JP2015139736A - Fluid bed reactor and production method of nitrile compound using the same - Google Patents

Fluid bed reactor and production method of nitrile compound using the same Download PDF

Info

Publication number
JP2015139736A
JP2015139736A JP2014013321A JP2014013321A JP2015139736A JP 2015139736 A JP2015139736 A JP 2015139736A JP 2014013321 A JP2014013321 A JP 2014013321A JP 2014013321 A JP2014013321 A JP 2014013321A JP 2015139736 A JP2015139736 A JP 2015139736A
Authority
JP
Japan
Prior art keywords
reactor
catalyst
recess
fluidized bed
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014013321A
Other languages
Japanese (ja)
Other versions
JP6372086B2 (en
Inventor
井上 健一
Kenichi Inoue
健一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2014013321A priority Critical patent/JP6372086B2/en
Publication of JP2015139736A publication Critical patent/JP2015139736A/en
Application granted granted Critical
Publication of JP6372086B2 publication Critical patent/JP6372086B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent deterioration of a device or a bad influence on a reaction by preventing accumulation of a catalyst on a recessed part of an inner wall of a reactor; and further to prevent sudden heat evolution caused by contact of the catalyst accumulated on the recessed part of the inner wall of the reactor with the outside air.SOLUTION: In a fluid bed reactor, which is a reactor for storing catalyst particles for the fluid bed, a recessed part is not provided on an inner wall of the reactor with which the catalyst particles in the reactor are brought into contact, or accumulation prevention means is provided on a provided recessed part.

Description

本発明は、流動床反応器内の触媒堆積防止方法に関する。   The present invention relates to a method for preventing catalyst deposition in a fluidized bed reactor.

流動床反応器は様々な工業反応に用いられている。例えばアクリロニトリル等のニトリル化合物は、プロピレン等の炭化水素のアンモ酸化法により工業的に製造されている。ニトリル化合物の製造方法としては、金属酸化物触媒の存在下、気相酸化反応させる方法が一般的に知られている。この気相酸化反応は、原料の炭化水素と、アンモニアと、空気などの酸素含有ガスとを反応器に導入し、前記金属酸化物触媒の存在下、アンモ酸化反応を行ってニトリル化合物を製造することが記載されている(特許文献1、特許文献2)。特許文献1、2で使用する反応器は、流動床反応器であり、反応器の内部には前記触媒が充填され、反応器の内壁には点検のためのマンホールや熱伝対温度計を反応器内に挿入するための温度計挿入孔等の大小様々な大きさの凹部を有するものが一般的である。   Fluidized bed reactors are used for various industrial reactions. For example, nitrile compounds such as acrylonitrile are industrially produced by ammoxidation of hydrocarbons such as propylene. As a method for producing a nitrile compound, a method in which a gas phase oxidation reaction is performed in the presence of a metal oxide catalyst is generally known. In this gas phase oxidation reaction, a raw material hydrocarbon, ammonia, and an oxygen-containing gas such as air are introduced into a reactor, and an ammoxidation reaction is performed in the presence of the metal oxide catalyst to produce a nitrile compound. (Patent Document 1, Patent Document 2). The reactors used in Patent Documents 1 and 2 are fluidized bed reactors, the reactor is filled with the catalyst, and the reactor inner wall is reacted with a manhole for inspection and a thermocouple thermometer. In general, those having recesses of various sizes such as a thermometer insertion hole for insertion into a vessel.

流動床反応器の前記凹部には前記金属酸化物触媒が堆積しやすい。凹部で触媒が堆積すると、除熱が上手くいかず反応器内にホットスポットを生じ、堆積部の反応器の材質劣化、ノズル等の腐食を起こす事があった。また触媒が還元劣化を起こし、目的とする反応収率の低下等、気相酸化反応に悪影響を及ぼすことがあった。また、本反応を停止しマンホール等の前記凹部を開放した際、堆積した触媒が外気に触れると、急激な酸化反応を起こして発熱することがあった。   The metal oxide catalyst is likely to deposit in the concave portion of the fluidized bed reactor. When the catalyst was deposited in the recesses, the heat removal was not successful and a hot spot was generated in the reactor, which could cause deterioration of the material of the reactor in the deposition part and corrosion of the nozzle. In addition, the catalyst may undergo reductive degradation, which may adversely affect the gas phase oxidation reaction, such as a reduction in the target reaction yield. In addition, when this reaction was stopped and the concave portion such as a manhole was opened, if the deposited catalyst touched the outside air, a rapid oxidation reaction may occur and heat may be generated.

前記凹部等、工業装置のデッドスペースを無くす一般的な方法としては、例えばアクリロニトリルの工業的製造プロセスにおいて、脱青酸脱水塔のデッドスペース(マンホール)に中子を入れることが提案されている(特許文献3)。特許文献3で使用する中子により、前記デッドスペースにアクリロニトリルおよび青酸が長時間滞留し重合を起こすことを防止できることが記載されている。   As a general method for eliminating the dead space of the industrial equipment such as the recess, for example, in an industrial manufacturing process of acrylonitrile, it has been proposed to insert a core in the dead space (manhole) of the dehydration acid dehydration tower (patent) Reference 3). It is described that the core used in Patent Document 3 can prevent acrylonitrile and hydrocyanic acid from staying in the dead space for a long time to cause polymerization.

