から硫酸イオンを除去する第1工程と、
硫酸イオンが除去された前記排水を層状複水酸化物と接触させて、当該排水中のホウ素を層状複水酸化物に吸着させることで除去する第2工程と、
を備えることを特徴とする、排水処理方法。
A method for treating wastewater containing sulfate ions and boron,
A first step of removing sulfate ions from the waste water;
A second step of removing the waste water from which sulfate ions have been removed by bringing the waste water into contact with the layered double hydroxide and adsorbing boron in the waste water to the layered double hydroxide;
A wastewater treatment method comprising:
請求項1に記載の排水処理方法において、
前記第1工程は、逆浸透膜またはナノろ過膜により前記排水から硫酸イオンを除去する工程であることを特徴とする、排水処理方法。
The waste water treatment method according to claim 1,
The first process is a process for removing sulfate ions from the waste water using a reverse osmosis membrane or a nanofiltration membrane.
請求項1または2に記載の排水処理方法において、
前記第1工程において除去された硫酸イオンの濃縮水に薬剤を注入することで、当該濃縮水中の硫酸イオンを硫酸塩として析出または凝集させて除去し、その後、層状複水酸化物と接触させて、硫酸イオンが除去された濃縮水中のホウ素を層状複水酸化物に吸着させることで除去する硫酸イオン濃縮水処理工程をさらに備えることを特徴とする、排水処理方法。
In the wastewater treatment method according to claim 1 or 2,
By injecting the drug into the concentrated water of sulfate ions removed in the first step, the sulfate ions in the concentrated water are removed by precipitation or aggregation as sulfate, and then contacted with the layered double hydroxide. The wastewater treatment method further comprises a sulfate ion concentrated water treatment step for removing boron in the concentrated water from which sulfate ions have been removed by adsorbing the boron to the layered double hydroxide.
請求項1または2に記載の排水処理方法において、
前記第1工程において除去された硫酸イオンの濃縮水中の硫酸イオンを、晶析法により除去し、その後、層状複水酸化物と接触させて、硫酸イオンが除去された濃縮水中のホウ素を層状複水酸化物に吸着させることで除去する硫酸イオン濃縮水処理工程をさらに備えることを特徴とする、排水処理方法。
In the wastewater treatment method according to claim 1 or 2,
The sulfate ions in the concentrated water of the sulfate ions removed in the first step are removed by crystallization, and then brought into contact with the layered double hydroxide, so that the boron in the concentrated water from which the sulfate ions have been removed is layered. A wastewater treatment method, further comprising a sulfate ion concentrated water treatment step of removing by adsorption to a hydroxide.
請求項4に記載の排水処理方法において、
前記第1工程において除去された硫酸イオンの濃縮水の一部を、前記硫酸イオン濃縮水処理工程に送るとともに、残りを、前記第1工程の上流側に戻すことを特徴とする、排水処理方法。
The waste water treatment method according to claim 4,
A part of the sulfate ion concentrated water removed in the first step is sent to the sulfate ion concentrated water treatment step, and the rest is returned to the upstream side of the first step. .
請求項3〜5のいずれかに記載の排水処理方法において、
前記硫酸イオン濃縮水処理工程において、硫酸イオンが除去された前記濃縮水を、前記第2工程で得られた処理水で希釈した後、層状複水酸化物と接触させて、当該濃縮水中のホウ素を層状複水酸化物に吸着させることで除去することを特徴とする、排水処理方法。
In the wastewater treatment method according to any one of claims 3 to 5,
In the sulfate ion concentrated water treatment step, the concentrated water from which sulfate ions have been removed is diluted with the treated water obtained in the second step, and then brought into contact with the layered double hydroxide to form boron in the concentrated water. The wastewater treatment method is characterized in that it is removed by adsorbing to the layered double hydroxide.
硫酸イオンおよびホウ素を含有する排水の処理設備であって、
前記排水から硫酸イオンを除去する硫酸イオン除去装置と、
前記硫酸イオン除去装置の下流側に配置され、硫酸イオンが除去された前記排水を層状複水酸化物と接触させて、当該排水中のホウ素を層状複水酸化物に吸着させることで除去するLDH吸着塔と、
を備えることを特徴とする、排水処理設備。
A wastewater treatment facility containing sulfate ions and boron,
A sulfate ion removal device for removing sulfate ions from the waste water;
LDH which is disposed downstream of the sulfate ion removing device and removes the waste water from which sulfate ions have been removed by contacting with the layered double hydroxide and adsorbing boron in the waste water to the layered double hydroxide. An adsorption tower,
A wastewater treatment facility characterized by comprising:
請求項7に記載の排水処理設備において、
前記硫酸イオン除去装置は、逆浸透膜またはナノろ過膜を備え、当該逆浸透膜またはナノろ過膜により前記排水から硫酸イオンを除去することを特徴とする、排水処理設備。
In the waste water treatment facility according to claim 7,
The said sulfate ion removal apparatus is equipped with a reverse osmosis membrane or a nanofiltration membrane, The sulfate ion is removed from the said wastewater with the said reverse osmosis membrane or a nanofiltration membrane, The wastewater treatment equipment characterized by the above-mentioned.
請求項7または8に記載の排水処理設備において、
前記硫酸イオン除去装置において除去された硫酸イオンの濃縮水に薬剤を注入することで、当該濃縮水中の硫酸イオンを硫酸塩として析出または凝集させて除去する硫酸イオン除去槽と、
前記硫酸イオン除去槽の下流側に配置され、硫酸イオンが除去された濃縮水を層状複水酸化物と接触させて、当該濃縮水中のホウ素を層状複水酸化物に吸着させることで除去する第2LDH吸着塔と、
をさらに備えることを特徴とする、排水処理設備。
The waste water treatment facility according to claim 7 or 8,
A sulfate ion removal tank that removes sulfate ions in the concentrated water by precipitating or aggregating them as sulfates by injecting a chemical into the concentrated water of sulfate ions removed in the sulfate ion removing device;
The concentrated water from which the sulfate ions have been removed is brought into contact with the layered double hydroxide and is removed by adsorbing boron in the concentrated water to the layered double hydroxide. A 2LDH adsorption tower;
A wastewater treatment facility, further comprising:
請求項7または8に記載の排水処理設備において、
前記硫酸イオン除去装置において除去された硫酸イオンの濃縮水中の硫酸イオンを、晶析法により除去する硫酸イオン除去槽と、
前記硫酸イオン除去槽の下流側に配置され、硫酸イオンが除去された濃縮水を層状複水酸化物と接触させて、当該濃縮水中のホウ素を層状複水酸化物に吸着させることで除去する第2LDH吸着塔と、
をさらに備えることを特徴とする、排水処理設備。
The waste water treatment facility according to claim 7 or 8,
A sulfate ion removal tank for removing sulfate ions in the concentrated water of sulfate ions removed in the sulfate ion removal device by a crystallization method;
The concentrated water from which the sulfate ions have been removed is brought into contact with the layered double hydroxide and is removed by adsorbing boron in the concentrated water to the layered double hydroxide. A 2LDH adsorption tower;
A wastewater treatment facility, further comprising:
JP2014018881A 2014-02-03 2014-02-03 Method and apparatus for treating wastewater containing sulfate ions and boron Active JP6105500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014018881A JP6105500B2 (en) 2014-02-03 2014-02-03 Method and apparatus for treating wastewater containing sulfate ions and boron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014018881A JP6105500B2 (en) 2014-02-03 2014-02-03 Method and apparatus for treating wastewater containing sulfate ions and boron

