WO2018124289A1 - Exhaust gas treatment apparatus and exhaust gas treatment method - Google Patents

Exhaust gas treatment apparatus and exhaust gas treatment method Download PDF

Info

Publication number
WO2018124289A1
WO2018124289A1 PCT/JP2017/047299 JP2017047299W WO2018124289A1 WO 2018124289 A1 WO2018124289 A1 WO 2018124289A1 JP 2017047299 W JP2017047299 W JP 2017047299W WO 2018124289 A1 WO2018124289 A1 WO 2018124289A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
desulfurization
membrane
unit
exhaust gas
Prior art date
Application number
PCT/JP2017/047299
Other languages
French (fr)
Japanese (ja)
Inventor
鵜飼 展行
英夫 鈴木
茂 吉岡
櫻井 秀明
龍 上戸
竹内 和久
嘉晃 伊藤
裕 中小路
加藤 玲朋
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2018124289A1 publication Critical patent/WO2018124289A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/16Evaporating by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/02Crystallisation from solutions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/62Heavy metal compounds

Definitions

  • the present invention relates to an exhaust gas treatment apparatus and an exhaust gas treatment method, and more particularly to an exhaust gas treatment apparatus and an exhaust gas treatment method for desulfurizing a combustion exhaust gas.
  • desulfurization treatment in which the sulfur content in the combustion exhaust gas is absorbed is generated by the desulfurization treatment in which the sulfur content contained in the combustion exhaust gas of coal is washed and removed by the lime gypsum slurry.
  • Desulfurization waste water is discharged after sulfur content such as sulfate ion is solidified and separated as gypsum.
  • sulfur content such as sulfate ion remains in the desulfurization waste water
  • an exhaust gas treatment apparatus capable of recovering the sulfur content in the desulfurization waste water and capable of reducing the discharge flow rate of the desulfurization waste water is desired.
  • An object of the present invention is to provide an exhaust gas treatment device and an exhaust gas treatment method capable of recovering sulfur content in desulfurization waste water and capable of reducing the discharge rate of the desulfurization waste water.
  • the exhaust gas treatment apparatus comprises a flue gas desulfurization unit that cleans the flue gas and discharges desulfurization waste water containing sulfate ions; and the desulfurization waste water is concentrated with the first permeated water and sulfate ions reduced in sulfate ions
  • a first membrane processing unit having a first separation membrane that performs membrane separation with the first concentrated water, and supplying the first concentrated water to the exhaust gas desulfurization unit, and discharging the first permeated water; It is characterized by having.
  • the first concentrated water in which sulfate ions in the desulfurization waste water are concentrated is supplied to the exhaust gas desulfurization unit by the membrane separation by the first separation membrane, the amount of drainage discharged from the first membrane processing unit is reduced.
  • the sulfur content in the desulfurization waste water can be recovered, and an exhaust gas treatment apparatus capable of reducing the discharge flow rate of the desulfurization waste water can be realized.
  • chloride ions in the desulfurization waste water are discharged to the outside of the exhaust gas treatment apparatus together with the first permeated water, the concentration of chloride ions returned to the flue gas desulfurization section of the first concentrated water is reduced to It can also prevent the decline. Furthermore, since the first concentrated water returned to the flue gas desulfurization unit can also be used as washing water for the combustion exhaust gas, it is also possible to reduce makeup water supplied from the outside to the flue gas desulfurization unit.
  • the first separation membrane has a chloride ion transmission rate higher than that of the sulfate ion in the desulfurization waste water.
  • the exhaust gas treatment apparatus of the present invention it is preferable to have a dilution water supply unit for supplying dilution water for diluting the desulfurization waste water.
  • a dilution water supply unit for supplying dilution water for diluting the desulfurization waste water.
  • the dilution water supply unit is a makeup water supply unit that supplies makeup water to the flue gas desulfurization unit, and the makeup water supply unit is at least one of the makeup water as the dilution water. It is preferable to supply 1 part to the desulfurization waste water. According to this configuration, since the desulfurization waste water is diluted with the makeup water, the concentration of the scale component in the desulfurization waste water supplied to the first membrane processing unit can be reduced. Thereby, even when the concentration of the scale component in the desulfurization waste water is high, it is possible to prevent the deposition of the scale in the first separation membrane of the first membrane treatment unit.
  • a pretreatment unit which performs pretreatment for removing scale components in the desulfurization wastewater and supplies the desulfurization wastewater subjected to the pretreatment to the first membrane processing unit.
  • the scale component contained in the desulfurization waste water discharged from the flue gas desulfurization unit is removed by the pretreatment unit at a stage preceding the first membrane treatment unit, so that the pretreatment water introduced into the first membrane treatment unit It is possible to significantly reduce the scale component of Thereby, even when the content of the scale component in the desulfurization waste water is high, it is possible to prevent the deposition of the scale in the first separation membrane of the first membrane processing unit.
  • the first membrane processing unit can circulate at least one of the first permeated water and the first concentrated water to the desulfurization wastewater supplied to the first membrane processing unit. And controlling the flow rate of at least one of the first permeated water and the first concentrated water to be circulated to the desulfurization drainage when the chloride ion concentration of the first concentrated water exceeds a reference value. It is preferable that a flow control unit is provided to set the chloride ion concentration in the concentrated water below the reference value. With this configuration, the exhaust gas processing apparatus can control the chloride ion concentration in the first concentrated water supplied from the first membrane processing unit to the exhaust gas desulfurizing unit, so that the exhaust gas desulfurizing unit can be used together with the first concentrated water. The concentration of chloride ions supplied can be controlled below the reference value, and the deterioration of desulfurization performance can be prevented.
  • the first membrane processing unit can circulate at least one of the first permeated water and the first concentrated water to the desulfurization wastewater supplied to the first membrane processing unit. And controlling a flow rate of at least one of the first permeated water and the first concentrated water to be circulated to the desulfurization drainage when the chloride ion concentration of the first permeated water is less than a reference value. It is preferable that a flow control unit is provided to set the chloride ion concentration in one permeate water to a reference value or more.
  • the exhaust gas processing apparatus can control the chloride ion concentration in the first concentrated water supplied from the first membrane processing unit to the exhaust gas desulfurizing unit, so that the exhaust gas desulfurizing unit can be used together with the first concentrated water.
  • the concentration of chloride ions supplied can be controlled below the reference value, and the deterioration of desulfurization performance can be prevented.
  • the first membrane processing unit can circulate at least one of the first permeated water and the first concentrated water to the desulfurization wastewater supplied to the first membrane processing unit. And controlling the flow rate of at least one of the first permeated water and the first concentrated water circulating to the desulfurization waste water when the chloride ion concentration of the desulfurization waste water exceeds a reference value, thereby controlling the flow rate of the desulfurization waste water. It is preferable to have a flow rate control unit that sets the chloride ion concentration to a reference value or less.
  • the exhaust gas processing apparatus can control the chloride ion concentration in the first concentrated water supplied from the first membrane processing unit to the exhaust gas desulfurizing unit, so the exhaust gas processing apparatus can discharge together with the first concentrated water.
  • the chloride ion concentration supplied to the smoke desulfurization section can be controlled to a reference value or less, and the deterioration of desulfurization performance can be prevented.
  • the first permeated water containing chloride ions is subjected to membrane separation into a second permeated water with reduced chloride ions and a second concentrated water with concentrated chloride ions.
  • a second membrane processing unit having a second separation membrane is provided.
  • the second concentrated water from which chloride ions are concentrated and the second permeated water from which chloride ions are removed can be obtained by the membrane separation by the second separation membrane, so that the second permeation of high purity water is achieved. Water can be obtained, and the amount of water of the second concentrated water can be reduced with respect to the first permeated water supplied to the second membrane processing unit.
  • the second membrane processing unit supplies the second permeated water as dilution water to the desulfurization wastewater.
  • the desulfurization waste water is diluted with the second permeated water, it is possible to reduce the concentration of the scale component in the desulfurization waste water supplied to the first membrane processing unit.
  • the concentration of the scale component in the desulfurization effluent is high, it is possible to prevent the deposition of the scale in the first separation membrane of the first membrane treatment unit.
  • the first separation is performed only by providing a permeated water supply line for supplying the second permeated water to the desulfurization wastewater. It becomes possible to prevent the deposition of scale in the film.
  • the exhaust gas treatment apparatus of the present invention it is preferable to include an evaporation processing unit that evaporates the second concentrated water to obtain evaporated water.
  • an evaporation processing unit that evaporates the second concentrated water to obtain evaporated water.
  • the exhaust gas treatment apparatus of the present invention it is preferable to have a post-treatment section for removing post-treatment water by removing impurities in the second concentrated water. According to this configuration, the impurities in the second concentrated water can be removed, so that the standard value of the discharge of the second concentrated water can be satisfied and discharged.
  • the exhaust gas treatment apparatus of the present invention it is preferable to include an evaporation processing unit that evaporates the first permeated water to obtain evaporated water.
  • the water content of the first permeate can be separated and recovered as steam, so that the amount of water discharged from the exhaust gas treatment device can be significantly reduced.
  • the exhaust gas treatment apparatus of the present invention it is preferable to include a post-treatment unit for removing post-treatment impurities by removing impurities in the first permeated water.
  • a post-treatment unit for removing post-treatment impurities by removing impurities in the first permeated water With this configuration, impurities in the first permeated water can be removed, and therefore, it is possible to meet the standard value of the discharge of the second concentrated water and be discharged. Therefore, the amount of water discharged from the exhaust gas treatment device is significantly reduced. It becomes possible.
  • the exhaust gas treatment apparatus of the present invention preferably includes a solid-liquid separation unit for separating solid mercury and liquid mercury in the desulfurization waste water from the desulfurization waste water.
  • a solid-liquid separation unit for separating solid mercury and liquid mercury in the desulfurization waste water from the desulfurization waste water.
  • the exhaust gas treatment apparatus of the present invention it is preferable to have a mercury treatment unit for removing soluble mercury in the desulfurization waste water.
  • mercury attached to the first separation membrane of the first membrane processing unit can be reduced, and mercury in the first permeate can also be reduced to reduce the mercury concentration to the discharge reference value or less. , And the first permeated water can be discharged.
  • the exhaust gas treatment method of the present invention comprises a flue gas desulfurization step of washing combustion flue gas with a flue gas desulfurization section and discharging desulfurization waste water containing sulfate ions, and the first desulfurization waste water containing sulfate ions reduced. And the first concentrated water concentrated with sulfate ions by the first separation membrane, and supplying the first concentrated water to the flue gas desulfurization unit, and discharging the first permeated water, the first membrane treatment And a step of
  • the first concentrated water in which sulfate ions in the desulfurization waste water are concentrated is supplied to the exhaust gas desulfurization unit by the membrane separation by the first separation membrane, the amount of drainage discharged from the first membrane processing unit is reduced. As well as being able to reduce sulfate ions in the first permeated water, it is possible to recover sulfate ions. Therefore, the sulfur content in the desulfurization waste water can be recovered, and the exhaust gas treatment method capable of reducing the discharge flow rate of the desulfurization waste water can be realized.
  • chloride ions in the desulfurization waste water are discharged to the outside together with the first permeated water, reduction in the amount of chloride ions returned to the flue gas desulfurization section of the first concentrated water prevents deterioration in the desulfurization performance. It can also be done. Furthermore, since the first concentrated water returned to the flue gas desulfurization unit can also be used as washing water for the combustion exhaust gas, it is also possible to reduce makeup water supplied from the outside to the flue gas desulfurization unit.
  • the waste water containing a sulfur content can be reduced and the waste gas processing apparatus and waste gas processing method which can collect
  • FIG. 1 is a schematic view showing an example of the exhaust gas processing system according to the first embodiment.
  • FIG. 2A is an explanatory view of a case where the membrane processing unit according to the first embodiment includes a dialysis membrane by electrodialysis.
  • FIG. 2B is an explanatory view of a case where the membrane processing unit according to the first embodiment includes a dialysis membrane by electrodialysis.
  • FIG. 2C is an explanatory view of a case where the membrane processing unit according to the first embodiment includes a dialysis membrane by electrodialysis.
  • FIG. 2D is an explanatory view of a case where the membrane processing unit according to the first embodiment includes a dialysis membrane by electrodialysis.
  • FIG. 2A is an explanatory view of a case where the membrane processing unit according to the first embodiment includes a dialysis membrane by electrodialysis.
  • FIG. 2B is an explanatory view of a case where the membrane processing unit according to the first embodiment includes a dia
  • FIG. 3 is a schematic view showing another example of the exhaust gas processing system according to the first embodiment.
  • FIG. 4 is a view showing an example of an exhaust gas processing system according to the second embodiment.
  • FIG. 5 is a view showing another example of the exhaust gas processing system according to the second embodiment.
  • FIG. 6A is a diagram showing another example of the exhaust gas processing device according to the second embodiment.
  • FIG. 6B is a diagram showing another example of the exhaust gas processing device according to the second embodiment.
  • FIG. 7 is a schematic view showing an example of the exhaust gas processing system according to the third embodiment.
  • FIG. 8 is a schematic view showing an example of the exhaust gas processing system according to the fourth embodiment.
  • FIG. 9A is a schematic view showing an example of an exhaust gas processing system according to the fifth embodiment.
  • FIG. 9B is a schematic view showing another example of the exhaust gas processing system according to the fifth embodiment.
  • FIG. 9C is a schematic view showing another example of the exhaust gas processing system according to the fifth embodiment.
  • FIG. 9D is a schematic view showing another example of the exhaust gas processing system according to the fifth embodiment.
  • FIG. 9E is a schematic view showing another example of the exhaust gas processing system according to the fifth embodiment.
  • FIG. 9F is a schematic view showing another example of the exhaust gas processing system according to the fifth embodiment.
  • FIG. 9G is a schematic view showing another example of the exhaust gas processing system according to the fifth embodiment.
  • FIG. 9H is a schematic view showing another example of the exhaust gas processing system according to the fifth embodiment.
  • FIG. 10 is a view showing an example of a film processing unit according to the fifth embodiment.
  • FIG. 11A is a schematic view showing an example of an exhaust gas processing system according to a sixth embodiment.
  • FIG. 11B is a schematic view showing another example of the exhaust gas processing system according to the sixth embodiment.
  • FIG. 12A is a schematic view showing another example of the exhaust gas processing system according to the sixth embodiment.
  • FIG. 12B is a schematic view showing another example of the exhaust gas processing system according to the sixth embodiment.
  • FIG. 1 is a schematic view showing an example of the exhaust gas processing system according to the first embodiment.
  • the desulfurization drainage W 11 discharged from the exhaust gas desulfurization unit 11 is concentrated in sulfur content by the membrane processing unit (first film processing unit) 12.
  • the sulfur content here is, for example, sulfur dioxide gas (SO 2 ) in the combustion exhaust gas, various ions generated when the combustion exhaust gas is cleaned by the exhaust gas desulfurization unit 11 (SO 3 2 ⁇ , HSO 3 ⁇ ) , Gypsum (CaSO 4 ), sulfur which is generated by reaction with Ca derived from sulfate ion (SO 4 2- ) generated by oxidation of various ions and calcium carbonate CaCO 3 supplied from the outside in the flue gas desulfurization unit 11, sulfur General oxides, peroxides such as S 2 O 6 2 ⁇ , S 2 O 8 2 ⁇ and the like can be mentioned.
  • the exhaust gas processing apparatus 1 includes an exhaust gas desulfurization unit 11 that desulfurizes sulfur in the combustion exhaust gas, and a film processing unit 12 provided downstream of the exhaust gas desulfurization unit 11.
  • the exhaust gas desulfurization unit 11 cleans the combustion exhaust gas containing sulfur emitted from a coal-fired power plant or the like with washing water such as seawater. Further, the exhaust gas desulfurization unit 11 discharges the desulfurization waste water W 11 as an exhaust gas absorption waste water containing a sulfur component generated by absorbing the combustion exhaust gas into the washing water through the desulfurization waste water supply line L 1 to perform a film
  • the data is supplied to the processing unit 12.
  • the desulfurization waste water W 11 is derived from monovalent ion components such as sodium ion (Na + ) and chloride ion (Cl ⁇ ), calcium ion (Ca 2+ ), magnesium ion (Mg 2+ ) and sulfur in combustion exhaust gas. Containing divalent ion components such as sulfate ions. FGD unit 11, by adding a slurry containing calcium ions dispersed like by pulverizing in water limestone desulfurization effluent W 11, the sulfate ions in the desulfurization effluent W 11, the flue gas desulfurization unit 11 Solidify as gypsum (CaSO 4 ) and recover.
  • monovalent ion components such as sodium ion (Na + ) and chloride ion (Cl ⁇ ), calcium ion (Ca 2+ ), magnesium ion (Mg 2+ ) and sulfur in combustion exhaust gas. Containing divalent ion components such as
  • chloride ions and sulfate ions in the desulfurization effluent W 11 are derived from the combustion exhaust gas and makeup water W 5 (see FIG. 5), calcium ions and magnesium ions, limestone (carbonate is added to desulfurization waste water W 11 It is derived from calcium (CaCO 3 ).
  • the membrane processing unit 12 separates the membrane of the desulfurization waste water W 11 discharged from the flue gas desulfurization part 11 into concentrated water W 21 where sulfate ions are concentrated and permeate water W 21 where sulfate ions are removed. Not shown: provided with a first separation membrane).
  • concentrated water W 21 where sulfate ion is concentrated is the concentrated water where the ratio of sulfate ion to chloride ion ([SO 4 2 ⁇ ] / [Cl ⁇ ]) is larger than desulfurization waste water W 11 (the following (It is also simply referred to as “concentrated water W 21 ”), and the permeated water W 22 from which sulfate ions have been removed is desulfurized by the ratio of sulfate ion to chloride ion ([SO 4 2- ] / [Cl ⁇ ]) It is a permeated water (hereinafter, also simply referred to as “permeated water W 22 ”) smaller than the drained water W 11 .
  • the membrane processing unit 12 supplies the concentrated water W 21 in which the sulfate ion is concentrated to the exhaust gas desulfurization unit 11, and discharges the permeate water W 22 in which the sulfate ion is removed as drainage. That is, in this embodiment, the sulfate ions as the scale components in the desulfurization effluent W 11, is recovered by solid as gypsum in flue gas desulfurization unit 11 and returned to the flue gas desulfurization unit 11 together with the concentrated water W 21.
  • the exhaust gas processing apparatus 1 can reduce the amount of drainage containing sulfur that is discharged from the membrane processing unit 12 and can reduce the concentration of sulfate ions in the permeate water W 22 that causes scale components such as gypsum. , reduction in discharge amount of the desulfurization waste water from the exhaust gas treatment apparatus 1 with is possible, it is possible to suppress the scale deposition, such as gypsum in the permeate W 22 in a later step.
  • the separation membrane those permeability of chloride ion is preferably high relative to the transmittance of the sulfate ions in the desulfurization effluent W 11.
  • the chloride ions cause a reduction in desulfurization performance in the desulfurization unit 11 together with the permeate W 22 can be efficiently discharged to the outside of the exhaust gas treatment apparatus 1, the flue gas desulfurization unit 11 together with the concentrated water W 21
  • the amount of chloride ions supplied can be reduced, and the deterioration of the desulfurization performance of the exhaust gas desulfurization unit 11 can be prevented, and the amount of chloride ions in the exhaust gas desulfurization unit 11 is maintained below the reference value to reduce exhaust gas It also makes it possible to prevent corrosion of parts.
  • the transmittance is the ratio of various ions concentration permeate W in 22 passing through the separation membrane for various ion concentration in the desulfurization effluent W 11.
  • the separation membrane from the viewpoint of selectively membrane separating the chloride ions and sulfate ions, as the transmittance of the sulfate ion is less preferably a divalent ion component in the desulfurization effluent W 11. Moreover, as a separation membrane, from the viewpoint of preventing the deterioration of the desulfurization performance of the flue gas desulfurization section 11, one having a high permeability of chloride ions which are monovalent ion components is preferable.
  • the permeability of the sulfate ion (hereinafter, also simply referred to as “sulfate ion permeability”) 50% or less is preferable, 20% or less is more preferable, and 10% or less is preferable.
  • the chloride ion permeability (hereinafter referred to simply as “permeation of chloride ion”) from the viewpoint of reducing the chloride ion concentration in the concentrated water W 21 returned to the flue gas desulfurization unit 11 to prevent the desulfurization performance.
  • the transmittance of the sulfate ion is preferable that the following transmission of chloride ions in the desulfurization effluent W 11, chloride ion permeability sulfate ion permeability is not more than 50% Is more preferably 50% or more, the sulfate ion permeability is 20% or less and the chloride ion permeability is more preferably 80% or more, and the sulfate ion permeability is 10% or less and the chloride ion is It is even more preferable that the transmittance is 90% or more.
  • separation membranes examples include nanofiltration (NF) membranes, reverse osmosis (RO) membranes, ion exchange membranes, dialysis membranes by electrodialysis and diffusion dialysis, and separation membranes by electrophoresis.
  • the separation membrane among these, the sulfate ions in the permeate W 22 from the viewpoint of efficiently removing, preferably dialysis membrane by nanofiltration membrane and electrophoresis, nanofiltration membranes are more preferable.
  • the nanofiltration membrane for example, trade name: NTR7250 (manufactured by Nitto Denko Corporation), NF40HF and NF50 (manufactured by Dow Chemical Co.) can be used.
  • FIGS. 2A to 2D are explanatory views in the case where the membrane processing unit according to the present embodiment includes a dialysis membrane by electrodialysis.
  • the membrane processing unit 12 includes a dialysis membrane 25A having a cation exchange membrane 23 and an anion exchange membrane 24 alternately arranged between the anode 21 and the cathode 22.
  • the cation exchange membrane 23 is permeable to cations such as monovalent sodium ions, potassium ions (K + ) and divalent calcium ions, and is an anion such as monovalent chloride ions and divalent sulfate ions.
  • the anion exchange membrane 24 transmits anions such as monovalent chloride ions and divalent sulfate ions, and blocks migration of cations such as monovalent sodium ions, potassium ions and divalent calcium ions.
  • Dialysis membrane 25A is membrane separation the desulfurization effluent W 11 supplied from the flue gas desulfurization unit 11 to the film processing section 12 to the concentrated water W 21 and permeate W 22.
  • Desulfurization drainage W 11 supplied from the exhaust gas desulfurization unit 11 to the membrane processing unit 12 is supplied to the dialysis membrane 25 A, and a direct current is caused to flow by the anode 21 and the cathode 22.
  • cations such as monovalent sodium ions and divalent calcium ions in the desulfurization effluent W 11 is thereby transmitted through the cation exchange membrane 23, moves blocked by the anion exchange membrane 24.
  • the monovalent chloride ion and the divalent sulfate ion in the desulfurization waste water W11A permeate the anion exchange membrane 24 and move by being blocked by the cation exchange membrane 23.
  • the desulfurization waste water W as the circulating permeate W 22A through at least part of the permeate circulation line L 22A 11 are circulated to the dialysis membrane 25A.
  • the membrane processing unit 12 includes a dialysis membrane 25B having a cation exchange membrane 23 and a monovalent selectively permeable anion exchange membrane 24A alternately disposed between the anode 21 and the cathode 22.
  • the cation exchange membrane 23 transmits cations such as monovalent sodium ions, potassium ions and divalent calcium ions, and blocks migration of anions such as monovalent chloride ions and divalent sulfate ions.
  • the monovalent permselective anion exchange membrane 24A is permeable to monovalent anions such as monovalent chloride ions, and cations such as monovalent sodium ions, potassium ions and divalent calcium ions, and divalent ions.
  • the dialysis membrane 25 B separates the desulfurization waste water W 11 supplied from the flue gas desulfurization part 11 to the membrane processing part 12 into concentrated water W 21 and permeate water W 22 .
  • the desulfurized drainage W 11 supplied from the exhaust gas desulfurization unit 11 to the membrane processing unit 12 is supplied to the dialysis membrane 25 B, and a direct current is caused to flow by the anode 21 and the cathode 22.
  • cations such as monovalent sodium ion and divalent calcium ion in the desulfurization waste water W 11 permeate through the cation exchange membrane 23 and are blocked by the monovalent permselective anion exchange membrane 24A ion exchange membrane.
  • monovalent chloride ions in the desulfurization waste water W 11 permeate through the monovalent selective anion exchange membrane 24 and move by being blocked by the cation exchange membrane 23.
  • Divalent sulfate ions in the desulfurization effluent W 11 is moved blocked by the cation exchange membrane 23 and a monovalent permselective anion exchange membrane 24A.
  • sodium ion, calcium ion and chloride ion are removed between the ion exchange membranes having the monovalent selectively permeable anion exchange membrane 24A on the anode 21 side and the cation exchange membrane 23 on the cathode 22 side.
  • the concentrated water W 21 in which the sulfate ion is concentrated is obtained.
  • sodium ion, calcium ion and chloride ion are concentrated between the ion exchange membranes having the cation exchange membrane 23 on the anode 21 side and the monovalent permselective anion exchange membrane 24A on the cathode 22 side, and sulfuric acid A permeated water W 22 from which ions have been removed is obtained.
  • the concentrated water W 21 is supplied to the flue gas desulfurization unit 11 via a concentrated water supply line L 21 .
  • permeate W 22 via the permeate discharge line L 22 while being discharged to the outside of the film processing section 12, the desulfurization waste water W as the circulating permeate W 22A through at least part of the permeate circulation line L 22A 11 are circulated to the dialysis membrane 25B.
  • the membrane processing unit 12 includes a dialysis membrane 25C having monovalent permselective cation exchange membranes 23A and anion exchange membranes 24 alternately arranged between the anode 21 and the cathode 22.
  • the monovalent permselective cation exchange membrane 23A is permeable to monovalent cations such as monovalent sodium ions and potassium ions, and is a polyvalent cation such as divalent calcium ions, and monovalent chlorides. Block the migration of anions such as organic ions and divalent sulfate ions.
  • the anion exchange membrane 24 is permeable to anions such as monovalent chloride ions and divalent sulfate ions, and has cations such as monovalent sodium ions, potassium ions (K + ) and divalent calcium ions. I block movement.
  • the dialysis membrane 25 C separates the desulfurization waste water W 11 supplied from the flue gas desulfurization part 11 to the membrane processing part 12 into concentrated water W 21 and permeate water W 22 .
  • Desulfurization drainage W 11 supplied from the exhaust gas desulfurization unit 11 to the membrane processing unit 12 is supplied to the dialysis membrane 25 C, and a direct current is caused to flow by the anode 21 and the cathode 22.
  • monovalent cations such as monovalent sodium ions in the desulfurization effluent W 11 is thereby transmitted through the monovalent permselective cation exchange membranes 23A, moves blocked by the anion exchange membrane 24.
  • divalent calcium ions in the desulfurization effluent W 11A moves blocked by the monovalent permselective cation exchange membranes 23A and anion exchange membrane 24.
  • the monovalent chloride ion and the divalent sulfate ion in the desulfurization waste water W11A permeate through the anion exchange membrane 24 and move by being blocked by the monovalent selectively permeable cation exchange membrane 23A.
  • sodium ion, chloride ion and sulfate ion are removed between ion exchange membranes having the anion exchange membrane 24 on the anode 21 side and the monovalent permselective cation exchange membrane 23A on the cathode 22 side.
  • Concentrated water W 21 in which calcium ions are concentrated is obtained.
  • sodium ion, chloride ion and sulfate ion are concentrated between ion exchange membranes having the monovalent permselective cation exchange membrane 23A on the anode 21 side and the anion exchange membrane 24 on the cathode 22 side, and calcium A permeated water W 22 from which ions have been removed is obtained.
  • the concentrated water W 21 is supplied to the flue gas desulfurization unit 11 via a concentrated water supply line L 21 .
  • the desulfurization waste water W as the circulating permeate W 22A through at least part of the permeate circulation line L 22A 11 are circulated to the dialysis membrane 25C.
  • the membrane processing unit 12 has the monovalent permselective cation exchange membrane 23A and the monovalent permselective anion exchange membrane 24A alternately arranged between the anode 21 and the cathode 22.
  • a dialysis membrane 25C is provided.
  • the monovalent permselective cation exchange membrane 23A is permeable to monovalent cations such as monovalent sodium ions and potassium ions, and is a polyvalent cation such as divalent calcium ions, and monovalent chlorides. Block the migration of anions such as organic ions and divalent sulfate ions.
  • the monovalent permselective anion exchange membrane 24A is permeable to monovalent chloride ions and is polyvalent such as cations such as monovalent sodium ions, potassium ions and divalent calcium ions, and divalent sulfate ions. Block the movement of anions.
  • Dialysis membrane 25D the membrane separating the desulfurization effluent W 11 supplied from the flue gas desulfurization unit 11 to the film processing section 12 to the concentrated water W 21 and permeate W 22.
  • Desulfurization drainage W 11 supplied from the exhaust gas desulfurization unit 11 to the membrane processing unit 12 is supplied to the dialysis membrane 25D.
  • the monovalent cations such as monovalent sodium ions in the desulfurization effluent W 11 is transmitted through the monovalent permselective cation exchange membranes 23A, is blocked by the monovalent permselective anion exchange membrane 24A Move.
  • the divalent calcium ion and divalent sulfate ions in the desulfurization effluent W 11 is to be moved intercepted by the monovalent permselective cation exchange membranes 23A and monovalent permselective anion exchange membrane 24A.
  • the monovalent chloride ion in the desulfurization effluent W 11 is configured to transmit the monovalent permselective anion exchange membrane 24A, moves blocked by the monovalent permselective cation exchange membrane 23.
  • the permeated water W 22 from which calcium ions and sulfate ions have been removed is obtained.
  • the concentrated water W 21 is supplied to the flue gas desulfurization unit 11 via a concentrated water supply line L 21 .
  • permeate W 22 via the permeate discharge line L 22 while being discharged to the outside of the film processing section 12, the desulfurization waste water W as the circulating permeate W 22A through at least part of the permeate circulation line L 22A 11 are circulated to the dialysis membrane 25D.
  • the pH is preferable to be acidic (eg, pH 7 or less). This can prevent scale precipitation of calcium carbonate and magnesium hydroxide on various ion exchange membranes by reactions shown in the following reaction formulas (1) to (3) under basic conditions.
  • the dialysis membrane 25A ⁇ 25D from the viewpoint of discharging the chloride ions in the desulfurization effluent W 11 to efficiently permeate W 21, dialysis membrane 25A, 25B is preferred.
  • dialysis membrane 25A ⁇ 25D from the viewpoint of concentrated sulfuric acid ions in the desulfurization waste water W 11 to efficiently concentrate W 21, dialysis membrane 25B, 25D being preferred.
  • the dialysis membrane 25A ⁇ 25D sodium ions contained in the desulfurization effluent W 11, chloride ions, membrane separation performance of the dialysis membrane to prevent the precipitation of gypsum scale the calcium ion and ion-exchange membranes based on sulfate ions
  • the dialysis membranes 25B and 25C are preferable from the viewpoint of preventing the decrease in
  • the dialysis membrane 25A ⁇ 25D the viewpoint of concentrated sulfuric acid ions in the desulfurization waste water W 11 efficiently concentrated water W 21, the chloride ions in the desulfurization effluent W 11 to efficiently permeate W 22 viewpoint of discharge, sodium ions contained in the desulfurization effluent W 11, chloride ions, is possible to prevent deterioration of membrane separation performance of calcium ions and a dialysis membrane to prevent precipitation of gypsum scale to the ion-exchange membranes based on sulfate ions
  • Desulfurization effluent W 11 containing sulfur discharged from flue gas desulfurization unit 11 is supplied to the film processing section 12 through the desulfurization effluent supply line L 1.
  • Desulfurization effluent W 11 supplied to the film processing section 12, sulfate ion and a sulfate ion and a concentrated water W 21 enriched is membrane separated into permeate W 22 removed by the separation membrane.
  • the concentrated water W 21 subjected to membrane separation in the membrane processing unit 12 is supplied to the flue gas desulfurization unit 11 via the concentrated water supply line L 21 and after gypsum is removed in the flue gas desulfurization unit 11, the flue gas desulfurization is performed. It is discharged as desulfurization waste water W 11 from part 11. Further, the permeated water W 22 subjected to membrane separation in the membrane processing unit 12 is discharged from the membrane processing unit 12 via the permeated water discharge line L 22 .
  • the concentrated water W 21 in which the sulfate ion in the desulfurization waste water W 11 is concentrated is supplied to the exhaust gas desulfurization unit 11 by the membrane separation by the separation membrane. Since the amount of waste water discharged from 12 can be reduced and at the same time the sulfate ion of the permeate water W 22 can be reduced, the sulfate ion can be recovered. Therefore, the sulfur content in the desulfurization waste water can be recovered, and the exhaust gas processing device 1 capable of reducing the discharge flow rate of the desulfurization waste water can be realized.
  • the chloride ions in the desulfurization effluent W 11 is discharged to the outside of the exhaust gas treatment apparatus 1 with the medium permeate W 22, desulfurization by chloride ions due to the return of the flue gas desulfurization unit 11 of the concentrated water W 21 It is also possible to prevent performance degradation. Furthermore, since the concentrated water W 21 returned to the exhaust gas desulfurization unit 11 can also be used as cleaning water for combustion exhaust gas, it is also possible to reduce makeup water supplied to the exhaust gas desulfurization unit 11 from the outside.
  • FIG. 3 is a schematic view showing another example of the exhaust gas processing system according to the first embodiment.
  • the exhaust gas processing apparatus 2 includes an exhaust gas desulfurization unit 11 that desulfurizes sulfur in the combustion exhaust gas, and a film processing unit 12 provided in a subsequent stage of the exhaust gas desulfurization unit 11.
  • the film processing unit 12 includes a first film processing unit 121 provided downstream of the exhaust gas desulfurization unit 11 and a second film processing unit 122 provided downstream of the first film processing unit 121.
  • the first membrane processing unit 121 performs membrane separation of the desulfurized drainage W 11 discharged from the flue gas desulfurization unit 11 into concentrated water W 21 in which sulfate ions are concentrated and permeate water W 22 in which sulfate ions are removed.
  • a separation membrane (not shown) is provided.
  • the first membrane processing unit 121 supplies the concentrated water W 21 in which the sulfate ion is concentrated to the exhaust gas desulfurization unit 11, and discharges the permeate water W 22 in which the sulfate ion is removed.
  • the first layer processing unit 121 i.e., in this embodiment, as gypsum in flue gas desulfurization unit 11 to return the sulfuric acid ions of scale components of the desulfurization waste water W 11 to flue gas desulfurization unit 11 together with the concentrated water W 21 Solidify and collect.
  • the amount of drainage discharged from the membrane processing unit 12 can be reduced, and the concentration of sulfate ions in the permeate water W 22 to be a scale component such as gypsum can be reduced, so that sulfate ions can be recovered.
  • the second membrane processing unit 122 is configured such that the first permeate water W 22 containing chloride ions discharged from the first membrane processing unit 121 is separated from the second concentrated water W 31 containing chloride ions and chloride ions.
  • a second separation membrane (not shown) is membrane-separated into the reduced second permeate water W 32 .
  • the second separation membrane is not particularly limited as long as it can separate monovalent ion components from the first permeated water W 22.
  • a reverse osmosis membrane for example, a reverse osmosis membrane, a nanofiltration membrane, a dialysis membrane by electrodialysis, etc. are used .
  • the reverse osmosis membrane in terms of salt rejection of the first permeate W 22, the reverse osmosis membrane is preferred.
  • the desulfurization waste water W 11 containing the sulfur content discharged from the flue gas desulfurization part 11 is supplied to the first membrane processing part 121 of the membrane processing part 12 via the desulfurization waste water supply line L 1 , and the sulfuric acid is removed by the first separation membrane.
  • the membrane is separated into a first concentrated water W 21 in which ions are concentrated and a first permeate water W 22 in which sulfate ions are removed.
  • the first concentrated water W 21 in which the sulfate ion is concentrated is a concentrated water in which the ratio of the sulfate ion to the chloride ion ([SO 4 2 ⁇ ] / [Cl ⁇ ]) is larger than the desulfurization waste water W 11 (Hereafter, it is also simply referred to as “first concentrated water W 21 ”), and the ratio of sulfate ion to chloride ion ([SO 4 2- ] / [is compared with the first permeated water W 22 from which sulfate ion has been removed.
  • first permeated water W 22 permeated water (hereinafter, also simply referred to as “first permeated water W 22 ”) smaller than the desulfurization waste water W 11 .
  • the first permeate W 22 which is membrane separation in the first layer processing section 121 is supplied to the second membrane unit 122 through permeate discharge line L 22, chloride ions concentrated by a second isolation layer
  • the membrane is separated into the second concentrated water W 31 and the second permeated water W 32 from which chloride ions have been removed.
  • the second concentrated water W 31 separated by the second separation membrane is discharged from the second membrane processing unit 122 through the concentrated water discharge line L 31
  • the second permeated water W 32 is the permeated water discharge line L 32.
  • the first concentrated water W 21 in which the sulfate ion in the desulfurization waste water W 11 is concentrated by the membrane separation by the first separation membrane is supplied to the exhaust gas desulfurization unit 11
  • the amount of drainage discharged from the first membrane processing unit 121 can be reduced, and the sulfate ion of the first permeate water W 22 can be reduced. Therefore, the sulfur content in the desulfurization waste water can be recovered, and the exhaust gas processing device 2 capable of reducing the discharge rate of the desulfurization waste water can be realized.
  • the desulfurization effluent W 11 since chloride ions is discharged to the outside of the exhaust gas treatment apparatus 1 with the medium permeate W 22, the returned the chloride ion content of the flue gas desulfurization unit 11 of the concentrated water W 21 The reduction can also prevent the desulfurization performance from deteriorating.
  • the second concentrated water W 31 in which chloride ions are concentrated and the second permeate water W 32 in which chloride ions are removed are obtained by the membrane separation using the second separation membrane, the second high-purity water is obtained.
  • the permeate water W 32 is obtained, and the second concentrated water W 31 can be further concentrated to reduce the volume.
  • FIG. 4 is a view showing an example of an exhaust gas processing system according to the second embodiment.
  • Figure 4 As shown in, the exhaust gas treatment apparatus 3 according to the present embodiment, in addition to the configuration of the exhaust gas treatment apparatus 1 shown in FIG. 1, diluting water supplying diluting water W 4 to dilute the desulfurization effluent W 11
  • the supply unit 13 is provided.
  • the concentration of divalent ion components such as sulfate ions as scale components in the desulfurization waste water W 11 is reduced, It is possible to prevent the deposition of scale on the separation membrane of the membrane processing unit 12.
  • the diluting water W 4 not particularly limited as long as it can reduce the concentration of the scale components in the desulfurization effluent W 11, for example, process water, or the like can be used river water and pond water.
  • the dilution water supply unit 13 there is shown an example for supplying diluting water W 4 to the film processing section 12, dilution water supply unit 13, if diluted desulfurization effluent W 11 dilution
  • the water W 4 may be supplied to other than the membrane processing unit 12.
  • Dilution water supply unit 13, for example, may be supplied diluting water W 4 in desulfurization waste water supply line L 1 via the dilution water supply line L 41.
  • the dilution water supply line L 41 may be provided with a pretreatment unit that removes suspended solids in the dilution water W 4 as necessary.
  • the other configuration is the same as that of the exhaust gas processing device 1 shown in FIG.
  • Desulfurization effluent W 11 containing sulfur discharged from flue gas desulfurization unit 11 is supplied to the film processing section 12 through the desulfurization effluent supply line L 1.
  • the desulfurization waste water W 11 supplied to the membrane processing unit 12 is mixed with the dilution water W 4 supplied from the dilution water supply unit 13 via the dilution water supply line L 41 , the sulfate ion is concentrated by the separation membrane
  • the membrane is separated into concentrated water W 21 and permeated water W 22 from which sulfate ion has been removed.
  • the desulfurization effluent W 11 is mixed with the diluting water W 4, the concentration of the scale components is reduced, it is possible to prevent the scale deposition in the separation membrane.
  • FIG. 5 is a view showing another example of the exhaust gas processing system according to the second embodiment.
  • the exhaust gas treatment apparatus 4 supplies the makeup water W 5 to the flue gas desulfurization unit 11 through the makeup water supply line L 5, via the makeup water branch line L 42 film processor 12 at least a portion of the makeup water W 5 comprises a makeup water supply 14 for supplying a diluting water to. That is, the exhaust gas processing device 4 shown in FIG. 5 also uses the makeup water supply unit 14 as the dilution water supply unit 13 shown in FIG. 4.
  • the exhaust gas processing device 4 shown in FIG. 5 also uses the makeup water supply unit 14 as the dilution water supply unit 13 shown in FIG. 4.
  • FIG. 5 shows the example shown in FIG.
  • the makeup water supply 14 although an example is shown to be supplied to the film processing section 12 as a diluting water W 4 at least a portion of the makeup water W 5, the makeup water supply 14 , at least a portion of the makeup water W 5 if dilute the desulfurization effluent W 11 may be supplied to the non-film processing section 12.
  • Makeup water supply unit 14, for example, the desulfurization effluent supply line L 1 through the makeup water branch line L 42 may supply diluting water W 4.
  • the makeup water branch line L 42 may be provided with a pre-processing unit for removing suspended solid makeup water W 5 as needed.
  • the other configuration is the same as that of the exhaust gas processing device 3 shown in FIG.
  • Desulfurization effluent W 11 containing sulfur discharged from flue gas desulfurization unit 11 is supplied to the film processing section 12 through the desulfurization effluent supply line L 1.
  • Desulfurization effluent W 11 supplied to the film processing section 12 after being mixed with makeup water W 5 supplied from replenishing water supply unit 14 through the makeup water branch line L 42, sulfate ions are concentrated by the separation membrane The membrane is separated into concentrated water W 21 and permeated water W 22 from which sulfate ion has been removed.
  • the desulfurization effluent W 11 is mixed with makeup water W 5, the concentration of the scale components is reduced, it is possible to prevent the scale deposition in the separation membrane.
  • FIG. 6A is a diagram showing another example of the exhaust gas processing device according to the second embodiment.
  • the exhaust gas treatment apparatus 5A in addition to the configuration of the air pollution control apparatus 2 shown in FIG. 3, the permeate that is provided between the permeate discharge line L 32 and desulfurization effluent supply line L 1 A supply line L 43 is provided.
  • the second membrane processing unit 122 discharges the second permeated water W 32 through the permeated water discharge line L 32 and recycles at least a portion of the second permeated water W 32 through the permeated water supply line L 43. Supply to desulfurization drainage W 11 as W 33 . That is, the exhaust gas processing apparatus 5A shown in FIG. 6A uses the second membrane processing unit 122 also as the dilution water supply unit 13 shown in FIG.
  • the desulfurization waste water W 11 containing the sulfur content discharged from the flue gas desulfurization part 11 is supplied to the first membrane processing part 121 via the desulfurization waste water supply line L 1 .
  • Desulfurization effluent W 11 supplied to the first layer processing section 121 after being mixed with the second permeate W 32 supplied from the second membrane unit 122 through permeate supply line L 43, the first isolation
  • the membrane separates the first concentrated water W 21 in which the sulfate ion is concentrated by the membrane and the first permeate water W 22 in which the sulfate ion is removed.
  • the desulfurization effluent W 11 is mixed with the second permeate W 32, since the concentration of the scale components is reduced, it is possible to prevent the scale deposition in the first separation membrane.
  • the first permeated water W 22 subjected to membrane separation in the first membrane processing unit 121 is supplied to the second membrane processing unit 122, and the second concentrated water W 31 and chloride in which chloride ions are concentrated by the second separation membrane The membrane is separated into the second permeated water W 32 from which the ions have been removed.
  • At least a part of the second permeated water W 32 membrane-separated by the second separation membrane is supplied to the desulfurization drainage W 11 as circulating water W 33 through the permeated water circulation line L 43 and to the outside of the exhaust gas treatment device 5A. Exhausted.
  • FIG. 6B is a diagram showing another example of the exhaust gas processing device according to the second embodiment.
  • the exhaust gas treatment apparatus 5B includes a permeate supply line L 44 that is provided between the permeate discharge line L 22 and desulfurization effluent supply line L 1.
  • the first membrane processing unit 121 discharges the first permeated water W 22 through the permeated water discharge line L 22 , and circulates at least a portion of the second permeated water W 22 through the permeated water circulation line L 44. Supply to desulfurization drainage W 11 as 23 . That is, the exhaust gas processing apparatus 5B shown in FIG. 6B uses the first membrane processing unit 121 also as the dilution water supply unit 13 shown in FIG.
  • the other configuration is the same as that of the exhaust gas processing device 3 shown in FIG.
  • the desulfurization waste water W 11 containing the sulfur content discharged from the flue gas desulfurization part 11 is supplied to the first membrane processing part 121 via the desulfurization waste water supply line L 1 .
  • Desulfurization effluent W 11 supplied to the first layer processing section 121 after being mixed with the first permeate W 22 supplied from the first layer processing section 121 through the permeate supply line L 44, the first isolation
  • the membrane separates the first concentrated water W 21 in which the sulfate ion is concentrated by the membrane and the first permeate water W 22 in which the sulfate ion is removed.
  • the first permeated water W 22 subjected to membrane separation in the first membrane processing unit 121 is supplied to the second membrane processing unit 122 and at least a portion thereof is desulfurized drainage through the permeated water supply line L 44 as circulating water W 23 It is supplied to the W 11.
  • the first permeate water W 22 supplied to the second membrane processing unit 122 is a second concentrate water W 31 in which chloride ions are concentrated by the second separation membrane and a second permeate water W 32 in which chloride ions are removed. The membrane is separated and discharged.
  • the dilution by the first permeate W 22 or second permeate W 32 of the desulfurization effluent W 11 as the circulating water W 23 or circulation water W 33 first it is possible to reduce the concentration of the scale components in the desulfurization effluent W 11 supplied to the membrane unit 121. Accordingly, even when a high concentration of the scale components in the desulfurization effluent W 11, it is possible to prevent the scale deposition in the first separation film of the first layer processing section 121.
  • the first separation film since diluting the desulfurization effluent W 11 using at least a portion of the second permeate W 32 discharged from the second layer processing unit 122, the first separation film only by providing a permeate circulation line L 43, L 44 It is possible to prevent the precipitation of scale in
  • FIG. 7 is a schematic view showing an example of the exhaust gas processing system according to the third embodiment.
  • the exhaust gas treatment apparatus 6 of the present embodiment is provided at the latter stage of the flue gas desulfurization unit 11, and a pre-processing unit 15 for removing the scale components in the desulfurization effluent W 11.
  • Preprocessing unit 15 removes the scale components such as calcium ions and magnesium ions contained in the desulfurization effluent W 11. Further, the pretreatment unit 15 supplies the first membrane treatment unit 121 with the pretreatment water W 14 from which the scale component in the desulfurization drainage has been removed.