特開2005−193172号公報JP 2005-193172 A 特開2006−247452号公報JP 2006-247452 A 特開2007−39403号公報JP 2007-39403 A

しかしながら、特許文献3の方法は、脱青酸脱水塔のマンホールに装置内壁側から取り付ける中子について、どのようなものを用いるのが好ましいか、どのようにすると好適にデッドスペースを無くすことができるかについては、具体的に開示されておらず、汎用的な示唆もされていなかった。このため、流動床反応器の内壁の凹部に触媒が堆積することを防止して装置の劣化や反応への悪影響を防止するための方策が求められていた。   However, in the method of Patent Document 3, what is preferable for the core attached to the manhole of the dehydration acid dehydration tower from the inner wall side of the apparatus, and how can the dead space be suitably eliminated? Was not specifically disclosed, nor was it suggested for general use. For this reason, there has been a demand for measures for preventing the catalyst from accumulating in the concave portion of the inner wall of the fluidized bed reactor to prevent the deterioration of the apparatus and the adverse effect on the reaction.

そこで本発明は、上記従来の問題点を解決し、反応器の内壁の凹部に触媒が堆積することを防止して、装置の劣化や反応への悪影響を防止することを目的とする。更には、反応器の内壁の凹部に堆積した触媒の外気接触による急激な発熱を防止することを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned conventional problems and prevent the catalyst from accumulating in the concave portion of the inner wall of the reactor, thereby preventing deterioration of the apparatus and adverse effects on the reaction. Furthermore, it aims at preventing the rapid heat_generation | fever by the external air contact of the catalyst deposited on the recessed part of the inner wall of a reactor.

本発明は、流動床反応器の触媒が接触する反応器の内壁に存在する凹部に、触媒堆積防止手段を設けることで、反応器の内壁の凹部に触媒が堆積することを防止して装置の劣化や反応への悪影響を防止できることを見出した。また、触媒堆積防止手段を設けると、反応器の内壁の凹部に堆積した触媒の外気接触による急激な発熱を防止できることを見出し、上記の課題を解決した。さらに、反応器の内壁に凹部を形成させないことでも、同様に上記の課題を解決できることを見出した。   The present invention prevents the catalyst from being deposited in the concave portion of the inner wall of the reactor by providing the catalyst deposition preventing means in the concave portion existing in the inner wall of the reactor which the catalyst of the fluidized bed reactor contacts. It was found that deterioration and adverse effects on the reaction can be prevented. Further, it has been found that the provision of the catalyst deposition preventing means can prevent rapid heat generation due to the outside air contact of the catalyst deposited on the concave portion of the inner wall of the reactor, thereby solving the above problems. Furthermore, it has been found that the above-mentioned problem can be solved similarly by not forming a recess in the inner wall of the reactor.

本発明は、流動床の触媒粒子を収納する反応器であって、前記反応器内の触媒粒子が接触する反応器の内壁に凹部を設けないか、または、設けた凹部に堆積防止手段を設けた、流動床反応器である。   The present invention is a reactor for storing catalyst particles in a fluidized bed, wherein no recess is provided on the inner wall of the reactor in contact with the catalyst particles in the reactor, or deposition prevention means is provided in the provided recess. A fluidized bed reactor.

また本発明は、前記堆積防止手段が、前記凹部に充填された封入材を有する、前記流動床反応器である。   Moreover, this invention is the said fluidized bed reactor in which the said deposition prevention means has the enclosure material with which the said recessed part was filled.

また本発明は、前記堆積防止手段が、前記反応器の内壁と同じ材質の内蓋と、その内蓋と前記反応器との間に充填した断熱材と、前記凹部の残りの隙間を充填するセメントからなる封入材とを有する、前記流動床反応器である。   Further, according to the present invention, the deposition preventing means fills the inner lid made of the same material as the inner wall of the reactor, the heat insulating material filled between the inner lid and the reactor, and the remaining gap of the recess. The fluidized bed reactor having an encapsulant made of cement.

また本発明は、前記凹部に設けた前記堆積防止手段と反応器内壁面との間に実質的に段差がないように調整した、前記流動床反応器である。   Further, the present invention is the fluidized bed reactor adjusted so that there is substantially no step between the accumulation preventing means provided in the concave portion and the inner wall surface of the reactor.

また本発明は、前記堆積防止手段が、前記凹部に気体を吹き込む気体吹き込み口である、前記流動床反応器である。   Moreover, this invention is the said fluidized bed reactor whose said deposition prevention means is a gas blowing inlet which blows gas in the said recessed part.

更に本発明は、前記流動床反応器を用いて、前記凹部への触媒堆積を防止しながらアンモ酸化反応を行う、ニトリル化合物の製造方法である。   Furthermore, the present invention is a method for producing a nitrile compound, wherein an ammoxidation reaction is performed using the fluidized bed reactor while preventing catalyst deposition in the recess.