Publications (2)

Publication Number Publication Date
JP2015144997A true JP2015144997A (en) 2015-08-13
JP6105500B2 JP6105500B2 (en) 2017-03-29

Family

ID=53889577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014018881A Active JP6105500B2 (en) 2014-02-03 2014-02-03 Method and apparatus for treating wastewater containing sulfate ions and boron

Country Status (1)

Country Link
JP (1) JP6105500B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114789000A (en) * 2022-05-25 2022-07-26 南开大学 Modified cation exchange membrane for electrodialysis desalination of high-salt-content glycol solution, modification method, electrodialysis device and desalination method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000202442A (en) * 1999-01-19 2000-07-25 Sumitomo Chem Co Ltd Separation and recovering method of boron in boron- containing water
JP2009034564A (en) * 2007-07-31 2009-02-19 Jdc Corp Adsorbent for substance x that ionizes in alkaline solution, and method for isolating the same
JP2013075261A (en) * 2011-09-30 2013-04-25 Mitsubishi Materials Corp Treatment method and treatment apparatus that removes harmful substance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000202442A (en) * 1999-01-19 2000-07-25 Sumitomo Chem Co Ltd Separation and recovering method of boron in boron- containing water
JP2009034564A (en) * 2007-07-31 2009-02-19 Jdc Corp Adsorbent for substance x that ionizes in alkaline solution, and method for isolating the same
JP2013075261A (en) * 2011-09-30 2013-04-25 Mitsubishi Materials Corp Treatment method and treatment apparatus that removes harmful substance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114789000A (en) * 2022-05-25 2022-07-26 南开大学 Modified cation exchange membrane for electrodialysis desalination of high-salt-content glycol solution, modification method, electrodialysis device and desalination method
CN114789000B (en) * 2022-05-25 2024-01-30 南开大学 Modified cation exchange membrane for electrodialysis desalination of high-salt ethylene glycol solution, modification method, electrodialysis device and desalination method

Also Published As

Publication number Publication date
JP6105500B2 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
Damtie et al. Removal of fluoride in membrane-based water and wastewater treatment technologies: Performance review
TWI727046B (en) Water treatment method and apparatus, and method of regenerating ion exchange resin
US8815096B2 (en) Sulfate removal from water sources
TWI616404B (en) Method and device for processing boron-containing water
CN104507873B (en) The operation method of desalting processing device and desalting processing device
WO2012144384A1 (en) Method for purifying water containing radioactive halogen, process for producing filtrate water, and device for purifying water containing radioactive halogen
WO2013031689A1 (en) Method and apparatus for purifying water containing radioactive substance and/or heavy metal
WO2014163094A1 (en) Water treatment system
JP2015116538A (en) Device and method of scale detection in concentrator and reproduction treatment system of water
WO2013091129A1 (en) Membrane filtration process for industrial process water treatment and recovery
WO2014174647A1 (en) Water treatment method and water treatment system
JP6047957B2 (en) Treatment method of wastewater containing radioactive strontium
TW201825405A (en) System for producing ultrapure water and method for producing ultrapure water
JP6105500B2 (en) Method and apparatus for treating wastewater containing sulfate ions and boron
CN102815810B (en) Desalination system and desalination method
JP6189422B2 (en) Water treatment system
CN202808519U (en) Purified water reverse osmosis system
JPS62110795A (en) Device for producing high-purity water
JP5951605B2 (en) Method and system for treating water
JP2019118891A (en) Pure water producing apparatus and pure water producing method
WO2018124289A1 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
Mel’nik The current state of the problem of removing boron from the sea and brackish waters in the process of reverse osmosis desalination
JP2017064639A (en) Method and apparatus for recovering and using waste water from steam power plant
JPH10128075A (en) Reverse osmosis membrane device and treatment using the same
JPS6242787A (en) Apparatus for producing high-purity water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160701

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170127

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170302

R150 Certificate of patent or registration of utility model

Ref document number: 6105500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250