  • a solid-liquid separating section for separating and removing from the desulfurization effluent of the solid component such as a (not shown) may be provided contained in the desulfurization waste water W 11.
  • the solid-liquid separation unit in particular limited as long as it can separate and remove solid components from the desulfurization effluent W 11 is not, for example, a belt filter, a belt press, filter press, centrifuge, hydrocyclone and various like settling tank A solid-liquid separation device can be used.
  • the pre-processing unit 15 is provided in the subsequent stage of the coagulation sedimentation unit 151 to which the desulfurization drainage W 11 is supplied, the sand filtration unit 152 provided in the latter stage of the coagulation sedimentation unit 151, and the sand filtration unit 152 And the membrane filtration unit 153.
  • the pretreatment unit 15 includes the aggregation and precipitation unit 151, the sand filtration unit 152, and the membrane filtration unit 153, but the present invention is not limited to this configuration.
  • the pretreatment unit 15 may include at least one of the sand filtration unit 152 or the membrane filtration unit 153.
  • the pretreatment unit 15 may include the coagulation sedimentation unit 151 and the sand filtration unit 152.
  • the coagulation sedimentation unit 151 and the membrane filtration The unit 153 may be provided.
  • the flocculation settling unit 151 is, for example, calcium carbonate (CaCO 3 ) by adding calcium hydroxide (Ca (OH) 2 ) and sodium carbonate (Na 2 CO 3 ) to the desulfurization waste water W 11 to add calcium ions and magnesium ions. And solidify as magnesium hydroxide (Mg (OH) 2 ) and separate from the desulfurization waste water W 11 as sludge 151 a.
  • a settling tank such as a clarifier is used as the aggregation settling unit 151.
  • the flocculation settling unit 151 supplies the sand filtration unit 152 with the desulfurization drainage W 12 obtained by removing the sludge 151 a from the desulfurization drainage W 11 .
  • Sand filtration unit 152 is, for example, by passing the desulfurization effluent W 12 to a plurality of filter layers, the solid in the desulfurization effluent W 12 min, specifically solids generated by the coagulation-sedimentation unit 151 (calcium carbonate (CaCO 3) and magnesium hydroxide (Mg (OH) 2)) and removing the particulate silicon dioxide (SiO 2) a solid, such as content (suspended matter).
  • the sand filtration unit 152 may allow the sand filtration layer to permeate the desulfurization drainage W 12 to remove the solid content.
  • the sand filtration 152 supplies the membrane filtration 153 with the desulfurization waste water W 13 from which the solid content in the desulfurization waste water W 12 has been removed.
  • the membrane filtration unit 153 is a solid substance (calcium carbonate (CaCO 2 (CaCO 2) remaining in the desulfurization drainage W 13 by causing the desulfurization drainage W 13 to permeate through the filtration membrane 153 a such as microfiltration and ultrafiltration membrane (UF: Ultra Filtration)). 3 ) to obtain pretreated water W 14 from which solid content such as magnesium hydroxide (Mg (OH) 2 )) and particulate silicon dioxide (SiO 2 ) has been removed and to obtain washing waste W 15 containing suspended components obtain. Further, the membrane filtration unit 153 supplies the pretreated water W 14 to the membrane processing unit 12 and discharges the concentrated water W 15 as drainage.
  • the other configuration is the same as that of the exhaust gas processing device 1 shown in FIG.
  • the desulfurization waste water W 11 containing the sulfur content discharged from the flue gas desulfurization part 11 is supplied to the coagulation sedimentation part 151 of the pretreatment part 15 via the desulfurization waste water supply line L 1 .
  • Slaked lime, sodium carbonate (Na 2 CO 3 ), etc. are added to the desulfurization waste water W 11 supplied to the coagulating and settling part 151.
  • calcium ions and magnesium ions are solidified as calcium carbonate (CaCO 3 ) and magnesium hydroxide (Mg (OH) 2 ) and separated from the desulfurization drainage W 11 as sludge 151 a.
  • the desulfurization waste water W 12 from which the sludge 151 a has been removed in the coagulation sedimentation part 151 is supplied to the sand filtration part 152 and permeates through the filter medium, whereby suspended substances in the desulfurization waste water W 12 (carry ) Is removed.
  • the desulfurization waste water W 13 from which the suspended matter has been removed is supplied to the membrane filtration unit 153 and permeates through the filtration membrane 153 a, whereby suspended matter remaining in the desulfurization drainage W 13 (carry over from the sand filtration ) is membrane separation in the pretreated water W 14 and cleaning waste water W 15 is removed.
  • the membrane-separated pretreated water W 14 is supplied to the membrane processing unit 12, and the cleaning drainage W 15 is discharged out of the system.
  • the other parts are the same as those of the exhaust gas processing device 1 shown in FIG.
  • the scale component contained in the desulfurization waste water W 11 discharged from the flue gas desulfurization part 11 is removed by the pre-treatment part 15 at the front stage of the membrane processing part 12 It is possible to significantly reduce the scale component in the pretreated water W 14 introduced into the membrane processing unit 12. Accordingly, even when high content of scale components in the desulfurization effluent W 11, it is possible to prevent the deposition of scale in the separation membrane of the film processing section 12.
  • FIG. 8 is a schematic view showing an example of the exhaust gas processing system according to the fourth embodiment.
  • the exhaust gas treatment device 7 according to this embodiment, in addition to the configuration of the exhaust gas treatment apparatus 1 shown in FIG. 1, flue gas desulfurization unit 11 and the film processing in the flow direction of the desulfurization effluent W 11
  • a mercury removing unit 16 provided between the unit 12 and the unit 12 is provided.
  • the mercury removal unit 16 includes a separation unit 161 for solid-liquid separation of liquid mercury and solid mercury (for example, a solid compound with a mercury compound attached and contained) contained in the desulfurization drainage W 11 , and a mercury processing unit 162 to remove the soluble mercury dissolved in the W 11.
  • the separation unit 161 is, for example, liquid mercury (for example, metal mercury Hg), solid mercury (for example, HgSO 4 , Hg 2 SO, etc.) contained in the desulfurization drainage W 11 by coagulation sedimentation, membrane separation, sand filtration or the like. 4 , HgS, Hg 2 S) are separated and removed as mercury-containing sludge.
  • the separation unit 161 supplies the desulfurization waste water W 16 in which the mercury is fixed and removed to the mercury processing unit 162.
  • Mercury processor 162 mercury liquid in the desulfurization effluent W 11 a (Hg 0) is oxidized to a soluble mercury (Hg 2+), to remove the soluble mercury in the desulfurization effluent W 11 oxidized.
  • Mercury processor 162 by, for instance, the addition of such a chelating agent and chelating resins as heavy metal scavenger is removed by immobilizing the solubility mercury in desulfurization effluent W 11.
  • the mercury-treated portion 162 adjusts the pH together with the chelating agent as needed, pH adjusters such as sodium hydroxide (caustic soda: NaOH), sulfuric acid (H 2 SO 4 ), hydrochloric acid (HCl), aluminum sulfate
  • An aggregating agent such as Al 2 (SO 4 ) 3 , polyaluminum chloride, ferric chloride (FeCl 3 ), a polymer coagulant, and an aggregating aid may be added.
  • the mercury processing unit 162 adds a sulfide-based mercury removing agent such as iron sulfide and sodium sulfide to the desulfurization waste water W 11 , and the mercury sulfide may be removed by the following reaction.
  • HgS mercury
  • immobilized mercury sulfide is flocculation, membrane separation, sand filtration, and separation excluded from desulfurization effluent W 11 by such as activated carbon adsorption It can be.
  • the mercury-treated portion 162 is a cation exchange resin that adsorbs desorbed mercury (Hg 2+ ) and desorbs the desulfurization waste water W 11 (eg, HgCl 3 ⁇ , HgCl 4 2 ⁇ , HgS 2 2 ⁇ , etc.). by transmitting to the ion-exchange resin may be removed soluble mercury in the desulfurization waste water W 11.
  • the mercury processing unit 162 adds a predetermined amount of an oxidizing agent (for example, air) to be in a predetermined oxidation state (for example, redox potential (ORP))
  • a predetermined oxidation state for example, redox potential (ORP)
  • ORP redox potential
  • the desulfurization waste water W 11 containing the sulfur content discharged from the flue gas desulfurization part 11 is supplied to the separation part 161 of the mercury removal part 16 via the desulfurization waste water supply line L 1 .
  • solid and liquid mercury is separated and removed by coagulation sedimentation, membrane separation, sand filtration, etc., and is sent to the mercury processing part 162 as desulfurization waste water W 16 after solid-liquid separation.
  • Soluble mercury is removed from the desulfurization waste water W 16 supplied to the mercury processing unit 162 by the addition of a chelating agent (the removed mercury is not shown).
  • the desulfurization waste water W 17 from which the soluble mercury has been removed is supplied to the membrane processing unit 12. About others, since it is the same as that of exhaust gas processing device 1 shown in Drawing 1, explanation is omitted.
  • the separation part 161 solid and liquid mercury contained in the desulfurization waste water W 11 discharged from the flue gas desulfurization part 11 is removed by the separation part 161 and soluble mercury is removed. Since the mercury is removed by the mercury processing unit 162, mercury adhering to the separation membrane of the membrane processing unit 12 can be reduced. Thus, it is possible to reduce the mercury adhering to the film processing section 12, since the mercury mercury concentration was reduced in the permeate W 22 can be reduced to below the effluent standard value, the permeate W 22 It becomes possible to release it.
  • FIG. 9A is a schematic view showing an example of an exhaust gas processing system according to the fifth embodiment.
  • the exhaust gas treatment apparatus 8A according to this embodiment, in addition to the configuration of the exhaust gas treatment apparatus 1 shown in FIG. 1, it is branched from the concentrate water supply line L 21, desulfurization effluent supply line L 1 a concentrated water circulation line L 61 that is connected to a water quality measuring unit 17 that measures the quality of the concentrated water W 21 through the concentrated water circulation line L 61, based on the quality of the concentrated water W 21 measured by the quality measuring unit 17 And a control unit 18 configured to control the flow rate of the concentrated water W 21 flowing through the concentrated water circulation line L 61 as the circulating water W 24 .
  • the concentrated water circulation line L 61 is provided with a flow control valve V 1 for adjusting the flow rate of the circulating water W 24 flowing through the concentrated water circulation line L 61 . That is, in the exhaust gas treatment apparatus 8A, film processing section 12 is capable of circulating the concentrated water W 21 as the circulating water W 24 through a concentrated water circulation line L 61.
  • the water quality measurement unit 17 measures the conductivity (EC: Electrical Conductivity) of the concentrated water W 21 , etc., to thereby supply chloride ions of the concentrated water W 21 supplied from the membrane processing unit 12 to the flue gas desulfurization unit 11. Estimate the concentration of the ion component.
  • EC Electrical Conductivity
  • the control unit 18 is operated using a general-purpose or dedicated computer on which a CPU (central processing unit), a ROM (Read Only Memory), a RAM (Random Access Memory), etc. is mounted and a program operating on this computer .
  • the control unit 18 estimates the chloride ion concentration in the concentrated water W 21 based on the conductivity of the concentrated water W 21 measured by the water quality measurement unit 17, and the circulating water W 24 is circulated to the desulfurization drainage W 11
  • the flow rate is controlled to operate such that the chloride ion concentration in the concentrated water W 21 is below the reference value.
  • the control unit 18 increases the opening degree of the flow control valve V 1 to increase the flow rate of the circulating water W 24 circulated to the membrane processing unit 12 It works to make it
  • the exhaust gas processing device 8A can reduce the amount of chloride ions supplied to the exhaust gas desulfurization unit 11 together with the concentrated water W 21 , and the chloride discharged from the membrane processing unit 12 together with the permeated water W 22 .
  • the amount of ions can be increased.
  • the control unit 18 decreases the opening degree of the flow rate adjustment valve V 1 to circulate the circulating water W 24 circulated to the membrane processing unit 12. Operate to reduce the flow rate.
  • the flow rate of the concentrated water W 21 supplied from the membrane processing unit 12 to the exhaust gas desulfurization unit 11 increases, so the chloride ion concentration of the exhaust gas desulfurization unit 11 is in the range below the reference value. To increase.
  • the other configuration is the same as that of the exhaust gas processing device 1 shown in FIG.
  • FIG. 9A an example is described of controlling the circulation amount of the measurement result based concentrated water W 21 water quality concentrated water W 21, the control unit 18, measurement of the quality of the permeated water W 22
  • the circulation amount of the concentrated water W 21 circulated as the circulation water W 24 may be controlled based on the result.
  • FIG. 9B is a schematic view showing another example of the exhaust gas processing system according to the fifth embodiment.
  • the water quality measurement unit 17 instead of the quality of the concentrated water W 21, measures the quality of the permeate W 22.
  • Water measuring unit 17 by measuring the like conductivity as a quality of permeate W 22, to estimate the concentration of the ionic components such as chloride ions in the permeate water W 22 discharged from the film processing section 12.
  • the control unit 18 estimates the chloride ion concentration in the permeate water W 22 based on the conductivity of the permeate water W 22 measured by the water quality measurement unit 17, and the circulating water W 24 is circulated to the desulfurization drainage W 11
  • the flow rate is controlled to operate such that the chloride ion concentration in the concentrated water W 21 is below the reference value.
  • Control unit 18 when the conductivity of the permeate W 22 is less than the reference value, increases the flow rate of the circulating water W 24 that is recycled to the membrane unit 12 increases the opening degree of the flow control valve V 1 To work.
  • the exhaust gas processing device 8B can reduce the amount of chloride ions supplied to the exhaust gas desulfurization unit 11 together with the concentrated water W 21 , and the chloride discharged from the membrane processing unit 12 together with the permeated water W 22 . The amount of ions can be increased.
  • the amount of chloride ions in the exhaust gas treatment apparatus 8B can be reduced, and the chloride ion concentration of the desulfurization drainage W11 in the exhaust gas desulfurization unit 11 and the desulfurization drainage W11 discharged from the exhaust gas desulfurization unit 11 is made lower than the reference value. Since it can reduce, the fall of the desulfurization performance of flue gas desulfurization part 11 by chloride ion can be prevented.
  • the control unit 18 reduces the opening degree of the flow rate adjustment valve V 1 and circulates the circulation water W 24 circulated to the membrane processing unit 12. Operate to reduce the flow rate.
  • the flow rate of the concentrated water W 21 supplied from the membrane processing unit 12 to the flue gas desulfurization unit 11 increases, so the chloride ion concentration of the flue gas desulfurization unit 11 is increased in the range below the reference value.
  • Desulfurization treatment of the combustion exhaust gas in the exhaust gas desulfurization unit 11 can be performed efficiently.
  • the other configuration is the same as that of the exhaust gas processing device 8A shown in FIG. 9A, and thus the description thereof is omitted.
  • FIG. 9B is a schematic view showing another example of the exhaust gas processing system according to the fifth embodiment.
  • the water quality measurement unit 17 instead of the quality of the permeate W 22, measures the quality of desulfurization effluent W 11.
  • Water measuring unit 17 by measuring the like conductivity as a quality of desulfurization effluent W 11, to estimate the concentration of the ionic components such as chloride ions in the desulfurization effluent W 11 discharged from the flue gas desulfurization unit 11.
  • the control unit 18 controls the flow rate of the circulating water W 24 to be circulated to the desulfurization drainage W 11 based on the conductivity of the desulfurization drainage W 11 measured by the water quality measurement unit 17, and chlorides in the concentrated water W 21 It operates so that the ion concentration is below the reference value.
  • Control unit 18 when the conductivity in the desulfurization effluent W 11 is less than the reference value, reduces the flow rate of the circulating water W 24 which reduces the opening degree of the flow control valve V 1 is circulated in the film processing section 12 It works to make it Thereby, in the exhaust gas processing device 8C, the flow rate of the concentrated water W 21 supplied from the membrane processing unit 12 to the exhaust gas desulfurization unit 11 increases, so the chloride ion concentration of the exhaust gas desulfurization unit 11 is in the range below the reference value. To increase. As a result, it is possible to operate without reducing the efficiency of the desulfurization treatment, and the amount of recovered sulfur in the flue gas desulfurization unit 11 is increased.
  • the control unit 18 increases the opening degree of the flow rate adjustment valve V 1 to circulate the concentrated water W 21 that is circulated to the membrane processing unit 12. Operate to increase the flow rate.
  • the exhaust gas processing device 8C can reduce the amount of chloride ions supplied to the exhaust gas desulfurization unit 11 together with the concentrated water W 21 , and the chloride discharged from the membrane processing unit 12 together with the permeated water W 22 . The amount of ions can be increased.
  • the concentrated water W 21 of the membrane processing unit 12 is provided by providing a concentrated water circulation line L 61 branched from the concentrated water supply line L 21 and connected to the desulfurization waste water supply line L 1.
  • a concentrated water circulation line L 61 branched from the concentrated water supply line L 21 and connected to the desulfurization waste water supply line L 1.
  • FIG. 9D is a schematic view showing another example of the exhaust gas processing system according to the fifth embodiment. In the exhaust gas treatment apparatus 8D shown in FIG. 9D, instead of the concentrated water circulation line L 61 of the exhaust gas treatment apparatus 8A shown in FIG.
  • a water circulation line L 62 is provided.
  • the permeated water circulation line L 62 supplies the permeated water W 22 discharged from the membrane processing unit 12 to the desulfurization drainage W 11 supplied to the membrane processing unit 12 as circulating water W 25 .
  • the permeated water circulation line L 62 is provided with a flow control valve V 2 that controls the flow rate of circulating water W 25 flowing through the permeated water circulation line L 62 .
  • the control unit 18 estimates the chloride ion concentration in the permeate W 22 based on the conductivity of the concentrated water W 21 measured by the water quality measurement unit 17, and the circulating water W 25 is circulated to the desulfurization drainage W 11 The flow rate is controlled to make the chloride ion concentration in the concentrated water W 21 equal to or less than the reference value.
  • the control unit 18 increases the opening degree of the flow rate adjustment valve V 2 to set the flow rate of the circulating water W 25 circulated to the membrane processing unit 12. Operate to increase.
  • the exhaust gas processing device. 8D it is possible to dilute the desulfurization effluent W 11 to be supplied to the film processing section 12, it is possible to reduce the chloride ion concentration in the concentrated water W 21 below the reference value, ejection with concentrated water W 21 It is possible to prevent the desulfurization performance of the flue gas desulfurization unit 11 from being degraded by chloride ions supplied to the smoke desulfurization unit 11.
  • the control unit 18 reduces the opening degree of the flow rate adjustment valve V 2 and circulates the circulating water W 25 circulated to the membrane processing unit 12. Operate to reduce the flow rate of Thus, the exhaust gas processing device. 8D, it is possible to increase the amount of chloride ions that are discharged with the permeate W 22 from the membrane unit 12, the flow rate of the concentrated water W 21 to be supplied to the flue gas desulfurization unit 11 Since the chloride ion concentration of the flue gas desulfurization unit 11 can be operated within the range below the reference value, the efficiency of the desulfurization treatment is not reduced, and the amount of recovered sulfur in the flue gas desulfurization unit 11 is Increase.
  • the other configuration is the same as that of the exhaust gas processing device 8A shown in FIG. 9A, and thus the description thereof is omitted.
  • FIG. 9D an example of controlling the circulation amount of the permeate water W 22 circulated as the circulation water W 25 based on the measurement result of the water quality of the concentrate W 21 has been described.
  • the circulation amount of the permeate W 22 is circulated as circulating water W 25 based on the measurement results of the quality of the permeate W 22 may be controlled.
  • FIG. 9E is a schematic view showing another example of the exhaust gas processing system according to the fifth embodiment.
  • the water quality measurement unit 17 instead of the quality of the concentrated water W 21, measures the quality of the permeate W 22.
  • Water measuring unit 17, by measuring the like conductivity of the permeate W 22, to estimate the concentration of the ionic components such as chloride ions in the permeate water W 22 discharged from the film processing section 12.
  • Control unit 18, by adjusting the opening of flow control valve V 2 on the basis of the conductivity of the water quality measurement part 17 permeate W 22 measured by the flow rate of circulation water W 25 circulating in the desulfurization effluent W 11 To control the chloride ion concentration in the permeate water W 22 to be equal to or lower than the reference value.
  • the control unit 18 decreases the opening degree of the flow rate adjusting valve V 2 when the conductivity in the permeate water W 22 becomes less than or equal to the reference value, and the flow rate of the circulating water W 25 circulated to the membrane processing unit 12 Work to reduce Thus, the exhaust gas processing device. 8E, it is possible to increase the amount of chloride ions that are discharged with the permeate W 22 from the membrane unit 12, the flow rate of the concentrated water W 21 to be supplied to the flue gas desulfurization unit 11 Since the chloride ion concentration of the flue gas desulfurization unit 11 can be operated within the range below the reference value, the efficiency of the desulfurization treatment is not reduced, and the amount of recovered sulfur in the flue gas desulfurization unit 11 is Increase.
  • the control unit 18 increases the opening degree of the flow rate adjustment valve V 2 to circulate the circulating water W 25 circulated to the membrane processing unit 12. Operate to increase the flow rate.
  • the exhaust gas processing device. 8E it is possible to dilute the desulfurization effluent W 11 to be supplied to the film processing section 12, it is possible to reduce the chloride ion concentration in the concentrated water W 21 below the reference value, ejection with concentrated water W 21 It is possible to prevent the desulfurization performance of the flue gas desulfurization unit 11 from being degraded by chloride ions supplied to the smoke desulfurization unit 11.
  • the other configuration is the same as that of the exhaust gas processing device 8A shown in FIG.
  • FIG. 9E an example is described in which the circulation amount of the permeate water W 22 circulated as the circulation water W 25 is controlled based on the measurement result of the water quality of the concentrate W 21 .
  • the circulation amount of the permeate W 22 is circulated as circulating water W 25 based on the measurement results of the quality of the permeate W 22 may be controlled.
  • FIG. 9F is a schematic view showing another example of the exhaust gas processing system according to the fifth embodiment.
  • the water quality measurement unit 17 instead of the quality of the permeate W 22, measures the quality of desulfurization effluent W 11.
  • Water measuring unit 17 by measuring the like conductivity of desulfurization effluent W 11, to estimate the concentration of the ionic components such as chloride ions in the desulfurization effluent W 11 to be supplied to the film processing section 12.
  • Control unit 18, by adjusting the opening of flow control valve V 2 on the basis of the conductivity of the desulfurization effluent W 11 measured by the quality measuring unit 17, the flow rate of circulation water W 25 circulating in the desulfurization effluent W 11 To control the chloride ion concentration in the permeate water W 22 to be equal to or lower than the reference value.
  • the control unit 18 increases the opening degree of the flow rate adjustment valve V 2 and sets the flow rate of the circulating water W 25 circulated to the membrane processing unit 12 Operate to increase.
  • the exhaust gas processing device. 8F it is possible to dilute the desulfurization effluent W 11 to be supplied to the film processing section 12, it is possible to reduce the chloride ion concentration in the concentrated water W 21 below the reference value, ejection with concentrated water W 21 It is possible to prevent the desulfurization performance of the flue gas desulfurization unit 11 from being degraded by chloride ions supplied to the smoke desulfurization unit 11.
  • the other configuration is the same as that of the exhaust gas processing device 8A shown in FIG.
  • the concentrated water W 21 flowing through the concentrated water supply line L 21 , the permeated water W 22 discharged from the membrane processing unit 12, and the desulfurization drainage supplied to the membrane processing unit 12 based on at least one quality of W 11, for controlling at least one of flow rate of the circulating water W concentrated water is circulated as a 25 W 21 and permeate W 22 in film processing section 12.
  • Flue gas by this exhaust gas treatment apparatus 8A ⁇ 8F since it is possible to control the chloride ion concentration in the concentrated water W 21 supplied from the film processing section 12 to the flue gas desulfurization unit 11, together with the concentrated water W 21 The deterioration of the desulfurization performance based on the chloride ion supplied to the desulfurization unit 11 can be prevented.
  • FIG. 9G is a schematic view showing an example of an exhaust gas processing system according to the fifth embodiment. As illustrated in FIG. 9G, the exhaust gas treatment apparatus 8G according to the present embodiment, in addition to the configuration of the exhaust gas treatment apparatus 1 shown in FIG.
  • bypass line L 63 that is connected to a water quality measuring unit 17 that measures the quality of the concentrated water W 21 through the concentrated water circulation line L 61, based on the quality of the concentrated water W 21 measured by the quality measuring unit 17, and a control unit 18 for controlling at least part of the flow rate of the desulfurization waste water W 11 flowing through the bypass line L 63 as a bypass water W 26.
  • the bypass line L 63 is provided with a flow control valve V 3 for adjusting the flow rate of the bypass water W 26 flowing through the bypass line L 63 . That is, in the exhaust gas treatment apparatus 8G, at least a portion of the desulfurization effluent W11 can be supplied to the permeate W 22 via the bypass line L 63 without being membrane separation by membrane treatment unit 12.
  • Water measuring unit 17, by measuring the like conductivity of the concentrated water W 21, estimate the concentration of the ionic components such as chloride ion concentrated water W 21 supplied from the film processing section 12 to the flue gas desulfurization unit 11 Do.
  • the control unit 18 increases the opening degree of the flow control valve V 3 to increase the flow rate of the bypass water W 26 supplied to the permeate water W 22. It works to make it Thus, the exhaust gas processing device 8G can reduce the amount of chloride ions supplied to the exhaust gas desulfurization unit 11 together with the concentrated water W 21 , and the chloride discharged from the membrane processing unit 12 together with the permeated water W 22 . The amount of ions can be increased.
  • the amount of chloride ions in the exhaust gas treatment apparatus 8G can be reduced, and the chloride ion concentration of the desulfurization drainage W 11 discharged from the desulfurization drainage and the flue gas desulfurization unit 11 in the exhaust gas desulfurization unit 11 is below the reference value. Therefore, it is possible to prevent the deterioration of the desulfurization performance of the flue gas desulfurization section 11 due to chloride ions.
  • the control unit 18 decreases the opening degree of the flow rate adjustment valve V 1 and supplies the bypass water W 26 to the permeate water W 22 . Operate to reduce the flow rate.
  • the flow rate of the concentrated water W 21 supplied from the membrane processing unit 12 to the exhaust gas desulfurization unit 11 increases, so the chloride ion concentration of the exhaust gas desulfurization unit 11 is in the range below the reference value. To increase. As a result, it is possible to operate without reducing the efficiency of the desulfurization treatment, and the amount of recovered sulfur in the flue gas desulfurization unit 11 is increased.
  • the other configuration is the same as that of the exhaust gas processing device 1 shown in FIG.
  • FIG. 9G is a schematic view showing another example of the exhaust gas processing system according to the fifth embodiment.
  • water quality measurement unit 17 instead of the quality of the concentrated water W 21, measures the quality of the permeate W 22.
  • Water measuring unit 17 by measuring the like conductivity as a quality of permeate W 22, to estimate the concentration of the ionic components such as chloride ions in the permeate water W 22 discharged from the film processing section 12.
  • the control unit 18 estimates the chloride ion concentration in the permeate water W 22 based on the conductivity of the permeate water W 22 measured by the water quality measurement unit 17, and is supplied to the permeate water W 22 as bypass water W 26. that by controlling the flow rate of the desulfurization effluent W 11, it operates to the chloride ion concentration in the concentrated water W 21 to equal to or less than the reference value.
  • Control unit 18 when the conductivity of the permeate W 22 is less than the reference value, increases the flow rate of the bypass water W 26 to be supplied to the permeate W 22 increases the opening degree of the flow regulating valve V 3 To work.
  • the exhaust gas processing device 8H can reduce the amount of chloride ions supplied to the exhaust gas desulfurization unit 11 together with the concentrated water W 21 , and the chloride discharged from the membrane processing unit 12 together with the permeated water W 22 . The amount of ions can be increased.
  • the flow rate of the desulfurization waste water W 11 to be supplied to the permeate W 22 is increased, the chloride ion concentration in the flue gas desulfurization unit 11 is increased in the range of less than the reference value.
  • Desulfurization treatment of the combustion exhaust gas in the exhaust gas desulfurization unit 11 can be performed efficiently.
  • the other configuration is the same as that of the exhaust gas processing device 8A shown in FIG. 9A, and thus the description thereof is omitted.
  • the determination may be made by providing a predetermined reference value based on analysis values of various chemical analysis.
  • an example is described of controlling the amount of chloride ions fed to the flue gas desulfurization unit 11 by adjusting the amount of circulating concentrated water W 21 and permeate W 22, desulfurization
  • the amount of chloride ions supplied to the flue gas desulfurization unit 11 may be controlled by increasing the chloride ion permeability coefficient of the separation membrane by heating the drainage W 11 and adjusting the pH.
  • FIG. 10 is a view showing an example of a film processing unit according to the present embodiment.
  • the membrane processing unit 12 shown in FIG. 10 includes a plurality of (seven in the present embodiment) first to seventh membrane separation units 12-1 to 12-7 disposed in a pressure vessel (vessel) 120. Equipped with The first membrane separation unit 12-1 to seventh membrane separation unit 12-7 includes a separation membrane 12a which membrane separates the desulfurization effluent W 11 to the concentrated water W 21 and permeate W 22.
  • the pressure vessel 120 includes a desulfurization effluent inlet pipe 1201 for introducing the desulfurization effluent W 11 to the pressure vessel 120, the desulfurization effluent discharge pipe 1202 for discharging the desulfurization effluent W 11 from the pressure vessel 120, a first membrane separation unit 12 And a water collecting pipe 1203 connecting the first to seventh membrane separation units 12-7 in series. Water collecting pipe 1203, a permeate W 22 which is membrane separated by the first membrane separation unit 12-1 to seventh membrane separation unit 12-7 for collecting.
  • the water collection pipe 1203 and the upstream side water collection pipe 1203 b on the upstream side (hereinafter, also simply referred to as “upstream side”) in the flow direction of the desulfurization drainage W 11 flowing in the pressure vessel 120 It is divided into a downstream side water collection pipe 1203 c on the downstream side (hereinafter, also simply referred to as “downstream side”).
  • upstream side water collection pipe 1203 c on the downstream side
  • downstream side As the first membrane separation unit 12-1 to the seventh membrane separation unit 12-7, for example, one end side of the separation membrane 12a is communicated with the water collection pipe 1203, and is wound via a mesh spacer (not shown) One provided with a spiral separation membrane is used.
  • Film processing section 12 the desulfurization effluent W 11 introduced into the pressure vessel 120 through the desulfurization effluent supply line L 1 and the desulfurization effluent inlet tube 1201, first membrane separation unit 12-1 to seventh membrane separation unit 12
  • the membrane is separated into concentrated water W 21 in which the sulfate ion is concentrated and permeate water W 22 in which the sulfate ion is removed by the separation membrane 12 a of ⁇ 7.
  • the membrane processing unit 12 supplies the concentrated water W 21 to the exhaust gas desulfurization unit 11 through the desulfurization drainage discharge pipe 1202 and the concentrated water supply line L 21 .
  • Film processing section 12 condenses water first membrane separation unit 12-1 to seventh membrane separation unit 12-7 permeate W 22 which is membrane separation in the water collecting pipe 1203.
  • the membrane processing unit 12 uses the permeated water W 22-1 discharged from the downstream side of the membrane processing unit 12 via the downstream side water collection pipe 1203b by the partition 1203a of the water collection pipe 1203 with the collected water W 22 , And permeated water W 22-2 discharged from the upstream side.
  • the membrane processing unit 12 discharges the permeated water W 22-1 from the downstream side of the membrane processing unit 12 to the outside through the permeated water discharge line L 22-1 and, at the same time, passes the permeated water discharge line L 22-2 .
  • the permeate water W 22-2 is discharged from the upstream side of the membrane processing unit 12 to the outside.
  • the permeate water W 22-2 discharged from the upstream side of the membrane processing unit 12 has a chloride ion concentration lower than that of the permeate water W 22-1 discharged from the downstream side.
  • the first membrane separation unit 12-1 is provided on the side of the desulfurization drainage introduction pipe 1201 in the pressure vessel 120.
  • the second membrane separation unit 12-2 connected to the first membrane separation unit 12-1 by the upstream water collection pipe 1203c is provided at the rear stage of the first membrane separation unit 12-1.
  • the third membrane separation unit 12-3 connected to the second membrane separation unit 12-2 by the upstream water collection pipe 1203c is provided at the rear stage of the second membrane separation unit 12-2.
  • the fourth membrane separation unit 12-3 is connected to the third membrane separation unit 12-3 by a water collection pipe 1203 that is divided into an upstream water collection pipe 1203c and a downstream water collection pipe 1203b via a partition wall 1203a at the rear stage of the third membrane separation unit 12-3.
  • a membrane separation unit 12-4 is provided.
  • the fifth membrane separation unit 12-5 connected to the fourth membrane separation unit 12-4 by the downstream water collection pipe 1203b is provided at the rear stage of the fourth membrane separation unit 12-4.
  • the sixth membrane separation portion 12-6 connected to the fifth membrane separation portion 12-5 by the downstream side water collection pipe 1203b is provided at the rear stage of the fifth membrane separation portion 12-5.
  • a seventh membrane separation unit 12-7 is provided downstream of the sixth membrane separation unit 12-6, and is connected to the sixth membrane separation unit 12-6 by a downstream side water collection pipe 1203b.
  • the membrane separation unit 12-1 to the membrane separation unit 12-3 are provided on the upstream side of the partition 1203 a in the water collection tube 1203, and the membrane separation unit on the downstream side of the partition 1203 a in the pressure vessel 120 12-4 to a membrane separation unit 12-7, and a plurality of first to seventh membrane separation units 12-1 to 12-7 including a first separation film 12a are connected in series by a water collection pipe 1203; There is.
  • connection in series means that the concentrated water W 21 that has been subjected to membrane separation by the first membrane separation unit 12-1 to the sixth membrane separation unit 12-6 on the upstream side of the membrane processing unit 12
  • the first membrane separation unit 12-1 is supplied to the second membrane separation unit 12-6 to the seventh membrane separation unit 12-7 of the next stage via the first membrane separation unit 12-1 to the sixth membrane separation unit 12-6.
  • the permeated water W 22 subjected to membrane separation in the section 12-1 to the third membrane separation section 12-3 is discharged to the outside of the membrane processing section 12 as the permeate water W 22-2 through the upstream water collection pipe 1203c.
  • the permeated water W 22 membrane-separated by the fourth membrane separation unit 12-4 to the seventh membrane separation unit 12-7 is transmitted to the outside of the membrane processing unit 12 as the permeated water W 22-1 through the downstream water collection pipe 1203 b. It is a drained connection.
  • the membrane processing unit 12 desulfurizes the desulfurization waste water into the highly concentrated concentrated water W 21 in which the sulfate ions in the desulfurization waste water W 11 are sequentially concentrated and the permeate water W 22 in which the sulfate ions in the desulfurization waste water W 11 are removed.
  • the W 11 is possible membrane separation, it is classified permeate W 22 in the W 22-2 discharged from the downstream side of the permeate W 22 - 1 and the pressure vessel 120 to be discharged from the upstream side of the pressure vessel 120 it can.
  • the membrane processing unit 12 can supply the concentrated water W 21 in which sulfate ions are concentrated to a high concentration to the flue gas desulfurization unit 11, and the permeate water W 22-1 in which the chloride ion concentration mutually differs , W 22-2 can be supplied to the desulfurization waste water W 11 , respectively.
  • the separation membrane 12a the same one as the separation membrane of the first embodiment can be used. Further, as the separation membrane 12a, the same separation membrane 12a may be used in the seven first membrane separation parts 12-1 to the seventh membrane separation parts 12-7, or different separation membranes 12a may be used. .
  • the first membrane separation unit 12-1 performs membrane separation of the desulfurization drainage W 11 into concentrated water W 21 and permeate water W 22-2 (W 22 ). Further, the first membrane separation unit 12-1 supplies the concentrated water W 21 obtained by the membrane separation to the second membrane separation unit 12-2.
  • the first membrane separation unit 12-1, membrane permeate W 22-2 obtained by the separation, the upstream side of the upstream water collecting pipe 1203c and permeate discharge line L 22-2 through the film processing section 12 Are discharged to the outside of the membrane processing unit 12.
  • the second membrane separation unit 12-2 membrane separation in the concentrated water W 21 supplied from the first membrane separation unit 12-1 and concentrated water W 21 and permeate W 22-2 (W 22). Further, the second membrane separation unit 12-2 supplies the concentrated water W 21 to the third membrane separation unit 12-3. In addition, the second membrane separation unit 12-2 moves the permeated water W 22-2 obtained by the membrane separation upstream of the membrane processing unit 12 via the upstream water collection pipe 1203c and the permeated water discharge line L 22-2. Are discharged to the outside of the membrane processing unit 12.
  • the third membrane separation unit 12-3 membrane separation in the concentrated water W 21 supplied from the second membrane separation unit 12-2 and the concentrated water W 21 and permeate W 22-2 (W 22).
  • the third membrane separation unit 12-3 supplies the concentrated water W 21 to the fourth membrane separation unit 12-4.
  • the third membrane separation unit 12-3 moves the permeated water W 22-2 obtained by the membrane separation upstream of the membrane processing unit 12 via the upstream water collection pipe 1203c and the permeated water discharge line L 22-2. From the membrane processing unit 12.
  • the fourth membrane separation unit 12-4 membrane separation in the third film supplied with concentrated water W 21 from the separation unit 12-3 and the concentrated water W 21 permeate W 22-1 (W 22). Further, the fourth membrane separation unit 12-4 supplies the concentrated water W 21 obtained by the membrane separation to the fifth membrane separation unit 12-5. In addition, the fourth membrane separation unit 12-4 passes the permeated water W 22-1 obtained by the membrane separation to the downstream side of the membrane processing unit 12 via the downstream water collection pipe 1203b and the permeated water discharge line L 22-1. Are discharged to the outside of the membrane processing unit 12.
  • Fifth membrane separation unit 12-5 is membrane separation in the fourth membrane separation unit 12-4 concentrated water W 21 supplied from the concentrated water W 21 permeate W 22-1 (W 22).
  • the fifth membrane separation unit 12-5 supplies the concentrated water W 21 obtained by the membrane separation to the sixth membrane separation unit 12-6.
  • the fifth membrane separation unit 12-5 is a downstream side of the membrane processing unit 12 through the downstream water collection pipe 1203b and the permeated water discharge line L 22-1 for the permeated water W 22-1 obtained by the membrane separation. Are discharged to the outside of the membrane processing unit 12.
  • Sixth membrane separation unit 12-6 membrane separated the concentrated water W 21 supplied from the fifth membrane separation unit 12-5 concentrated water W 21 and permeate W 22-1 (W 22).
  • the sixth membrane separation unit 12-6 supplies the concentrated water W 21 obtained by the membrane separation to the seventh membrane separation unit 12-7.
  • the sixth membrane separation unit 12-6 is a downstream side of the membrane processing unit 12 through the downstream water collection pipe 1203b and the permeated water discharge line L 22-1 for the permeated water W 22-1 obtained by the membrane separation. Are discharged to the outside of the membrane processing unit 12.
  • the seventh membrane separation unit 12-7 performs membrane separation of the concentrated water W 21 supplied from the sixth membrane separation unit 12-6 into concentrated water W 21 and permeate water W 22-1 (W 22 ).
  • the seventh membrane separation unit 12-7 supplies the concentrated water W 21 obtained by the membrane separation in the flue gas desulfurization unit 11 through the concentrated water supply line L 21.
  • the seventh membrane separation unit 12-7 is a downstream side of the membrane processing unit 12 through the downstream water collection pipe 1203b and the permeated water discharge line L 22-1 for the permeated water W 22-1 obtained by the membrane separation. Are discharged to the outside of the membrane processing unit 12.
  • the permeated water discharge line L 22-1 is connected to the permeated water discharge line L 22 .
  • the permeate circulation line L 62 is connected.
  • the permeated water discharge line L 22-2 is connected to the permeated water circulation line L 62 .
  • a flow rate adjusting valve V 2A is provided to adjust the flow rate of W 22-1 .
  • the circulating water flowing in the permeate circulation line L 62 flow control valve V 2 to adjust the flow rate of the W 25 is provided.
  • the flow control valves V 2 and V 2A are controlled in their opening degree by the control unit 18 (see FIG. 9A). With such a configuration, the permeated water W 22-1 discharged from the downstream side of the membrane processing apparatus 12 is supplied as desulfurized drainage as circulating water W 25 through the permeated water discharge line L 22-1 and the permeated water circulation line L 62.
  • the permeated water W 22-2 discharged from the upstream side of the membrane processing apparatus 12 passes through the permeated water discharge line L 22-2 and the permeated water circulation line L 62 as the circulating water W 25 through the desulfurization drainage supply line L 1 . which can be supplied to the desulfurization wastewater W 11 flowing.
  • FGD unit 11 desulfurized supplied to the membrane unit 12 drained from W 11 are sequentially film separated by the first membrane separation unit 12-1 to seventh membrane separation unit 12-7, concentrated sulfate ions at a high concentration
  • the membrane is separated into the concentrated water W 21 and the permeated water W 22-1 and W 22-2 from which the sulfate ion has been removed.
  • the membrane-separated concentrated water W 21 is supplied to the flue gas desulfurization unit 11 through the concentrated water supply line L 21
  • the membrane-separated permeated water W 22-1 and W 22-2 is the permeated water discharge line L 22-1 and L 22-2 are discharged to the outside of the membrane separation unit 12.
  • the control unit 18 increases the opening degree of the flow rate adjustment valve V 2A and the flow rate adjustment valve V Close 2 As a result, the permeate waters W 22-1 and W 22-2 are discharged as permeate water through the permeate water discharge lines L 22 , L 22-1 and L 22-2 and the permeate water circulation line L 62 .
  • the control unit 18 When circulating the permeate water W 22-1 and W 22-2 as the circulating water W 25 to the desulfurization drainage W 11 , the control unit 18 increases the opening degree of the flow control valves V 2 and V 2A . As a result, the permeate water W 22-1 and W 22-2 having a lower concentration of chloride ions than the desulfurization waste water W 11 passes through the permeate water discharge line L 22-1 and L 22-2 and the permeate water circulation line L 62 . since supplied to the desulfurization effluent W 11 Te, it is possible to reduce the concentration of chloride ions in the desulfurization effluent W 11.
  • control unit 18 decreases the opening degree of flow rate adjustment valve V 2A and opens the opening degree of flow rate adjustment valve V 2 Increase.
  • concentration of chloride ions is lower permeate W 22-2 is supplied to the desulfurization effluent W 11 via the permeate discharge line L 22-2 and permeate circulation line L 62 with respect to permeate W 22 - 1 Runode, the concentration of chloride ions in the desulfurization waste water W 11 becomes possible to efficiently reduce.
  • the other operations are the same as those of the exhaust gas processing devices 8D to 8F shown in FIGS. 9D to 9F, and therefore the description thereof is omitted.
  • the concentrated water W 21 sequentially condensed by the seven first membrane separation units 12-1 to the seventh membrane separation unit 12-7 is In addition to the supply, it is possible to supply the desulfurization drainage 11 with at least one of the permeate waters W 22-1 and W 22-2 having mutually different chloride ion concentrations. Thereby, for example, when the chloride ion concentration in the desulfurization waste water 11 is high, the desulfurization waste water W 11 is efficiently diluted with the permeate water W 22-2 having a chloride ion concentration lower than that of the permeate water W 22-1. Is also possible.
  • FIG. 11A is a schematic view showing an example of an exhaust gas processing system according to a sixth embodiment.
  • the exhaust gas processing apparatus 9A in addition to the configuration of the exhaust gas processing apparatus 1 shown in FIG. 1, the exhaust gas processing apparatus 9A includes an evaporation processing unit 19 provided downstream of the film processing unit 12.
  • the evaporation processing unit 19 evaporates water from the permeated water W 22 supplied from the membrane processing unit 12 through the permeated water discharge line L 22 to obtain a vapor, and a concentrated liquid and solidified salt in which a soluble substance is concentrated Get
  • the evaporation processing unit 19 is not particularly limited as long as it can evaporate the water in the permeate water W 22.
  • various spray dryers such as a waste water spray dryer (WSD), various crystallizers, etc. It can be used.
  • WSD waste water spray dryer
  • the evaporation section 19 when it is not necessary to completely evaporate moisture from the permeate W 22, it may be used evaporative concentrator.
  • FIG. 11B is a schematic view showing another example of the exhaust gas processing system according to the sixth embodiment.
  • the exhaust gas processing device 9B in addition to the configuration of the exhaust gas processing device 2 shown in FIG. 3, the exhaust gas processing device 9B includes an evaporation processing unit 19 provided downstream of the second film processing unit 122.
  • the evaporation processing unit 19 evaporates water from the concentrated water W 31 supplied from the second membrane processing unit 122 via the concentrated water discharge line L 31 to obtain a vapor, and also a concentrated liquid in which a soluble substance is concentrated, Obtain a solidified salt.
  • the evaporation processing part 19 the thing similar to what was shown to FIG. 11A can be used.
  • FIG. 12A is a schematic view showing another example of the exhaust gas processing system according to the sixth embodiment.
  • the exhaust gas processing apparatus 10A in addition to the configuration of the exhaust gas processing apparatus 1 shown in FIG. 1, the exhaust gas processing apparatus 10A includes a post-processing unit 20 provided downstream of the membrane processing unit 12.
  • the post-processing unit 20 solidifies impurities by adding alkali such as lime, lime, cement, various chemicals, etc. to the permeated water W 22 supplied from the membrane processing unit 12 through the permeated water discharge line L 22. . Further, the post-processing unit 20 discharges the aftertreatment water W 7 to remove the impurities through the post-processing water discharge line L 7.
  • the post-processing unit 20 may remove impurities such as harmful heavy metals contained in the permeate water W 22 by ion exchange treatment using an ion exchange resin, chelate treatment using a chelate resin, or the like.
  • impurities such as harmful heavy metals contained in the permeate water W 22
  • ion exchange treatment using an ion exchange resin
  • chelate treatment using a chelate resin or the like.
  • chelating resins such as chelates for mercury adsorption resin and selenium (Se) adsorption chelate resin
  • chelates for mercury adsorption resin and selenium (Se) adsorption chelate resin for example, trade name: Epolas (registered trademark), model number: Z-7, Z-100 and the like are used.
  • a chelate resin for selenium adsorption trade name: Epolas (registered trademark), model number: SE-3, AS-4 and the like are used.
  • FIG. 12B is a schematic view showing another example of the exhaust gas processing system according to the sixth embodiment.
  • the exhaust gas processing apparatus 10B is provided with a post-processing unit 20 provided downstream of the second film processing unit 122 of the film processing unit 12.
  • Post-processing unit 20 an impurity such as toxic heavy metals during the second concentrated water W 31 supplied through a concentrated water discharge line L 31 from the second layer processing section 122 is removed, the post-processing water discharge line L 7
  • the post-treatment water W 7 from which impurities have been removed is discharged.
  • the post-processing unit 20 the same one as that shown in FIG. 12A described above can be used.
  • the waste water discharged from the exhaust gas treatment devices 9A and 9B to the outside of the exhaust gas treatment devices 9A and 9B can be significantly reduced.
  • the post-processing unit 20 to remove impurities such as toxic heavy metals permeate W 22 and concentrate water W 31, impurities such as toxic heavy metals permeate W 22 and concentrate water W 31 is removed Since it can be discharged, the amount of waste water discharged from the exhaust gas processing apparatuses 10A and 10B to the outside of the exhaust gas processing apparatuses 10A and 10B can be significantly reduced.
  • the reduction treatment and precipitation treatment of the desulfurization waste water W 11 it is also possible to remove selenium as an adverse heavy metals contained in the desulfurization effluent W 11.
  • the reduction treatment include reduction treatments using various reducing agents such as hydrogen peroxide (H 2 O 2 ).
  • reducing agents such as hydrogen peroxide (H 2 O 2 ).
  • precipitation processes such as iron coprecipitation, are mentioned, for example.
  • oxidation inhibitors such as humic acid and tannic acid