本発明にかかる流動床反応器を用いて酸化反応を行うと、触媒が凹部に堆積しなくなるため、装置の劣化や反応への悪影響を防止できる。   When the oxidation reaction is carried out using the fluidized bed reactor according to the present invention, the catalyst does not accumulate in the recesses, so that deterioration of the apparatus and adverse effects on the reaction can be prevented.

更には、アンモ酸化反応に用いるモリブデンを含有する金属酸化物触媒などの場合、反応を停止させて反応器を開放する際に、反応器に接触して還元劣化していた堆積触媒が外気に触れて酸化され150℃程度にまで発熱することがあったが、前記堆積防止手段を設けることで、又は凹部を設けなくすることで、触媒の高温発熱を防止することができる。   Furthermore, in the case of a metal oxide catalyst containing molybdenum used for an ammoxidation reaction, when the reaction is stopped and the reactor is opened, the deposited catalyst that has been reduced and deteriorated by contact with the reactor touches the outside air. The catalyst is oxidized and generates heat up to about 150 ° C. However, high temperature heat generation of the catalyst can be prevented by providing the deposition preventing means or by eliminating the recess.

本発明にかかる流動床反応器の実施形態例の概略図Schematic of an example embodiment of a fluidized bed reactor according to the present invention. 本発明の堆積防止手段を設ける凹部の一例を示す断面図Sectional drawing which shows an example of the recessed part which provides the deposition prevention means of this invention 本発明の堆積防止手段を設ける凹部の他の例を示す断面図Sectional drawing which shows the other example of the recessed part which provides the deposition prevention means of this invention

以下、本発明について詳細に説明する。本発明は、流動床の触媒粒子を収納する反応器であって、前記反応器内の触媒粒子が接触する反応器の内壁に凹部を設けないか、または、設けた凹部に堆積防止手段を設けた、流動床反応器に関する。   Hereinafter, the present invention will be described in detail. The present invention is a reactor for storing catalyst particles in a fluidized bed, wherein no recess is provided on the inner wall of the reactor in contact with the catalyst particles in the reactor, or deposition prevention means is provided in the provided recess. And a fluidized bed reactor.

本発明の気相酸化反応としては、例えばアンモ酸化法によってプロピレン及び/又はプロパンとアンモニアと空気などの酸素含有ガスからアクリロニトリルを製造する反応や、プロピレンの気相酸化法によるアクリル酸の製造など、アルカン及び/又はアルケンの酸化反応が挙げられる。このうち、アンモ酸化反応に用いる流動床反応器の概略を、実施形態の例を示す図1と図2を用いて説明する。   Examples of the gas phase oxidation reaction of the present invention include a reaction for producing acrylonitrile from an oxygen-containing gas such as propylene and / or propane, ammonia and air by an ammoxidation method, production of acrylic acid by a propylene gas phase oxidation method, and the like. An oxidation reaction of alkane and / or alkene is mentioned. Among these, the outline of the fluidized bed reactor used for ammoxidation reaction is demonstrated using FIG. 1 and FIG. 2 which show the example of embodiment.

本発明のアンモ酸化反応では、触媒の代表例としてはモリブデンを含有する金属酸化物触媒や鉄、アンチモンを含有する金属酸化物触媒などが好適に用いられる。気相反応装置の反応器本体11に、下方の空気導入管12から空気aを導入して、吹き出し口13から吹き出させることで触媒14を流動化させる。原料導入管15から反応原料としてプロピレンとアンモニアの混合気体bを導入し、プロピレンとアンモニアと空気を接触させることで、空気中の酸素により酸化反応を行って、プロピレン1当量辺り、1当量のアクリロニトリルと、3当量の水を生成させる。このアンモ酸化反応を適切な一定の反応温度に保つために、冷媒dを通した冷却コイル16で反応器本体11内部の反応気体を冷却して温度制御を行いながらアンモ酸化反応を行う。反応で生成したアクリロニトリルを含む反応気体は、サイクロン19で触媒を分離し、未反応のアンモニアや副生したアクリル酸等の不純物を含んだ反応気体cとして製品抜出し管17から抜き出される。この反応気体cを熱交換器18で冷却した後、アンモニアの吸収分離塔、アクリロニトリルの精製塔に順次送って精製することで製品のアクリロニトリルを得る。   In the ammoxidation reaction of the present invention, as a typical example of the catalyst, a metal oxide catalyst containing molybdenum, a metal oxide catalyst containing iron or antimony, or the like is preferably used. The catalyst 14 is fluidized by introducing the air a into the reactor main body 11 of the gas phase reactor from the lower air introduction pipe 12 and blowing it out from the outlet 13. A mixed gas b of propylene and ammonia is introduced from the raw material introduction pipe 15 as a reaction raw material, and the propylene, ammonia and air are brought into contact with each other, so that an oxidation reaction is performed with oxygen in the air, and 1 equivalent of acrylonitrile per 1 equivalent of propylene And 3 equivalents of water are produced. In order to maintain this ammoxidation reaction at an appropriate constant reaction temperature, the ammoxidation reaction is performed while cooling the reaction gas inside the reactor main body 11 with the cooling coil 16 through which the refrigerant d is passed and controlling the temperature. The reaction gas containing acrylonitrile produced by the reaction is separated from the catalyst by a cyclone 19 and is extracted from the product extraction pipe 17 as a reaction gas c containing impurities such as unreacted ammonia and by-produced acrylic acid. After the reaction gas c is cooled by the heat exchanger 18, the product acrylonitrile is obtained by sequentially sending it to an ammonia absorption separation tower and an acrylonitrile purification tower for purification.