Abstract

Provided are an exhaust gas treatment apparatus and an exhaust gas treatment method with which it is possible to recover sulfur contained in a desulfurization waste liquid and to reduce the released amount of the desulfurization waste liquid. An exhaust gas treatment apparatus 1 is provided with: an exhaust desulfurization section 11 that cleans combustion exhaust gas and discharges a desulfurization waste liquid W11 that contains sulfate ions; and a membrane treatment section 12 that includes a separation membrane, which separates the desulfurization waste liquid W11 into a first concentrated liquid W21 in which the sulfate ions are concentrated and a first permeate W22 in which the amount of the sulfate ions has been reduced by means of membrane separation, and that supplies the first concentrated liquid W21 to the exhaust desulfurization section 11 while discharging the permeate W22.

Description

排ガス処理装置及び排ガス処理方法Exhaust gas processing apparatus and exhaust gas processing method
 本発明は、排ガス処理装置及び排ガス処理方法に関し、例えば、燃焼排ガスを脱硫処理する排ガス処理装置及び排ガス処理方法に関する。 The present invention relates to an exhaust gas treatment apparatus and an exhaust gas treatment method, and more particularly to an exhaust gas treatment apparatus and an exhaust gas treatment method for desulfurizing a combustion exhaust gas.
 従来、被処理水をナノ分離膜及び逆浸透膜で膜分離して透過水及び濃縮水を得る脱塩装置が提案されている(例えば、特許文献1参照)。特許文献1に記載の脱塩装置では、ナノ分離膜で膜分離した塩化物イオンを含有する透過水を逆浸透膜に流下して更に膜分離すると共に、ナノ分離膜で膜分離した濃縮水を脱塩装置の外部に排出する。これにより、被処理水中に含まれる塩分が除去された透過水と塩分が濃縮された濃縮水とが得られる。 In the past, there has been proposed a demineralization apparatus for obtaining permeated water and concentrated water by performing membrane separation of treated water with a nano separation membrane and a reverse osmosis membrane (for example, see Patent Document 1). In the desalting apparatus described in Patent Document 1, permeated water containing chloride ions separated by the nano separation membrane is made to flow down to the reverse osmosis membrane to further separate the membrane and the concentrated water separated by the nano separation membrane. Discharge to the outside of the demineralizer. Thereby, the permeated water from which the salt content contained in to-be-processed water was removed, and the concentrated water by which salt content was concentrated are obtained.
米国特許出願公開第2010/0163471号明細書US Patent Application Publication No. 2010/0163471
 ところで、石炭火力発電所では、石炭の燃焼排ガス中に含まれる硫黄分を石灰石膏スラリーによって洗浄除去する脱硫処理により、燃焼排ガス中の硫黄分を吸収した脱硫排水が発生する。脱硫排水は、硫酸イオンなどの硫黄分が石膏として固形化分離された後に放流される。ただし、脱硫排水には、硫酸イオンなどの硫黄分が残存しているので、脱硫排水中の硫黄分を回収すると共に脱硫排水の放流量の削減が可能な排ガス処理装置が望まれている。 By the way, in a coal-fired power plant, desulfurization treatment in which the sulfur content in the combustion exhaust gas is absorbed is generated by the desulfurization treatment in which the sulfur content contained in the combustion exhaust gas of coal is washed and removed by the lime gypsum slurry. Desulfurization waste water is discharged after sulfur content such as sulfate ion is solidified and separated as gypsum. However, since sulfur content such as sulfate ion remains in the desulfurization waste water, an exhaust gas treatment apparatus capable of recovering the sulfur content in the desulfurization waste water and capable of reducing the discharge flow rate of the desulfurization waste water is desired.
 本発明は、脱硫排水中の硫黄分を回収でき、脱硫排水の放流量の削減が可能な排ガス処理装置及び排ガス処理方法を提供することを目的とする。 An object of the present invention is to provide an exhaust gas treatment device and an exhaust gas treatment method capable of recovering sulfur content in desulfurization waste water and capable of reducing the discharge rate of the desulfurization waste water.
 本発明の排ガス処理装置は、燃焼排ガスを洗浄して硫酸イオンを含有する脱硫排水を排出する排煙脱硫部と、前記脱硫排水を、硫酸イオンが低減された第1透過水と硫酸イオンが濃縮された第1濃縮水とに膜分離する第1分離膜を有し、前記第1濃縮水を前記排煙脱硫部に供給する一方、前記第1透過水を排出する第1膜処理部と、を備えたことを特徴とする。 The exhaust gas treatment apparatus according to the present invention comprises a flue gas desulfurization unit that cleans the flue gas and discharges desulfurization waste water containing sulfate ions; and the desulfurization waste water is concentrated with the first permeated water and sulfate ions reduced in sulfate ions A first membrane processing unit having a first separation membrane that performs membrane separation with the first concentrated water, and supplying the first concentrated water to the exhaust gas desulfurization unit, and discharging the first permeated water; It is characterized by having.
 この構成によれば、第1分離膜による膜分離で脱硫排水中の硫酸イオンが濃縮された第1濃縮水を排煙脱硫部に供給するので、第1膜処理部から排出される排水量を削減できると共に、第1透過水中の硫酸イオンを低減できるので、硫酸イオンの回収が可能となる。したがって、脱硫排水中の硫黄分を回収でき、脱硫排水の放流量の削減が可能な排ガス処理装置を実現できる。しかも、脱硫排水中の塩化物イオンは第1透過水と共に排ガス処理装置の外部に排出されるので、第1濃縮水の排煙脱硫部へ返送される塩化物イオン濃度の低減により,脱硫性能の低下を防ぐこともできる。さらに、排煙脱硫部に返送された第1濃縮水を燃焼排ガスの洗浄水としても用いることもできるので、排煙脱硫部へ外部から供給される補給水を削減することもできる。 According to this configuration, since the first concentrated water in which sulfate ions in the desulfurization waste water are concentrated is supplied to the exhaust gas desulfurization unit by the membrane separation by the first separation membrane, the amount of drainage discharged from the first membrane processing unit is reduced. As well as being able to reduce sulfate ions in the first permeated water, it is possible to recover sulfate ions. Therefore, the sulfur content in the desulfurization waste water can be recovered, and an exhaust gas treatment apparatus capable of reducing the discharge flow rate of the desulfurization waste water can be realized. Moreover, since chloride ions in the desulfurization waste water are discharged to the outside of the exhaust gas treatment apparatus together with the first permeated water, the concentration of chloride ions returned to the flue gas desulfurization section of the first concentrated water is reduced to It can also prevent the decline. Furthermore, since the first concentrated water returned to the flue gas desulfurization unit can also be used as washing water for the combustion exhaust gas, it is also possible to reduce makeup water supplied from the outside to the flue gas desulfurization unit.
 本発明の排ガス処理装置においては、前記第1分離膜は、前記脱硫排水中の硫酸イオンの透過率に対して塩化物イオンの透過率が高いことが好ましい。この構成により、排煙脱硫部における脱硫性能の低下の原因となる塩化物イオンを第1透過水と共に排ガス処理装置の外部に効率良く排出できるので、第1濃縮水と共に排煙脱硫部に供給される塩化物イオン量を低減でき、排煙脱硫部の脱硫性能の低下を防ぐことができる。 In the exhaust gas treatment apparatus of the present invention, it is preferable that the first separation membrane has a chloride ion transmission rate higher than that of the sulfate ion in the desulfurization waste water. With this configuration, it is possible to efficiently discharge the chloride ion which causes the deterioration of the desulfurization performance in the exhaust gas desulfurization section together with the first permeated water to the outside of the exhaust gas treatment apparatus. The amount of chloride ions can be reduced, and the deterioration of the desulfurization performance of the flue gas
 本発明の排ガス処理装置においては、前記脱硫排水を希釈する希釈水を供給する希釈水供給部を備えたことが好ましい。この構成により、脱硫排水を希釈水によって希釈するので、第1膜処理部に供給される脱硫排水中のスケール成分の濃度を低減することが可能となる。これにより、脱硫排水中のスケール成分の濃度が高い場合であっても、第1膜処理部の第1分離膜でのスケールの析出を防ぐことができる。 In the exhaust gas treatment apparatus of the present invention, it is preferable to have a dilution water supply unit for supplying dilution water for diluting the desulfurization waste water. According to this configuration, since the desulfurization waste water is diluted with the dilution water, it is possible to reduce the concentration of the scale component in the desulfurization waste water supplied to the first membrane processing unit. Thereby, even when the concentration of the scale component in the desulfurization effluent is high, it is possible to prevent the deposition of the scale in the first separation membrane of the first membrane treatment unit.
 本発明の排ガス処理装置においては、前記希釈水供給部が、前記排煙脱硫部に補給水を供給する補給水供給部であり、前記補給水供給部は、前記希釈水として前記補給水の少なくとも1部を前記脱硫排水に供給することが好ましい。この構成により、脱硫排水を補給水によって希釈するので、第1膜処理部に供給される脱硫排水中のスケール成分の濃度を低減することができる。これにより、脱硫排水中のスケール成分の濃度が高い場合であっても、第1膜処理部の第1分離膜でのスケールの析出を防ぐことが可能となる。しかも、排煙脱硫部に供給する補給水の少なくとも一部を用いて脱硫排水を希釈するので、既存設備に補給水分岐ラインを設けるだけで第1分離膜でのスケールの析出を防ぐことが可能となる。 In the exhaust gas treatment apparatus of the present invention, the dilution water supply unit is a makeup water supply unit that supplies makeup water to the flue gas desulfurization unit, and the makeup water supply unit is at least one of the makeup water as the dilution water. It is preferable to supply 1 part to the desulfurization waste water. According to this configuration, since the desulfurization waste water is diluted with the makeup water, the concentration of the scale component in the desulfurization waste water supplied to the first membrane processing unit can be reduced. Thereby, even when the concentration of the scale component in the desulfurization waste water is high, it is possible to prevent the deposition of the scale in the first separation membrane of the first membrane treatment unit. Moreover, since desulfurization wastewater is diluted using at least a part of the makeup water supplied to the flue gas desulfurization section, it is possible to prevent the deposition of scale in the first separation membrane only by providing the makeup water branch line in the existing facility It becomes.
 本発明の排ガス処理装置においては、前記脱硫排水中のスケール成分を除去する前処理をし、前処理をした前記脱硫排水を前記第1膜処理部に供給する前処理部を備えたことが好ましい。この構成により、排煙脱硫部から排出された脱硫排水中に含まれるスケール成分を、前処理部によって第1膜処理部の前段で除去するので、第1膜処理部に導入される前処理水中のスケール成分を大幅に削減することが可能となる。これにより、脱硫排水中のスケール成分の含有量が多い場合であっても、第1膜処理部の第1分離膜におけるスケールの析出を防ぐことが可能となる。 In the exhaust gas treatment apparatus of the present invention, it is preferable that a pretreatment unit is provided which performs pretreatment for removing scale components in the desulfurization wastewater and supplies the desulfurization wastewater subjected to the pretreatment to the first membrane processing unit. . With this configuration, the scale component contained in the desulfurization waste water discharged from the flue gas desulfurization unit is removed by the pretreatment unit at a stage preceding the first membrane treatment unit, so that the pretreatment water introduced into the first membrane treatment unit It is possible to significantly reduce the scale component of Thereby, even when the content of the scale component in the desulfurization waste water is high, it is possible to prevent the deposition of the scale in the first separation membrane of the first membrane processing unit.
 本発明の排ガス処理装置においては、前記第1膜処理部は、前記第1透過水及び前記第1濃縮水の少なくとも一方を前記第1膜処理部に供給される前記脱硫排水に循環可能であり、前記第1濃縮水の塩化物イオン濃度が基準値を超えた場合に、前記脱硫排水に循環する前記第1透過水及び前記第1濃縮水の少なくとも一方の流量を制御して、前記第1濃縮水中の塩化物イオン濃度を前記基準値以下とする流量制御部を備えたことが好ましい。この構成により、排ガス処理装置は、第1膜処理部から排煙脱硫部に供給される第1濃縮水中の塩化物イオン濃度を制御することができるので、第1濃縮水と共に排煙脱硫部に供給される塩化物イオン濃度を基準値以下に制御することができ,脱硫性能の低下を防ぐことができる。 In the exhaust gas processing device of the present invention, the first membrane processing unit can circulate at least one of the first permeated water and the first concentrated water to the desulfurization wastewater supplied to the first membrane processing unit. And controlling the flow rate of at least one of the first permeated water and the first concentrated water to be circulated to the desulfurization drainage when the chloride ion concentration of the first concentrated water exceeds a reference value. It is preferable that a flow control unit is provided to set the chloride ion concentration in the concentrated water below the reference value. With this configuration, the exhaust gas processing apparatus can control the chloride ion concentration in the first concentrated water supplied from the first membrane processing unit to the exhaust gas desulfurizing unit, so that the exhaust gas desulfurizing unit can be used together with the first concentrated water. The concentration of chloride ions supplied can be controlled below the reference value, and the deterioration of desulfurization performance can be prevented.
 本発明の排ガス処理装置においては、前記第1膜処理部は、前記第1透過水及び前記第1濃縮水の少なくとも一方を前記第1膜処理部に供給される前記脱硫排水に循環可能であり、前記第1透過水の塩化物イオン濃度が基準値未満となった場合に、前記脱硫排水に循環する前記第1透過水及び前記第1濃縮水の少なくとも一方の流量を制御して、前記第1透過水中の塩化物イオン濃度を基準値以上とする流量制御部を備えたことが好ましい。この構成により、排ガス処理装置は、第1膜処理部から排煙脱硫部に供給される第1濃縮水中の塩化物イオン濃度を制御することができるので、第1濃縮水と共に排煙脱硫部に供給される塩化物イオン濃度を基準値以下に制御することができ,脱硫性能の低下を防ぐことができる。 In the exhaust gas processing device of the present invention, the first membrane processing unit can circulate at least one of the first permeated water and the first concentrated water to the desulfurization wastewater supplied to the first membrane processing unit. And controlling a flow rate of at least one of the first permeated water and the first concentrated water to be circulated to the desulfurization drainage when the chloride ion concentration of the first permeated water is less than a reference value. It is preferable that a flow control unit is provided to set the chloride ion concentration in one permeate water to a reference value or more. With this configuration, the exhaust gas processing apparatus can control the chloride ion concentration in the first concentrated water supplied from the first membrane processing unit to the exhaust gas desulfurizing unit, so that the exhaust gas desulfurizing unit can be used together with the first concentrated water. The concentration of chloride ions supplied can be controlled below the reference value, and the deterioration of desulfurization performance can be prevented.
 本発明の排ガス処理装置においては、前記第1膜処理部は、前記第1透過水及び前記第1濃縮水の少なくとも一方を前記第1膜処理部に供給される前記脱硫排水に循環可能であり、前記脱硫排水の塩化物イオン濃度が基準値を超えた場合に、前記脱硫排水に循環する前記第1透過水及び前記第1濃縮水の少なくとも一方の流量を制御して、前記脱硫排水中の塩化物イオン濃度を基準値以下とする流量制御部を備えたことが好ましい。この構成により、この構成により、排ガス処理装置は、第1膜処理部から排煙脱硫部に供給される第1濃縮水中の塩化物イオン濃度を制御することができるので、第1濃縮水と共に排煙脱硫部に供給される塩化物イオン濃度を基準値以下に制御することができ,脱硫性能の低下を防ぐことができる。 In the exhaust gas processing device of the present invention, the first membrane processing unit can circulate at least one of the first permeated water and the first concentrated water to the desulfurization wastewater supplied to the first membrane processing unit. And controlling the flow rate of at least one of the first permeated water and the first concentrated water circulating to the desulfurization waste water when the chloride ion concentration of the desulfurization waste water exceeds a reference value, thereby controlling the flow rate of the desulfurization waste water. It is preferable to have a flow rate control unit that sets the chloride ion concentration to a reference value or less. With this configuration, with this configuration, the exhaust gas processing apparatus can control the chloride ion concentration in the first concentrated water supplied from the first membrane processing unit to the exhaust gas desulfurizing unit, so the exhaust gas processing apparatus can discharge together with the first concentrated water. The chloride ion concentration supplied to the smoke desulfurization section can be controlled to a reference value or less, and the deterioration of desulfurization performance can be prevented.
 本発明の排ガス処理装置においては、塩化物イオンを含有する前記第1透過水を、塩化物イオンが低減された第2透過水と塩化物イオンが濃縮された第2濃縮水とに膜分離する第2分離膜を有する第2膜処理部を備えたことが好ましい。この構成により、第2分離膜による膜分離で塩化物イオンが濃縮された第2濃縮水と塩化物イオンが除去された第2透過水とが得られるので、高純度の水である第2透過水が得られると共に、第2膜処理部に供給される第1透過水に対して第2濃縮水の水量を低減することができる。 In the exhaust gas treatment apparatus of the present invention, the first permeated water containing chloride ions is subjected to membrane separation into a second permeated water with reduced chloride ions and a second concentrated water with concentrated chloride ions. Preferably, a second membrane processing unit having a second separation membrane is provided. With this configuration, the second concentrated water from which chloride ions are concentrated and the second permeated water from which chloride ions are removed can be obtained by the membrane separation by the second separation membrane, so that the second permeation of high purity water is achieved. Water can be obtained, and the amount of water of the second concentrated water can be reduced with respect to the first permeated water supplied to the second membrane processing unit.
 本発明の排ガス処理装置においては、前記第2膜処理部は、前記第2透過水を希釈水として前記脱硫排水に供給することが好ましい。この構成により、脱硫排水を第2透過水によって希釈するので、第1膜処理部に供給される脱硫排水中のスケール成分の濃度を低減することが可能となる。これにより、脱硫排水中のスケール成分の濃度が高い場合であっても、第1膜処理部の第1分離膜でのスケールの析出を防ぐことができる。しかも、第2膜処理部から排出される第2透過水の少なくとも一部を用いて脱硫排水を希釈するので、脱硫排水に第2透過水を供給する透過水供給ラインを設けるだけで第1分離膜でのスケールの析出を防ぐことが可能となる。 In the exhaust gas treatment apparatus of the present invention, preferably, the second membrane processing unit supplies the second permeated water as dilution water to the desulfurization wastewater. According to this configuration, since the desulfurization waste water is diluted with the second permeated water, it is possible to reduce the concentration of the scale component in the desulfurization waste water supplied to the first membrane processing unit. Thereby, even when the concentration of the scale component in the desulfurization effluent is high, it is possible to prevent the deposition of the scale in the first separation membrane of the first membrane treatment unit. In addition, since desulfurization wastewater is diluted using at least a part of the second permeated water discharged from the second membrane processing unit, the first separation is performed only by providing a permeated water supply line for supplying the second permeated water to the desulfurization wastewater. It becomes possible to prevent the deposition of scale in the film.
 本発明の排ガス処理装置においては、前記第2濃縮水を蒸発させて蒸発水を得る蒸発処理部を備えたことが好ましい。この構成により、第2濃縮水の水分を蒸気として分離回収することができるので、排ガス処理装置から排出される排水量を大幅に削減することが可能となる。 In the exhaust gas treatment apparatus of the present invention, it is preferable to include an evaporation processing unit that evaporates the second concentrated water to obtain evaporated water. With this configuration, it is possible to separate and recover the water of the second concentrated water as steam, so it is possible to significantly reduce the amount of drainage discharged from the exhaust gas processing device.
 本発明の排ガス処理装置においては、前記第2濃縮水中の不純物を除去して後処理水を得る後処理部を備えたことが好ましい。この構成により、第2濃縮水中の不純物を除去することができるので、第2濃縮水の放流の基準値を満たして放流することができる。 In the exhaust gas treatment apparatus of the present invention, it is preferable to have a post-treatment section for removing post-treatment water by removing impurities in the second concentrated water. According to this configuration, the impurities in the second concentrated water can be removed, so that the standard value of the discharge of the second concentrated water can be satisfied and discharged.
 本発明の排ガス処理装置においては、前記第1透過水を蒸発させて蒸発水を得る蒸発処理部を備えたことが好ましい。この構成により、第1透過水の水分を蒸気として分離回収することができるので、排ガス処理装置から排出される排水量を大幅に削減することが可能となる。 In the exhaust gas treatment apparatus of the present invention, it is preferable to include an evaporation processing unit that evaporates the first permeated water to obtain evaporated water. According to this configuration, the water content of the first permeate can be separated and recovered as steam, so that the amount of water discharged from the exhaust gas treatment device can be significantly reduced.
 本発明の排ガス処理装置においては、前記第1透過水中の不純物を除去して後処理水を得る後処理部を備えたことが好ましい。この構成により、第1透過水中の不純物を除去することができるので、第2濃縮水の放流の基準値を満たして放流することができるので、排ガス処理装置から排出される排水量を大幅に削減することが可能となる。 In the exhaust gas treatment apparatus of the present invention, it is preferable to include a post-treatment unit for removing post-treatment impurities by removing impurities in the first permeated water. With this configuration, impurities in the first permeated water can be removed, and therefore, it is possible to meet the standard value of the discharge of the second concentrated water and be discharged. Therefore, the amount of water discharged from the exhaust gas treatment device is significantly reduced. It becomes possible.
 本発明の排ガス処理装置においては、前記脱硫排水中の固体状の水銀及び液状の水銀を前記脱硫排水から分離する固液分離部を備えたことが好ましい。この構成により、第1膜処理部の第1分離膜に付着する水銀を低減することができると共に、第1透過水中の水銀を削減して水銀濃度を放流基準値以下まで低減することもできるので、第1透過水を放流することが可能となる。 The exhaust gas treatment apparatus of the present invention preferably includes a solid-liquid separation unit for separating solid mercury and liquid mercury in the desulfurization waste water from the desulfurization waste water. According to this configuration, mercury attached to the first separation membrane of the first membrane processing unit can be reduced, and mercury in the first permeate can also be reduced to reduce the mercury concentration to the discharge reference value or less. , And the first permeated water can be discharged.
 本発明の排ガス処理装置においては、前記脱硫排水中の溶解性水銀を除去する水銀処理部を備えたことが好ましい。この構成により、第1膜処理部の第1分離膜に付着する水銀を低減することができると共に、第1透過水中の水銀を削減して水銀濃度を放流基準値以下まで低減することもできるので、第1透過水を放流することが可能となる。 In the exhaust gas treatment apparatus of the present invention, it is preferable to have a mercury treatment unit for removing soluble mercury in the desulfurization waste water. According to this configuration, mercury attached to the first separation membrane of the first membrane processing unit can be reduced, and mercury in the first permeate can also be reduced to reduce the mercury concentration to the discharge reference value or less. , And the first permeated water can be discharged.
 本発明の排ガス処理方法は、燃焼排ガスを排煙脱硫部で洗浄して硫酸イオンを含有する脱硫排水を排出する排煙脱硫工程と、前記脱硫排水を、硫酸イオンが低減された第1透過水と硫酸イオンが濃縮された第1濃縮水とに第1分離膜によって膜分離し、前記第1濃縮水を前記排煙脱硫部に供給する一方、前記第1透過水を排出する第1膜処理工程と、を含むことを特徴とする。 The exhaust gas treatment method of the present invention comprises a flue gas desulfurization step of washing combustion flue gas with a flue gas desulfurization section and discharging desulfurization waste water containing sulfate ions, and the first desulfurization waste water containing sulfate ions reduced. And the first concentrated water concentrated with sulfate ions by the first separation membrane, and supplying the first concentrated water to the flue gas desulfurization unit, and discharging the first permeated water, the first membrane treatment And a step of
 この方法によれば、第1分離膜による膜分離で脱硫排水中の硫酸イオンが濃縮された第1濃縮水を排煙脱硫部に供給するので、第1膜処理部から排出される排水量を削減できると共に、第1透過水中の硫酸イオンを低減できるので、硫酸イオンの回収が可能となる。したがって、脱硫排水中の硫黄分を回収でき、脱硫排水の放流量の削減が可能な排ガス処理方法を実現できる。しかも、脱硫排水中の塩化物イオンは第1透過水中と共に外部に排出されるので、第1濃縮水の排煙脱硫部への返送される塩化物イオン量の低減により,脱硫性能の低下を防ぐこともできる。さらに、排煙脱硫部に返送された第1濃縮水を燃焼排ガスの洗浄水としても用いることもできるので、排煙脱硫部へ外部から供給される補給水を削減することもできる。 According to this method, since the first concentrated water in which sulfate ions in the desulfurization waste water are concentrated is supplied to the exhaust gas desulfurization unit by the membrane separation by the first separation membrane, the amount of drainage discharged from the first membrane processing unit is reduced. As well as being able to reduce sulfate ions in the first permeated water, it is possible to recover sulfate ions. Therefore, the sulfur content in the desulfurization waste water can be recovered, and the exhaust gas treatment method capable of reducing the discharge flow rate of the desulfurization waste water can be realized. Moreover, since chloride ions in the desulfurization waste water are discharged to the outside together with the first permeated water, reduction in the amount of chloride ions returned to the flue gas desulfurization section of the first concentrated water prevents deterioration in the desulfurization performance. It can also be done. Furthermore, since the first concentrated water returned to the flue gas desulfurization unit can also be used as washing water for the combustion exhaust gas, it is also possible to reduce makeup water supplied from the outside to the flue gas desulfurization unit.
 本発明によれば、硫黄分を含有する排水を削減でき、硫黄分の回収が可能な排ガス処理装置及び排ガス処理方法を実現できる。 ADVANTAGE OF THE INVENTION According to this invention, the waste water containing a sulfur content can be reduced and the waste gas processing apparatus and waste gas processing method which can collect | recover sulfur content are realizable.
図1は、第1の実施の形態に係る排ガス処理装置の一例を示す模式図である。FIG. 1 is a schematic view showing an example of the exhaust gas processing system according to the first embodiment. 図2Aは、第1の実施の形態に係る膜処理部が電気透析による透析膜を備える場合の説明図である。FIG. 2A is an explanatory view of a case where the membrane processing unit according to the first embodiment includes a dialysis membrane by electrodialysis. 図2Bは、第1の実施の形態に係る膜処理部が電気透析による透析膜を備える場合の説明図である。FIG. 2B is an explanatory view of a case where the membrane processing unit according to the first embodiment includes a dialysis membrane by electrodialysis. 図2Cは、第1の実施の形態に係る膜処理部が電気透析による透析膜を備える場合の説明図である。FIG. 2C is an explanatory view of a case where the membrane processing unit according to the first embodiment includes a dialysis membrane by electrodialysis. 図2Dは、第1の実施の形態に係る膜処理部が電気透析による透析膜を備える場合の説明図である。FIG. 2D is an explanatory view of a case where the membrane processing unit according to the first embodiment includes a dialysis membrane by electrodialysis. 図3は、第1の実施の形態に係る排ガス処理装置の他の例を示す模式図である。FIG. 3 is a schematic view showing another example of the exhaust gas processing system according to the first embodiment. 図4は、第2の実施の形態に係る排ガス処理装置の一例を示す図である。FIG. 4 is a view showing an example of an exhaust gas processing system according to the second embodiment. 図5は、第2の実施の形態に係る排ガス処理装置の他の例を示す図である。FIG. 5 is a view showing another example of the exhaust gas processing system according to the second embodiment. 図6Aは、第2の実施の形態に係る排ガス処理装置の別の例を示す図である。FIG. 6A is a diagram showing another example of the exhaust gas processing device according to the second embodiment. 図6Bは、第2の実施の形態に係る排ガス処理装置の別の例を示す図である。FIG. 6B is a diagram showing another example of the exhaust gas processing device according to the second embodiment. 図7は、第3の実施の形態に係る排ガス処理装置の一例を示す模式図である。FIG. 7 is a schematic view showing an example of the exhaust gas processing system according to the third embodiment. 図8は、第4の実施の形態に係る排ガス処理装置の一例を示す模式図である。FIG. 8 is a schematic view showing an example of the exhaust gas processing system according to the fourth embodiment. 図9Aは、第5の実施の形態に係る排ガス処理装置の一例を示す模式図である。FIG. 9A is a schematic view showing an example of an exhaust gas processing system according to the fifth embodiment. 図9Bは、第5の実施の形態に係る排ガス処理装置の他の例を示す模式図である。FIG. 9B is a schematic view showing another example of the exhaust gas processing system according to the fifth embodiment. 図9Cは、第5の実施の形態に係る排ガス処理装置の別の例を示す模式図である。FIG. 9C is a schematic view showing another example of the exhaust gas processing system according to the fifth embodiment. 図9Dは、第5の実施の形態に係る排ガス処理装置の別の例を示す模式図である。FIG. 9D is a schematic view showing another example of the exhaust gas processing system according to the fifth embodiment. 図9Eは、第5の実施の形態に係る排ガス処理装置の別の例を示す模式図である。FIG. 9E is a schematic view showing another example of the exhaust gas processing system according to the fifth embodiment. 図9Fは、第5の実施の形態に係る排ガス処理装置の別の例を示す模式図である。FIG. 9F is a schematic view showing another example of the exhaust gas processing system according to the fifth embodiment. 図9Gは、第5の実施の形態に係る排ガス処理装置の別の例を示す模式図である。FIG. 9G is a schematic view showing another example of the exhaust gas processing system according to the fifth embodiment. 図9Hは、第5の実施の形態に係る排ガス処理装置の別の例を示す模式図である。FIG. 9H is a schematic view showing another example of the exhaust gas processing system according to the fifth embodiment. 図10は、第5の実施の形態に係る膜処理部の一例を示す図である。FIG. 10 is a view showing an example of a film processing unit according to the fifth embodiment. 図11Aは、第6の実施の形態に係る排ガス処理装置の一例を示す模式図である。FIG. 11A is a schematic view showing an example of an exhaust gas processing system according to a sixth embodiment. 図11Bは、第6の実施の形態に係る排ガス処理装置の他の例を示す模式図である。FIG. 11B is a schematic view showing another example of the exhaust gas processing system according to the sixth embodiment. 図12Aは、第6の実施の形態に係る排ガス処理装置の別の例を示す模式図である。FIG. 12A is a schematic view showing another example of the exhaust gas processing system according to the sixth embodiment. 図12Bは、第6の実施の形態に係る排ガス処理装置の別の例を示す模式図である。FIG. 12B is a schematic view showing another example of the exhaust gas processing system according to the sixth embodiment.
 以下、本発明の実施の形態について、添付図面を参照して詳細に説明する。なお、本発明は、以下の各実施の形態に限定されるものではなく、適宜変更して実施可能である。また、以下の各実施の形態は、適宜組み合わせて実施可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the attached drawings. In addition, this invention is not limited to each following embodiment, It can change suitably and can be implemented. Further, the following embodiments can be implemented in combination as appropriate.
(第1の実施の形態)
 図1は、第1の実施の形態に係る排ガス処理装置の一例を示す模式図である。図1に示すように、本実施の形態に係る排ガス処理装置1は、排煙脱硫部11から排出される脱硫排水W11を膜処理部(第1膜処理部)12で硫黄分が濃縮された濃縮水W21と硫黄分が除去された透過水W22とに膜分離し、濃縮水W21を排煙脱硫部11に供給することにより、透過水W22中に含まれる硫黄分を削減するものである。なお、ここでの硫黄分としては、例えば、燃焼排ガス中の亜硫酸ガス(SO)、排煙脱硫部11で燃焼排ガスを洗浄した際に発生する各種イオン(SO 2-、HSO )、各種イオンが酸化して発生する硫酸イオン(SO 2-)及び排煙脱硫部11で外部から供給した炭酸カルシウムCaCO3)などに由来するCaと反応して生成する石膏(CaSO)、硫黄酸化物全般、S 2-、S 2-などの過酸化物が挙げられる。
First Embodiment
FIG. 1 is a schematic view showing an example of the exhaust gas processing system according to the first embodiment. As shown in FIG. 1, in the exhaust gas processing apparatus 1 according to the present embodiment, the desulfurization drainage W 11 discharged from the exhaust gas desulfurization unit 11 is concentrated in sulfur content by the membrane processing unit (first film processing unit) 12. concentrated water W 21 and sulfur content is membrane separated into permeate W 22 removed, by supplying the concentrated water W 21 to flue gas desulfurization unit 11, reducing the sulfur content in the permeate water W 22 It is The sulfur content here is, for example, sulfur dioxide gas (SO 2 ) in the combustion exhaust gas, various ions generated when the combustion exhaust gas is cleaned by the exhaust gas desulfurization unit 11 (SO 3 2− , HSO 3 ) , Gypsum (CaSO 4 ), sulfur which is generated by reaction with Ca derived from sulfate ion (SO 4 2- ) generated by oxidation of various ions and calcium carbonate CaCO 3 supplied from the outside in the flue gas desulfurization unit 11, sulfur General oxides, peroxides such as S 2 O 6 2− , S 2 O 8 2− and the like can be mentioned.
 排ガス処理装置1は、燃焼排ガス中の硫黄分を脱硫する排煙脱硫部11と、排煙脱硫部11の後段に設けられた膜処理部12とを備える。排煙脱硫部11は、石炭火力発電所など排出される硫黄分を含む燃焼排ガスを海水などの洗浄水で洗浄する。また、排煙脱硫部11は、脱硫排水供給ラインLを介して、燃焼排ガスを洗浄水に吸収させることによって発生した硫黄分を含有する排ガス吸収排水としての脱硫排水W11を排出して膜処理部12に供給する。この脱硫排水W11は、ナトリウムイオン(Na)及び塩化物イオン(Cl)などの1価イオン成分、カルシウムイオン(Ca2+)、マグネシウムイオン(Mg2+)及び燃焼排ガス中の硫黄分に由来する硫酸イオンなどの2価イオン成分を含有する。排煙脱硫部11は、脱硫排水W11に石灰石などを粉砕して水中に分散させたカルシウムイオンを含むスラリーを添加することにより、脱硫排水W11中の硫酸イオンを、排煙脱硫部11内で石膏(CaSO)として固形化して回収する。なお、脱硫排水W11中の塩化物イオン及び硫酸イオンは、燃焼排ガス及び補給水W(図5参照)に由来し、カルシウムイオン及びマグネシウムイオンは、脱硫排水W11に添加される石灰石(炭酸カルシウム(CaCO))に由来する。 The exhaust gas processing apparatus 1 includes an exhaust gas desulfurization unit 11 that desulfurizes sulfur in the combustion exhaust gas, and a film processing unit 12 provided downstream of the exhaust gas desulfurization unit 11. The exhaust gas desulfurization unit 11 cleans the combustion exhaust gas containing sulfur emitted from a coal-fired power plant or the like with washing water such as seawater. Further, the exhaust gas desulfurization unit 11 discharges the desulfurization waste water W 11 as an exhaust gas absorption waste water containing a sulfur component generated by absorbing the combustion exhaust gas into the washing water through the desulfurization waste water supply line L 1 to perform a film The data is supplied to the processing unit 12. The desulfurization waste water W 11 is derived from monovalent ion components such as sodium ion (Na + ) and chloride ion (Cl ), calcium ion (Ca 2+ ), magnesium ion (Mg 2+ ) and sulfur in combustion exhaust gas. Containing divalent ion components such as sulfate ions. FGD unit 11, by adding a slurry containing calcium ions dispersed like by pulverizing in water limestone desulfurization effluent W 11, the sulfate ions in the desulfurization effluent W 11, the flue gas desulfurization unit 11 Solidify as gypsum (CaSO 4 ) and recover. Incidentally, chloride ions and sulfate ions in the desulfurization effluent W 11 are derived from the combustion exhaust gas and makeup water W 5 (see FIG. 5), calcium ions and magnesium ions, limestone (carbonate is added to desulfurization waste water W 11 It is derived from calcium (CaCO 3 ).
 膜処理部12は、排煙脱硫部11から排出された脱硫排水W11を、硫酸イオンが濃縮された濃縮水W21と硫酸イオンが除去された透過水W21とに膜分離する分離膜(不図示:第1分離膜)を備える。ここでの硫酸イオンが濃縮された濃縮水W21とは、硫酸イオンと塩化物イオンとの比([SO 2-]/[Cl])が脱硫排水W11よりも大きい濃縮水(以下、単に「濃縮水W21」ともいう)であり、硫酸イオンが除去された透過水W22とは、硫酸イオンと塩化物イオンの比([SO 2-]/[Cl])が脱硫排水W11よりも小さい透過水(以下、単に「透過水W22」ともいう)である。膜処理部12は、硫酸イオンが濃縮された濃縮水W21を排煙脱硫部11に供給する一方、硫酸イオンが除去された透過水W22を排水として排出する。すなわち、本実施の形態では、脱硫排水W11のスケール成分となる硫酸イオンを、濃縮水W21と共に排煙脱硫部11に返送して排煙脱硫部11で石膏として固形化して回収する。これにより、排ガス処理装置1は、膜処理部12から排出される硫黄分を含有する排水量を削減できると共に、石膏などのスケール成分の原因となる透過水W22中の硫酸イオン濃度を低減できるので、排ガス処理装置1からの脱硫排水の放流量の削減が可能となると共に、後工程での透過水W22中の石膏などのスケールの析出を抑制できる。 The membrane processing unit 12 separates the membrane of the desulfurization waste water W 11 discharged from the flue gas desulfurization part 11 into concentrated water W 21 where sulfate ions are concentrated and permeate water W 21 where sulfate ions are removed. Not shown: provided with a first separation membrane). Here, concentrated water W 21 where sulfate ion is concentrated is the concentrated water where the ratio of sulfate ion to chloride ion ([SO 4 2− ] / [Cl ]) is larger than desulfurization waste water W 11 (the following (It is also simply referred to as “concentrated water W 21 ”), and the permeated water W 22 from which sulfate ions have been removed is desulfurized by the ratio of sulfate ion to chloride ion ([SO 4 2- ] / [Cl ]) It is a permeated water (hereinafter, also simply referred to as “permeated water W 22 ”) smaller than the drained water W 11 . The membrane processing unit 12 supplies the concentrated water W 21 in which the sulfate ion is concentrated to the exhaust gas desulfurization unit 11, and discharges the permeate water W 22 in which the sulfate ion is removed as drainage. That is, in this embodiment, the sulfate ions as the scale components in the desulfurization effluent W 11, is recovered by solid as gypsum in flue gas desulfurization unit 11 and returned to the flue gas desulfurization unit 11 together with the concentrated water W 21. As a result, the exhaust gas processing apparatus 1 can reduce the amount of drainage containing sulfur that is discharged from the membrane processing unit 12 and can reduce the concentration of sulfate ions in the permeate water W 22 that causes scale components such as gypsum. , reduction in discharge amount of the desulfurization waste water from the exhaust gas treatment apparatus 1 with is possible, it is possible to suppress the scale deposition, such as gypsum in the permeate W 22 in a later step.
 分離膜としては、脱硫排水W11中の硫酸イオンの透過率に対して塩化物イオンの透過率が高いものが好ましい。これにより、排煙脱硫部11における脱硫性能の低下の原因となる塩化物イオンを透過水W22と共に排ガス処理装置1の外部に効率良く排出できるので、濃縮水W21と共に排煙脱硫部11に供給される塩化物イオン量を低減でき、排煙脱硫部11の脱硫性能の低下を防ぐことができると共に、排煙脱硫部11での塩化物イオン量を基準値以下に維持して排煙脱硫部の腐食を防ぐことも可能となる。本実施の形態において、透過率とは、脱硫排水W11中に含まれる各種イオン濃度に対する分離膜を透過した透過水W22中の各種イオン濃度の割合である。 The separation membrane, those permeability of chloride ion is preferably high relative to the transmittance of the sulfate ions in the desulfurization effluent W 11. Thus, since the chloride ions cause a reduction in desulfurization performance in the desulfurization unit 11 together with the permeate W 22 can be efficiently discharged to the outside of the exhaust gas treatment apparatus 1, the flue gas desulfurization unit 11 together with the concentrated water W 21 The amount of chloride ions supplied can be reduced, and the deterioration of the desulfurization performance of the exhaust gas desulfurization unit 11 can be prevented, and the amount of chloride ions in the exhaust gas desulfurization unit 11 is maintained below the reference value to reduce exhaust gas It also makes it possible to prevent corrosion of parts. According to the present embodiment, the transmittance is the ratio of various ions concentration permeate W in 22 passing through the separation membrane for various ion concentration in the desulfurization effluent W 11.
 分離膜としては、硫酸イオンと塩化物イオンとを選択的に膜分離する観点から、脱硫排水W11中の2価イオン成分である硫酸イオンの透過率が低いものが好ましい。また、分離膜としては、排煙脱硫部11の脱硫性能の低下を防ぐ観点から、1価イオン成分である塩化物イオンの透過率が高いものが好ましい。分離膜としては、透過水W22中のスケール成分となる硫酸イオンと塩化物イオンとを選択的に膜分離する観点から、硫酸イオンの透過率(以下、単に「硫酸イオン透過率」ともいう)が50%以下のものが好ましく、20%以下のものがより好ましく、10%以下であるものが好ましい。また、分離膜としては、排煙脱硫部11に返送される濃縮水W21中の塩化物イオン濃度を低減して脱硫性能の低下を防ぐ観点から、塩化物イオンの透過率(以下、単に「塩化物イオン透過率」ともいう)が10%以上のものが好ましく、20%以上のものがより好ましく、50%以上のものが好ましい。以上を考慮すると、分離膜としては、脱硫排水W11中の硫酸イオンの透過率が塩化物イオンの透過率以下のものが好ましく、硫酸イオン透過率が50%以下であって塩化物イオン透過率が50%以上のものがより好ましく、硫酸イオン透過率が20%以下であって塩化物イオン透過率が80%以上のものが更に好ましく、硫酸イオン透過率が10%以下であって塩化物イオン透過率が90%以上のものがより更に好ましい。分離膜としては、例えば、ナノ濾過(NF:Nano Filtration)膜、逆浸透(RO:Reverse Osmosis)膜、イオン交換膜、電気透析、拡散透析による透析膜及び電気泳動による分離膜などが用いられる。分離膜としては、これらの中でも、透過水W22中の硫酸イオンを効率良く除去できる観点から、ナノ濾過膜及び電気泳動による透析膜が好ましく、ナノ濾過膜がより好ましい。ナノ濾過膜としては、例えば、商品名:NTR7250(日東電工社製)、NF40HF及びNF50(ダウ・ケミカル社製)などを用いることができる。 The separation membrane, from the viewpoint of selectively membrane separating the chloride ions and sulfate ions, as the transmittance of the sulfate ion is less preferably a divalent ion component in the desulfurization effluent W 11. Moreover, as a separation membrane, from the viewpoint of preventing the deterioration of the desulfurization performance of the flue gas desulfurization section 11, one having a high permeability of chloride ions which are monovalent ion components is preferable. From the viewpoint of selectively separating the sulfate ion and the chloride ion as scale components in the permeate water W 22 as the separation membrane, the permeability of the sulfate ion (hereinafter, also simply referred to as “sulfate ion permeability”) 50% or less is preferable, 20% or less is more preferable, and 10% or less is preferable. In addition, as the separation membrane, the chloride ion permeability (hereinafter referred to simply as “permeation of chloride ion”) from the viewpoint of reducing the chloride ion concentration in the concentrated water W 21 returned to the flue gas desulfurization unit 11 to prevent the desulfurization performance. 10% or more is preferable, 20% or more is more preferable, and 50% or more is preferable. In view of the above, as the separation membrane, the transmittance of the sulfate ion is preferable that the following transmission of chloride ions in the desulfurization effluent W 11, chloride ion permeability sulfate ion permeability is not more than 50% Is more preferably 50% or more, the sulfate ion permeability is 20% or less and the chloride ion permeability is more preferably 80% or more, and the sulfate ion permeability is 10% or less and the chloride ion is It is even more preferable that the transmittance is 90% or more. Examples of separation membranes include nanofiltration (NF) membranes, reverse osmosis (RO) membranes, ion exchange membranes, dialysis membranes by electrodialysis and diffusion dialysis, and separation membranes by electrophoresis. The separation membrane, among these, the sulfate ions in the permeate W 22 from the viewpoint of efficiently removing, preferably dialysis membrane by nanofiltration membrane and electrophoresis, nanofiltration membranes are more preferable. As the nanofiltration membrane, for example, trade name: NTR7250 (manufactured by Nitto Denko Corporation), NF40HF and NF50 (manufactured by Dow Chemical Co.) can be used.
 分離膜として電気透析による透析膜を用いる場合には、例えば、以下のような構成とすることができる。図2A~図2Dは、本実施の形態に係る膜処理部が電気透析による透析膜を備える場合の説明図である。図2Aに示す例では、膜処理部12は、陽極21と陰極22との間に交互に配置された陽イオン交換膜23及び陰イオン交換膜24を有する透析膜25Aを備える。陽イオン交換膜23は、1価のナトリウムイオン、カリウムイオン(K)及び2価のカルシウムイオンなどの陽イオンを透過し、1価の塩化物イオン及び2価の硫酸イオンなどの陰イオンの移動を遮る。陰イオン交換膜24は、1価の塩化物イオン及び2価の硫酸イオンなどの陰イオンを透過し、1価のナトリウムイオン、カリウムイオン及び2価のカルシウムイオンなどの陽イオンの移動を遮る。透析膜25Aは、排煙脱硫部11から膜処理部12に供給された脱硫排水W11を濃縮水W21と透過水W22とに膜分離する。 When a dialysis membrane by electrodialysis is used as the separation membrane, for example, the following configuration can be employed. FIGS. 2A to 2D are explanatory views in the case where the membrane processing unit according to the present embodiment includes a dialysis membrane by electrodialysis. In the example shown in FIG. 2A, the membrane processing unit 12 includes a dialysis membrane 25A having a cation exchange membrane 23 and an anion exchange membrane 24 alternately arranged between the anode 21 and the cathode 22. The cation exchange membrane 23 is permeable to cations such as monovalent sodium ions, potassium ions (K + ) and divalent calcium ions, and is an anion such as monovalent chloride ions and divalent sulfate ions. I block movement. The anion exchange membrane 24 transmits anions such as monovalent chloride ions and divalent sulfate ions, and blocks migration of cations such as monovalent sodium ions, potassium ions and divalent calcium ions. Dialysis membrane 25A is membrane separation the desulfurization effluent W 11 supplied from the flue gas desulfurization unit 11 to the film processing section 12 to the concentrated water W 21 and permeate W 22.
 排煙脱硫部11から膜処理部12に供給された脱硫排水W11は、透析膜25Aに供給され、陽極21及び陰極22により直流電流が流される。これにより、脱硫排水W11中の1価のナトリウムイオン及び2価のカルシウムイオンなどの陽イオンが陽イオン交換膜23を透過すると共に、陰イオン交換膜24に遮られて移動する。また、脱硫排水W11A中の1価の塩化物イオン及び2価の硫酸イオンは、陰イオン交換膜24を透過すると共に陽イオン交換膜23に遮られて移動する。この結果、陽極21側に陰イオン交換膜24があると共に陰極22側に陽イオン交換膜23があるイオン交換膜間では、ナトリウムイオン、カルシウムイオン、塩化物イオン及び硫酸イオンが除去された濃縮水W21が得られる。また、陽極21側に陽イオン交換膜23があると共に陰極22側に陰イオン交換膜24があるイオン交換膜間では、ナトリウムイオン、カルシウムイオン、塩化物イオン及び硫酸イオンが濃縮された透過水W22が得られる。濃縮水W21は、濃縮水供給ラインL21を介して排煙脱硫部11に供給される。また、透過水W22は、透過水排出ラインL22を介して膜処理部12の外部に排出されると共に、少なくとも一部が透過水循環ラインL22Aを介して循環透過水W22Aとして脱硫排水W11と共に透析膜25Aに循環される。 Desulfurization drainage W 11 supplied from the exhaust gas desulfurization unit 11 to the membrane processing unit 12 is supplied to the dialysis membrane 25 A, and a direct current is caused to flow by the anode 21 and the cathode 22. Thus, cations such as monovalent sodium ions and divalent calcium ions in the desulfurization effluent W 11 is thereby transmitted through the cation exchange membrane 23, moves blocked by the anion exchange membrane 24. Further, the monovalent chloride ion and the divalent sulfate ion in the desulfurization waste water W11A permeate the anion exchange membrane 24 and move by being blocked by the cation exchange membrane 23. As a result, concentrated water from which sodium ions, calcium ions, chloride ions and sulfate ions have been removed between ion exchange membranes having the anion exchange membrane 24 on the anode 21 side and the cation exchange membrane 23 on the cathode 22 side. W 21 is obtained. In addition, between ion exchange membranes having the cation exchange membrane 23 on the anode 21 side and the anion exchange membrane 24 on the cathode 22 side, permeated water W in which sodium ion, calcium ion, chloride ion and sulfate ion are concentrated 22 are obtained. The concentrated water W 21 is supplied to the flue gas desulfurization unit 11 via a concentrated water supply line L 21 . Furthermore, permeate W 22 via the permeate discharge line L 22 while being discharged to the outside of the film processing section 12, the desulfurization waste water W as the circulating permeate W 22A through at least part of the permeate circulation line L 22A 11 are circulated to the dialysis membrane 25A.
 図2Bに示す例では、膜処理部12は、陽極21と陰極22との間に交互に配置された陽イオン交換膜23及び1価選択透過性陰イオン交換膜24Aを有する透析膜25Bを備える。陽イオン交換膜23は、1価のナトリウムイオン、カリウムイオン及び2価のカルシウムイオンなどの陽イオンを透過し、1価の塩化物イオン及び2価の硫酸イオンなどの陰イオンの移動を遮る。1価選択透過性陰イオン交換膜24Aは、1価の塩化物イオンなどの1価の陰イオンを透過し、1価のナトリウムイオン、カリウムイオン及び2価のカルシウムイオンなどの陽イオン並びに2価の硫酸イオンなどの多価の陰イオンの移動を遮る。透析膜25Bは、排煙脱硫部11から膜処理部12に供給された脱硫排水W11を濃縮水W21と透過水W22とに膜分離する。 In the example shown in FIG. 2B, the membrane processing unit 12 includes a dialysis membrane 25B having a cation exchange membrane 23 and a monovalent selectively permeable anion exchange membrane 24A alternately disposed between the anode 21 and the cathode 22. . The cation exchange membrane 23 transmits cations such as monovalent sodium ions, potassium ions and divalent calcium ions, and blocks migration of anions such as monovalent chloride ions and divalent sulfate ions. The monovalent permselective anion exchange membrane 24A is permeable to monovalent anions such as monovalent chloride ions, and cations such as monovalent sodium ions, potassium ions and divalent calcium ions, and divalent ions. Block the movement of polyvalent anions such as sulfate ions. The dialysis membrane 25 B separates the desulfurization waste water W 11 supplied from the flue gas desulfurization part 11 to the membrane processing part 12 into concentrated water W 21 and permeate water W 22 .
 排煙脱硫部11から膜処理部12に供給された脱硫排水W11は、透析膜25Bに供給され、陽極21及び陰極22により直流電流が流される。これにより、脱硫排水W11中の1価のナトリウムイオン及び2価のカルシウムイオンなどの陽イオンが陽イオン交換膜23を透過すると共に、1価選択透過性陰イオン交換膜24Aイオン交換膜に遮られて移動する。また、脱硫排水W11中の1価の塩化物イオンは、1価選択透過性陰イオン交換膜24を透過すると共に、陽イオン交換膜23に遮られて移動する。脱硫排水W11中の2価の硫酸イオンは、陽イオン交換膜23及び1価選択透過性陰イオン交換膜24Aに遮られて移動する。この結果、陽極21側に1価選択透過性陰イオン交換膜24Aがあると共に陰極22側に陽イオン交換膜23があるイオン交換膜間では、ナトリウムイオン、カルシウムイオン及び塩化物イオンが除去されて硫酸イオンが濃縮された濃縮水W21が得られる。また、陽極21側に陽イオン交換膜23があると共に陰極22側に1価選択透過性陰イオン交換膜24Aがあるイオン交換膜間では、ナトリウムイオン、カルシウムイオン及び塩化物イオンが濃縮されて硫酸イオンが除去された透過水W22が得られる。濃縮水W21は、濃縮水供給ラインL21を介して排煙脱硫部11に供給される。また、透過水W22は、透過水排出ラインL22を介して膜処理部12の外部に排出されると共に、少なくとも一部が透過水循環ラインL22Aを介して循環透過水W22Aとして脱硫排水W11と共に透析膜25Bに循環される。 The desulfurized drainage W 11 supplied from the exhaust gas desulfurization unit 11 to the membrane processing unit 12 is supplied to the dialysis membrane 25 B, and a direct current is caused to flow by the anode 21 and the cathode 22. As a result, cations such as monovalent sodium ion and divalent calcium ion in the desulfurization waste water W 11 permeate through the cation exchange membrane 23 and are blocked by the monovalent permselective anion exchange membrane 24A ion exchange membrane. To move. In addition, monovalent chloride ions in the desulfurization waste water W 11 permeate through the monovalent selective anion exchange membrane 24 and move by being blocked by the cation exchange membrane 23. Divalent sulfate ions in the desulfurization effluent W 11 is moved blocked by the cation exchange membrane 23 and a monovalent permselective anion exchange membrane 24A. As a result, sodium ion, calcium ion and chloride ion are removed between the ion exchange membranes having the monovalent selectively permeable anion exchange membrane 24A on the anode 21 side and the cation exchange membrane 23 on the cathode 22 side. The concentrated water W 21 in which the sulfate ion is concentrated is obtained. In addition, sodium ion, calcium ion and chloride ion are concentrated between the ion exchange membranes having the cation exchange membrane 23 on the anode 21 side and the monovalent permselective anion exchange membrane 24A on the cathode 22 side, and sulfuric acid A permeated water W 22 from which ions have been removed is obtained. The concentrated water W 21 is supplied to the flue gas desulfurization unit 11 via a concentrated water supply line L 21 . Furthermore, permeate W 22 via the permeate discharge line L 22 while being discharged to the outside of the film processing section 12, the desulfurization waste water W as the circulating permeate W 22A through at least part of the permeate circulation line L 22A 11 are circulated to the dialysis membrane 25B.
 図2Cに示す例では、膜処理部12は、陽極21と陰極22との間に交互に配置された1価選択透過性陽イオン交換膜23A及び陰イオン交換膜24を有する透析膜25Cを備える。1価選択透過性陽イオン交換膜23Aは、1価のナトリウムイオン及びカリウムイオンなどの1価の陽イオンを透過し、2価のカルシウムイオンなどの多価の陽イオン、並びに、1価の塩化物イオン及び2価の硫酸イオンなどの陰イオンの移動を遮る。陰イオン交換膜24は、1価の塩化物イオン及び2価の硫酸イオンなどの陰イオンを透過し、1価のナトリウムイオン、カリウムイオン(K)及び2価のカルシウムイオンなどの陽イオンの移動を遮る。透析膜25Cは、排煙脱硫部11から膜処理部12に供給された脱硫排水W11を濃縮水W21と透過水W22とに膜分離する。 In the example shown in FIG. 2C, the membrane processing unit 12 includes a dialysis membrane 25C having monovalent permselective cation exchange membranes 23A and anion exchange membranes 24 alternately arranged between the anode 21 and the cathode 22. . The monovalent permselective cation exchange membrane 23A is permeable to monovalent cations such as monovalent sodium ions and potassium ions, and is a polyvalent cation such as divalent calcium ions, and monovalent chlorides. Block the migration of anions such as organic ions and divalent sulfate ions. The anion exchange membrane 24 is permeable to anions such as monovalent chloride ions and divalent sulfate ions, and has cations such as monovalent sodium ions, potassium ions (K + ) and divalent calcium ions. I block movement. The dialysis membrane 25 C separates the desulfurization waste water W 11 supplied from the flue gas desulfurization part 11 to the membrane processing part 12 into concentrated water W 21 and permeate water W 22 .
 排煙脱硫部11から膜処理部12に供給された脱硫排水W11は、透析膜25Cに供給され、陽極21及び陰極22により直流電流が流される。これにより、脱硫排水W11中の1価のナトリウムイオンなどの1価の陽イオンが1価選択透過性陽イオン交換膜23Aを透過すると共に、陰イオン交換膜24に遮られて移動する。また、脱硫排水W11A中の2価のカルシウムイオンは、1価選択透過性陽イオン交換膜23A及び陰イオン交換膜24に遮られて移動する。また、脱硫排水W11A中の1価の塩化物イオン及び2価の硫酸イオンは、陰イオン交換膜24を透過すると共に、1価選択透過性陽イオン交換膜23Aに遮られて移動する。この結果、陽極21側に陰イオン交換膜24があると共に陰極22側に1価選択透過性陽イオン交換膜23Aがあるイオン交換膜間では、ナトリウムイオン、塩化物イオン及び硫酸イオンが除去されてカルシウムイオンが濃縮された濃縮水W21が得られる。また、陽極21側に1価選択透過性陽イオン交換膜23Aがあると共に陰極22側に陰イオン交換膜24があるイオン交換膜間では、ナトリウムイオン、塩化物イオン及び硫酸イオンが濃縮されてカルシウムイオンが除去された透過水W22が得られる。濃縮水W21は、濃縮水供給ラインL21を介して排煙脱硫部11に供給される。また、透過水W22は、透過水排出ラインL22を介して膜処理部12の外部に排出されると共に、少なくとも一部が透過水循環ラインL22Aを介して循環透過水W22Aとして脱硫排水W11と共に透析膜25Cに循環される。 Desulfurization drainage W 11 supplied from the exhaust gas desulfurization unit 11 to the membrane processing unit 12 is supplied to the dialysis membrane 25 C, and a direct current is caused to flow by the anode 21 and the cathode 22. Thus, monovalent cations such as monovalent sodium ions in the desulfurization effluent W 11 is thereby transmitted through the monovalent permselective cation exchange membranes 23A, moves blocked by the anion exchange membrane 24. Moreover, divalent calcium ions in the desulfurization effluent W 11A moves blocked by the monovalent permselective cation exchange membranes 23A and anion exchange membrane 24. The monovalent chloride ion and the divalent sulfate ion in the desulfurization waste water W11A permeate through the anion exchange membrane 24 and move by being blocked by the monovalent selectively permeable cation exchange membrane 23A. As a result, sodium ion, chloride ion and sulfate ion are removed between ion exchange membranes having the anion exchange membrane 24 on the anode 21 side and the monovalent permselective cation exchange membrane 23A on the cathode 22 side. Concentrated water W 21 in which calcium ions are concentrated is obtained. In addition, sodium ion, chloride ion and sulfate ion are concentrated between ion exchange membranes having the monovalent permselective cation exchange membrane 23A on the anode 21 side and the anion exchange membrane 24 on the cathode 22 side, and calcium A permeated water W 22 from which ions have been removed is obtained. The concentrated water W 21 is supplied to the flue gas desulfurization unit 11 via a concentrated water supply line L 21 . Furthermore, permeate W 22 via the permeate discharge line L 22 while being discharged to the outside of the film processing section 12, the desulfurization waste water W as the circulating permeate W 22A through at least part of the permeate circulation line L 22A 11 are circulated to the dialysis membrane 25C.
 図2Dに示す例では、膜処理部12は、陽極21と陰極22との間に交互に配置された1価選択透過性陽イオン交換膜23A及び1価選択透過性陰イオン交換膜24Aを有する透析膜25Cを備える。1価選択透過性陽イオン交換膜23Aは、1価のナトリウムイオン及びカリウムイオンなどの1価の陽イオンを透過し、2価のカルシウムイオンなどの多価の陽イオン、並びに、1価の塩化物イオン及び2価の硫酸イオンなどの陰イオンの移動を遮る。1価選択透過性陰イオン交換膜24Aは、1価の塩化物イオンを透過し、1価のナトリウムイオン、カリウムイオン及び2価のカルシウムイオンなどの陽イオン並びに2価の硫酸イオンなどの多価の陰イオンの移動を遮る。透析膜25Dは、排煙脱硫部11から膜処理部12に供給された脱硫排水W11を濃縮水W21と透過水W22とに膜分離する。 In the example shown in FIG. 2D, the membrane processing unit 12 has the monovalent permselective cation exchange membrane 23A and the monovalent permselective anion exchange membrane 24A alternately arranged between the anode 21 and the cathode 22. A dialysis membrane 25C is provided. The monovalent permselective cation exchange membrane 23A is permeable to monovalent cations such as monovalent sodium ions and potassium ions, and is a polyvalent cation such as divalent calcium ions, and monovalent chlorides. Block the migration of anions such as organic ions and divalent sulfate ions. The monovalent permselective anion exchange membrane 24A is permeable to monovalent chloride ions and is polyvalent such as cations such as monovalent sodium ions, potassium ions and divalent calcium ions, and divalent sulfate ions. Block the movement of anions. Dialysis membrane 25D, the membrane separating the desulfurization effluent W 11 supplied from the flue gas desulfurization unit 11 to the film processing section 12 to the concentrated water W 21 and permeate W 22.
 排煙脱硫部11から膜処理部12に供給された脱硫排水W11は、透析膜25Dに供給される。透析膜25Dに供給された脱硫排水W11には、陽極21及び陰極22により直流電流が流される。これにより、脱硫排水W11中の1価のナトリウムイオンなどの1価の陽イオンが1価選択透過性陽イオン交換膜23Aを透過すると共に、1価選択透過性陰イオン交換膜24Aに遮られて移動する。また、脱硫排水W11中の2価のカルシウムイオン及び2価の硫酸イオンは、1価選択透過性陽イオン交換膜23A及び1価選択透過性陰イオン交換膜24Aに遮られて移動する。また、脱硫排水W11中の1価の塩化物イオンは、1価選択透過性陰イオン交換膜24Aを透過すると共に、1価選択透過性陽イオン交換膜23に遮られて移動する。この結果、陽極21側に1価選択透過性陰イオン交換膜24Aがあると共に陰極22側に1価選択透過性陽イオン交換膜23Aがあるイオン交換膜間では、ナトリウムイオン及び塩化物イオンが除去されてカルシウムイオン及び硫酸イオンが濃縮された濃縮水W21が得られる。また、陽極21側に1価選択透過性陽イオン交換膜23Aがあると共に陰極22側に1価選択透過性陰イオン交換膜24Aがあるイオン交換膜間では、ナトリウムイオン及び塩化物イオンが濃縮されてカルシウムイオン及び硫酸イオンが除去された透過水W22が得られる。濃縮水W21は、濃縮水供給ラインL21を介して排煙脱硫部11に供給される。また、透過水W22は、透過水排出ラインL22を介して膜処理部12の外部に排出されると共に、少なくとも一部が透過水循環ラインL22Aを介して循環透過水W22Aとして脱硫排水W11と共に透析膜25Dに循環される。 Desulfurization drainage W 11 supplied from the exhaust gas desulfurization unit 11 to the membrane processing unit 12 is supplied to the dialysis membrane 25D. The desulfurization effluent W 11 supplied to the dialysis membrane 25D, the DC current flows through the anode 21 and cathode 22. Thus, the monovalent cations such as monovalent sodium ions in the desulfurization effluent W 11 is transmitted through the monovalent permselective cation exchange membranes 23A, is blocked by the monovalent permselective anion exchange membrane 24A Move. The divalent calcium ion and divalent sulfate ions in the desulfurization effluent W 11 is to be moved intercepted by the monovalent permselective cation exchange membranes 23A and monovalent permselective anion exchange membrane 24A. The monovalent chloride ion in the desulfurization effluent W 11 is configured to transmit the monovalent permselective anion exchange membrane 24A, moves blocked by the monovalent permselective cation exchange membrane 23. As a result, sodium ion and chloride ion are removed between ion exchange membranes having the monovalent permselective anion exchange membrane 24A on the anode 21 side and the monovalent permselective cation exchange membrane 23A on the cathode 22 side. As a result, concentrated water W 21 in which calcium ions and sulfate ions are concentrated is obtained. In addition, sodium ion and chloride ion are concentrated between ion exchange membranes having the monovalent permselective cation exchange membrane 23A on the anode 21 side and the monovalent permselective anion exchange membrane 24A on the cathode 22 side. Thus, the permeated water W 22 from which calcium ions and sulfate ions have been removed is obtained. The concentrated water W 21 is supplied to the flue gas desulfurization unit 11 via a concentrated water supply line L 21 . Furthermore, permeate W 22 via the permeate discharge line L 22 while being discharged to the outside of the film processing section 12, the desulfurization waste water W as the circulating permeate W 22A through at least part of the permeate circulation line L 22A 11 are circulated to the dialysis membrane 25D.
 図2A~図2Dに示す電気透析による透析膜を用いた膜処理では、pHを酸性(例えば、pH7以下)に調整することが好ましい。これにより、塩基性条件下での下記反応式(1)~(3)に示す反応による各種イオン交換膜への炭酸カルシウム及び水酸化マグネシウムのスケール析出を防ぐことができる。
 HCO ⇒CO 2-+H   ・・・(1)
 CO 2-+Ca2+⇒CaCO↓   ・・・(2)
 Mg2++2OH⇒Mg(OH)↓   ・・・(3)
In the membrane processing using a dialysis membrane by electrodialysis shown in FIGS. 2A to 2D, it is preferable to adjust the pH to be acidic (eg, pH 7 or less). This can prevent scale precipitation of calcium carbonate and magnesium hydroxide on various ion exchange membranes by reactions shown in the following reaction formulas (1) to (3) under basic conditions.
HCO 3 - CO CO 3 2- + H + (1)
CO 3 2- + Ca 2+ CaCaCO 3・ ・ ・ (2)
Mg 2+ + 2OH - ⇒Mg (OH ) 2 ↓ ··· (3)
 透析膜25A~25Dとしては、脱硫排水W11中の塩化物イオンを効率良く透過水W21に排出する観点から、透析膜25A,25Bが好ましい。また、透析膜25A~25Dとしては、脱硫排水W11中の硫酸イオンを効率良く濃縮水W21に濃縮する観点から、透析膜25B,25Dが好ましい。また、透析膜25A~25Dとしては、脱硫排水W11中に含まれるナトリウムイオン、塩化物イオン、カルシウムイオン及び硫酸イオンに基づくイオン交換膜への石膏スケールの析出を防いで透析膜の膜分離性能の低下を防ぐことができる観点から、透析膜25B,25Cが好ましい。以上を考慮すると、透析膜25A~25Dとしては、脱硫排水W11中の硫酸イオンを効率良く濃縮水W21に濃縮する観点、脱硫排水W11中の塩化物イオンを効率良く透過水W22に排出する観点、脱硫排水W11中に含まれるナトリウムイオン、塩化物イオン、カルシウムイオン及び硫酸イオンに基づくイオン交換膜への石膏スケールの析出を防いで透析膜の膜分離性能の低下を防ぐことができる観点から、透析膜25Bが特に好ましい。 The dialysis membrane 25A ~ 25D, from the viewpoint of discharging the chloride ions in the desulfurization effluent W 11 to efficiently permeate W 21, dialysis membrane 25A, 25B is preferred. As the dialysis membrane 25A ~ 25D, from the viewpoint of concentrated sulfuric acid ions in the desulfurization waste water W 11 to efficiently concentrate W 21, dialysis membrane 25B, 25D being preferred. As the dialysis membrane 25A ~ 25D, sodium ions contained in the desulfurization effluent W 11, chloride ions, membrane separation performance of the dialysis membrane to prevent the precipitation of gypsum scale the calcium ion and ion-exchange membranes based on sulfate ions The dialysis membranes 25B and 25C are preferable from the viewpoint of preventing the decrease in In view of the foregoing, the dialysis membrane 25A ~ 25D, the viewpoint of concentrated sulfuric acid ions in the desulfurization waste water W 11 efficiently concentrated water W 21, the chloride ions in the desulfurization effluent W 11 to efficiently permeate W 22 viewpoint of discharge, sodium ions contained in the desulfurization effluent W 11, chloride ions, is possible to prevent deterioration of membrane separation performance of calcium ions and a dialysis membrane to prevent precipitation of gypsum scale to the ion-exchange membranes based on sulfate ions The dialysis membrane 25B is particularly preferable from the viewpoint of
 次に、排ガス処理装置1の全体動作について説明する。排煙脱硫部11から排出された硫黄分を含有する脱硫排水W11は、脱硫排水供給ラインLを介して膜処理部12に供給される。膜処理部12に供給された脱硫排水W11は、分離膜によって硫酸イオンが濃縮された濃縮水W21と硫酸イオンが除去された透過水W22とに膜分離される。膜処理部12で膜分離された濃縮水W21は、濃縮水供給ラインL21を介して排煙脱硫部11に供給され、排煙脱硫部11内で石膏が除去された後、排煙脱硫部11から脱硫排水W11として排出される。また、膜処理部12で膜分離された透過水W22は、透過水排出ラインL22を介して膜処理部12から排出される。 Next, the entire operation of the exhaust gas processing device 1 will be described. Desulfurization effluent W 11 containing sulfur discharged from flue gas desulfurization unit 11 is supplied to the film processing section 12 through the desulfurization effluent supply line L 1. Desulfurization effluent W 11 supplied to the film processing section 12, sulfate ion and a sulfate ion and a concentrated water W 21 enriched is membrane separated into permeate W 22 removed by the separation membrane. The concentrated water W 21 subjected to membrane separation in the membrane processing unit 12 is supplied to the flue gas desulfurization unit 11 via the concentrated water supply line L 21 and after gypsum is removed in the flue gas desulfurization unit 11, the flue gas desulfurization is performed. It is discharged as desulfurization waste water W 11 from part 11. Further, the permeated water W 22 subjected to membrane separation in the membrane processing unit 12 is discharged from the membrane processing unit 12 via the permeated water discharge line L 22 .
 以上説明したように、本実施の形態によれば、分離膜による膜分離で脱硫排水W11中の硫酸イオンが濃縮された濃縮水W21を排煙脱硫部11に供給するので、膜処理部12から排出される排水量を削減できると共に、透過水W22の硫酸イオンを低減できるので、硫酸イオンの回収が可能となる。したがって、脱硫排水中の硫黄分を回収でき、脱硫排水の放流量の削減が可能な排ガス処理装置1を実現できる。しかも、脱硫排水W11中の塩化物イオンは透過水W22中と共に排ガス処理装置1の外部に排出されるので、濃縮水W21の排煙脱硫部11への返送に伴う塩化物イオンによる脱硫性能の低下を防ぐこともできる。さらに、排煙脱硫部11に返送された濃縮水W21を燃焼排ガスの洗浄水としても用いることもできるので、排煙脱硫部11へ外部から供給される補給水を削減することもできる。 As described above, according to the present embodiment, the concentrated water W 21 in which the sulfate ion in the desulfurization waste water W 11 is concentrated is supplied to the exhaust gas desulfurization unit 11 by the membrane separation by the separation membrane. Since the amount of waste water discharged from 12 can be reduced and at the same time the sulfate ion of the permeate water W 22 can be reduced, the sulfate ion can be recovered. Therefore, the sulfur content in the desulfurization waste water can be recovered, and the exhaust gas processing device 1 capable of reducing the discharge flow rate of the desulfurization waste water can be realized. Moreover, since the chloride ions in the desulfurization effluent W 11 is discharged to the outside of the exhaust gas treatment apparatus 1 with the medium permeate W 22, desulfurization by chloride ions due to the return of the flue gas desulfurization unit 11 of the concentrated water W 21 It is also possible to prevent performance degradation. Furthermore, since the concentrated water W 21 returned to the exhaust gas desulfurization unit 11 can also be used as cleaning water for combustion exhaust gas, it is also possible to reduce makeup water supplied to the exhaust gas desulfurization unit 11 from the outside.
 図3は、第1の実施の形態に係る排ガス処理装置の他の例を示す模式図である。図3に示すように、排ガス処理装置2は、燃焼排ガス中の硫黄分を脱硫する排煙脱硫部11と、排煙脱硫部11の後段に設けられた膜処理部12とを備える。膜処理部12は、排煙脱硫部11の後段に設けられた第1膜処理部121と、第1膜処理部121の後段に設けられた第2膜処理部122とを備える。 FIG. 3 is a schematic view showing another example of the exhaust gas processing system according to the first embodiment. As shown in FIG. 3, the exhaust gas processing apparatus 2 includes an exhaust gas desulfurization unit 11 that desulfurizes sulfur in the combustion exhaust gas, and a film processing unit 12 provided in a subsequent stage of the exhaust gas desulfurization unit 11. The film processing unit 12 includes a first film processing unit 121 provided downstream of the exhaust gas desulfurization unit 11 and a second film processing unit 122 provided downstream of the first film processing unit 121.
 第1膜処理部121は、排煙脱硫部11から排出された脱硫排水W11を、硫酸イオンが濃縮された濃縮水W21と硫酸イオンが除去された透過水W22とに膜分離する第1分離膜(不図示)を備える。第1分離膜としては、上述した分離膜と同様のものを用いることができる。第1膜処理部121は、硫酸イオンが濃縮された濃縮水W21を排煙脱硫部11に供給する一方、硫酸イオンが除去された透過水W22を排出する。第1膜処理部121は、すなわち、本実施の形態では、脱硫排水W11のスケール成分となる硫酸イオンを濃縮水W21と共に排煙脱硫部11に返送して排煙脱硫部11で石膏として固形化して回収する。これにより、膜処理部12から排出される排水量を削減できると共に、石膏などのスケール成分となる透過水W22中の硫酸イオン濃度を低減することができるので、硫酸イオンの回収が可能となる。 The first membrane processing unit 121 performs membrane separation of the desulfurized drainage W 11 discharged from the flue gas desulfurization unit 11 into concentrated water W 21 in which sulfate ions are concentrated and permeate water W 22 in which sulfate ions are removed. 1 A separation membrane (not shown) is provided. As the first separation membrane, the same one as the above-mentioned separation membrane can be used. The first membrane processing unit 121 supplies the concentrated water W 21 in which the sulfate ion is concentrated to the exhaust gas desulfurization unit 11, and discharges the permeate water W 22 in which the sulfate ion is removed. The first layer processing unit 121, i.e., in this embodiment, as gypsum in flue gas desulfurization unit 11 to return the sulfuric acid ions of scale components of the desulfurization waste water W 11 to flue gas desulfurization unit 11 together with the concentrated water W 21 Solidify and collect. As a result, the amount of drainage discharged from the membrane processing unit 12 can be reduced, and the concentration of sulfate ions in the permeate water W 22 to be a scale component such as gypsum can be reduced, so that sulfate ions can be recovered.
 第2膜処理部122は、第1膜処理部121から排出された塩化物イオンを含有する第1透過水W22を、塩化物イオンが濃縮された第2濃縮水W31と塩化物イオンが低減された第2透過水W32とに膜分離する第2分離膜(不図示)を有する。このように第2膜処理部122を設けることにより、透過水W22中のナトリウムイオン及び塩化物イオンなどの1価イオン成分が除去された第2透過水W32を得ることができる。第2分離膜としては、第1透過水W22から1価イオン成分を膜分離できるものであれば特に制限はなく、例えば、逆浸透膜、ナノ濾過膜、電気透析による透析膜などが用いられる。これらの中でも、第2分離膜としては、第1透過水W22の脱塩率の観点から、逆浸透膜が好ましい。 The second membrane processing unit 122 is configured such that the first permeate water W 22 containing chloride ions discharged from the first membrane processing unit 121 is separated from the second concentrated water W 31 containing chloride ions and chloride ions. A second separation membrane (not shown) is membrane-separated into the reduced second permeate water W 32 . The provision of the second film processing section 122, it is possible to obtain a second permeate W 32 to monovalent ionic components such as sodium ions and chloride ions in the permeate W 22 has been removed. The second separation membrane is not particularly limited as long as it can separate monovalent ion components from the first permeated water W 22. For example, a reverse osmosis membrane, a nanofiltration membrane, a dialysis membrane by electrodialysis, etc. are used . Among these, as the second separation membrane, in terms of salt rejection of the first permeate W 22, the reverse osmosis membrane is preferred.
 次に、排ガス処理装置2の全体動作について説明する。排煙脱硫部11から排出された硫黄分を含有する脱硫排水W11は、脱硫排水供給ラインLを介して膜処理部12の第1膜処理部121に供給され、第1分離膜によって硫酸イオンが濃縮された第1濃縮水W21と硫酸イオンが除去された第1透過水W22とに膜分離される。ここでの硫酸イオンが濃縮された第1濃縮水W21とは、硫酸イオンと塩化物イオンとの比([SO 2-]/[Cl])が脱硫排水W11よりも大きい濃縮水(以下、単に「第1濃縮水W21」ともいう)であり、硫酸イオンが除去された第1透過水W22とは、硫酸イオンと塩化物イオンの比([SO 2-]/[Cl])が脱硫排水W11よりも小さい透過水(以下、単に「第1透過水W22」ともいう)である。第1膜処理部121で膜分離された第1濃縮水W21は、濃縮水供給ラインL21を介して排煙脱硫部11に供給され、排煙脱硫部11内で石膏が回収された後、排煙脱硫部11から脱硫排水W11と共に排出される。また、第1膜処理部121で膜分離された第1透過水W22は、透過水排出ラインL22を介して第2膜処理部122に供給され、第2分離膜によって塩化物イオンが濃縮された第2濃縮水W31と塩化物イオンが除去された第2透過水W32とに膜分離される。第2分離膜で膜分離された第2濃縮水W31は、濃縮水排出ラインL31を介して第2膜処理部122から排出され、第2透過水W32は、透過水排出ラインL32を介して第2膜処理部122から排出される。 Next, the entire operation of the exhaust gas processing device 2 will be described. The desulfurization waste water W 11 containing the sulfur content discharged from the flue gas desulfurization part 11 is supplied to the first membrane processing part 121 of the membrane processing part 12 via the desulfurization waste water supply line L 1 , and the sulfuric acid is removed by the first separation membrane. The membrane is separated into a first concentrated water W 21 in which ions are concentrated and a first permeate water W 22 in which sulfate ions are removed. Here, the first concentrated water W 21 in which the sulfate ion is concentrated is a concentrated water in which the ratio of the sulfate ion to the chloride ion ([SO 4 2− ] / [Cl ]) is larger than the desulfurization waste water W 11 (Hereafter, it is also simply referred to as “first concentrated water W 21 ”), and the ratio of sulfate ion to chloride ion ([SO 4 2- ] / [is compared with the first permeated water W 22 from which sulfate ion has been removed. Cl ]) is permeated water (hereinafter, also simply referred to as “first permeated water W 22 ”) smaller than the desulfurization waste water W 11 . After the first concentrated water W 21 subjected to membrane separation in the first membrane processing unit 121 is supplied to the exhaust gas desulfurization unit 11 via the concentrated water supply line L 21 and gypsum is recovered in the exhaust gas desulfurization unit 11 It is discharged together with desulfurization waste water W 11 from flue gas desulfurization unit 11. The first permeate W 22 which is membrane separation in the first layer processing section 121 is supplied to the second membrane unit 122 through permeate discharge line L 22, chloride ions concentrated by a second isolation layer The membrane is separated into the second concentrated water W 31 and the second permeated water W 32 from which chloride ions have been removed. The second concentrated water W 31 separated by the second separation membrane is discharged from the second membrane processing unit 122 through the concentrated water discharge line L 31 , and the second permeated water W 32 is the permeated water discharge line L 32. Through the second membrane processing unit 122.
 以上説明したように、本実施の形態によれば、第1分離膜による膜分離で脱硫排水W11中の硫酸イオンが濃縮された第1濃縮水W21を排煙脱硫部11に供給するので、第1膜処理部121から排出される排水量を削減できると共に、第1透過水W22の硫酸イオンを低減できる。したがって、脱硫排水中の硫黄分を回収でき、脱硫排水の放流量の削減が可能な排ガス処理装置2を実現できる。しかも、脱硫排水W11中の塩化物イオンは透過水W22中と共に排ガス処理装置1の外部に排出されるので、濃縮水W21の排煙脱硫部11への返送される塩化物イオン量の低減により,脱硫性能の低下を防ぐこともできる。また、第2分離膜よる膜分離で塩化物イオンが濃縮された第2濃縮水W31と塩化物イオンが除去された第2透過水W32が得られるので、高純度の水である第2透過水W32が得られると共に、第2濃縮水W31を更に濃縮して容量を低減することが可能となる。 As described above, according to the present embodiment, since the first concentrated water W 21 in which the sulfate ion in the desulfurization waste water W 11 is concentrated by the membrane separation by the first separation membrane is supplied to the exhaust gas desulfurization unit 11 The amount of drainage discharged from the first membrane processing unit 121 can be reduced, and the sulfate ion of the first permeate water W 22 can be reduced. Therefore, the sulfur content in the desulfurization waste water can be recovered, and the exhaust gas processing device 2 capable of reducing the discharge rate of the desulfurization waste water can be realized. Moreover, in the desulfurization effluent W 11 since chloride ions is discharged to the outside of the exhaust gas treatment apparatus 1 with the medium permeate W 22, the returned the chloride ion content of the flue gas desulfurization unit 11 of the concentrated water W 21 The reduction can also prevent the desulfurization performance from deteriorating. Further, since the second concentrated water W 31 in which chloride ions are concentrated and the second permeate water W 32 in which chloride ions are removed are obtained by the membrane separation using the second separation membrane, the second high-purity water is obtained. The permeate water W 32 is obtained, and the second concentrated water W 31 can be further concentrated to reduce the volume.
(第2の実施の形態)
 次に、第2の実施の形態について説明する。なお、以下においては、上述した第1の実施の形態と共通する構成要素には同一の符号を付している。また、上述した第1の実施の形態との相違点を中心に説明し、説明の重複を避ける。
Second Embodiment
Next, a second embodiment will be described. In the following, the components common to the first embodiment described above are denoted by the same reference numerals. Further, differences from the above-described first embodiment will be mainly described, and redundant description will be avoided.
 図4は、第2の実施の形態に係る排ガス処理装置の一例を示す図である。図4に示すように、本実施の形態に係る排ガス処理装置3は、図1に示した排ガス処理装置1の構成に加えて、脱硫排水W11を希釈する希釈水Wを供給する希釈水供給部13を備える。この希釈水供給部13を設けて脱硫排水W11を希釈水Wで希釈することにより、脱硫排水W11中のスケール成分となる硫酸イオンなどの2価イオン成分の濃度が低減されるので、膜処理部12の分離膜でのスケールの析出を防ぐことができる。希釈水Wとしては、脱硫排水W11中のスケール成分の濃度を低減できるものであれば特に制限はなく、例えば、プロセス用水,河川水及び池水などを用いることができる。なお、図4に示す例では、希釈水供給部13が、希釈水Wを膜処理部12に供給する例について示しているが、希釈水供給部13は、脱硫排水W11を希釈できれば希釈水Wを膜処理部12以外に供給してもよい。希釈水供給部13は、例えば、希釈水供給ラインL41を介して脱硫排水供給ラインLなどに希釈水Wを供給してもよい。また、希釈水供給ラインL41には、必要に応じて希釈水W中の濁質を除去する前処理部を設けてもよい。その他の構成については、図1に示した排ガス処理装置1と同様のため説明を省略する。 FIG. 4 is a view showing an example of an exhaust gas processing system according to the second embodiment. Figure 4 As shown in, the exhaust gas treatment apparatus 3 according to the present embodiment, in addition to the configuration of the exhaust gas treatment apparatus 1 shown in FIG. 1, diluting water supplying diluting water W 4 to dilute the desulfurization effluent W 11 The supply unit 13 is provided. By providing the dilution water supply unit 13 and diluting the desulfurization waste water W 11 with the dilution water W 4 , the concentration of divalent ion components such as sulfate ions as scale components in the desulfurization waste water W 11 is reduced, It is possible to prevent the deposition of scale on the separation membrane of the membrane processing unit 12. The diluting water W 4, not particularly limited as long as it can reduce the concentration of the scale components in the desulfurization effluent W 11, for example, process water, or the like can be used river water and pond water. In the example shown in FIG. 4, the dilution water supply unit 13, there is shown an example for supplying diluting water W 4 to the film processing section 12, dilution water supply unit 13, if diluted desulfurization effluent W 11 dilution The water W 4 may be supplied to other than the membrane processing unit 12. Dilution water supply unit 13, for example, may be supplied diluting water W 4 in desulfurization waste water supply line L 1 via the dilution water supply line L 41. In addition, the dilution water supply line L 41 may be provided with a pretreatment unit that removes suspended solids in the dilution water W 4 as necessary. The other configuration is the same as that of the exhaust gas processing device 1 shown in FIG.