気相反応装置の反応器には開放点検等で人が入るため、比較的大きな凹部としてマンホール20が取り付けられていることが一般的である。このマンホール20は、反応時には外蓋21で塞がれているが、孔の部分が反応器内壁に凹部を形成している。この他にも、点検孔や、反応器の周壁を形成させる際に溶接などの都合で生じる凹部があり、比較的小さな凹部としては熱伝対温度計を反応器内に挿入するための温度計挿入孔等、大小様々な大きさの凹部が存在する場合がある。   Since a person enters the reactor of the gas phase reactor during open inspection or the like, it is common that the manhole 20 is attached as a relatively large recess. The manhole 20 is closed with an outer lid 21 during the reaction, but the hole portion forms a recess in the inner wall of the reactor. In addition to this, there are recesses that occur due to welding and other reasons when forming the inspection hole and the peripheral wall of the reactor, and a relatively small recess is a thermometer for inserting a thermocouple thermometer into the reactor. There may be a recess having various sizes, such as an insertion hole.

マンホール20や点検孔の様に比較的大きな凹部の場合、凹部の大きさは、凹部の側胴部の直径は0.5〜2m程度、凹部の側胴部の深さは10〜80cm程度である。熱伝対温度計を反応器内に挿入するための温度計挿入孔の様に比較的小さな凹部の場合、凹部の大きさは、凹部の側胴部の直径は2〜50cm程度、凹部の側胴部の深さは2〜30cm程度である。   In the case of a relatively large recess such as a manhole 20 or an inspection hole, the size of the recess is about 0.5 to 2 m in the diameter of the side body of the recess, and the depth of the side body of the recess is about 10 to 80 cm. is there. In the case of a relatively small recess such as a thermometer insertion hole for inserting a thermocouple thermometer into the reactor, the size of the recess is about 2 to 50 cm in diameter of the side body of the recess, and the side of the recess The depth of the trunk is about 2 to 30 cm.

本発明にかかる流動床反応器において、前記のように様々な種類、大きさの凹部に堆積防止手段を設ける。例えば前記凹部を埋める堆積防止手段が挙げられる。埋めるとはすなわち、凹部の内部に隙間が生じないように前記の堆積防止手段で凹部の内部を充填することをいう。また前記堆積防止手段として凹部に触媒が入り込まないようにする気体でパージする手段が挙げられる。これら堆積防止手段を設けることにより、触媒14の微細な粒子が凹部の内部に入り込めないようにして触媒が凹部に堆積するのを防止することができる。   In the fluidized bed reactor according to the present invention, the deposition preventing means is provided in the recesses of various types and sizes as described above. For example, a deposition preventing means for filling the concave portion can be mentioned. In other words, filling means that the inside of the recess is filled with the deposition preventing means so that no gap is formed inside the recess. Examples of the deposition preventing means include means for purging with a gas that prevents the catalyst from entering the recess. By providing these deposition preventing means, it is possible to prevent the catalyst from accumulating in the recesses so that the fine particles of the catalyst 14 cannot enter the recesses.

前記堆積防止手段で凹部を埋める場合、埋めた後に固化できるセメントなどの封入材33を用いることが好ましい。また、前記凹部の反応器内壁側に接触するところには流動床反応器の内壁と同じ材質の内蓋31を取り付けておくと、凹部の内面がセメントなどの封入材で固定されずに済むので好ましい。また、内蓋31のさらに外側に断熱材32を取り付けておくと、凹部から熱が逃げにくくなるため好ましい。前記内蓋と断熱材とをまとめて前記封入材33で囲んで前記凹部の残りの隙間を埋めると、前記凹部に触媒が堆積しにくくなるのでより好ましい。   When filling the concave portion with the deposition preventing means, it is preferable to use an encapsulating material 33 such as cement which can be solidified after filling. Further, if an inner lid 31 made of the same material as the inner wall of the fluidized bed reactor is attached to the concave portion in contact with the inner wall of the reactor, the inner surface of the concave portion does not need to be fixed with an encapsulating material such as cement. preferable. Moreover, it is preferable to attach the heat insulating material 32 to the outer side of the inner lid 31 because heat hardly escapes from the recess. It is more preferable that the inner lid and the heat insulating material are collectively enclosed by the encapsulant 33 to fill the remaining gaps of the recesses because the catalyst is difficult to deposit in the recesses.