 次に、排ガス処理装置3の全体動作について説明する。排煙脱硫部11から排出された硫黄分を含有する脱硫排水W11は、脱硫排水供給ラインLを介して膜処理部12に供給される。膜処理部12に供給された脱硫排水W11は、希釈水供給ラインL41を介して希釈水供給部13から供給された希釈水Wと混合された後、分離膜によって硫酸イオンが濃縮された濃縮水W21と硫酸イオンが除去された透過水W22とに膜分離される。ここでは、脱硫排水W11が希釈水Wと混合されることにより、スケール成分の濃度が低減されるので、分離膜でのスケールの析出を防ぐことができる。 Next, the entire operation of the exhaust gas processing device 3 will be described. Desulfurization effluent W 11 containing sulfur discharged from flue gas desulfurization unit 11 is supplied to the film processing section 12 through the desulfurization effluent supply line L 1. After the desulfurization waste water W 11 supplied to the membrane processing unit 12 is mixed with the dilution water W 4 supplied from the dilution water supply unit 13 via the dilution water supply line L 41 , the sulfate ion is concentrated by the separation membrane The membrane is separated into concentrated water W 21 and permeated water W 22 from which sulfate ion has been removed. Here, by the desulfurization effluent W 11 is mixed with the diluting water W 4, the concentration of the scale components is reduced, it is possible to prevent the scale deposition in the separation membrane.
 以上説明したように、本実施の形態によれば、脱硫排水W11を希釈水Wによって希釈するので、膜処理部12に供給される脱硫排水W11中のスケール成分の濃度を低減することが可能となる。これにより、脱硫排水W11中のスケール成分の濃度が高い場合であっても、膜処理部12の分離膜でのスケールの析出を防ぐことができる。 As described above, according to this embodiment, since diluting the desulfurization effluent W 11 by diluting water W 4, reducing the concentration of the scale components in the desulfurization effluent W 11 to be supplied to the film processing section 12 Is possible. Accordingly, even when a high concentration of the scale components in the desulfurization effluent W 11, it is possible to prevent the deposition of scale in the separation membrane of the film processing section 12.
 図5は、第2の実施の形態に係る排ガス処理装置の他の例を示す図である。図5に示すように、排ガス処理装置4は、補給水供給ラインLを介して排煙脱硫部11に補給水Wを供給すると共に、補給水分岐ラインL42を介して膜処理部12に補給水Wの少なくとも一部を希釈水として供給する補給水供給部14を備える。すなわち、図5に示す排ガス処理装置4は、補給水供給部14を図4に示した希釈水供給部13としても用いるものである。なお、図5に示す例では、補給水供給部14が、補給水Wの少なくとも一部を希釈水Wとして膜処理部12に供給する例について示しているが、補給水供給部14は、脱硫排水W11を希釈できれば補給水Wの少なくとも一部を膜処理部12以外に供給してもよい。補給水供給部14は、例えば、補給水分岐ラインL42を介して脱硫排水供給ラインLなどに希釈水Wを供給してもよい。また、補給水分岐ラインL42には、必要に応じて補給水W中の濁質を除去する前処理部を設けてもよい。その他の構成については、図4に示した排ガス処理装置3と同様のため説明を省略する。 FIG. 5 is a view showing another example of the exhaust gas processing system according to the second embodiment. As shown in FIG. 5, the exhaust gas treatment apparatus 4 supplies the makeup water W 5 to the flue gas desulfurization unit 11 through the makeup water supply line L 5, via the makeup water branch line L 42 film processor 12 at least a portion of the makeup water W 5 comprises a makeup water supply 14 for supplying a diluting water to. That is, the exhaust gas processing device 4 shown in FIG. 5 also uses the makeup water supply unit 14 as the dilution water supply unit 13 shown in FIG. 4. In the example shown in FIG. 5, the makeup water supply 14, although an example is shown to be supplied to the film processing section 12 as a diluting water W 4 at least a portion of the makeup water W 5, the makeup water supply 14 , at least a portion of the makeup water W 5 if dilute the desulfurization effluent W 11 may be supplied to the non-film processing section 12. Makeup water supply unit 14, for example, the desulfurization effluent supply line L 1 through the makeup water branch line L 42 may supply diluting water W 4. Also, the makeup water branch line L 42, may be provided with a pre-processing unit for removing suspended solid makeup water W 5 as needed. The other configuration is the same as that of the exhaust gas processing device 3 shown in FIG.
 次に、排ガス処理装置4の全体動作について説明する。排煙脱硫部11から排出された硫黄分を含有する脱硫排水W11は、脱硫排水供給ラインLを介して膜処理部12に供給される。膜処理部12に供給された脱硫排水W11は、補給水分岐ラインL42を介して補給水供給部14から供給された補給水Wと混合された後、分離膜によって硫酸イオンが濃縮された濃縮水W21と硫酸イオンが除去された透過水W22とに膜分離される。ここでは、脱硫排水W11が補給水Wと混合されることにより、スケール成分の濃度が低減されるので、分離膜でのスケールの析出を防ぐことができる。 Next, the entire operation of the exhaust gas processing device 4 will be described. Desulfurization effluent W 11 containing sulfur discharged from flue gas desulfurization unit 11 is supplied to the film processing section 12 through the desulfurization effluent supply line L 1. Desulfurization effluent W 11 supplied to the film processing section 12, after being mixed with makeup water W 5 supplied from replenishing water supply unit 14 through the makeup water branch line L 42, sulfate ions are concentrated by the separation membrane The membrane is separated into concentrated water W 21 and permeated water W 22 from which sulfate ion has been removed. Here, by the desulfurization effluent W 11 is mixed with makeup water W 5, the concentration of the scale components is reduced, it is possible to prevent the scale deposition in the separation membrane.
 以上説明したように、本実施の形態によれば、脱硫排水W11を補給水Wによって希釈するので、膜処理部12に供給される脱硫排水W11中のスケール成分の濃度を低減することができる。これにより、脱硫排水W11中のスケール成分の濃度が高い場合であっても、膜処理部12の分離膜でのスケールの析出を防ぐことが可能となる。しかも、排煙脱硫部11に供給する補給水Wの少なくとも一部を用いて脱硫排水W11を希釈するので、既存設備に補給水分岐ラインL42を設けるだけで分離膜でのスケールの析出を防ぐことが可能となる。 As described above, according to this embodiment, since diluting the desulfurization effluent W 11 by makeup water W 5, reducing the concentration of the scale components in the desulfurization effluent W 11 to be supplied to the film processing section 12 Can. Accordingly, even when the concentration of the scale components in the desulfurization effluent W 11 high, it is possible to prevent the deposition of scale in the separation membrane of the film processing section 12. Moreover, since the desulfurization drainage W 11 is diluted using at least a part of the makeup water W 5 to be supplied to the flue gas desulfurization unit 11, the scale deposition in the separation membrane can be achieved simply by providing the makeup water branch line L 42 in the existing facility. Can be prevented.
 図6Aは、第2の実施の形態に係る排ガス処理装置の別の例を示す図である。図6Aに示すように、排ガス処理装置5Aは、図3に示した排ガス処理装置2の構成に加えて、透過水排出ラインL32と脱硫排水供給ラインLとの間に設けられた透過水供給ラインL43を備える。第2膜処理部122は、透過水排出ラインL32を介して第2透過水W32を排出すると共に、透過水供給ラインL43を介して第2透過水W32の少なくとも一部を循環水W33として脱硫排水W11に供給する。すなわち、図6Aに示す排ガス処理装置5Aは、第2膜処理部122を図4に示した希釈水供給部13としても用いるものである。 FIG. 6A is a diagram showing another example of the exhaust gas processing device according to the second embodiment. As shown in FIG. 6A, the exhaust gas treatment apparatus 5A, in addition to the configuration of the air pollution control apparatus 2 shown in FIG. 3, the permeate that is provided between the permeate discharge line L 32 and desulfurization effluent supply line L 1 A supply line L 43 is provided. The second membrane processing unit 122 discharges the second permeated water W 32 through the permeated water discharge line L 32 and recycles at least a portion of the second permeated water W 32 through the permeated water supply line L 43. Supply to desulfurization drainage W 11 as W 33 . That is, the exhaust gas processing apparatus 5A shown in FIG. 6A uses the second membrane processing unit 122 also as the dilution water supply unit 13 shown in FIG.
 次に、排ガス処理装置5Aの全体動作について説明する。排煙脱硫部11から排出された硫黄分を含有する脱硫排水W11は、脱硫排水供給ラインLを介して第1膜処理部121に供給される。第1膜処理部121に供給された脱硫排水W11は、透過水供給ラインL43を介して第2膜処理部122から供給された第2透過水W32と混合された後、第1分離膜によって硫酸イオンが濃縮された第1濃縮水W21と硫酸イオンが除去された第1透過水W22とに膜分離される。ここでは、脱硫排水W11が第2透過水W32と混合されることにより、スケール成分の濃度が低減されるので、第1分離膜でのスケールの析出を防ぐことができる。第1膜処理部121で膜分離された第1透過水W22は、第2膜処理部122に供給されて第2分離膜によって塩化物イオンが濃縮された第2濃縮水W31と塩化物イオンが除去された第2透過水W32とに膜分離される。第2分離膜によって膜分離された第2透過水W32は、少なくとも一部が透過水循環ラインL43を介して循環水W33として脱硫排水W11に供給されると共に排ガス処理装置5Aの外部に排出される。 Next, the entire operation of the exhaust gas processing device 5A will be described. The desulfurization waste water W 11 containing the sulfur content discharged from the flue gas desulfurization part 11 is supplied to the first membrane processing part 121 via the desulfurization waste water supply line L 1 . Desulfurization effluent W 11 supplied to the first layer processing section 121, after being mixed with the second permeate W 32 supplied from the second membrane unit 122 through permeate supply line L 43, the first isolation The membrane separates the first concentrated water W 21 in which the sulfate ion is concentrated by the membrane and the first permeate water W 22 in which the sulfate ion is removed. Here, by the desulfurization effluent W 11 is mixed with the second permeate W 32, since the concentration of the scale components is reduced, it is possible to prevent the scale deposition in the first separation membrane. The first permeated water W 22 subjected to membrane separation in the first membrane processing unit 121 is supplied to the second membrane processing unit 122, and the second concentrated water W 31 and chloride in which chloride ions are concentrated by the second separation membrane The membrane is separated into the second permeated water W 32 from which the ions have been removed. At least a part of the second permeated water W 32 membrane-separated by the second separation membrane is supplied to the desulfurization drainage W 11 as circulating water W 33 through the permeated water circulation line L 43 and to the outside of the exhaust gas treatment device 5A. Exhausted.
 図6Bは、第2の実施の形態に係る排ガス処理装置の別の例を示す図である。また、図6Bに示すように、排ガス処理装置5Bは、透過水排出ラインL22と脱硫排水供給ラインLとの間に設けられた透過水供給ラインL44を備える。第1膜処理部121は、透過水排出ラインL22を介して第1透過水W22を排出すると共に、透過水循環ラインL44を介して第2透過水W22の少なくとも一部を循環水W23として脱硫排水W11に供給する。すなわち、図6Bに示す排ガス処理装置5Bは、第1膜処理部121を図4に示した希釈水供給部13としても用いるものである。その他の構成については、図4に示した排ガス処理装置3と同様のため説明を省略する。 FIG. 6B is a diagram showing another example of the exhaust gas processing device according to the second embodiment. Further, as shown in Figure 6B, the exhaust gas treatment apparatus 5B includes a permeate supply line L 44 that is provided between the permeate discharge line L 22 and desulfurization effluent supply line L 1. The first membrane processing unit 121 discharges the first permeated water W 22 through the permeated water discharge line L 22 , and circulates at least a portion of the second permeated water W 22 through the permeated water circulation line L 44. Supply to desulfurization drainage W 11 as 23 . That is, the exhaust gas processing apparatus 5B shown in FIG. 6B uses the first membrane processing unit 121 also as the dilution water supply unit 13 shown in FIG. The other configuration is the same as that of the exhaust gas processing device 3 shown in FIG.
 次に、排ガス処理装置5Bの全体動作について説明する。排煙脱硫部11から排出された硫黄分を含有する脱硫排水W11は、脱硫排水供給ラインLを介して第1膜処理部121に供給される。第1膜処理部121に供給された脱硫排水W11は、透過水供給ラインL44を介して第1膜処理部121から供給された第1透過水W22と混合された後、第1分離膜によって硫酸イオンが濃縮された第1濃縮水W21と硫酸イオンが除去された第1透過水W22とに膜分離される。ここでは、脱硫排水W11が第2透過水W32と混合されることにより、スケール成分の濃度が低減されるので、第1分離膜でのスケールの析出を防ぐことができる。第1膜処理部121で膜分離された第1透過水W22は、第2膜処理部122に供給されると共に少なくとも一部が循環水W23として透過水供給ラインL44を介して脱硫排水W11に供給される。第2膜処理部122に供給された第1透過水W22は、第2分離膜によって塩化物イオンが濃縮された第2濃縮水W31と塩化物イオンが除去された第2透過水W32とに膜分離されて排出される。 Next, the entire operation of the exhaust gas processing device 5B will be described. The desulfurization waste water W 11 containing the sulfur content discharged from the flue gas desulfurization part 11 is supplied to the first membrane processing part 121 via the desulfurization waste water supply line L 1 . Desulfurization effluent W 11 supplied to the first layer processing section 121, after being mixed with the first permeate W 22 supplied from the first layer processing section 121 through the permeate supply line L 44, the first isolation The membrane separates the first concentrated water W 21 in which the sulfate ion is concentrated by the membrane and the first permeate water W 22 in which the sulfate ion is removed. Here, by the desulfurization effluent W 11 is mixed with the second permeate W 32, since the concentration of the scale components is reduced, it is possible to prevent the scale deposition in the first separation membrane. The first permeated water W 22 subjected to membrane separation in the first membrane processing unit 121 is supplied to the second membrane processing unit 122 and at least a portion thereof is desulfurized drainage through the permeated water supply line L 44 as circulating water W 23 It is supplied to the W 11. The first permeate water W 22 supplied to the second membrane processing unit 122 is a second concentrate water W 31 in which chloride ions are concentrated by the second separation membrane and a second permeate water W 32 in which chloride ions are removed. The membrane is separated and discharged.
 以上説明したように、本実施の形態によれば、脱硫排水W11を循環水W23又は循環水W33としての第1透過水W22又は第2透過水W32によって希釈するので、第1膜処理部121に供給される脱硫排水W11中のスケール成分の濃度を低減することが可能となる。これにより、脱硫排水W11中のスケール成分の濃度が高い場合であっても、第1膜処理部121の第1分離膜でのスケールの析出を防ぐことができる。しかも、第2膜処理部122から排出される第2透過水W32の少なくとも一部を用いて脱硫排水W11を希釈するので、透過水循環ラインL43,L44を設けるだけで第1分離膜でのスケールの析出を防ぐことが可能となる。 As described above, according to this embodiment, since the dilution by the first permeate W 22 or second permeate W 32 of the desulfurization effluent W 11 as the circulating water W 23 or circulation water W 33, first it is possible to reduce the concentration of the scale components in the desulfurization effluent W 11 supplied to the membrane unit 121. Accordingly, even when a high concentration of the scale components in the desulfurization effluent W 11, it is possible to prevent the scale deposition in the first separation film of the first layer processing section 121. Moreover, since diluting the desulfurization effluent W 11 using at least a portion of the second permeate W 32 discharged from the second layer processing unit 122, the first separation film only by providing a permeate circulation line L 43, L 44 It is possible to prevent the precipitation of scale in
(第3の実施の形態)
 次に、第3の実施の形態について説明する。なお、以下においては、上述した第1の実施の形態と共通する構成要素には同一の符号を付している。また、上述した第1の実施の形態との相違点を中心に説明し、説明の重複を避ける。
Third Embodiment
Next, a third embodiment will be described. In the following, the components common to the first embodiment described above are denoted by the same reference numerals. Further, differences from the above-described first embodiment will be mainly described, and redundant description will be avoided.
 図7は、第3の実施の形態に係る排ガス処理装置の一例を示す模式図である。図7に示すように、本実施の形態に係る排ガス処理装置6は、排煙脱硫部11の後段に設けられ、脱硫排水W11中のスケール成分を除去する前処理部15を備える。前処理部15は、脱硫排水W11に含まれるカルシウムイオン及びマグネシウムイオンなどのスケール成分を除去する。また、前処理部15は、脱硫排水中のスケール成分を除去した前処理水W14を第1膜処理部121に供給する。なお、前処理部15の前段には、脱硫排水W11に含まれる石膏(CaSO)などの固体成分を脱硫排水から分離して除去する固液分離部(不図示)を設けてもよい。固液分離部としては、脱硫排水W11から固体成分を分離除去できるものであれば特に制限はなく、例えば、ベルトフィルタ、ベルトプレス、フィルタープレス,遠心分離器、液体サイクロン及び沈殿槽などの各種固液分離装置を用いることができる。 FIG. 7 is a schematic view showing an example of the exhaust gas processing system according to the third embodiment. As shown in FIG. 7, the exhaust gas treatment apparatus 6 of the present embodiment is provided at the latter stage of the flue gas desulfurization unit 11, and a pre-processing unit 15 for removing the scale components in the desulfurization effluent W 11. Preprocessing unit 15 removes the scale components such as calcium ions and magnesium ions contained in the desulfurization effluent W 11. Further, the pretreatment unit 15 supplies the first membrane treatment unit 121 with the pretreatment water W 14 from which the scale component in the desulfurization drainage has been removed. Note that the previous stage of the pre-processing unit 15, gypsum (CaSO 4) a solid-liquid separating section for separating and removing from the desulfurization effluent of the solid component, such as a (not shown) may be provided contained in the desulfurization waste water W 11. The solid-liquid separation unit, in particular limited as long as it can separate and remove solid components from the desulfurization effluent W 11 is not, for example, a belt filter, a belt press, filter press, centrifuge, hydrocyclone and various like settling tank A solid-liquid separation device can be used.
 本実施の形態では、前処理部15は、脱硫排水W11が供給される凝集沈殿部151と、凝集沈殿部151の後段に設けられた砂濾過部152と、砂濾過部152の後段に設けられた膜濾過部153とを含む。なお、本実施の形態では、前処理部15が、凝集沈殿部151、砂濾過部152、及び膜濾過部153を含む例について説明したが、この構成に限定されない。前処理部15は、砂濾過部152又は膜濾過部153の少なくとも一方を備えていればよく、例えば、凝集沈殿部151及び砂濾過部152を備えていてもよく、凝集沈殿部151及び膜濾過部153を備えていてもよい。 In the present embodiment, the pre-processing unit 15 is provided in the subsequent stage of the coagulation sedimentation unit 151 to which the desulfurization drainage W 11 is supplied, the sand filtration unit 152 provided in the latter stage of the coagulation sedimentation unit 151, and the sand filtration unit 152 And the membrane filtration unit 153. In the present embodiment, an example has been described in which the pretreatment unit 15 includes the aggregation and precipitation unit 151, the sand filtration unit 152, and the membrane filtration unit 153, but the present invention is not limited to this configuration. The pretreatment unit 15 may include at least one of the sand filtration unit 152 or the membrane filtration unit 153. For example, the pretreatment unit 15 may include the coagulation sedimentation unit 151 and the sand filtration unit 152. The coagulation sedimentation unit 151 and the membrane filtration The unit 153 may be provided.
 凝集沈殿部151は、ライムソーダ法などにより脱硫排水W11中のスケール成分となる塩分151aを固形化して脱硫排水W11から固液分離する。凝集沈殿部151は、例えば、脱硫排水W11中に消石灰(Ca(OH))、及び炭酸ナトリウム(NaCO)を添加することにより、カルシウムイオン及びマグネシウムイオンを炭酸カルシウム(CaCO)及び水酸化マグネシウム(Mg(OH))として固形化し、脱硫排水W11からスラッジ151aとして分離する。凝集沈殿部151としては、例えば、クラリファイヤなどの沈殿槽が用いられる。凝集沈殿部151は、脱硫排水W11からスラッジ151aを除去した脱硫排水W12を砂濾過部152に供給する。 Flocculation unit 151, and solidifying salt 151a as the scale components in the desulfurization effluent W 11 due lime soda method for solid-liquid separation from the desulfurization effluent W 11. The flocculation settling unit 151 is, for example, calcium carbonate (CaCO 3 ) by adding calcium hydroxide (Ca (OH) 2 ) and sodium carbonate (Na 2 CO 3 ) to the desulfurization waste water W 11 to add calcium ions and magnesium ions. And solidify as magnesium hydroxide (Mg (OH) 2 ) and separate from the desulfurization waste water W 11 as sludge 151 a. For example, a settling tank such as a clarifier is used as the aggregation settling unit 151. The flocculation settling unit 151 supplies the sand filtration unit 152 with the desulfurization drainage W 12 obtained by removing the sludge 151 a from the desulfurization drainage W 11 .
 砂濾過部152は、例えば、複数の濾過層に脱硫排水W12を透過させることにより、脱硫排水W12中の固形分、具体的には凝集沈殿部151で生成した固形物(炭酸カルシウム(CaCO)及び水酸化マグネシウム(Mg(OH)))及び粒子性二酸化ケイ素(SiO)などの固形分(懸濁物質)を除去する。ここでは、砂濾過部152は、脱硫排水W12を砂濾過層に透過させて固形分を除去してもよい。また、砂濾過152は、脱硫排水W12中の固形分を除去した脱硫排水W13を膜濾過153に供給する。 Sand filtration unit 152 is, for example, by passing the desulfurization effluent W 12 to a plurality of filter layers, the solid in the desulfurization effluent W 12 min, specifically solids generated by the coagulation-sedimentation unit 151 (calcium carbonate (CaCO 3) and magnesium hydroxide (Mg (OH) 2)) and removing the particulate silicon dioxide (SiO 2) a solid, such as content (suspended matter). Here, the sand filtration unit 152 may allow the sand filtration layer to permeate the desulfurization drainage W 12 to remove the solid content. In addition, the sand filtration 152 supplies the membrane filtration 153 with the desulfurization waste water W 13 from which the solid content in the desulfurization waste water W 12 has been removed.
 膜濾過部153は、精密濾過及び限外濾過膜(UF:Ultra Filtration)などの濾過膜153aに脱硫排水W13を透過させることにより、脱硫排水W13中に残存する固形物(炭酸カルシウム(CaCO)、水酸化マグネシウム(Mg(OH)))及び粒子性二酸化ケイ素(SiO)などの固形分を除去した前処理水W14を得ると共に、懸濁成分を含有する洗浄排水W15を得る。また、膜濾過部153は、前処理水W14を膜処理部12に供給すると共に濃縮水W15を排水として排出する。その他の構成については、図1に示した排ガス処理装置1と同様のため説明を省略する。 The membrane filtration unit 153 is a solid substance (calcium carbonate (CaCO 2 (CaCO 2) remaining in the desulfurization drainage W 13 by causing the desulfurization drainage W 13 to permeate through the filtration membrane 153 a such as microfiltration and ultrafiltration membrane (UF: Ultra Filtration)). 3 ) to obtain pretreated water W 14 from which solid content such as magnesium hydroxide (Mg (OH) 2 )) and particulate silicon dioxide (SiO 2 ) has been removed and to obtain washing waste W 15 containing suspended components obtain. Further, the membrane filtration unit 153 supplies the pretreated water W 14 to the membrane processing unit 12 and discharges the concentrated water W 15 as drainage. The other configuration is the same as that of the exhaust gas processing device 1 shown in FIG.
 次に、排ガス処理装置6の全体動作について説明する。排煙脱硫部11から排出された硫黄分を含有する脱硫排水W11は、脱硫排水供給ラインLを介して前処理部15の凝集沈殿部151に供給される。凝集沈殿部151に供給された脱硫排水W11は、消石灰及び炭酸ナトリウム(NaCO)などが添加される。これにより、カルシウムイオン及びマグネシウムイオンなどが炭酸カルシウム(CaCO)及び水酸化マグネシウム(Mg(OH))として固形化されてスラッジ151aとして脱硫排水W11から分離される。凝集沈殿部151でスラッジ151aが除去された脱硫排水W12は、砂濾過部152に供給されて濾材を透過することにより、脱硫排水W12中の懸濁物質(凝集沈殿部151からのキャリーオーバー)が除去される。懸濁物質が除去された脱硫排水W13は、膜濾過部153に供給されて濾過膜153aを透過することにより、脱硫排水W13中に残存する懸濁物質(砂濾過部152からのキャリーオーバー)が除去されて前処理水W14と洗浄排水W15とに膜分離される。膜分離された前処理水W14は、膜処理部12に供給され、洗浄排水W15は、系外に排出される。その他は、図1に示した排ガス処理装置1と同様のため説明を省略する。 Next, the entire operation of the exhaust gas processing device 6 will be described. The desulfurization waste water W 11 containing the sulfur content discharged from the flue gas desulfurization part 11 is supplied to the coagulation sedimentation part 151 of the pretreatment part 15 via the desulfurization waste water supply line L 1 . Slaked lime, sodium carbonate (Na 2 CO 3 ), etc. are added to the desulfurization waste water W 11 supplied to the coagulating and settling part 151. Thereby, calcium ions and magnesium ions are solidified as calcium carbonate (CaCO 3 ) and magnesium hydroxide (Mg (OH) 2 ) and separated from the desulfurization drainage W 11 as sludge 151 a. The desulfurization waste water W 12 from which the sludge 151 a has been removed in the coagulation sedimentation part 151 is supplied to the sand filtration part 152 and permeates through the filter medium, whereby suspended substances in the desulfurization waste water W 12 (carry ) Is removed. The desulfurization waste water W 13 from which the suspended matter has been removed is supplied to the membrane filtration unit 153 and permeates through the filtration membrane 153 a, whereby suspended matter remaining in the desulfurization drainage W 13 (carry over from the sand filtration ) is membrane separation in the pretreated water W 14 and cleaning waste water W 15 is removed. The membrane-separated pretreated water W 14 is supplied to the membrane processing unit 12, and the cleaning drainage W 15 is discharged out of the system. The other parts are the same as those of the exhaust gas processing device 1 shown in FIG.
 以上説明したように、本実施の形態によれば、排煙脱硫部11から排出された脱硫排水W11中に含まれるスケール成分を、前処理部15によって膜処理部12の前段で除去するので、膜処理部12に導入される前処理水W14中のスケール成分を大幅に削減することが可能となる。これにより、脱硫排水W11中のスケール成分の含有量が多い場合であっても、膜処理部12の分離膜におけるスケールの析出を防ぐことが可能となる。 As described above, according to the present embodiment, the scale component contained in the desulfurization waste water W 11 discharged from the flue gas desulfurization part 11 is removed by the pre-treatment part 15 at the front stage of the membrane processing part 12 It is possible to significantly reduce the scale component in the pretreated water W 14 introduced into the membrane processing unit 12. Accordingly, even when high content of scale components in the desulfurization effluent W 11, it is possible to prevent the deposition of scale in the separation membrane of the film processing section 12.
(第4の実施の形態)
 次に、第4の実施の形態について説明する。なお、以下においては、上述した第1の実施の形態と共通する構成要素には同一の符号を付している。また、上述した第1の実施の形態との相違点を中心に説明し、説明の重複を避ける。
Fourth Embodiment
Next, a fourth embodiment will be described. In the following, the components common to the first embodiment described above are denoted by the same reference numerals. Further, differences from the above-described first embodiment will be mainly described, and redundant description will be avoided.
 従来の排ガス処理装置では、脱硫排水中に含まれる固体状の水銀及び液状の水銀が膜処理部の分離膜の表面に付着すると、分離膜の透過水流量を低下させることがある。本実施の形態に係る排ガス処理装置は、脱硫排水W11に含まれる固体状の水銀及び液体状の水銀を除去することにより、膜処理部12における分離膜の表面への水銀の付着を防止して分離膜の透過水W22の流量の低下を防ぐものである。 In the conventional exhaust gas treatment apparatus, when solid mercury and liquid mercury contained in the desulfurization waste water adhere to the surface of the separation membrane of the membrane treatment unit, the flow rate of the permeated water of the separation membrane may be reduced. Exhaust gas treatment apparatus according to the present embodiment, by removing the solid mercury and liquid mercury contained in the desulfurization effluent W 11, to prevent adhesion of the mercury to the surface of the separation membrane in the membrane unit 12 Thus, the flow rate of the permeated water W 22 of the separation membrane is prevented from being reduced.
 図8は、第4の実施の形態に係る排ガス処理装置の一例を示す模式図である。図8に示すように、本実施の形態に係る排ガス処理装置7は、図1に示した排ガス処理装置1の構成に加えて、脱硫排水W11の流れ方向における排煙脱硫部11と膜処理部12との間に設けられた水銀除去部16を備える。水銀除去部16は、脱硫排水W11中に含まれる液状の水銀と固体状の水銀(例えば、固形物に水銀化合物が付着・含有されたもの)を固液分離する分離部161と、脱硫排水W11中に溶存する溶解性水銀を除去する水銀処理部162とを含む。 FIG. 8 is a schematic view showing an example of the exhaust gas processing system according to the fourth embodiment. As shown in FIG. 8, the exhaust gas treatment device 7 according to this embodiment, in addition to the configuration of the exhaust gas treatment apparatus 1 shown in FIG. 1, flue gas desulfurization unit 11 and the film processing in the flow direction of the desulfurization effluent W 11 A mercury removing unit 16 provided between the unit 12 and the unit 12 is provided. The mercury removal unit 16 includes a separation unit 161 for solid-liquid separation of liquid mercury and solid mercury (for example, a solid compound with a mercury compound attached and contained) contained in the desulfurization drainage W 11 , and a mercury processing unit 162 to remove the soluble mercury dissolved in the W 11.
 分離部161は、例えば、凝集沈殿及び膜分離、砂濾過などにより、脱硫排水W11中に含まれる液状の水銀(例えば、金属水銀Hg)、固体状の水銀(例えば、HgSO、HgSO、HgS、HgS)を、水銀を含むスラッジとして分離除去する。また、分離部161は、水銀を固定化して除去した脱硫排水W16を水銀処理部162に供給する。 The separation unit 161 is, for example, liquid mercury (for example, metal mercury Hg), solid mercury (for example, HgSO 4 , Hg 2 SO, etc.) contained in the desulfurization drainage W 11 by coagulation sedimentation, membrane separation, sand filtration or the like. 4 , HgS, Hg 2 S) are separated and removed as mercury-containing sludge. In addition, the separation unit 161 supplies the desulfurization waste water W 16 in which the mercury is fixed and removed to the mercury processing unit 162.
 水銀処理部162は、脱硫排水W11中の液状の水銀(Hg)を酸化して溶解性水銀(Hg2+)とし、酸化した脱硫排水W11中の溶解性水銀を除去する。水銀処理部162は、例えば、重金属捕集剤としてのキレート剤及びキレート樹脂などの添加などにより脱硫排水W11中の溶解性水銀を固定化して除去する。この場合、水銀処理部162は、必要に応じてキレート剤と共にpHを調整する水酸化ナトリウム(苛性ソーダ:NaOH),硫酸(HSO),塩酸(HCl)などのpH調整剤、硫酸アルミニウム(Al(SO、ポリ塩化アルミニウム、塩化第二鉄(FeCl)、高分子凝集剤などの凝集剤および凝集助剤を添加してもよい。また、水銀処理部162は、キレート樹脂を用いて溶解性水銀を除去してもよい。さらに、水銀処理部162は、脱硫排水W11中に、硫化鉄及び硫化ナトリウムなどの硫化物系水銀除去剤を添加し、下記反応により硫化水銀(HgS)として水銀を固定化して除去してもよい。固定化された硫化水銀は、凝集沈殿、膜分離、砂濾過、及び活性炭吸着などにより脱硫排水W11から分離除去できる。
 Hg2++S2-→HgS↓
Mercury processor 162, mercury liquid in the desulfurization effluent W 11 a (Hg 0) is oxidized to a soluble mercury (Hg 2+), to remove the soluble mercury in the desulfurization effluent W 11 oxidized. Mercury processor 162 by, for instance, the addition of such a chelating agent and chelating resins as heavy metal scavenger is removed by immobilizing the solubility mercury in desulfurization effluent W 11. In this case, the mercury-treated portion 162 adjusts the pH together with the chelating agent as needed, pH adjusters such as sodium hydroxide (caustic soda: NaOH), sulfuric acid (H 2 SO 4 ), hydrochloric acid (HCl), aluminum sulfate An aggregating agent such as Al 2 (SO 4 ) 3 , polyaluminum chloride, ferric chloride (FeCl 3 ), a polymer coagulant, and an aggregating aid may be added. In addition, the mercury processing unit 162 adds a sulfide-based mercury removing agent such as iron sulfide and sodium sulfide to the desulfurization waste water W 11 , and the mercury sulfide may be removed by the following reaction. (HgS) mercury may be removed by immobilizing a. immobilized mercury sulfide is flocculation, membrane separation, sand filtration, and separation excluded from desulfurization effluent W 11 by such as activated carbon adsorption It can be.
Hg 2+ + S 2- → Hg S ↓
 また、水銀処理部162は、脱硫排水W11を溶解性水銀(Hg2+)を吸着する陽イオン交換樹脂及び水銀錯体(HgCl 、HgCl 2-、HgS 2-など)を吸着する陰イオン交換樹脂に透過させることにより、脱硫排水W11中の溶解性水銀を除去してもよい。また、水銀処理部162は、還元性物質(酸化阻害物質)が存在する場合においては、所定量の酸化剤(例えば、空気)を添加して所定の酸化状態(例えば、酸化還元電位(ORP)値が+100mV以上+200mV以下)を維持し、0価の水銀(Hg)の気相への飛散を抑制してもよい。 In addition, the mercury-treated portion 162 is a cation exchange resin that adsorbs desorbed mercury (Hg 2+ ) and desorbs the desulfurization waste water W 11 (eg, HgCl 3 , HgCl 4 2− , HgS 2 2−, etc.). by transmitting to the ion-exchange resin may be removed soluble mercury in the desulfurization waste water W 11. In addition, in the case where the reducing substance (oxidation inhibiting substance) is present, the mercury processing unit 162 adds a predetermined amount of an oxidizing agent (for example, air) to be in a predetermined oxidation state (for example, redox potential (ORP)) The value may be maintained at +100 mV or more and 200 mV or less to suppress scattering of zero-valent mercury (Hg 0 ) into the gas phase.
 次に、排ガス処理装置7の全体動作について説明する。排煙脱硫部11から排出された硫黄分を含有する脱硫排水W11は、脱硫排水供給ラインLを介して水銀除去部16の分離部161に供給される。分離部161に供給された脱硫排水W11は、固体状及び液状の水銀が、凝集沈殿、膜分離及び砂濾過などによって分離除去されて固液分離後の脱硫排水W16として水銀処理部162に供給される。水銀処理部162に供給された脱硫排水W16は、キレート剤の添加などによって溶解性水銀が除去される(除去された水銀は不図示)。溶解性水銀が除去された脱硫排水W17は、膜処理部12に供給される。その他については、図1に示した排ガス処理装置1と同様のため説明を省略する。 Next, the entire operation of the exhaust gas processing device 7 will be described. The desulfurization waste water W 11 containing the sulfur content discharged from the flue gas desulfurization part 11 is supplied to the separation part 161 of the mercury removal part 16 via the desulfurization waste water supply line L 1 . In the desulfurization waste water W 11 supplied to the separation unit 161, solid and liquid mercury is separated and removed by coagulation sedimentation, membrane separation, sand filtration, etc., and is sent to the mercury processing part 162 as desulfurization waste water W 16 after solid-liquid separation. Supplied. Soluble mercury is removed from the desulfurization waste water W 16 supplied to the mercury processing unit 162 by the addition of a chelating agent (the removed mercury is not shown). The desulfurization waste water W 17 from which the soluble mercury has been removed is supplied to the membrane processing unit 12. About others, since it is the same as that of exhaust gas processing device 1 shown in Drawing 1, explanation is omitted.
 以上説明したように、本実施の形態によれば、排煙脱硫部11から排出された脱硫排水W11中に含まれる固体状及び液状の水銀を分離部161で除去すると共に、溶解性水銀を水銀処理部162で除去するので、膜処理部12の分離膜に付着する水銀を低減することができる。これにより、膜処理部12に付着する水銀を低減することができると共に、透過水W22中の水銀を削減して水銀濃度を放流基準値以下まで低減することもできるので、透過水W22を放流することが可能となる。 As described above, according to the present embodiment, solid and liquid mercury contained in the desulfurization waste water W 11 discharged from the flue gas desulfurization part 11 is removed by the separation part 161 and soluble mercury is removed. Since the mercury is removed by the mercury processing unit 162, mercury adhering to the separation membrane of the membrane processing unit 12 can be reduced. Thus, it is possible to reduce the mercury adhering to the film processing section 12, since the mercury mercury concentration was reduced in the permeate W 22 can be reduced to below the effluent standard value, the permeate W 22 It becomes possible to release it.
(第5の実施の形態)
 次に、第5の実施の形態について説明する。なお、以下においては、上述した第1の実施の形態と共通する構成要素には同一の符号を付している。また、上述した第1の実施の形態との相違点を中心に説明し、説明の重複を避ける。
Fifth Embodiment
The fifth embodiment will now be described. In the following, the components common to the first embodiment described above are denoted by the same reference numerals. Further, differences from the above-described first embodiment will be mainly described, and redundant description will be avoided.
 図9Aは、第5の実施の形態に係る排ガス処理装置の一例を示す模式図である。図9Aに示すように、本実施の形態に係る排ガス処理装置8Aは、図1に示した排ガス処理装置1の構成に加えて、濃縮水供給ラインL21から分岐され、脱硫排水供給ラインLに接続された濃縮水循環ラインL61と、濃縮水循環ラインL61を流れる濃縮水W21の水質を測定する水質測定部17と、水質測定部17によって測定された濃縮水W21の水質に基づいて、循環水W24として濃縮水循環ラインL61を流れる濃縮水W21の流量を制御する制御部18とを備える。濃縮水循環ラインL61には、濃縮水循環ラインL61を流れる循環水W24の流量を調整する流量調整弁Vが設けられている。すなわち、排ガス処理装置8Aにおいては、膜処理部12は、濃縮水循環ラインL61を介して濃縮水W21を循環水W24として循環可能となっている。 FIG. 9A is a schematic view showing an example of an exhaust gas processing system according to the fifth embodiment. As shown in FIG. 9A, the exhaust gas treatment apparatus 8A according to this embodiment, in addition to the configuration of the exhaust gas treatment apparatus 1 shown in FIG. 1, it is branched from the concentrate water supply line L 21, desulfurization effluent supply line L 1 a concentrated water circulation line L 61 that is connected to a water quality measuring unit 17 that measures the quality of the concentrated water W 21 through the concentrated water circulation line L 61, based on the quality of the concentrated water W 21 measured by the quality measuring unit 17 And a control unit 18 configured to control the flow rate of the concentrated water W 21 flowing through the concentrated water circulation line L 61 as the circulating water W 24 . The concentrated water circulation line L 61 is provided with a flow control valve V 1 for adjusting the flow rate of the circulating water W 24 flowing through the concentrated water circulation line L 61 . That is, in the exhaust gas treatment apparatus 8A, film processing section 12 is capable of circulating the concentrated water W 21 as the circulating water W 24 through a concentrated water circulation line L 61.
 水質測定部17は、濃縮水W21の導電率(EC:Electrical Conductivity)などを測定することにより、膜処理部12から排煙脱硫部11に供給される濃縮水W21の塩化物イオンなどのイオン成分の濃度を推算する。 The water quality measurement unit 17 measures the conductivity (EC: Electrical Conductivity) of the concentrated water W 21 , etc., to thereby supply chloride ions of the concentrated water W 21 supplied from the membrane processing unit 12 to the flue gas desulfurization unit 11. Estimate the concentration of the ion component.
 制御部18は、CPU(中央演算装置)、ROM(Read Only Memory)、RAM(Random Access Memory)などが実装された汎用又は専用のコンピュータ及びこのコンピュータ上で動作するプログラムを利用して運用される。制御部18は、水質測定部17で測定された濃縮水W21の導電率に基づいて、濃縮水W21中の塩化物イオン濃度を推算し,脱硫排水W11に循環する循環水W24の流量を制御して、濃縮水W21中の塩化物イオン濃度を基準値以下とするように動作する。 The control unit 18 is operated using a general-purpose or dedicated computer on which a CPU (central processing unit), a ROM (Read Only Memory), a RAM (Random Access Memory), etc. is mounted and a program operating on this computer . The control unit 18 estimates the chloride ion concentration in the concentrated water W 21 based on the conductivity of the concentrated water W 21 measured by the water quality measurement unit 17, and the circulating water W 24 is circulated to the desulfurization drainage W 11 The flow rate is controlled to operate such that the chloride ion concentration in the concentrated water W 21 is below the reference value.
 制御部18は、濃縮水W21の導電率が基準値を超えた場合には、流量調整弁Vの開度を増大させて膜処理部12に循環される循環水W24の流量を増大させるように動作する。これにより、排ガス処理装置8Aは、濃縮水W21と共に排煙脱硫部11に供給される塩化物イオンの量を減らすことができると共に、膜処理部12から透過水W22と共に排出される塩化物イオンの量を増やすことができる。この結果、排ガス処理装置8A内の塩化物イオンの量を低減でき、排煙脱硫部11内の脱硫排水及び排煙脱硫部11から排出される脱硫排水W11の塩化物イオン濃度を基準値以下に低減できるので、塩化物イオンによる排煙脱硫部11の脱硫性能の低下を防ぐことができる。 When the conductivity of the concentrated water W 21 exceeds the reference value, the control unit 18 increases the opening degree of the flow control valve V 1 to increase the flow rate of the circulating water W 24 circulated to the membrane processing unit 12 It works to make it Thus, the exhaust gas processing device 8A can reduce the amount of chloride ions supplied to the exhaust gas desulfurization unit 11 together with the concentrated water W 21 , and the chloride discharged from the membrane processing unit 12 together with the permeated water W 22 . The amount of ions can be increased. As a result, it is possible to reduce the amount of chloride ions in the exhaust gas treatment apparatus 8A, the following reference values chloride ion concentration of the desulfurization waste water W 11 discharged from the desulfurization effluent, and flue gas desulfurization section 11 in the flue gas desulfurization unit 11 Therefore, it is possible to prevent the deterioration of the desulfurization performance of the flue gas desulfurization unit 11 due to the chloride ion.
 また、制御部18は、濃縮水W21の導電率が基準値以下となった際には、流量調整弁Vの開度を減少させて膜処理部12に循環される循環水W24の流量を減少させるように動作する。これにより、排ガス処理装置8Aは、膜処理部12から排煙脱硫部11に供給される濃縮水W21の流量が増大するので、排煙脱硫部11の塩化物イオン濃度が基準値以下の範囲で増加する。これにより、脱硫処理の効率を低下させることがなく運転することができると共に、排煙脱硫部11での硫黄分の回収量が増大する。その他の構成については、図1に示した排ガス処理装置1と同様であるため説明を省略する。 In addition, when the conductivity of the concentrated water W 21 becomes less than or equal to the reference value, the control unit 18 decreases the opening degree of the flow rate adjustment valve V 1 to circulate the circulating water W 24 circulated to the membrane processing unit 12. Operate to reduce the flow rate. Thereby, in the exhaust gas processing device 8A, the flow rate of the concentrated water W 21 supplied from the membrane processing unit 12 to the exhaust gas desulfurization unit 11 increases, so the chloride ion concentration of the exhaust gas desulfurization unit 11 is in the range below the reference value. To increase. As a result, it is possible to operate without reducing the efficiency of the desulfurization treatment, and the amount of recovered sulfur in the flue gas desulfurization unit 11 is increased. The other configuration is the same as that of the exhaust gas processing device 1 shown in FIG.
 なお、図9Aに示す例では、濃縮水W21の水質の測定結果に基づいて濃縮水W21の循環量を制御する例について説明したが、制御部18は、透過水W22の水質の測定結果に基づいて循環水W24として循環される濃縮水W21の循環量を制御してもよい。図9Bは、第5の実施の形態に係る排ガス処理装置の他の例を示す模式図である。図9Bに示す排ガス処理装置8Bでは、水質測定部17は、濃縮水W21の水質に代えて、透過水W22の水質を測定する。水質測定部17は、透過水W22の水質として導電率などを測定することにより、膜処理部12から排出される透過水W22中の塩化物イオンなどのイオン成分の濃度を推算する。制御部18は、水質測定部17で測定された透過水W22の導電率に基づいて、透過水W22中の塩化物イオン濃度を推算し,脱硫排水W11に循環する循環水W24の流量を制御して、濃縮水W21中の塩化物イオン濃度を基準値以下とするように動作する。 In the example shown in FIG. 9A, an example is described of controlling the circulation amount of the measurement result based concentrated water W 21 water quality concentrated water W 21, the control unit 18, measurement of the quality of the permeated water W 22 The circulation amount of the concentrated water W 21 circulated as the circulation water W 24 may be controlled based on the result. FIG. 9B is a schematic view showing another example of the exhaust gas processing system according to the fifth embodiment. In the exhaust gas treatment apparatus 8B shown in FIG. 9B, the water quality measurement unit 17, instead of the quality of the concentrated water W 21, measures the quality of the permeate W 22. Water measuring unit 17, by measuring the like conductivity as a quality of permeate W 22, to estimate the concentration of the ionic components such as chloride ions in the permeate water W 22 discharged from the film processing section 12. The control unit 18 estimates the chloride ion concentration in the permeate water W 22 based on the conductivity of the permeate water W 22 measured by the water quality measurement unit 17, and the circulating water W 24 is circulated to the desulfurization drainage W 11 The flow rate is controlled to operate such that the chloride ion concentration in the concentrated water W 21 is below the reference value.
 制御部18は、透過水W22の導電率が基準値以下の場合には、流量調整弁Vの開度を増大させて膜処理部12に循環される循環水W24の流量を増大させるように動作する。これにより、排ガス処理装置8Bは、濃縮水W21と共に排煙脱硫部11に供給される塩化物イオンの量を減らすことができると共に、膜処理部12から透過水W22と共に排出される塩化物イオンの量を増大させることができる。この結果、排ガス処理装置8B内の塩化物イオンの量を低減でき、排煙脱硫部11内の脱硫排水及び排煙脱硫部11から排出される脱硫排水W11の塩化物イオン濃度を基準値以下に低減できるので、塩化物イオンによる排煙脱硫部11の脱硫性能の低下を防ぐことができる。 Control unit 18, when the conductivity of the permeate W 22 is less than the reference value, increases the flow rate of the circulating water W 24 that is recycled to the membrane unit 12 increases the opening degree of the flow control valve V 1 To work. As a result, the exhaust gas processing device 8B can reduce the amount of chloride ions supplied to the exhaust gas desulfurization unit 11 together with the concentrated water W 21 , and the chloride discharged from the membrane processing unit 12 together with the permeated water W 22 . The amount of ions can be increased. As a result, the amount of chloride ions in the exhaust gas treatment apparatus 8B can be reduced, and the chloride ion concentration of the desulfurization drainage W11 in the exhaust gas desulfurization unit 11 and the desulfurization drainage W11 discharged from the exhaust gas desulfurization unit 11 is made lower than the reference value. Since it can reduce, the fall of the desulfurization performance of flue gas desulfurization part 11 by chloride ion can be prevented.
 また、制御部18は、透過水W22中の導電率が基準値を超えた際には、流量調整弁Vの開度を減少させて膜処理部12に循環される循環水W24の流量を減少させるように動作する。これにより、膜処理部12から排煙脱硫部11に供給される濃縮水W21の流量が増大するので、排煙脱硫部11の塩化物イオン濃度を基準値以下の範囲で増加する。これにより、脱硫処理の効率を低下させることがなく運転することができると共に、排煙脱硫部11での硫黄分の回収量が増大する。排煙脱硫部11における燃焼排ガスの脱硫処理を効率良く行うことができる。その他の構成については、図9Aに示した排ガス処理装置8Aと同様のため説明を省略する。 In addition, when the conductivity in the permeate water W 22 exceeds the reference value, the control unit 18 reduces the opening degree of the flow rate adjustment valve V 1 and circulates the circulation water W 24 circulated to the membrane processing unit 12. Operate to reduce the flow rate. As a result, the flow rate of the concentrated water W 21 supplied from the membrane processing unit 12 to the flue gas desulfurization unit 11 increases, so the chloride ion concentration of the flue gas desulfurization unit 11 is increased in the range below the reference value. As a result, it is possible to operate without reducing the efficiency of the desulfurization treatment, and the amount of recovered sulfur in the flue gas desulfurization unit 11 is increased. Desulfurization treatment of the combustion exhaust gas in the exhaust gas desulfurization unit 11 can be performed efficiently. The other configuration is the same as that of the exhaust gas processing device 8A shown in FIG. 9A, and thus the description thereof is omitted.
 また、図9Bに示す例では、透過水W22の水質の測定結果に基づいて循環水W24として循環される濃縮水W21の循環量を制御する例について説明したが、制御部18は、脱硫排水W11の水質の測定結果に基づいて循環水W24として循環される濃縮水W21の循環量を制御してもよい。図9Cは、第5の実施の形態に係る排ガス処理装置の別の例を示す模式図である。図9Cに示す排ガス処理装置8Cでは、水質測定部17は、透過水W22の水質に代えて、脱硫排水W11の水質を測定する。水質測定部17は、脱硫排水W11の水質として導電率などを測定することにより、排煙脱硫部11から排出される脱硫排水W11中の塩化物イオンなどのイオン成分の濃度を推算する。制御部18は、水質測定部17で測定された脱硫排水W11の導電率に基づいて、脱硫排水W11に循環する循環水W24の流量を制御して、濃縮水W21中の塩化物イオン濃度を基準値以下とするように動作する。 Further, in the example shown in FIG. 9B, an example is described of controlling the amount of circulating concentrated water W 21 is circulated as circulating water W 24 based on the measurement results of the quality of the permeate W 22, the control unit 18, The circulation amount of the concentrated water W 21 circulated as the circulating water W 24 may be controlled based on the measurement result of the water quality of the desulfurization drainage W 11 . FIG. 9C is a schematic view showing another example of the exhaust gas processing system according to the fifth embodiment. In the exhaust gas treatment apparatus 8C shown in FIG. 9C, the water quality measurement unit 17, instead of the quality of the permeate W 22, measures the quality of desulfurization effluent W 11. Water measuring unit 17, by measuring the like conductivity as a quality of desulfurization effluent W 11, to estimate the concentration of the ionic components such as chloride ions in the desulfurization effluent W 11 discharged from the flue gas desulfurization unit 11. The control unit 18 controls the flow rate of the circulating water W 24 to be circulated to the desulfurization drainage W 11 based on the conductivity of the desulfurization drainage W 11 measured by the water quality measurement unit 17, and chlorides in the concentrated water W 21 It operates so that the ion concentration is below the reference value.
 制御部18は、脱硫排水W11中の導電率が基準値以下の場合には、流量調整弁Vの開度を減少させて膜処理部12に循環される循環水W24の流量を減少させるように動作する。これにより、排ガス処理装置8Cは、膜処理部12から排煙脱硫部11に供給される濃縮水W21の流量が増大するので、排煙脱硫部11の塩化物イオン濃度を基準値以下の範囲で増加する。これにより、脱硫処理の効率を低下させることがなく運転することができると共に、排煙脱硫部11での硫黄分の回収量が増大する。 Control unit 18, when the conductivity in the desulfurization effluent W 11 is less than the reference value, reduces the flow rate of the circulating water W 24 which reduces the opening degree of the flow control valve V 1 is circulated in the film processing section 12 It works to make it Thereby, in the exhaust gas processing device 8C, the flow rate of the concentrated water W 21 supplied from the membrane processing unit 12 to the exhaust gas desulfurization unit 11 increases, so the chloride ion concentration of the exhaust gas desulfurization unit 11 is in the range below the reference value. To increase. As a result, it is possible to operate without reducing the efficiency of the desulfurization treatment, and the amount of recovered sulfur in the flue gas desulfurization unit 11 is increased.
 また、制御部18は、脱硫排水W11中の導電率が基準値を超えた際には、流量調整弁Vの開度を増大させて膜処理部12に循環される濃縮水W21の流量を増大させるように動作する。これにより、排ガス処理装置8Cは、濃縮水W21と共に排煙脱硫部11に供給される塩化物イオンの量を減らすことができると共に、膜処理部12から透過水W22と共に排出される塩化物イオンの量を増大させることができる。この結果、濃縮水W21中の塩化物イオン濃度を基準値以下に低減できるので、濃縮水W21と共に排煙脱硫部11に供給される塩化物イオンによる排煙脱硫部11の脱硫性能の低下を防ぐことができる。その他の構成については、図9Aに示した排ガス処理装置8Aと同様のため説明を省略する。 Further, when the conductivity in the desulfurization drainage W 11 exceeds the reference value, the control unit 18 increases the opening degree of the flow rate adjustment valve V 1 to circulate the concentrated water W 21 that is circulated to the membrane processing unit 12. Operate to increase the flow rate. As a result, the exhaust gas processing device 8C can reduce the amount of chloride ions supplied to the exhaust gas desulfurization unit 11 together with the concentrated water W 21 , and the chloride discharged from the membrane processing unit 12 together with the permeated water W 22 . The amount of ions can be increased. As a result, since the chloride ion concentration in the concentrated water W 21 can be reduced below the reference value, lowering of desulfurization performance in the desulfurization unit 11 by chloride ions fed to the flue gas desulfurization unit 11 together with the concentrated water W 21 You can prevent. The other configuration is the same as that of the exhaust gas processing device 8A shown in FIG. 9A, and thus the description thereof is omitted.
 なお、図9A~図9Cに示す例では、濃縮水供給ラインL21から分岐され、脱硫排水供給ラインLに接続された濃縮水循環ラインL61を設けて膜処理部12の濃縮水W21を循環水W24として循環させる例について説明したが、膜処理部12から排出される透過水W22を循環水として循環させてもよい。図9Dは、第5の実施の形態に係る排ガス処理装置の別の例を示す模式図である。図9Dに示す排ガス処理装置8Dでは、図9Aに示した排ガス処理装置8Aの濃縮水循環ラインL61に代えて、透過水排出ラインL22と脱硫排水供給ラインLとの間に設けられた透過水循環ラインL62を備える。透過水循環ラインL62は、膜処理部12から排出された透過水W22を循環水W25として膜処理部12に供給される脱硫排水W11に供給する。透過水循環ラインL62には、透過水循環ラインL62を流れる循環水W25の流量を制御する流量調整弁Vが設けられている。制御部18は、水質測定部17で測定された濃縮水W21の導電率に基づいて、透過水W22中の塩化物イオン濃度を推算し,脱硫排水W11に循環する循環水W25の流量を制御して、濃縮水W21中の塩化物イオン濃度を基準値以下とする。 In the example shown in FIGS. 9A to 9C, the concentrated water W 21 of the membrane processing unit 12 is provided by providing a concentrated water circulation line L 61 branched from the concentrated water supply line L 21 and connected to the desulfurization waste water supply line L 1. an example has been described for circulating the circulating water W 24, may be circulated permeate W 22 discharged from the film processing section 12 as the circulating water. FIG. 9D is a schematic view showing another example of the exhaust gas processing system according to the fifth embodiment. In the exhaust gas treatment apparatus 8D shown in FIG. 9D, instead of the concentrated water circulation line L 61 of the exhaust gas treatment apparatus 8A shown in FIG. 9A, transmission provided between the permeate discharge line L 22 and desulfurization effluent supply line L 1 A water circulation line L 62 is provided. The permeated water circulation line L 62 supplies the permeated water W 22 discharged from the membrane processing unit 12 to the desulfurization drainage W 11 supplied to the membrane processing unit 12 as circulating water W 25 . The permeated water circulation line L 62 is provided with a flow control valve V 2 that controls the flow rate of circulating water W 25 flowing through the permeated water circulation line L 62 . The control unit 18 estimates the chloride ion concentration in the permeate W 22 based on the conductivity of the concentrated water W 21 measured by the water quality measurement unit 17, and the circulating water W 25 is circulated to the desulfurization drainage W 11 The flow rate is controlled to make the chloride ion concentration in the concentrated water W 21 equal to or less than the reference value.
 制御部18は、濃縮水W21中の導電率が基準値を超えた場合には、流量調整弁Vの開度を増大させて膜処理部12に循環される循環水W25の流量を増大させるように動作する。これにより、排ガス処理装置8Dは、膜処理部12に供給される脱硫排水W11を希釈できるので、濃縮水W21中の塩化物イオン濃度を基準値以下に低減でき、濃縮水W21と共に排煙脱硫部11に供給される塩化物イオンによる排煙脱硫部11の脱硫性能の低下を防ぐことができる。 When the conductivity in the concentrated water W 21 exceeds the reference value, the control unit 18 increases the opening degree of the flow rate adjustment valve V 2 to set the flow rate of the circulating water W 25 circulated to the membrane processing unit 12. Operate to increase. Thus, the exhaust gas processing device. 8D, it is possible to dilute the desulfurization effluent W 11 to be supplied to the film processing section 12, it is possible to reduce the chloride ion concentration in the concentrated water W 21 below the reference value, ejection with concentrated water W 21 It is possible to prevent the desulfurization performance of the flue gas desulfurization unit 11 from being degraded by chloride ions supplied to the smoke desulfurization unit 11.
 また、制御部18は、濃縮水W21中の導電率が基準値以下となった際には、流量調整弁Vの開度を減少させて膜処理部12に循環される循環水W25の流量を減少させるように動作する。これにより、排ガス処理装置8Dは、膜処理部12から透過水W22と共に排出される塩化物イオンの量を増大させることができると共に、排煙脱硫部11に供給される濃縮水W21の流量が増大するので、排煙脱硫部11の塩化物イオン濃度を基準値以下の範囲で運転でき、脱硫処理の効率を低下させることがなく、また排煙脱硫部11での硫黄分の回収量が増大する。その他の構成については、図9Aに示した排ガス処理装置8Aと同様のため説明を省略する。 Further, when the conductivity in the concentrated water W 21 becomes equal to or less than the reference value, the control unit 18 reduces the opening degree of the flow rate adjustment valve V 2 and circulates the circulating water W 25 circulated to the membrane processing unit 12. Operate to reduce the flow rate of Thus, the exhaust gas processing device. 8D, it is possible to increase the amount of chloride ions that are discharged with the permeate W 22 from the membrane unit 12, the flow rate of the concentrated water W 21 to be supplied to the flue gas desulfurization unit 11 Since the chloride ion concentration of the flue gas desulfurization unit 11 can be operated within the range below the reference value, the efficiency of the desulfurization treatment is not reduced, and the amount of recovered sulfur in the flue gas desulfurization unit 11 is Increase. The other configuration is the same as that of the exhaust gas processing device 8A shown in FIG. 9A, and thus the description thereof is omitted.
 なお、図9Dに示す例では、濃縮水W21の水質の測定結果に基づいて循環水W25として循環される透過水W22の循環量を制御する例について説明したが、制御部18は、透過水W22の水質の測定結果に基づいて循環水W25として循環される透過水W22の循環量を制御してもよい。図9Eは、第5の実施の形態に係る排ガス処理装置の別の例を示す模式図である。図9Eに示す排ガス処理装置8Eでは、水質測定部17は、濃縮水W21の水質に代えて、透過水W22の水質を測定する。水質測定部17は、透過水W22の導電率などを測定することにより、膜処理部12から排出される透過水W22中の塩化物イオンなどのイオン成分の濃度を推算する。制御部18は、水質測定部17で測定された透過水W22の導電率に基づいて流量調整弁Vの開度を調整することにより、脱硫排水W11に循環する循環水W25の流量を制御して、透過水W22中の塩化物イオン濃度を基準値以下とするように動作する。 In the example illustrated in FIG. 9D, an example of controlling the circulation amount of the permeate water W 22 circulated as the circulation water W 25 based on the measurement result of the water quality of the concentrate W 21 has been described. the circulation amount of the permeate W 22 is circulated as circulating water W 25 based on the measurement results of the quality of the permeate W 22 may be controlled. FIG. 9E is a schematic view showing another example of the exhaust gas processing system according to the fifth embodiment. In the exhaust gas treatment apparatus 8E shown in FIG. 9E, the water quality measurement unit 17, instead of the quality of the concentrated water W 21, measures the quality of the permeate W 22. Water measuring unit 17, by measuring the like conductivity of the permeate W 22, to estimate the concentration of the ionic components such as chloride ions in the permeate water W 22 discharged from the film processing section 12. Control unit 18, by adjusting the opening of flow control valve V 2 on the basis of the conductivity of the water quality measurement part 17 permeate W 22 measured by the flow rate of circulation water W 25 circulating in the desulfurization effluent W 11 To control the chloride ion concentration in the permeate water W 22 to be equal to or lower than the reference value.
 制御部18は、透過水W22中の導電率が基準値以下となった際には、流量調整弁Vの開度を減少させて膜処理部12に循環される循環水W25の流量を減少させるように動作する。これにより、排ガス処理装置8Eは、膜処理部12から透過水W22と共に排出される塩化物イオンの量を増大させることができると共に、排煙脱硫部11に供給される濃縮水W21の流量が増大するので、排煙脱硫部11の塩化物イオン濃度を基準値以下の範囲で運転でき、脱硫処理の効率を低下させることがなく、また排煙脱硫部11での硫黄分の回収量が増大する。 The control unit 18 decreases the opening degree of the flow rate adjusting valve V 2 when the conductivity in the permeate water W 22 becomes less than or equal to the reference value, and the flow rate of the circulating water W 25 circulated to the membrane processing unit 12 Work to reduce Thus, the exhaust gas processing device. 8E, it is possible to increase the amount of chloride ions that are discharged with the permeate W 22 from the membrane unit 12, the flow rate of the concentrated water W 21 to be supplied to the flue gas desulfurization unit 11 Since the chloride ion concentration of the flue gas desulfurization unit 11 can be operated within the range below the reference value, the efficiency of the desulfurization treatment is not reduced, and the amount of recovered sulfur in the flue gas desulfurization unit 11 is Increase.
 また、制御部18は、透過水W22中の導電率が基準値を超えた場合には、流量調整弁Vの開度を増大させて膜処理部12に循環される循環水W25の流量を増大させるように動作する。これにより、排ガス処理装置8Eは、膜処理部12に供給される脱硫排水W11を希釈できるので、濃縮水W21中の塩化物イオン濃度を基準値以下に低減でき、濃縮水W21と共に排煙脱硫部11に供給される塩化物イオンによる排煙脱硫部11の脱硫性能の低下を防ぐことができる。その他の構成については、図9Dに示した排ガス処理装置8Aと同様のため説明を省略する。 In addition, when the conductivity in the permeate water W 22 exceeds the reference value, the control unit 18 increases the opening degree of the flow rate adjustment valve V 2 to circulate the circulating water W 25 circulated to the membrane processing unit 12. Operate to increase the flow rate. Thus, the exhaust gas processing device. 8E, it is possible to dilute the desulfurization effluent W 11 to be supplied to the film processing section 12, it is possible to reduce the chloride ion concentration in the concentrated water W 21 below the reference value, ejection with concentrated water W 21 It is possible to prevent the desulfurization performance of the flue gas desulfurization unit 11 from being degraded by chloride ions supplied to the smoke desulfurization unit 11. The other configuration is the same as that of the exhaust gas processing device 8A shown in FIG.
 なお、図9Eに示す例では、濃縮水W21の水質の測定結果に基づいて循環水W25として循環される透過水W22の循環量を制御する例について説明したが、制御部18は、透過水W22の水質の測定結果に基づいて循環水W25として循環される透過水W22の循環量を制御してもよい。図9Fは、第5の実施の形態に係る排ガス処理装置の別の例を示す模式図である。図9Fに示す排ガス処理装置8Fでは、水質測定部17は、透過水W22の水質に代えて、脱硫排水W11の水質を測定する。水質測定部17は、脱硫排水W11の導電率などを測定することにより、膜処理部12に供給される脱硫排水W11中の塩化物イオンなどのイオン成分の濃度を推算する。制御部18は、水質測定部17で測定された脱硫排水W11の導電率に基づいて流量調整弁Vの開度を調整することにより、脱硫排水W11に循環する循環水W25の流量を制御して、透過水W22中の塩化物イオン濃度を基準値以下とするように動作する。 In the example illustrated in FIG. 9E, an example is described in which the circulation amount of the permeate water W 22 circulated as the circulation water W 25 is controlled based on the measurement result of the water quality of the concentrate W 21 . the circulation amount of the permeate W 22 is circulated as circulating water W 25 based on the measurement results of the quality of the permeate W 22 may be controlled. FIG. 9F is a schematic view showing another example of the exhaust gas processing system according to the fifth embodiment. In the exhaust gas treatment apparatus 8F shown in FIG. 9F, the water quality measurement unit 17, instead of the quality of the permeate W 22, measures the quality of desulfurization effluent W 11. Water measuring unit 17, by measuring the like conductivity of desulfurization effluent W 11, to estimate the concentration of the ionic components such as chloride ions in the desulfurization effluent W 11 to be supplied to the film processing section 12. Control unit 18, by adjusting the opening of flow control valve V 2 on the basis of the conductivity of the desulfurization effluent W 11 measured by the quality measuring unit 17, the flow rate of circulation water W 25 circulating in the desulfurization effluent W 11 To control the chloride ion concentration in the permeate water W 22 to be equal to or lower than the reference value.
 制御部18は、脱硫排水W11中の導電率が基準値を超えた場合には、流量調整弁Vの開度を増大させて膜処理部12に循環される循環水W25の流量を増大させるように動作する。これにより、排ガス処理装置8Fは、膜処理部12に供給される脱硫排水W11を希釈できるので、濃縮水W21中の塩化物イオン濃度を基準値以下に低減でき、濃縮水W21と共に排煙脱硫部11に供給される塩化物イオンによる排煙脱硫部11の脱硫性能の低下を防ぐことができる。 When the conductivity in the desulfurization waste water W 11 exceeds the reference value, the control unit 18 increases the opening degree of the flow rate adjustment valve V 2 and sets the flow rate of the circulating water W 25 circulated to the membrane processing unit 12 Operate to increase. Thus, the exhaust gas processing device. 8F, it is possible to dilute the desulfurization effluent W 11 to be supplied to the film processing section 12, it is possible to reduce the chloride ion concentration in the concentrated water W 21 below the reference value, ejection with concentrated water W 21 It is possible to prevent the desulfurization performance of the flue gas desulfurization unit 11 from being degraded by chloride ions supplied to the smoke desulfurization unit 11.
 また、制御部18は、透過水W22中の導電率が基準値以下となった場合には、流量調整弁Vの開度を減少させて膜処理部12に循環される循環水W25の流量を減少させるように動作する。これにより、排ガス処理装置8Eは、膜処理部12から透過水W22と共に排出される塩化物イオンの量を増大させることができると共に、排煙脱硫部11に供給される濃縮水W21の流量が増大するので、排煙脱硫部11の塩化物イオン濃度を基準値以下の範囲で増加させて運転でき、脱硫処理の効率を低下させることがなく、また排煙脱硫部11での硫黄分の回収量が増大する。その他の構成については、図9Eに示した排ガス処理装置8Aと同様のため説明を省略する。 The control unit 18, when the conductivity in the permeate W 22 is equal to or less than the reference value, circulating water W 25 that is recycled to the membrane unit 12 decreases the opening degree of the flow control valve V 2 Operate to reduce the flow rate of Thus, the exhaust gas processing device. 8E, it is possible to increase the amount of chloride ions that are discharged with the permeate W 22 from the membrane unit 12, the flow rate of the concentrated water W 21 to be supplied to the flue gas desulfurization unit 11 Since the chloride ion concentration of the flue gas desulfurization unit 11 can be increased within the range below the reference value, the desulfurization treatment efficiency is not reduced, and the sulfur content in the flue gas desulfurization unit 11 is reduced. Recovery volume increases. The other configuration is the same as that of the exhaust gas processing device 8A shown in FIG.
 以上説明したように、本実施の形態によれば、濃縮水供給ラインL21を流れる濃縮水W21、膜処理部12から排出される透過水W22及び膜処理部12に供給される脱硫排水W11の少なくとも一つの水質に基づいて、膜処理部12に循環水W25として循環される濃縮水W21及び透過水W22の少なくとも一方の流量を制御する。これにより、排ガス処理装置8A~8Fは、膜処理部12から排煙脱硫部11に供給される濃縮水W21中の塩化物イオン濃度を制御することができるので、濃縮水W21と共に排煙脱硫部11に供給される塩化物イオンに基づく脱硫性能の低下を防ぐことができる。 As described above, according to the present embodiment, the concentrated water W 21 flowing through the concentrated water supply line L 21 , the permeated water W 22 discharged from the membrane processing unit 12, and the desulfurization drainage supplied to the membrane processing unit 12 based on at least one quality of W 11, for controlling at least one of flow rate of the circulating water W concentrated water is circulated as a 25 W 21 and permeate W 22 in film processing section 12. Flue gas by this exhaust gas treatment apparatus 8A ~ 8F, since it is possible to control the chloride ion concentration in the concentrated water W 21 supplied from the film processing section 12 to the flue gas desulfurization unit 11, together with the concentrated water W 21 The deterioration of the desulfurization performance based on the chloride ion supplied to the desulfurization unit 11 can be prevented.
 また、上述した実施の形態においては、膜処理部12が、濃縮水循環ラインL61又は透過水循環ラインL62を介して濃縮水W21又は透過水W22を循環水W25として循環する構成について説明したが、脱硫排水供給ラインLと透過水排出ラインL22との間にバイパスラインを設けて脱硫排水W11を透過水W22にバイパスさせてもよい。図9Gは、第5の実施の形態に係る排ガス処理装置の一例を示す模式図である。図9Gに示すように、本実施の形態に係る排ガス処理装置8Gは、図1に示した排ガス処理装置1の構成に加えて、脱硫排水供給ラインLから分岐され、透過水排出ラインL22に接続されたバイパスラインL63と、濃縮水循環ラインL61を流れる濃縮水W21の水質を測定する水質測定部17と、水質測定部17によって測定された濃縮水W21の水質に基づいて、バイパスラインL63をバイパス水W26として流れる脱硫排水W11の少なくとも一部の流量を制御する制御部18とを備える。バイパスラインL63には、バイパスラインL63を流れるバイパス水W26の流量を調整する流量調整弁Vが設けられている。すなわち、排ガス処理装置8Gにおいては、脱硫排水W11の少なくとも一部が膜処理部12で膜分離されずにバイパスラインL63を介して透過水W22に供給可能となっている。 Further, in the embodiment described above, the configuration in which the membrane processing unit 12 circulates the concentrated water W 21 or the permeated water W 22 as the circulating water W 25 via the concentrated water circulation line L 61 or the permeated water circulation line L 62 is described. but the may be a bypass line is provided to bypass the desulfurization effluent W 11 to permeate W 22 between the desulfurization effluent supply line L 1 and the permeate discharge line L 22. FIG. 9G is a schematic view showing an example of an exhaust gas processing system according to the fifth embodiment. As illustrated in FIG. 9G, the exhaust gas treatment apparatus 8G according to the present embodiment, in addition to the configuration of the exhaust gas treatment apparatus 1 shown in FIG. 1, is branched from the desulfurization effluent supply line L 1, the permeate discharge line L 22 a bypass line L 63 that is connected to a water quality measuring unit 17 that measures the quality of the concentrated water W 21 through the concentrated water circulation line L 61, based on the quality of the concentrated water W 21 measured by the quality measuring unit 17, and a control unit 18 for controlling at least part of the flow rate of the desulfurization waste water W 11 flowing through the bypass line L 63 as a bypass water W 26. The bypass line L 63 is provided with a flow control valve V 3 for adjusting the flow rate of the bypass water W 26 flowing through the bypass line L 63 . That is, in the exhaust gas treatment apparatus 8G, at least a portion of the desulfurization effluent W11 can be supplied to the permeate W 22 via the bypass line L 63 without being membrane separation by membrane treatment unit 12.
 水質測定部17は、濃縮水W21の導電率などを測定することにより、膜処理部12から排煙脱硫部11に供給される濃縮水W21の塩化物イオンなどのイオン成分の濃度を推算する。制御部18は、水質測定部17で測定された濃縮水W21の導電率に基づいて、濃縮水W21中の塩化物イオン濃度を推算し,透過水W22にバイパス水W26として供給される脱硫排水W11の流量を制御して、濃縮水W21中の塩化物イオン濃度を基準値以下とするように動作する。 Water measuring unit 17, by measuring the like conductivity of the concentrated water W 21, estimate the concentration of the ionic components such as chloride ion concentrated water W 21 supplied from the film processing section 12 to the flue gas desulfurization unit 11 Do. Control unit 18, based on the conductivity of the concentrated water W 21 measured by the quality measuring unit 17, and estimate the chloride ion concentration in the concentrated water W 21, is supplied as a bypass water W 26 to permeate W 22 that by controlling the flow rate of the desulfurization effluent W 11, it operates to the chloride ion concentration in the concentrated water W 21 to equal to or less than the reference value.
 制御部18は、濃縮水W21の導電率が基準値を超えた場合には、流量調整弁Vの開度を増大させて透過水W22に供給されるバイパス水W26の流量を増大させるように動作する。これにより、排ガス処理装置8Gは、濃縮水W21と共に排煙脱硫部11に供給される塩化物イオンの量を減らすことができると共に、膜処理部12から透過水W22と共に排出される塩化物イオンの量を増やすことができる。この結果、排ガス処理装置8G内の塩化物イオンの量を低減でき、排煙脱硫部11内の脱硫排水及び排煙脱硫部11から排出される脱硫排水W11の塩化物イオン濃度を基準値以下に低減できるので、塩化物イオンによる排煙脱硫部11の脱硫性能の低下を防ぐことができる。 When the conductivity of the concentrated water W 21 exceeds the reference value, the control unit 18 increases the opening degree of the flow control valve V 3 to increase the flow rate of the bypass water W 26 supplied to the permeate water W 22. It works to make it Thus, the exhaust gas processing device 8G can reduce the amount of chloride ions supplied to the exhaust gas desulfurization unit 11 together with the concentrated water W 21 , and the chloride discharged from the membrane processing unit 12 together with the permeated water W 22 . The amount of ions can be increased. As a result, the amount of chloride ions in the exhaust gas treatment apparatus 8G can be reduced, and the chloride ion concentration of the desulfurization drainage W 11 discharged from the desulfurization drainage and the flue gas desulfurization unit 11 in the exhaust gas desulfurization unit 11 is below the reference value. Therefore, it is possible to prevent the deterioration of the desulfurization performance of the flue gas desulfurization section 11 due to chloride ions.
 また、制御部18は、濃縮水W21の導電率が基準値以下となった際には、流量調整弁Vの開度を減少させて透過水W22に供給されるバイパス水W26の流量を減少させるように動作する。これにより、排ガス処理装置8Gは、膜処理部12から排煙脱硫部11に供給される濃縮水W21の流量が増大するので、排煙脱硫部11の塩化物イオン濃度が基準値以下の範囲で増加する。これにより、脱硫処理の効率を低下させることがなく運転することができると共に、排煙脱硫部11での硫黄分の回収量が増大する。その他の構成については、図1に示した排ガス処理装置1と同様であるため説明を省略する。 Further, when the conductivity of the concentrated water W 21 becomes equal to or lower than the reference value, the control unit 18 decreases the opening degree of the flow rate adjustment valve V 1 and supplies the bypass water W 26 to the permeate water W 22 . Operate to reduce the flow rate. Thereby, in the exhaust gas processing device 8G, the flow rate of the concentrated water W 21 supplied from the membrane processing unit 12 to the exhaust gas desulfurization unit 11 increases, so the chloride ion concentration of the exhaust gas desulfurization unit 11 is in the range below the reference value. To increase. As a result, it is possible to operate without reducing the efficiency of the desulfurization treatment, and the amount of recovered sulfur in the flue gas desulfurization unit 11 is increased. The other configuration is the same as that of the exhaust gas processing device 1 shown in FIG.
 なお、図9Gに示す例では、濃縮水W21の水質の測定結果に基づいて濃縮水W21の循環量を制御する例について説明したが、制御部18は、透過水W22の水質の測定結果に基づいてバイパス水W26として透過水W22に供給される脱硫排水W11の供給量を制御してもよい。図9Hは、第5の実施の形態に係る排ガス処理装置の他の例を示す模式図である。図9Hに示す排ガス処理装置8Hでは、水質測定部17は、濃縮水W21の水質に代えて、透過水W22の水質を測定する。水質測定部17は、透過水W22の水質として導電率などを測定することにより、膜処理部12から排出される透過水W22中の塩化物イオンなどのイオン成分の濃度を推算する。制御部18は、水質測定部17で測定された透過水W22の導電率に基づいて、透過水W22中の塩化物イオン濃度を推算し,透過水W22にバイパス水W26として供給される脱硫排水W11の流量を制御して、濃縮水W21中の塩化物イオン濃度を基準値以下とするように動作する。 In the example shown in FIG. 9G, an example is described of controlling the circulation amount of the measurement result based concentrated water W 21 water quality concentrated water W 21, the control unit 18, measurement of the quality of the permeated water W 22 it may control the supply amount of permeate W 22 desulfurization effluent W 11 supplied to the bypass water W 26 on the basis of the results. FIG. 9H is a schematic view showing another example of the exhaust gas processing system according to the fifth embodiment. In the exhaust gas treatment apparatus 8H shown in FIG. 9H, water quality measurement unit 17, instead of the quality of the concentrated water W 21, measures the quality of the permeate W 22. Water measuring unit 17, by measuring the like conductivity as a quality of permeate W 22, to estimate the concentration of the ionic components such as chloride ions in the permeate water W 22 discharged from the film processing section 12. The control unit 18 estimates the chloride ion concentration in the permeate water W 22 based on the conductivity of the permeate water W 22 measured by the water quality measurement unit 17, and is supplied to the permeate water W 22 as bypass water W 26. that by controlling the flow rate of the desulfurization effluent W 11, it operates to the chloride ion concentration in the concentrated water W 21 to equal to or less than the reference value.
 制御部18は、透過水W22の導電率が基準値以下の場合には、流量調整弁Vの開度を増大させて透過水W22に供給されるバイパス水W26の流量を増大させるように動作する。これにより、排ガス処理装置8Hは、濃縮水W21と共に排煙脱硫部11に供給される塩化物イオンの量を減らすことができると共に、膜処理部12から透過水W22と共に排出される塩化物イオンの量を増大させることができる。この結果、排ガス処理装置8H内の塩化物イオンの量を低減でき、排煙脱硫部11内の脱硫排水及び排煙脱硫部11から排出される脱硫排水W11の塩化物イオン濃度を基準値以下に低減できるので、塩化物イオンによる排煙脱硫部11の脱硫性能の低下を防ぐことができる。 Control unit 18, when the conductivity of the permeate W 22 is less than the reference value, increases the flow rate of the bypass water W 26 to be supplied to the permeate W 22 increases the opening degree of the flow regulating valve V 3 To work. Thus, the exhaust gas processing device 8H can reduce the amount of chloride ions supplied to the exhaust gas desulfurization unit 11 together with the concentrated water W 21 , and the chloride discharged from the membrane processing unit 12 together with the permeated water W 22 . The amount of ions can be increased. As a result, it is possible to reduce the amount of chloride ions in the exhaust gas treatment apparatus 8H, below the reference value of the chloride ion concentration in the desulfurization effluent W 11 discharged from the desulfurization effluent, and flue gas desulfurization section 11 in the flue gas desulfurization unit 11 Therefore, it is possible to prevent the deterioration of the desulfurization performance of the flue gas desulfurization unit 11 due to the chloride ion.
 また、制御部18は、透過水W22中の導電率が基準値を超えた際には、流量調整弁Vの開度を減少させて透過水W22に供給されるバイパス水W22の流量を減少させるように動作する。これにより、透過水W22に供給される脱硫排水W11の流量が増大するので、排煙脱硫部11の塩化物イオン濃度が基準値以下の範囲で増加する。これにより、脱硫処理の効率を低下させることがなく運転することができると共に、排煙脱硫部11での硫黄分の回収量が増大する。排煙脱硫部11における燃焼排ガスの脱硫処理を効率良く行うことができる。その他の構成については、図9Aに示した排ガス処理装置8Aと同様のため説明を省略する。 The control unit 18, when the conductivity in the permeate W 22 exceeds the reference value, the bypass water W 22 to be supplied to the permeate W 22 reduces the opening of flow control valve V 3 Operate to reduce the flow rate. Thus, the flow rate of the desulfurization waste water W 11 to be supplied to the permeate W 22 is increased, the chloride ion concentration in the flue gas desulfurization unit 11 is increased in the range of less than the reference value. As a result, it is possible to operate without reducing the efficiency of the desulfurization treatment, and the amount of recovered sulfur in the flue gas desulfurization unit 11 is increased. Desulfurization treatment of the combustion exhaust gas in the exhaust gas desulfurization unit 11 can be performed efficiently. The other configuration is the same as that of the exhaust gas processing device 8A shown in FIG. 9A, and thus the description thereof is omitted.
 なお、上述した実施の形態では、導電率に基づいて濃縮水W21及び透過水W22の塩化物イオンの濃度を推算する例について説明したが、濃縮水W21及び透過水W22の水質は、各種化学分析の分析値に基づいて所定の基準値を設けて判断してもよい。 In the embodiment described above, an example of estimating the concentration of chloride ion of the concentrated water W 21 and the permeated water W 22 based on the conductivity was described, but the water quality of the concentrated water W 21 and the permeated water W 22 is The determination may be made by providing a predetermined reference value based on analysis values of various chemical analysis.
 また、上述した実施の形態では、濃縮水W21及び透過水W22の循環量を調整することによって排煙脱硫部11に供給される塩化物イオンの量を制御する例について説明したが、脱硫排水W11の加温及びpHの調整によって分離膜の塩化物イオン透過係数を増大させることにより、排煙脱硫部11に供給される塩化物イオンの量を制御してもよい。 Further, in the above embodiment, an example is described of controlling the amount of chloride ions fed to the flue gas desulfurization unit 11 by adjusting the amount of circulating concentrated water W 21 and permeate W 22, desulfurization The amount of chloride ions supplied to the flue gas desulfurization unit 11 may be controlled by increasing the chloride ion permeability coefficient of the separation membrane by heating the drainage W 11 and adjusting the pH.