上記封入材33としては、凹部の孔や隙間を埋めるように塗工可能な程度の流動性を有し、塗工後に固化可能な材料であることが望ましい。気相酸化反応が発熱性であるため、耐熱性の観点から無機物であると好ましく、例えば通常のポルトランドセメントや耐火セメントなどが挙げられる。   The encapsulating material 33 is desirably a material that has fluidity that can be applied so as to fill holes and gaps in the recesses and can be solidified after application. Since the gas phase oxidation reaction is exothermic, it is preferably an inorganic material from the viewpoint of heat resistance, and examples thereof include ordinary Portland cement and refractory cement.

前記堆積防止手段の一部として、反応気体と直接接触する前記凹部の内面側には、反応器の内壁と同じ材質の内蓋31を取り付けると、セメントなどの上記封入材と反応気体とが直接接触することがなく、気相酸化反応への悪影響を抑制することができる。また、反応器の側胴部に横向きに取り付けられている凹部がマンホールの場合でもセメントの施工が可能となる。内蓋31の大きさは、凹部が円柱状又は円錐台である場合に、その凹部の内面側である底全面を覆うものであると好ましい。   When an inner lid 31 made of the same material as the inner wall of the reactor is attached to the inner surface side of the concave portion that is in direct contact with the reaction gas as a part of the deposition preventing means, the encapsulant such as cement and the reaction gas directly There is no contact, and adverse effects on the gas phase oxidation reaction can be suppressed. In addition, cement can be applied even when the concave portion attached laterally to the side body of the reactor is a manhole. The size of the inner lid 31 is preferably such that when the concave portion is a columnar shape or a truncated cone, the entire bottom surface that is the inner surface side of the concave portion is covered.

前記外蓋21と内蓋31、反応器の内壁の材質は、気相酸化反応の使用に耐えうる金属材質であれば、特に限定されないが、カーボンスチール、ステンレススチールなどが採用される。カーボンスチールとしては、特に限定されないが、好ましくはS45C、S55C、S65Cなどが挙げられる。ステンレススチールとしては、特に限定されないが、好ましくはSUS27、SUS304、SUS304L、SUS316、SUS316Lなどが挙げられる。材質の腐食劣化と耐熱性の観点から、ステンレススチールであることがより好ましい。   The material of the outer lid 21, the inner lid 31, and the inner wall of the reactor is not particularly limited as long as it is a metal material that can withstand the use of a gas phase oxidation reaction, and carbon steel, stainless steel, or the like is employed. Although it does not specifically limit as carbon steel, Preferably S45C, S55C, S65C etc. are mentioned. Although it does not specifically limit as stainless steel, Preferably SUS27, SUS304, SUS304L, SUS316, SUS316L etc. are mentioned. Stainless steel is more preferable from the viewpoint of corrosion deterioration and heat resistance of the material.

前記金属材質の部分には、必要により溶射やメッキ処理等で表面処理を施すこともできる。溶射やメッキ処理等で形成される金属皮膜を構成する金属としては、例えば、モリブデン、銅、銀、チタン、アルミニウム、クロム、ニッケルなどの金属や、INCONEL(登録商標、「インコネル」と呼称する。)などのニッケル−クロム−モリブデン−鉄を含む合金、INCOLOY(登録商標、「インコロイ」と呼称する。)などのアルミニウム−クロム−鉄を含む合金、HASTELLOY(登録商標、「ハステロイ」と呼称する。)などのニッケル−モリブデン−タングステンを含む合金、MONEL(登録商標、「モネル」と呼称する。)などのニッケル−銅を含む合金、STELLITE(登録商標、「ステライト」と呼称する。)などのコバルト−クロム−タングステンを含む合金、SUS304などのニッケル−クロム−鉄からなるステンレス合金、サーメット、クロムカーバイド、酸化チタンなどが挙げられ、これらを単独、または複合して用いることができる。   If necessary, the metal material portion may be subjected to a surface treatment such as spraying or plating. As a metal constituting the metal film formed by thermal spraying or plating, for example, a metal such as molybdenum, copper, silver, titanium, aluminum, chromium, nickel, or INCONEL (registered trademark, “Inconel”) is used. ), An alloy containing nickel-chromium-molybdenum-iron, an alloy containing aluminum-chromium-iron such as INCOLOY (registered trademark, referred to as “Incoloy”), and HASTELLOY (registered trademark, referred to as “Hastelloy”). ) And other alloys containing nickel-molybdenum-tungsten, alloys containing nickel-copper such as MONEL (registered trademark, referred to as “Monel”), and cobalt such as STELLITE (registered trademark, referred to as “Stellite”). -Alloys containing chromium-tungsten, nickel-chromium such as SUS304 Stainless steel alloy consisting of iron, cermets, chromium carbide, titanium oxide and the like, can be used alone or in combination.