 なお、図9D~図9Fに示した例では、膜処理部12としては、複数の膜分離部が圧力容器内に配置されたものを用いてもよい。図10は、本実施の形態に係る膜処理部の一例を示す図である。図10に示す膜処理部12は、圧力容器(ベッセル)120内に配置された複数(本実施の形態では、7個)の第1膜分離部12-1~第7膜分離部12-7を備える。第1膜分離部12-1~第7膜分離部12-7は、脱硫排水W11を濃縮水W21と透過水W22とに膜分離する分離膜12aを有する。圧力容器120は、脱硫排水W11を圧力容器120内に導入する脱硫排水導入管1201と、圧力容器120内から脱硫排水W11を排出する脱硫排水排出管1202と、第1膜分離部12-1~第7膜分離部12-7を直列に連結する集水管1203とを備える。集水管1203は、第1膜分離部12-1~第7膜分離部12-7で膜分離された透過水W22を集水する。また、集水管1203は、内部に設けられた隔壁1203aにより、圧力容器120内を流れる脱硫排水W11の流れ方向における上流側(以下、単に「上流側」ともいう)の上流側集水管1203bと下流側(以下、単に「下流側」ともいう)の下流側集水管1203cとに区分されている。第1膜分離部12-1~第7膜分離部12-7としては、例えば、分離膜12aの一端側が集水管1203に連通されると共に、メッシュスペーサー(不図示)を介して巻回されたスパイラル型分離膜を備えたものが用いられる。 In the example shown in FIGS. 9D to 9F, as the membrane processing unit 12, one in which a plurality of membrane separation units are disposed in a pressure vessel may be used. FIG. 10 is a view showing an example of a film processing unit according to the present embodiment. The membrane processing unit 12 shown in FIG. 10 includes a plurality of (seven in the present embodiment) first to seventh membrane separation units 12-1 to 12-7 disposed in a pressure vessel (vessel) 120. Equipped with The first membrane separation unit 12-1 to seventh membrane separation unit 12-7 includes a separation membrane 12a which membrane separates the desulfurization effluent W 11 to the concentrated water W 21 and permeate W 22. The pressure vessel 120 includes a desulfurization effluent inlet pipe 1201 for introducing the desulfurization effluent W 11 to the pressure vessel 120, the desulfurization effluent discharge pipe 1202 for discharging the desulfurization effluent W 11 from the pressure vessel 120, a first membrane separation unit 12 And a water collecting pipe 1203 connecting the first to seventh membrane separation units 12-7 in series. Water collecting pipe 1203, a permeate W 22 which is membrane separated by the first membrane separation unit 12-1 to seventh membrane separation unit 12-7 for collecting. Further, the water collection pipe 1203 and the upstream side water collection pipe 1203 b on the upstream side (hereinafter, also simply referred to as “upstream side”) in the flow direction of the desulfurization drainage W 11 flowing in the pressure vessel 120 It is divided into a downstream side water collection pipe 1203 c on the downstream side (hereinafter, also simply referred to as “downstream side”). As the first membrane separation unit 12-1 to the seventh membrane separation unit 12-7, for example, one end side of the separation membrane 12a is communicated with the water collection pipe 1203, and is wound via a mesh spacer (not shown) One provided with a spiral separation membrane is used.
 膜処理部12は、脱硫排水供給ラインL及び脱硫排水導入管1201を介して圧力容器120内に導入された脱硫排水W11を、第1膜分離部12-1~第7膜分離部12-7の分離膜12aにより硫酸イオンが濃縮された濃縮水W21と硫酸イオンが除去された透過水W22とに膜分離する。また、膜処理部12は、脱硫排水排出管1202及び濃縮水供給ラインL21を介して濃縮水W21を排煙脱硫部11に供給する。膜処理部12は、第1膜分離部12-1~第7膜分離部12-7で膜分離された透過水W22を集水管1203によって集水する。また、膜処理部12は、集水した透過水W22を集水管1203の隔壁1203aによって、下流側集水管1203bを介して膜処理部12の下流側から排出される透過水W22-1と、上流側から排出される透過水W22-2とに区分する。また、膜処理部12は、透過水排出ラインL22-1を介して透過水W22-1を膜処理部12の下流側から外部に排出すると共に、透過水排出ラインL22-2を介して透過水W22-2を膜処理部12の上流側から外部に排出する。膜処理部12の上流側から排出される透過水W22-2は、下流側から排出される透過水W22-1に対して塩化物イオン濃度が低い。 Film processing section 12, the desulfurization effluent W 11 introduced into the pressure vessel 120 through the desulfurization effluent supply line L 1 and the desulfurization effluent inlet tube 1201, first membrane separation unit 12-1 to seventh membrane separation unit 12 The membrane is separated into concentrated water W 21 in which the sulfate ion is concentrated and permeate water W 22 in which the sulfate ion is removed by the separation membrane 12 a of −7. Further, the membrane processing unit 12 supplies the concentrated water W 21 to the exhaust gas desulfurization unit 11 through the desulfurization drainage discharge pipe 1202 and the concentrated water supply line L 21 . Film processing section 12 condenses water first membrane separation unit 12-1 to seventh membrane separation unit 12-7 permeate W 22 which is membrane separation in the water collecting pipe 1203. In addition, the membrane processing unit 12 uses the permeated water W 22-1 discharged from the downstream side of the membrane processing unit 12 via the downstream side water collection pipe 1203b by the partition 1203a of the water collection pipe 1203 with the collected water W 22 , And permeated water W 22-2 discharged from the upstream side. Further, the membrane processing unit 12 discharges the permeated water W 22-1 from the downstream side of the membrane processing unit 12 to the outside through the permeated water discharge line L 22-1 and, at the same time, passes the permeated water discharge line L 22-2 . The permeate water W 22-2 is discharged from the upstream side of the membrane processing unit 12 to the outside. The permeate water W 22-2 discharged from the upstream side of the membrane processing unit 12 has a chloride ion concentration lower than that of the permeate water W 22-1 discharged from the downstream side.
 第1膜分離部12-1は、圧力容器120内の脱硫排水導入管1201側に設けられる。第1膜分離部12-1の後段には、上流側集水管1203cによって第1膜分離部12-1に連結された第2膜分離部12-2が設けられる。第2膜分離部12-2の後段には、上流側集水管1203cによって第2膜分離部12-2に連結された第3膜分離部12-3が設けられる。第3膜分離部12-3の後段には、隔壁1203aを介して上流側集水管1203c及び下流側集水管1203bに区分する集水管1203によって第3膜分離部12-3に連結された第4膜分離部12-4が設けられる。第4膜分離部12-4の後段には、下流側集水管1203bによって第4膜分離部12-4に連結された第5膜分離部12-5が設けられる。第5膜分離部12-5の後段には、下流側集水管1203bによって第5膜分離部12-5に連結された第6膜分離部12-6が設けられる。第6膜分離部12-6の後段には、下流側集水管1203bによって第6膜分離部12-6に連結された第7膜分離部12-7が設けられる。 The first membrane separation unit 12-1 is provided on the side of the desulfurization drainage introduction pipe 1201 in the pressure vessel 120. The second membrane separation unit 12-2 connected to the first membrane separation unit 12-1 by the upstream water collection pipe 1203c is provided at the rear stage of the first membrane separation unit 12-1. The third membrane separation unit 12-3 connected to the second membrane separation unit 12-2 by the upstream water collection pipe 1203c is provided at the rear stage of the second membrane separation unit 12-2. The fourth membrane separation unit 12-3 is connected to the third membrane separation unit 12-3 by a water collection pipe 1203 that is divided into an upstream water collection pipe 1203c and a downstream water collection pipe 1203b via a partition wall 1203a at the rear stage of the third membrane separation unit 12-3. A membrane separation unit 12-4 is provided. The fifth membrane separation unit 12-5 connected to the fourth membrane separation unit 12-4 by the downstream water collection pipe 1203b is provided at the rear stage of the fourth membrane separation unit 12-4. The sixth membrane separation portion 12-6 connected to the fifth membrane separation portion 12-5 by the downstream side water collection pipe 1203b is provided at the rear stage of the fifth membrane separation portion 12-5. A seventh membrane separation unit 12-7 is provided downstream of the sixth membrane separation unit 12-6, and is connected to the sixth membrane separation unit 12-6 by a downstream side water collection pipe 1203b.
 すなわち、膜処理部12では、集水管1203内の隔壁1203aより上流側に膜分離部12-1~膜分離部12-3が設けられ、圧力容器120内の隔壁1203aより下流側に膜分離部12-4~膜分離部12-7が設けられ、第1分離膜12aを含む複数の第1膜分離部12-1~第7膜分離部12-7が集水管1203によって直列に接続されている。ここで、直列に接続とは、膜処理部12の上流側の第1膜分離部12-1~第6膜分離部12-6で膜分離された濃縮水W21が、圧力容器120と第1膜分離部12-1~第6膜分離部12-6との間を介して次段の第2膜分離部12-6~第7膜分離部12-7に供給され、第1膜分離部12-1~第3膜分離部12-3で膜分離された透過水W22が、上流側集水管1203cを介して透過水W22-2として膜処理部12の外部に排出されると共に、第4膜分離部12-4~第7膜分離部12-7で膜分離された透過水W22が下流側集水管1203bを介して透過水W22-1として膜処理部12の外部に排出される接続である。これにより、膜処理部12は、脱硫排水W11中の硫酸イオンが順次濃縮された高濃縮の濃縮水W21と脱硫排水W11中の硫酸イオンが除去された透過水W22とに脱硫排水W11を膜分離できると共に、圧力容器120の上流側から排出される透過水W22-1と圧力容器120の下流側から排出されるW22-2とに透過水W22を区分することができる。この結果、膜処理部12は、硫酸イオンが高濃度に濃縮された濃縮水W21を排煙脱硫部11に供給することができると共に、相互に塩化物イオン濃度が異なる透過水W22-1,W22-2をそれぞれ脱硫排水W11に供給することができる。 That is, in the membrane processing unit 12, the membrane separation unit 12-1 to the membrane separation unit 12-3 are provided on the upstream side of the partition 1203 a in the water collection tube 1203, and the membrane separation unit on the downstream side of the partition 1203 a in the pressure vessel 120 12-4 to a membrane separation unit 12-7, and a plurality of first to seventh membrane separation units 12-1 to 12-7 including a first separation film 12a are connected in series by a water collection pipe 1203; There is. Here, connection in series means that the concentrated water W 21 that has been subjected to membrane separation by the first membrane separation unit 12-1 to the sixth membrane separation unit 12-6 on the upstream side of the membrane processing unit 12 The first membrane separation unit 12-1 is supplied to the second membrane separation unit 12-6 to the seventh membrane separation unit 12-7 of the next stage via the first membrane separation unit 12-1 to the sixth membrane separation unit 12-6. The permeated water W 22 subjected to membrane separation in the section 12-1 to the third membrane separation section 12-3 is discharged to the outside of the membrane processing section 12 as the permeate water W 22-2 through the upstream water collection pipe 1203c. The permeated water W 22 membrane-separated by the fourth membrane separation unit 12-4 to the seventh membrane separation unit 12-7 is transmitted to the outside of the membrane processing unit 12 as the permeated water W 22-1 through the downstream water collection pipe 1203 b. It is a drained connection. Thus, the membrane processing unit 12 desulfurizes the desulfurization waste water into the highly concentrated concentrated water W 21 in which the sulfate ions in the desulfurization waste water W 11 are sequentially concentrated and the permeate water W 22 in which the sulfate ions in the desulfurization waste water W 11 are removed. the W 11 is possible membrane separation, it is classified permeate W 22 in the W 22-2 discharged from the downstream side of the permeate W 22 - 1 and the pressure vessel 120 to be discharged from the upstream side of the pressure vessel 120 it can. As a result, the membrane processing unit 12 can supply the concentrated water W 21 in which sulfate ions are concentrated to a high concentration to the flue gas desulfurization unit 11, and the permeate water W 22-1 in which the chloride ion concentration mutually differs , W 22-2 can be supplied to the desulfurization waste water W 11 , respectively.
 分離膜12aとしては、第1の実施の形態の分離膜と同様のものを用いることができる。また、分離膜12aとしては、7つの第1膜分離部12-1~第7膜分離部12-7で同一の分離膜12aを用いてもよく、相互に異なる分離膜12aを用いてもよい。 As the separation membrane 12a, the same one as the separation membrane of the first embodiment can be used. Further, as the separation membrane 12a, the same separation membrane 12a may be used in the seven first membrane separation parts 12-1 to the seventh membrane separation parts 12-7, or different separation membranes 12a may be used. .
 第1膜分離部12-1は、脱硫排水W11を濃縮水W21と透過水W22-2(W22)とに膜分離する。また、第1膜分離部12-1は、膜分離により得られた濃縮水W21を第2膜分離部12-2に供給する。また、第1膜分離部12-1は、膜分離により得られた透過水W22-2を、上流側集水管1203c及び透過水排出ラインL22-2を介して膜処理部12の上流側から膜処理部12の外部に排出する。 The first membrane separation unit 12-1 performs membrane separation of the desulfurization drainage W 11 into concentrated water W 21 and permeate water W 22-2 (W 22 ). Further, the first membrane separation unit 12-1 supplies the concentrated water W 21 obtained by the membrane separation to the second membrane separation unit 12-2. The first membrane separation unit 12-1, membrane permeate W 22-2 obtained by the separation, the upstream side of the upstream water collecting pipe 1203c and permeate discharge line L 22-2 through the film processing section 12 Are discharged to the outside of the membrane processing unit 12.
 第2膜分離部12-2は、第1膜分離部12-1から供給された濃縮水W21を濃縮水W21と透過水W22-2(W22)とに膜分離する。また、第2膜分離部12-2は、濃縮水W21を第3膜分離部12-3に供給する。また、第2膜分離部12-2は、膜分離により得られた透過水W22-2を、上流側集水管1203c及び透過水排出ラインL22-2を介して膜処理部12の上流側から膜処理部12の外部に排出する。 The second membrane separation unit 12-2 membrane separation in the concentrated water W 21 supplied from the first membrane separation unit 12-1 and concentrated water W 21 and permeate W 22-2 (W 22). Further, the second membrane separation unit 12-2 supplies the concentrated water W 21 to the third membrane separation unit 12-3. In addition, the second membrane separation unit 12-2 moves the permeated water W 22-2 obtained by the membrane separation upstream of the membrane processing unit 12 via the upstream water collection pipe 1203c and the permeated water discharge line L 22-2. Are discharged to the outside of the membrane processing unit 12.
 第3膜分離部12-3は、第2膜分離部12-2から供給された濃縮水W21を濃縮水W21と透過水W22-2(W22)とに膜分離する。また、第3膜分離部12-3は、濃縮水W21を第4膜分離部12-4に供給する。また、第3膜分離部12-3は、膜分離により得られた透過水W22-2を、上流側集水管1203c及び透過水排出ラインL22-2を介して膜処理部12の上流側から膜処理部12の外部に排出する。 The third membrane separation unit 12-3 membrane separation in the concentrated water W 21 supplied from the second membrane separation unit 12-2 and the concentrated water W 21 and permeate W 22-2 (W 22). In addition, the third membrane separation unit 12-3 supplies the concentrated water W 21 to the fourth membrane separation unit 12-4. In addition, the third membrane separation unit 12-3 moves the permeated water W 22-2 obtained by the membrane separation upstream of the membrane processing unit 12 via the upstream water collection pipe 1203c and the permeated water discharge line L 22-2. From the membrane processing unit 12.
 第4膜分離部12-4は、第3膜分離部12-3から供給された濃縮水W21を濃縮水W21と透過水W22-1(W22)とに膜分離する。また、第4膜分離部12-4は、膜分離により得られた濃縮水W21を第5膜分離部12-5に供給する。また、第4膜分離部12-4は、膜分離により得られた透過水W22-1を、下流側集水管1203b及び透過水排出ラインL22-1を介して膜処理部12の下流側から膜処理部12の外部に排出する。 The fourth membrane separation unit 12-4 membrane separation in the third film supplied with concentrated water W 21 from the separation unit 12-3 and the concentrated water W 21 permeate W 22-1 (W 22). Further, the fourth membrane separation unit 12-4 supplies the concentrated water W 21 obtained by the membrane separation to the fifth membrane separation unit 12-5. In addition, the fourth membrane separation unit 12-4 passes the permeated water W 22-1 obtained by the membrane separation to the downstream side of the membrane processing unit 12 via the downstream water collection pipe 1203b and the permeated water discharge line L 22-1. Are discharged to the outside of the membrane processing unit 12.
 第5膜分離部12-5は、第4膜分離部12-4から供給された濃縮水W21を濃縮水W21と透過水W22-1(W22)とに膜分離する。また、第5膜分離部12-5は、膜分離により得られた濃縮水W21を第6膜分離部12-6に供給する。また、第5膜分離部12-5は、膜分離により得られた透過水W22-1を、下流側集水管1203b及び透過水排出ラインL22-1を介して膜処理部12の下流側から膜処理部12の外部に排出する。 Fifth membrane separation unit 12-5 is membrane separation in the fourth membrane separation unit 12-4 concentrated water W 21 supplied from the concentrated water W 21 permeate W 22-1 (W 22). In addition, the fifth membrane separation unit 12-5 supplies the concentrated water W 21 obtained by the membrane separation to the sixth membrane separation unit 12-6. Further, the fifth membrane separation unit 12-5 is a downstream side of the membrane processing unit 12 through the downstream water collection pipe 1203b and the permeated water discharge line L 22-1 for the permeated water W 22-1 obtained by the membrane separation. Are discharged to the outside of the membrane processing unit 12.
 第6膜分離部12-6は、第5膜分離部12-5から供給された濃縮水W21を濃縮水W21と透過水W22-1(W22)とに膜分離する。また、第6膜分離部12-6は、膜分離により得られた濃縮水W21を第7膜分離部12-7に供給する。また、第6膜分離部12-6は、膜分離により得られた透過水W22-1を、下流側集水管1203b及び透過水排出ラインL22-1を介して膜処理部12の下流側から膜処理部12の外部に排出する。 Sixth membrane separation unit 12-6, membrane separated the concentrated water W 21 supplied from the fifth membrane separation unit 12-5 concentrated water W 21 and permeate W 22-1 (W 22). In addition, the sixth membrane separation unit 12-6 supplies the concentrated water W 21 obtained by the membrane separation to the seventh membrane separation unit 12-7. In addition, the sixth membrane separation unit 12-6 is a downstream side of the membrane processing unit 12 through the downstream water collection pipe 1203b and the permeated water discharge line L 22-1 for the permeated water W 22-1 obtained by the membrane separation. Are discharged to the outside of the membrane processing unit 12.
 第7膜分離部12-7は、第6膜分離部12-6から供給された濃縮水W21を濃縮水W21と透過水W22-1(W22)とに膜分離する。また、第7膜分離部12-7は、膜分離により得られた濃縮水W21を濃縮水供給ラインL21を介して排煙脱硫部11に供給する。また、第7膜分離部12-7は、膜分離により得られた透過水W22-1を、下流側集水管1203b及び透過水排出ラインL22-1を介して膜処理部12の下流側から膜処理部12の外部に排出する。 The seventh membrane separation unit 12-7 performs membrane separation of the concentrated water W 21 supplied from the sixth membrane separation unit 12-6 into concentrated water W 21 and permeate water W 22-1 (W 22 ). The seventh membrane separation unit 12-7 supplies the concentrated water W 21 obtained by the membrane separation in the flue gas desulfurization unit 11 through the concentrated water supply line L 21. In addition, the seventh membrane separation unit 12-7 is a downstream side of the membrane processing unit 12 through the downstream water collection pipe 1203b and the permeated water discharge line L 22-1 for the permeated water W 22-1 obtained by the membrane separation. Are discharged to the outside of the membrane processing unit 12.
 透過水排出ラインL22-1は、透過水排出ラインL22に接続される。透過水排出ラインL22-1と脱硫排水供給ラインLとの間には、透過水循環ラインL62が接続される。透過水排出ラインL22-2は、透過水循環ラインL62に接続される。透過水循環ラインL62における透過水排出ラインL22-1との接続点Pと透過水排出ラインL22-1との接続点Pとの間には、透過水循環ラインL62を流れる透過水W22-1の流量を調整する流量調整弁V2Aが設けられている。また、透過水循環ラインL62における透過水排出ラインL22-2との接続点Pと脱硫排水供給ラインLとの接続点Pとの間には、透過水循環ラインL62を流れる循環水W25の流量を調整する流量調整弁Vが設けられている。流量調整弁V,V2Aは、制御部18(図9A参照)によって開度が制御される。このような構成により、膜処理装置12の下流側から排出される透過水W22-1は、透過水排出ラインL22-1及び透過水循環ラインL62を介して循環水W25として脱硫排水供給ラインLを流れる脱硫排水W11に供給可能となっている。また、膜処理装置12の上流側から排出される透過水W22-2は、透過水排出ラインL22-2及び透過水循環ラインL62を介して循環水W25として脱硫排水供給ラインLを流れる脱硫排水W11に供給可能となっている。 The permeated water discharge line L 22-1 is connected to the permeated water discharge line L 22 . Between the permeate discharge line L 22 - 1 and the desulfurization effluent supply line L 1, the permeate circulation line L 62 is connected. The permeated water discharge line L 22-2 is connected to the permeated water circulation line L 62 . Between a connection point P 2 between the connection point P 1 of the permeate discharge line L 22 - 1 and the permeated water discharge line L 22 - 1 in the permeate circulation line L 62, permeate through the permeate circulation line L 62 A flow rate adjusting valve V 2A is provided to adjust the flow rate of W 22-1 . Between the connection point P 3 and the connection point P 2 and the desulfurization effluent supply line L 1 of the permeate discharge line L 22-2 in the permeate circulation line L 62, the circulating water flowing in the permeate circulation line L 62 flow control valve V 2 to adjust the flow rate of the W 25 is provided. The flow control valves V 2 and V 2A are controlled in their opening degree by the control unit 18 (see FIG. 9A). With such a configuration, the permeated water W 22-1 discharged from the downstream side of the membrane processing apparatus 12 is supplied as desulfurized drainage as circulating water W 25 through the permeated water discharge line L 22-1 and the permeated water circulation line L 62. and it can be supplied to the desulfurization effluent W 11 through the line L 1. Further, the permeated water W 22-2 discharged from the upstream side of the membrane processing apparatus 12 passes through the permeated water discharge line L 22-2 and the permeated water circulation line L 62 as the circulating water W 25 through the desulfurization drainage supply line L 1 . which can be supplied to the desulfurization wastewater W 11 flowing.
 次に、本実施の形態に係る膜処理部12の動作について説明する。排煙脱硫部11から膜処理部12に供給された脱硫排水W11は、第1膜分離部12-1~第7膜分離部12-7で順次膜分離され、硫酸イオンが高濃度に濃縮された濃縮水W21と硫酸イオンが除去された透過水W22-1,W22-2とに膜分離される。膜分離された濃縮水W21は、濃縮水供給ラインL21を介して排煙脱硫部11に供給され、膜分離された透過水W22-1,W22-2は、透過水排出ラインL22-1,L22-2を介して膜分離部12の外部に排出される。 Next, the operation of the film processing unit 12 according to the present embodiment will be described. FGD unit 11 desulfurized supplied to the membrane unit 12 drained from W 11 are sequentially film separated by the first membrane separation unit 12-1 to seventh membrane separation unit 12-7, concentrated sulfate ions at a high concentration The membrane is separated into the concentrated water W 21 and the permeated water W 22-1 and W 22-2 from which the sulfate ion has been removed. The membrane-separated concentrated water W 21 is supplied to the flue gas desulfurization unit 11 through the concentrated water supply line L 21 , and the membrane-separated permeated water W 22-1 and W 22-2 is the permeated water discharge line L 22-1 and L 22-2 are discharged to the outside of the membrane separation unit 12.
 透過水W22-1,W22-2を循環水W25として脱硫排水W11に循環しない場合には、制御部18は、流量調整弁V2Aの開度を増大させると共に、流量調整弁Vを閉止する。この結果、透過水W22-1,W22-2は、透過水排出ラインL22,L22-1,L22-2及び透過水循環ラインL62を介して透過水として排出される。 When the permeate water W 22-1 and W 22-2 are not circulated to the desulfurization drainage W 11 as the circulating water W 25 , the control unit 18 increases the opening degree of the flow rate adjustment valve V 2A and the flow rate adjustment valve V Close 2 As a result, the permeate waters W 22-1 and W 22-2 are discharged as permeate water through the permeate water discharge lines L 22 , L 22-1 and L 22-2 and the permeate water circulation line L 62 .
 透過水W22-1,W22-2を循環水W25として脱硫排水W11に循環する場合には、制御部18は、流量調整弁V,V2Aの開度をそれぞれ増大させる。これにより、脱硫排水W11に対して塩化物イオンの濃度が低い透過水W22-1,W22-2が透過水排出ラインL22-1,L22-2及び透過水循環ラインL62を介して脱硫排水W11に供給されるので、脱硫排水W11の塩化物イオンの濃度を低減することが可能となる。 When circulating the permeate water W 22-1 and W 22-2 as the circulating water W 25 to the desulfurization drainage W 11 , the control unit 18 increases the opening degree of the flow control valves V 2 and V 2A . As a result, the permeate water W 22-1 and W 22-2 having a lower concentration of chloride ions than the desulfurization waste water W 11 passes through the permeate water discharge line L 22-1 and L 22-2 and the permeate water circulation line L 62 . since supplied to the desulfurization effluent W 11 Te, it is possible to reduce the concentration of chloride ions in the desulfurization effluent W 11.
 透過水W22-2を循環水W25として脱硫排水W11に循環する場合には、制御部18は、流量調整弁V2Aの開度を減少させると共に、流量調整弁Vの開度を増大させる。これにより、透過水W22-1に対して塩化物イオンの濃度が低い透過水W22-2が透過水排出ラインL22-2及び透過水循環ラインL62を介して脱硫排水W11に供給されるので、脱硫排水W11の塩化物イオンの濃度を効率良く低減することが可能となる。その他の動作は、図9D~図9Fに示した排ガス処理装置8D~8Fと同一のため説明を省略する。 When circulating water W 22-2 as circulating water W 25 to desulfurization drainage W 11 , control unit 18 decreases the opening degree of flow rate adjustment valve V 2A and opens the opening degree of flow rate adjustment valve V 2 Increase. Thus, the concentration of chloride ions is lower permeate W 22-2 is supplied to the desulfurization effluent W 11 via the permeate discharge line L 22-2 and permeate circulation line L 62 with respect to permeate W 22 - 1 Runode, the concentration of chloride ions in the desulfurization waste water W 11 becomes possible to efficiently reduce. The other operations are the same as those of the exhaust gas processing devices 8D to 8F shown in FIGS. 9D to 9F, and therefore the description thereof is omitted.
 このように、図10に示す膜処理部12によれば、7つの第1膜分離部12-1~第7膜分離部12-7によって順次濃縮された濃縮水W21を排煙脱硫部11に供給できるだけでなく、相互に塩化物イオン濃度が異なる透過水W22-1,W22-2との少なくとも一方を脱硫排水11に供給することが可能となる。これにより、例えば、脱硫排水11中の塩化物イオン濃度が高い場合には、透過水W22-1より塩化物イオン濃度が低い透過水W22-2で脱硫排水W11を効率よく希釈することも可能となる。 As described above, according to the membrane processing unit 12 shown in FIG. 10, the concentrated water W 21 sequentially condensed by the seven first membrane separation units 12-1 to the seventh membrane separation unit 12-7 is In addition to the supply, it is possible to supply the desulfurization drainage 11 with at least one of the permeate waters W 22-1 and W 22-2 having mutually different chloride ion concentrations. Thereby, for example, when the chloride ion concentration in the desulfurization waste water 11 is high, the desulfurization waste water W 11 is efficiently diluted with the permeate water W 22-2 having a chloride ion concentration lower than that of the permeate water W 22-1. Is also possible.
(第6の実施の形態)
 次に、第6の実施の形態について説明する。なお、以下においては、上述した第1の実施の形態と共通する構成要素には同一の符号を付している。また、上述した第1の実施の形態との相違点を中心に説明し、説明の重複を避ける。
Sixth Embodiment
Next, a sixth embodiment will be described. In the following, the components common to the first embodiment described above are denoted by the same reference numerals. Further, differences from the above-described first embodiment will be mainly described, and redundant description will be avoided.
 図11Aは、第6の実施の形態に係る排ガス処理装置の一例を示す模式図である。図11Aに示すように、排ガス処理装置9Aは、図1に示した排ガス処理装置1の構成に加えて、膜処理部12の後段に設けられた蒸発処理部19を備える。蒸発処理部19は、膜処理部12から透過水排出ラインL22を介して供給される透過水W22から水分を蒸発させて蒸気を得ると共に、溶解性物質が濃縮された濃縮液及び固化塩を得る。蒸発処理部19としては、透過水W22中の水分を蒸発できるものであれば特に制限はなく、例えば、排水スプレードライヤ(WSD:Wastewater Spray Dryer)などの各種スプレードライヤ、各種晶析装置などを用いることができる。また、蒸発処理部19としては、透過水W22から水分を完全に蒸発させる必要がない場合には、蒸発濃縮器を用いてもよい。 FIG. 11A is a schematic view showing an example of an exhaust gas processing system according to a sixth embodiment. As shown in FIG. 11A, in addition to the configuration of the exhaust gas processing apparatus 1 shown in FIG. 1, the exhaust gas processing apparatus 9A includes an evaporation processing unit 19 provided downstream of the film processing unit 12. The evaporation processing unit 19 evaporates water from the permeated water W 22 supplied from the membrane processing unit 12 through the permeated water discharge line L 22 to obtain a vapor, and a concentrated liquid and solidified salt in which a soluble substance is concentrated Get The evaporation processing unit 19 is not particularly limited as long as it can evaporate the water in the permeate water W 22. For example, various spray dryers such as a waste water spray dryer (WSD), various crystallizers, etc. It can be used. As the evaporation section 19, when it is not necessary to completely evaporate moisture from the permeate W 22, it may be used evaporative concentrator.
 図11Bは、第6の実施の形態に係る排ガス処理装置の他の例を示す模式図である。図11Bに示すように、排ガス処理装置9Bは、図3に示した排ガス処理装置2の構成に加えて、第2膜処理部122の後段に設けられた蒸発処理部19を備える。蒸発処理部19は、第2膜処理部122から濃縮水排出ラインL31を介して供給される濃縮水W31から水分を蒸発させて蒸気を得ると共に、溶解性物質が濃縮された濃縮液及び固化塩を得る。蒸発処理部19としては、図11Aに示したものと同様のものを使用できる。 FIG. 11B is a schematic view showing another example of the exhaust gas processing system according to the sixth embodiment. As shown in FIG. 11B, in addition to the configuration of the exhaust gas processing device 2 shown in FIG. 3, the exhaust gas processing device 9B includes an evaporation processing unit 19 provided downstream of the second film processing unit 122. The evaporation processing unit 19 evaporates water from the concentrated water W 31 supplied from the second membrane processing unit 122 via the concentrated water discharge line L 31 to obtain a vapor, and also a concentrated liquid in which a soluble substance is concentrated, Obtain a solidified salt. As the evaporation processing part 19, the thing similar to what was shown to FIG. 11A can be used.
 図12Aは、第6の実施の形態に係る排ガス処理装置の別の例を示す模式図である。図12Aに示すように、排ガス処理装置10Aは、図1に示した排ガス処理装置1の構成に加えて、膜処理部12の後段に設けられた後処理部20を備える。後処理部20は、膜処理部12から透過水排出ラインL22を介して供給される透過水W22中に石炭灰、ライムなどのアルカリ、セメント及び各種薬剤などを添加して不純物を固化する。また、後処理部20は、後処理水排出ラインLを介して不純物を除去した後処理水Wを排出する。ここでは、後処理部20は、イオン交換樹脂を使用したイオン交換処理及びキレート樹脂を使用したキレート処理などにより透過水W22中に含まれる有害重金属などの不純物を除去してもよい。このような透過水W22中の不純物を除去する後処理部20を設けることにより、透過水W22中の不純物を除去して放流することが可能となる。 FIG. 12A is a schematic view showing another example of the exhaust gas processing system according to the sixth embodiment. As shown in FIG. 12A, in addition to the configuration of the exhaust gas processing apparatus 1 shown in FIG. 1, the exhaust gas processing apparatus 10A includes a post-processing unit 20 provided downstream of the membrane processing unit 12. The post-processing unit 20 solidifies impurities by adding alkali such as lime, lime, cement, various chemicals, etc. to the permeated water W 22 supplied from the membrane processing unit 12 through the permeated water discharge line L 22. . Further, the post-processing unit 20 discharges the aftertreatment water W 7 to remove the impurities through the post-processing water discharge line L 7. Here, the post-processing unit 20 may remove impurities such as harmful heavy metals contained in the permeate water W 22 by ion exchange treatment using an ion exchange resin, chelate treatment using a chelate resin, or the like. By providing a post-processing unit 20 to remove impurities such in permeate W 22, it is possible to discharge to remove impurities in the permeate W 22.
 なお、後処理部20では、水銀吸着用キレート樹脂及びセレン(Se)吸着用キレート樹脂などの各種キレート樹脂を用いることにより、後処理水W中の水銀及びセレンを除去することもできる。水銀吸着用キレート樹脂としては、例えば、商品名:エポラス(登録商標)、型番:Z-7、Z-100などが用いられる。セレン吸着用キレート樹脂としては、商品名:エポラス(登録商標)、型番:SE-3、AS-4などが用いられる。 In the post-processing unit 20, by using various chelating resins such as chelates for mercury adsorption resin and selenium (Se) adsorption chelate resin, it is also possible to remove mercury and selenium in the post-processing water W 7. As the chelate resin for mercury adsorption, for example, trade name: Epolas (registered trademark), model number: Z-7, Z-100 and the like are used. As a chelate resin for selenium adsorption, trade name: Epolas (registered trademark), model number: SE-3, AS-4 and the like are used.
 図12Bは、第6の実施の形態に係る排ガス処理装置の他の例を示す模式図である。図12Bに示すように、排ガス処理装置10Bは、図3に示した排ガス処理装置2の構成に加えて、膜処理部12の第2膜処理部122の後段に設けられた後処理部20を備える。後処理部20は、第2膜処理部122から濃縮水排出ラインL31を介して供給される第2濃縮水W31中の有害重金属などの不純物を除去し、後処理水排出ラインLを介して不純物を除去した後処理水Wを排出する。後処理部20としては、上述した図12Aに示したものと同様の物を用いることができる。 FIG. 12B is a schematic view showing another example of the exhaust gas processing system according to the sixth embodiment. As shown in FIG. 12B, in addition to the configuration of the exhaust gas processing apparatus 2 shown in FIG. 3, the exhaust gas processing apparatus 10B is provided with a post-processing unit 20 provided downstream of the second film processing unit 122 of the film processing unit 12. Prepare. Post-processing unit 20, an impurity such as toxic heavy metals during the second concentrated water W 31 supplied through a concentrated water discharge line L 31 from the second layer processing section 122 is removed, the post-processing water discharge line L 7 The post-treatment water W 7 from which impurities have been removed is discharged. As the post-processing unit 20, the same one as that shown in FIG. 12A described above can be used.
 以上説明したように、本実施の形態によれば、透過水W22及び濃縮水W31の水分を蒸発させる蒸発処理部19を設けることにより、透過水W22及び濃縮水W31の水分を蒸発させて蒸気を得ることができるので、排ガス処理装置9A,9Bから排ガス処理装置9A,9Bの外部に排出される排水を大幅に削減することが可能となる。また、透過水W22及び濃縮水W31中の有害重金属などの不純物を除去する後処理部20を設けることにより、透過水W22及び濃縮水W31中の有害重金属などの不純物を除去して放流することができるので、排ガス処理装置10A,10Bから排ガス処理装置10A,10Bの外部に排出される排水の量を大幅に削減することが可能となる。 As described above, according to this embodiment, by providing the permeate W 22 and evaporation unit 19 for evaporating the water concentrated water W 31, evaporated permeate W 22 and moisture concentrate W 31 Since it is possible to obtain steam, the waste water discharged from the exhaust gas treatment devices 9A and 9B to the outside of the exhaust gas treatment devices 9A and 9B can be significantly reduced. Further, by providing the post-processing unit 20 to remove impurities such as toxic heavy metals permeate W 22 and concentrate water W 31, impurities such as toxic heavy metals permeate W 22 and concentrate water W 31 is removed Since it can be discharged, the amount of waste water discharged from the exhaust gas processing apparatuses 10A and 10B to the outside of the exhaust gas processing apparatuses 10A and 10B can be significantly reduced.
 なお、上述した各実施の形態では、脱硫排水W11の還元処理及び沈殿処理により、脱硫排水W11中に含まれる有害重金属としてのセレンを除去することもできる。還元処理としては、過酸化水素(H)などの各種還元剤を用いた還元処理が挙げられる。また、沈殿処理としては、例えば、鉄共沈などの沈殿処理が挙げられる。 In each embodiment described above, the reduction treatment and precipitation treatment of the desulfurization waste water W 11, it is also possible to remove selenium as an adverse heavy metals contained in the desulfurization effluent W 11. Examples of the reduction treatment include reduction treatments using various reducing agents such as hydrogen peroxide (H 2 O 2 ). Moreover, as a precipitation process, precipitation processes, such as iron coprecipitation, are mentioned, for example.
 また、上述した各実施の形態では、フミン酸及びタンニン酸などの酸化阻害物質の濃縮による濃度増加を防止するために、脱硫排水W11などに空気、酸素(O)、塩素(Cl)、次亜塩素酸(ClO)、亜塩素酸(ClO )、オゾン(O)、過酸化水素(H)からなる群から選択された少なくとも1種の酸化剤を添加してもよい。この酸化剤の添加により、酸化阻害物質を分解処理できるので、酸化阻害物質の濃度増加を防ぐこともできる。 Moreover, in each embodiment mentioned above, in order to prevent concentration increase by concentration of oxidation inhibitors such as humic acid and tannic acid, air, oxygen (O 2 ), chlorine (Cl 2 ) or the like for desulfurization waste water W 11 At least one oxidizing agent selected from the group consisting of hypochlorous acid (ClO ), hypochlorous acid (ClO 2 ), ozone (O 3 ), hydrogen peroxide (H 2 O 2 ), May be Since the oxidation inhibitor can be decomposed by the addition of the oxidizing agent, the concentration increase of the oxidation inhibitor can be prevented.
 1,2,3,4,5A,5B,6,7,8A,8B,8C,8D,8E,8F,9A,9B,10A,10B 排ガス処理装置
 11 排煙脱硫部
 12 膜処理部
 12a 分離膜
 12-1 第1膜処理部
 12-2 第2膜処理部
 12-3 第3膜処理部
 12-4 第4膜処理部
 12-5 第5膜処理部
 12-6 第6膜処理部
 12-7 第7膜処理部
 120 圧力容器
 1201 脱硫排水導入管
 1202 脱硫排水排出管
 1203 集水管
 1203a 隔壁
 1203b 下流側集水管
 1203c 上流側集水管
 121 第1膜処理部
 122 第2膜処理部
 13 希釈水供給部
 14 補給水供給部
 15 前処理部
 151 凝集沈殿部
 151a スラッジ
 152 砂濾過部
 153 濾過部
 153a 濾過膜
 16 水銀除去部
 161 固液分離部
 162 水銀処理部
 17 水質測定部
 18 制御部
 19 蒸発処理部
 20 後処理部
 21 陽極
 22 陰極
 23 陽イオン交換膜
 23A 1価選択透過性陽イオン交換膜
 24 陰イオン交換膜
 24A 1価選択透過性陰イオン交換膜
 25A,25B,25C,25D 透析膜
 W11,W12,W13,W16 脱硫排水
 W14 前処理水
 W15,W21,W31 濃縮水
 W21A 循環濃縮水
 W22,W22-1,W22-2,W32 透過水
 W23,W24,W25,W33 循環水
 W26 バイパス水
 W 希釈水
 W 補給水
 W 後処理水
 L 脱硫排水供給ライン
 L21 濃縮水供給ライン
 L21A 濃縮水循環ライン
 L22,L22-1,L22-2,L32 透過水排出ライン
 L31 濃縮水排出ライン
 L41 希釈水供給ライン
 L42 補給水分岐ライン
 L43,L44 透過水供給ライン
 L61 濃縮水循環ライン
 L62 透過水循環ライン
 L 後処理水排出ライン
 V,V 流量調整弁
1, 2, 3, 4, 5 A, 5 B, 6, 7, 8 A, 8 B, 8 C, 8 D, 8 E, 8 F, 9 A, 9 B, 10 A, 10 B Exhaust gas treating apparatus 11 flue gas desulfurization part 12 membrane processing part 12 a separation membrane 12-1 First film processing unit 12-2 Second film processing unit 12-3 Third film processing unit 12-4 Fourth film processing unit 12-5 Fifth film processing unit 12-6 Sixth film processing unit 12- 7 Seventh membrane processing unit 120 Pressure vessel 1201 Desulfurization drainage introduction pipe 1202 Desulfurization drainage discharge pipe 1203 Water collection pipe 1203a Partition wall 1203b Downstream side water collection pipe 1203c Upstream side water collection pipe 121 First membrane processing part 122 Second membrane processing part 13 Section 14 make-up water supply unit 15 pretreatment unit 151 coagulation sedimentation unit 151a sludge 152 sand filtration unit 153 filtration unit 153a filtration membrane 16 mercury removal unit 161 solid-liquid separation unit 162 mercury treatment unit 17 water Measurement unit 18 Control unit 19 Evaporation treatment unit 20 Post-treatment unit 21 Anode 22 Cathode 23 Cation exchange membrane 23A 1-monovalent permselective cation exchange membrane 24 Anion-exchange membrane 24A Monovalent permselective anion exchange membrane 25A, 25B , 25C, 25D dialysis membrane W 11 , W 12 , W 13 , W 16 desulfurization drainage W 14 pretreated water W 15 , W 21 , W 31 concentrated water W 21 A circulating concentrated water W 22 , W 22-1 , W 22- 2 , W 32 permeated water W 23 , W 24 , W 25 , W 33 circulating water W 26 bypass water W 4 dilution water W 5 makeup water W 7 post-treatment water L 1 desulfurization drainage supply line L 21 concentrated water supply line L 21 A concentrated water circulation line L 22, L 22-1, L 22-2 , L 32 permeate discharge line L 31 concentrated water discharge line L 41 dilution water supply line L 42 up water branch line L 43, L 44 permeate supply line L 61 concentrated water circulation line L 62 permeate circulation line L 7 aftertreatment water discharge line V 1, V 2 flow control valve