また、前記堆積防止手段の一部として、内蓋31と外蓋21の間に断熱材32を取り付けておくと、マンホールなどの凹部から熱が逃げる事を防止でき、保温性が向上して気相酸化反応の条件を維持しやすくなり、反応収率を向上させることができる。この断熱材32としては、例えばケイ酸カルシウムなどの無機多孔質や粘土を素焼きにした耐火レンガ、高炉スラグと玄武岩、その他の天然岩石に石灰などを加えたロックウールなどが挙げられる。形状はレンガ状やブロック状であると、設置しやすく、かつ封入材33で固定しやすい。   Further, if a heat insulating material 32 is attached between the inner lid 31 and the outer lid 21 as a part of the deposition preventing means, it is possible to prevent heat from escaping from a concave portion such as a manhole, and the heat retention is improved. It becomes easy to maintain the conditions of the phase oxidation reaction, and the reaction yield can be improved. Examples of the heat insulating material 32 include refractory bricks made of an inorganic porous material such as calcium silicate and clay, unglazed clay, blast furnace slag and basalt, and rock wool obtained by adding lime to other natural rocks. When the shape is a brick shape or a block shape, it is easy to install and fix with the encapsulant 33.

前記堆積防止手段により形成される内蓋31の反応器内壁側の面は、前記凹部周辺の反応器内壁面との間に生じる段差が前記触媒堆積の影響を受けず無視できる程度、すなわち、凹部の周辺の面と実質的に段差がないように調整されていることが好ましい。前記段差の大きさは、通常、5.0mm以下が好ましく、より好ましくは1.0mm以下、更に好ましくは0.05mm以下である。これにより堆積防止手段の周辺に触媒が堆積することを防止できる。   The surface on the reactor inner wall side of the inner lid 31 formed by the deposition preventing means is such that the level difference between the inner wall 31 and the reactor inner wall surface around the recess can be ignored without being affected by the catalyst deposition, that is, the recess It is preferable to adjust so that there is substantially no level difference from the peripheral surface. The size of the step is usually preferably 5.0 mm or less, more preferably 1.0 mm or less, and still more preferably 0.05 mm or less. This can prevent the catalyst from being deposited around the deposition preventing means.

前記の内蓋31及び断熱材32を凹部に取り付けた場合、それら全体を固定して包むように、封入材33を塗工して、凹部周壁22との間の隙間や断熱材32と内蓋31との隙間、及び断熱材32同士の隙間などを埋めておくと、凹部における触媒の堆積をより確実に抑えることができるので好ましい。この封入材33の充填の際には、内蓋31の反応器内壁側の面と、反応器本体11の凹部周縁23との高さを合わせて実質的に段差がないように調整することが好ましい。封入材33が凹部周縁23と内蓋31の隙間から突出していると、凹部20の内部に触媒は堆積しなくなるが、封入材33の周辺に生じる段差が吹き溜まりとなってそこに触媒がわずかながら堆積するおそれがある。すなわち、凹部周縁23と内蓋31に段差が有ると、段差の部分に触媒が堆積してしまい、前記気相酸化反応に前述の悪影響を及ぼすことになる。   When the inner lid 31 and the heat insulating material 32 are attached to the recess, the encapsulating material 33 is applied so as to fix and wrap the whole of the inner lid 31 and the heat insulating material 32, and the gap between the peripheral wall 22 and the heat insulating material 32 and the inner lid 31 are coated. And the gap between the heat insulating materials 32 and the like are preferably filled, because the accumulation of the catalyst in the concave portion can be more reliably suppressed. When filling the encapsulant 33, the height of the inner wall 31 of the inner lid 31 on the side of the reactor inner wall and the peripheral edge 23 of the concave portion of the reactor main body 11 can be adjusted so that there is substantially no step. preferable. When the encapsulating material 33 protrudes from the gap between the peripheral edge 23 of the recess and the inner lid 31, the catalyst does not accumulate inside the recess 20, but a step generated around the encapsulating material 33 becomes a puddle and the catalyst is slightly there. May accumulate. That is, if there is a step between the peripheral edge 23 of the recess and the inner lid 31, the catalyst is deposited on the step portion, and the above-described adverse effect is exerted on the gas phase oxidation reaction.

また前記堆積防止手段の別の実施形態として、図3に示すように凹部に気体の吹き込み口41を設けて気体fを吹き込み、凹部への触媒の堆積を防止する事ができる。吹き込み口から吹き込む気体としては空気、不活性ガス、スチーム等が挙げられる。   Further, as another embodiment of the deposition preventing means, as shown in FIG. 3, it is possible to provide a gas blowing port 41 in the concave portion and blow gas f to prevent the catalyst from being deposited in the concave portion. Examples of the gas blown from the blowing port include air, inert gas, and steam.

さらに、前記堆積防止手段の別の実施形態として、反応器本体11の内壁に凹部を設けないことで凹部への触媒の堆積を防止する事ができる。ここで、反応器本体11の内部に凹部を設けないとは、設計段階から凹部を有さない構造にすることである。   Furthermore, as another embodiment of the deposition preventing means, the catalyst can be prevented from being deposited in the recess by not providing the recess on the inner wall of the reactor main body 11. Here, not having a recess in the interior of the reactor main body 11 means to have a structure without a recess from the design stage.