Claims (17)

  1.  燃焼排ガスを洗浄して硫酸イオンを含有する脱硫排水を排出する排煙脱硫部と、
     前記脱硫排水を、硫酸イオンが低減された第1透過水と硫酸イオンが濃縮された第1濃縮水とに膜分離する第1分離膜を有し、前記第1濃縮水を前記排煙脱硫部に供給する一方、前記第1透過水を排出する第1膜処理部と、
     を備えたことを特徴とする排ガス処理装置。
    A flue gas desulfurization unit that cleans the flue gas and discharges desulfurization wastewater containing sulfate ions;
    It has a first separation membrane for membrane separation of the desulfurization waste water into a first permeated water in which sulfate ions are reduced and a first concentrated water in which sulfate ions are concentrated, and the first concentrated water is subjected to the exhaust gas desulfurization unit A first membrane processing unit for discharging the first permeated water while supplying the
    An exhaust gas processing apparatus comprising:
  2.  前記第1分離膜は、前記脱硫排水中の硫酸イオンの透過率に対して塩化物イオンの透過率が高い、請求項1に記載の排ガス処理装置。 The exhaust gas treatment device according to claim 1, wherein the first separation membrane has a permeability of chloride ions higher than a permeability of sulfate ions in the desulfurization waste water.
  3.  前記脱硫排水を希釈する希釈水を供給する希釈水供給部を備えた、請求項1又は請求項2に記載の排ガス処理装置。 The exhaust gas processing apparatus according to claim 1, further comprising a dilution water supply unit configured to supply dilution water for diluting the desulfurization waste water.
  4.  前記希釈水供給部が、前記排煙脱硫部に補給水を供給する補給水供給部であり、前記補給水供給部は、前記希釈水として前記補給水の少なくとも1部を前記脱硫排水に供給する、請求項3に記載の排ガス処理装置。 The dilution water supply unit is a makeup water supply unit that supplies makeup water to the flue gas desulfurization unit, and the makeup water supply unit supplies at least one part of the makeup water to the desulfurization drainage as the dilution water. The exhaust gas processing device according to claim 3.
  5.  前記脱硫排水中のスケール成分を除去する前処理をし、前処理をした前記脱硫排水を前記第1膜処理部に供給する前処理部を備えた、請求項1から請求項4のいずれか1項に記載の排ガス処理装置。 The pre-processing part which removes the scale component in the said desulfurization waste water, and which supplies said desulfurization waste water which pre-processed to said 1st film process part is provided. The exhaust gas processing apparatus as described in a term.
  6.  前記第1膜処理部は、前記第1透過水及び前記第1濃縮水の少なくとも一方を前記第1膜処理部に供給される前記脱硫排水に循環可能であり、
     前記第1濃縮水の塩化物イオン濃度が基準値を超えた場合に、前記脱硫排水に循環する前記第1透過水及び前記第1濃縮水の少なくとも一方の流量を制御して、前記第1濃縮水中の塩化物イオン濃度を前記基準値以下とする流量制御部を備えた、請求項1から請求項5のいずれか1項に記載の排ガス処理装置。
    The first membrane processing unit is capable of circulating at least one of the first permeated water and the first concentrated water to the desulfurization wastewater supplied to the first membrane processing unit,
    When the chloride ion concentration of the first concentrated water exceeds a reference value, the flow rate of at least one of the first permeated water and the first concentrated water to be circulated to the desulfurization drainage is controlled to control the first concentration The exhaust gas processing apparatus according to any one of claims 1 to 5, further comprising a flow rate control unit that sets a chloride ion concentration in water to the reference value or less.
  7.  前記第1膜処理部は、前記第1透過水及び前記第1濃縮水の少なくとも一方を前記第1膜処理部に供給される前記脱硫排水に循環可能であり、
     前記第1透過水の塩化物イオン濃度が基準値未満となった場合に、前記脱硫排水に循環する前記第1透過水及び前記第1濃縮水の少なくとも一方の流量を制御して、前記第1透過水中の塩化物イオン濃度を基準値以上とする流量制御部を備えた、請求項1から請求項6のいずれか1項に記載の排ガス処理装置。
    The first membrane processing unit is capable of circulating at least one of the first permeated water and the first concentrated water to the desulfurization wastewater supplied to the first membrane processing unit,
    When the chloride ion concentration of the first permeated water is lower than a reference value, the flow rate of at least one of the first permeated water and the first concentrated water to be circulated to the desulfurization effluent is controlled to control the first permeated water. The exhaust gas processing apparatus according to any one of claims 1 to 6, further comprising a flow rate control unit that sets a chloride ion concentration in the permeated water to a reference value or more.
  8.  前記第1膜処理部は、前記第1透過水及び前記第1濃縮水の少なくとも一方を前記第1膜処理部に供給される前記脱硫排水に循環可能であり、
     前記脱硫排水の塩化物イオン濃度が基準値を超えた場合に、前記脱硫排水に循環する前記第1透過水及び前記第1濃縮水の少なくとも一方の流量を制御して、前記脱硫排水中の塩化物イオン濃度を基準値以下とする流量制御部を備えた、請求項1から請求項7のいずれか1項に記載の排ガス処理装置。
    The first membrane processing unit is capable of circulating at least one of the first permeated water and the first concentrated water to the desulfurization wastewater supplied to the first membrane processing unit,
    When the chloride ion concentration of the desulfurization waste water exceeds a reference value, the flow rate of at least one of the first permeated water and the first concentrated water circulating to the desulfurization waste water is controlled to form chloride in the desulfurization waste water The exhaust gas processing apparatus according to any one of claims 1 to 7, further comprising a flow rate control unit that makes the concentration of the target ions equal to or lower than a reference value.
  9.  塩化物イオンを含有する前記第1透過水を、塩化物イオンが低減された第2透過水と塩化物イオンが濃縮された第2濃縮水とに膜分離する第2分離膜を有する第2膜処理部を備えた、請求項1から請求項8のいずれか1項に記載の排ガス処理装置。 A second membrane having a second separation membrane that performs membrane separation of the first permeated water containing chloride ion into a second permeated water with reduced chloride ion and a second concentrated water with concentrated chloride ion The exhaust gas processing apparatus according to any one of claims 1 to 8, further comprising a processing unit.
  10.  前記第2膜処理部は、前記第2透過水の少なくとも一部を希釈水として前記脱硫排水に供給する、請求項9に記載の排ガス処理装置。 The exhaust gas treatment apparatus according to claim 9, wherein the second membrane processing unit supplies at least a part of the second permeate to the desulfurization drainage as dilution water.
  11.  前記第2濃縮水を蒸発させて蒸発水を得る蒸発処理部を備えた、請求項9又は請求項10に記載の排ガス処理装置。 The exhaust gas processing device according to claim 9, further comprising an evaporation processing unit configured to evaporate the second concentrated water to obtain evaporated water.
  12.  前記第2濃縮水中の一方の不純物を除去して後処理水を得る後処理部を備えた、請求項9から請求項11のいずれか1項に記載の排ガス処理装置。 The exhaust gas processing apparatus according to any one of claims 9 to 11, further comprising: a post-processing unit that removes post-processing water by removing one of the impurities in the second concentrated water.
  13.  前記第1透過水を蒸発させて蒸発水を得る蒸発処理部を備えた、請求項1から請求項12のいずれか1項に記載の排ガス処理装置。 The exhaust gas processing device according to any one of claims 1 to 12, further comprising an evaporation processing unit configured to evaporate the first permeated water to obtain evaporated water.
  14.  前記第1透過水中の不純物を除去して後処理水を得る後処理部を備えた、請求項1から請求項13のいずれか1項に記載の排ガス処理装置。 The exhaust gas processing apparatus according to any one of claims 1 to 13, further comprising a post-treatment unit that removes post-treatment water by removing impurities in the first permeated water.
  15.  前記脱硫排水中の固体状の水銀及び液状の水銀を、前記脱硫排水から分離する固液分離部を備えた、請求項1から請求項14のいずれか1項に記載の排ガス処理装置。 The exhaust gas processing device according to any one of claims 1 to 14, further comprising a solid-liquid separation unit configured to separate solid mercury and liquid mercury in the desulfurization waste water from the desulfurization waste water.
  16.  前記脱硫排水中の溶解性水銀を除去する水銀処理部を備えた、請求項1から請求項15のいずれか1項に記載の排ガス処理装置。 The exhaust gas treatment apparatus according to any one of claims 1 to 15, further comprising a mercury treatment unit that removes soluble mercury in the desulfurization effluent.
  17.  燃焼排ガスを排煙脱硫部で洗浄して硫酸イオンを含有する脱硫排水を排出する排煙脱硫工程と、
     前記脱硫排水を、硫酸イオンが低減された第1透過水と硫酸イオンが濃縮された第1濃縮水とに第1分離膜によって膜分離し、前記第1濃縮水を前記排煙脱硫部に供給する一方、前記第1透過水を排出する第1膜処理工程と、
     を含むことを特徴とする排ガス処理方法。
    A flue gas desulfurization step of washing flue gas with a flue gas desulfurization section to discharge desulfurization waste water containing sulfate ions;
    The desulfurization wastewater is membrane-separated by a first separation membrane into a first permeated water in which sulfate ions are reduced and a first concentrated water in which sulfate ions are concentrated, and the first concentrated water is supplied to the flue gas desulfurization unit A first membrane treatment step of discharging the first permeated water,
    A method of treating exhaust gas comprising:
PCT/JP2017/047299 2016-12-28 2017-12-28 Exhaust gas treatment apparatus and exhaust gas treatment method WO2018124289A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-256679 2016-12-28
JP2016256679A JP2018108549A (en) 2016-12-28 2016-12-28 Exhaust gas treatment apparatus and exhaust gas treatment method

Publications (1)

Publication Number Publication Date
WO2018124289A1 true WO2018124289A1 (en) 2018-07-05

Family

ID=62709393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/047299 WO2018124289A1 (en) 2016-12-28 2017-12-28 Exhaust gas treatment apparatus and exhaust gas treatment method

Country Status (2)

Country Link
JP (1) JP2018108549A (en)
WO (1) WO2018124289A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066762A1 (en) * 2018-09-28 2020-04-02 三菱日立パワーシステムズ株式会社 Water treatment system and water treatment method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62244427A (en) * 1986-04-17 1987-10-24 Kureha Chem Ind Co Ltd Treatment for flue gas desulfurization absorption liquid
JPH06154551A (en) * 1992-11-20 1994-06-03 Toshiba Eng & Constr Co Ltd Method and device for treating desulfurization drainage
JPH078750A (en) * 1993-06-14 1995-01-13 Chubu Electric Power Co Inc Treatment of drainage after desulfurization
JPH09253457A (en) * 1996-03-25 1997-09-30 Shinko Pantec Co Ltd Method for treatment of waste liquid generated by flue gas treatment and device therefor
JPH1085742A (en) * 1996-09-12 1998-04-07 Kawasaki Heavy Ind Ltd Method and apparatus for treating desulfurization drainage
JPH10118447A (en) * 1996-10-17 1998-05-12 Ishikawajima Harima Heavy Ind Co Ltd Waste water treatment system for wet desulfurization process
JPH11526A (en) * 1997-06-11 1999-01-06 Hitachi Ltd Removing method and device of nitrogen oxide
JPH1157710A (en) * 1997-08-27 1999-03-02 Kurita Water Ind Ltd Device for treating waste water with membrane
JP2001000831A (en) * 1999-06-22 2001-01-09 Mitsubishi Heavy Ind Ltd Treatment of absorbed liquid slurry and flue gas desulfurization system
JP2003230897A (en) * 2002-02-08 2003-08-19 Babcock Hitachi Kk Waste treatment method and waste treatment apparatus
JP2012196638A (en) * 2011-03-22 2012-10-18 Mitsubishi Heavy Ind Ltd Exhaust gas processing system and method
JP2015128754A (en) * 2014-01-08 2015-07-16 三菱重工業株式会社 Water treatment system and method

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62244427A (en) * 1986-04-17 1987-10-24 Kureha Chem Ind Co Ltd Treatment for flue gas desulfurization absorption liquid
JPH06154551A (en) * 1992-11-20 1994-06-03 Toshiba Eng & Constr Co Ltd Method and device for treating desulfurization drainage
JPH078750A (en) * 1993-06-14 1995-01-13 Chubu Electric Power Co Inc Treatment of drainage after desulfurization
JPH09253457A (en) * 1996-03-25 1997-09-30 Shinko Pantec Co Ltd Method for treatment of waste liquid generated by flue gas treatment and device therefor
JPH1085742A (en) * 1996-09-12 1998-04-07 Kawasaki Heavy Ind Ltd Method and apparatus for treating desulfurization drainage
JPH10118447A (en) * 1996-10-17 1998-05-12 Ishikawajima Harima Heavy Ind Co Ltd Waste water treatment system for wet desulfurization process
JPH11526A (en) * 1997-06-11 1999-01-06 Hitachi Ltd Removing method and device of nitrogen oxide
JPH1157710A (en) * 1997-08-27 1999-03-02 Kurita Water Ind Ltd Device for treating waste water with membrane
JP2001000831A (en) * 1999-06-22 2001-01-09 Mitsubishi Heavy Ind Ltd Treatment of absorbed liquid slurry and flue gas desulfurization system
JP2003230897A (en) * 2002-02-08 2003-08-19 Babcock Hitachi Kk Waste treatment method and waste treatment apparatus
JP2012196638A (en) * 2011-03-22 2012-10-18 Mitsubishi Heavy Ind Ltd Exhaust gas processing system and method
JP2015128754A (en) * 2014-01-08 2015-07-16 三菱重工業株式会社 Water treatment system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066762A1 (en) * 2018-09-28 2020-04-02 三菱日立パワーシステムズ株式会社 Water treatment system and water treatment method

Also Published As

Publication number Publication date
JP2018108549A (en) 2018-07-12

Similar Documents

Publication Publication Date Title
JP6298296B2 (en) Water treatment system and method
CA2917111C (en) Water treatment process and water treatment system
WO2016132511A1 (en) Water treatment system and method
WO2013005369A1 (en) Water purification system and water purification method
WO2016147414A1 (en) Water treatment system and power generation apparatus
WO2014163094A1 (en) Water treatment system
WO2015181999A1 (en) Water treatment device and water treatment method
JP5955389B2 (en) Desalination treatment apparatus and method of operating desalination treatment apparatus
WO2015093336A1 (en) Scale detection device and method for concentrating device, and water reclamation processing system
CN214141977U (en) Treatment system for treating desulfurization wastewater by using de-hardening electrodialysis
JP5609174B2 (en) Water treatment system
JPS62244427A (en) Treatment for flue gas desulfurization absorption liquid
JP5968524B2 (en) Water treatment method and water treatment system
WO2009107332A1 (en) Wastewater treatment apparatus and method of wastewater treatment
WO2018124289A1 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
JP6189422B2 (en) Water treatment system
CN112573720A (en) Thermal power plant desulfurization wastewater zero-discharge system and method
JP6105500B2 (en) Method and apparatus for treating wastewater containing sulfate ions and boron
JP2017064639A (en) Method and apparatus for recovering and using waste water from steam power plant
JP2022123557A (en) Processing method for fluorine-containing waste water
JPH0531483A (en) Waste water treating equipment
JP2009233633A (en) Water treatment method and water treatment apparatus
WO2020003148A2 (en) Reverse osmosis process
JP2010104871A (en) Wastewater treatment apparatus
JP2019107591A (en) Method for producing treatment water, water treatment device and method for operating water treatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17889035

Country of ref document: EP

Kind code of ref document: A1