本発明の堆積防止手段により、凹部20及びその周辺への触媒の堆積を防ぐことで、触媒の無駄な堆積を防止できるので装置の劣化や反応への悪影響を防止することができる。また、反応器内部に凹部を設けない構造とすることで、同様の効果を得ることが出来る。さらに、本発明により、凹部がマンホールなどの開放可能な部位である場合、堆積していた還元劣化触媒が、マンホール開放時に一挙に酸化発熱する事態を防止することができる。   By preventing the catalyst from being deposited on the recess 20 and its surroundings by the deposition preventing means of the present invention, it is possible to prevent the catalyst from being deposited unnecessarily, thereby preventing the deterioration of the apparatus and the adverse effect on the reaction. Moreover, the same effect can be acquired by setting it as the structure which does not provide a recessed part inside a reactor. Furthermore, according to the present invention, when the concave portion is a releasable part such as a manhole, it is possible to prevent a situation in which the reduced deterioration catalyst that has accumulated is oxidized and heated at the time of opening the manhole.

以下、実施例により本発明を具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to a following example, unless the summary is exceeded.

(実施例1)
モリブデンを含有する金属酸化物触媒を用いたプロピレンのアンモ酸化反応によりアクリロニトリルの製造を行う気相酸化反応用流動床反応器の反応器本体のSUS27製の壁面に取り付けたマンホールに、マンホールの内径に合わせたSUS27製の内蓋(直径900mm×深さ300mm)を、反応器の内壁側から凹部周縁と内蓋の内壁側の面に段差を生じないように取り付け、内蓋の外側の凹部内部にケイ酸カルシウム製の断熱材(230mm×110mm×65mmのレンガ状)を敷き詰めた後、断熱材の周囲を含むマンホール内部の残りの隙間全体を、凹部周縁の面に段差を生じないようにポルトランドセメントで充填し、乾燥後にSUS27製の外蓋を閉鎖した。
Example 1
In the manhole attached to the wall made of SUS27 of the reactor main body of the fluidized bed reactor for gas phase oxidation reaction in which acrylonitrile is produced by ammoxidation reaction of propylene using a metal oxide catalyst containing molybdenum, the inner diameter of the manhole The combined inner lid made of SUS27 (diameter 900 mm x depth 300 mm) is attached from the inner wall side of the reactor so that no step is generated on the peripheral edge of the concave portion and the inner wall side surface of the inner lid, and inside the concave portion outside the inner lid. After laying a calcium silicate heat insulating material (230mm x 110mm x 65mm brick shape), Portland cement prevents the entire gap in the manhole including the periphery of the heat insulating material from forming a step on the periphery of the recess. The outer lid made of SUS27 was closed after drying.

前記の堆積防止手段を設ける前と後について、下記の反応条件で同じ長さの期間に亘ってプロピレンのアンモ酸化反応によりアクリロニトリルを製造した。   Before and after the deposition preventing means was provided, acrylonitrile was produced by ammoxidation of propylene over the same length of time under the following reaction conditions.

反応器内部には触媒14として、MoBi系触媒(触媒組成、Mo:Bi:Fe:Ce:Cr:Ni:Mg:Co:K:Rb:O:SiO=12:0.5:2:0.5:0.4:4:1.5:1:0.07:0.06:X:42)を84kg導入した。冷却コイル16(伝熱面積:0.33m)の内部には、冷却媒体としてゲージ圧が3kg/cmの水蒸気を流通させた。次いでこの本体11に、原料導入管15よりプロピレンを流量7.8kg/hで、アンモニアを流量3.5kg/hで導入し、空気導入管12から空気を流量54kg/hで導入して、440℃の温度環境でアンモ酸化反応を行った。 As a catalyst 14 inside the reactor, a MoBi-based catalyst (catalyst composition, Mo: Bi: Fe: Ce: Cr: Ni: Mg: Co: K: Rb: O: SiO 2 = 12: 0.5: 2: 0 .5: 0.4: 4: 1.5: 1: 0.07: 0.06: X: 42) was introduced in an amount of 84 kg. Water vapor with a gauge pressure of 3 kg / cm 2 was circulated inside the cooling coil 16 (heat transfer area: 0.33 m 2 ) as a cooling medium. Next, propylene is introduced into the main body 11 at a flow rate of 7.8 kg / h and ammonia is introduced at a flow rate of 3.5 kg / h from the raw material introduction tube 15, and air is introduced from the air introduction tube 12 at a flow rate of 54 kg / h. The ammoxidation reaction was performed in a temperature environment of ° C.

堆積防止手段を設ける前に製造した後の開放時にはマンホールの凹部に堆積した触媒が確認されたが、堆積防止手段を設けた後に製造した後の開放時には、マンホールの凹部に堆積した触媒は確認されなかった。また、堆積防止手段の設置前には触媒堆積による異常加熱で鋼の黒鉛化現象を生じ反応器の材質の劣化が認められたのに対して、堆積防止手段の設置後は、触媒堆積が無くなったため反応器の材質の劣化が認められなくなった。   The catalyst deposited in the recess of the manhole was confirmed at the time of opening after manufacturing before providing the deposition preventing means, but the catalyst deposited in the recess of the manhole was confirmed at the opening after manufacturing after providing the deposition preventing means. There wasn't. Also, before the installation of the deposition preventive means, abnormal heating due to catalyst deposition caused the graphitization phenomenon of the steel and deterioration of the reactor material was observed, whereas after the deposition preventive means was installed, there was no catalyst deposition. As a result, no deterioration of the reactor material was observed.

運転停止後に外蓋を開放する際には、堆積防止手段を設ける前は150℃までマンホール周辺が加熱していたが、堆積防止手段を設けた後の開放時には、作業の邪魔になるほどの高温にはならなかった。   When the outer lid was opened after the operation was stopped, the manhole area was heated up to 150 ° C. before the deposition preventing means was provided. However, when the outer lid was opened after the deposition preventing means was provided, the temperature was high enough to interfere with the work. I didn't.

(実施例2)
ケイ酸カルシウム製の断熱材を耐火レンガに替えて、ポルトランドセメントを耐火セメントに替えた以外は実施例1と同様の操作、及びその操作前後の比較を行なったところ、実施例1と同様に堆積防止手段の設置前に対して堆積防止手段の設置後は、触媒堆積が無くなったため材質の劣化が認められなくなった。
(Example 2)
The same operation as in Example 1 was performed except that the heat-insulating material made of calcium silicate was replaced with refractory bricks, and Portland cement was replaced with refractory cement. After the deposition preventing means was installed, the deterioration of the material was not recognized after the deposition preventing means was installed because the catalyst accumulation was lost.

運転停止後に外蓋を開放する際には、堆積防止手段を設ける前は150℃までマンホール周辺が加熱したが、堆積防止手段を設けた後の開放時には、作業の邪魔になるほどの高温にはならなかった。   When the outer lid is opened after the operation is stopped, the manhole area is heated up to 150 ° C. before the deposition preventing means is provided. However, when the outer lid is opened after the deposition preventing means is provided, the temperature is not high enough to disturb the work. There wasn't.

(実施例3)
SUS27製を、ニッケルメッキで表面処理したSUS304製に替えた以外は実施例1と同様の操作、及びその操作前後の比較を行なったところ、実施例1と同様に堆積防止手段の設置前に対して堆積防止手段の設置後は、触媒堆積が無くなったため材質の劣化が認められなくなった。
(Example 3)
The same operation as in Example 1 and comparison before and after the operation except that SUS27 was replaced with SUS304 made by surface treatment with nickel plating was performed. After installation of the deposition preventive means, the deterioration of the material was not recognized because the catalyst deposition was lost.

運転停止後に外蓋を開放する際には、堆積防止手段を設ける前は150℃までマンホール周辺が加熱したが、堆積防止手段を設けた後の開放時には、作業の邪魔になるほどの高温にはならなかった。   When the outer lid is opened after the operation is stopped, the manhole area is heated up to 150 ° C. before the deposition preventing means is provided. However, when the outer lid is opened after the deposition preventing means is provided, the temperature is not high enough to disturb the work. There wasn't.

a 空気
b 混合気体
c 反応気体
d 冷媒
f 気体
11 反応器本体
12 空気導入管
13 吹き出し口
14 触媒
15 原料導入管
16 冷却コイル
17 製品抜出し管
18 熱交換器
19 サイクロン
20 凹部(マンホール)
21 外蓋
22 凹部周壁
23 凹部周縁
31 内蓋
32 断熱材
33 封入材
41 気体吹き込み口
a Air b Mixed gas c Reactive gas d Refrigerant f Gas 11 Reactor body 12 Air introduction pipe 13 Air outlet 14 Catalyst 15 Raw material introduction pipe 16 Cooling coil 17 Product extraction pipe 18 Heat exchanger 19 Cyclone 20 Recess (manhole)
21 outer lid 22 concave peripheral wall 23 concave peripheral edge 31 inner lid 32 heat insulating material 33 encapsulating material 41 gas blowing port

Claims (6)

流動床の触媒粒子を収納する反応器であって、前記反応器内の触媒粒子が接触する反応器の内壁に凹部を設けないか、または、設けた凹部に堆積防止手段を設けた、流動床反応器。   A reactor containing catalyst particles in a fluidized bed, wherein no fluid is provided on the inner wall of the reactor in contact with the catalyst particles in the reactor, or a deposition preventing means is provided in the provided recess. Reactor. 前記堆積防止手段が、前記凹部に充填された封入材を有する、請求項1に記載の流動床反応器。   The fluidized bed reactor according to claim 1, wherein the deposition preventing means has an encapsulant filled in the recess. 前記堆積防止手段が、前記反応器の内壁と同じ材質の内蓋と、その内蓋と前記反応器との間に充填した断熱材と、前記凹部の残りの隙間を充填するセメントからなる封入材とを有する、請求項1に記載の流動床反応器。   The deposition preventing means includes an inner lid made of the same material as the inner wall of the reactor, a heat insulating material filled between the inner lid and the reactor, and an encapsulant filling the remaining gap of the recess. The fluidized bed reactor according to claim 1, comprising: 前記凹部に設けた堆積防止手段と反応器内壁面との間に段差がないように調整した、請求項1、2又は3に記載の流動床反応器。   The fluidized bed reactor according to claim 1, 2 or 3, wherein the fluidized bed reactor is adjusted so that there is no step between the deposition preventing means provided in the recess and the inner wall surface of the reactor. 前記堆積防止手段が、前記凹部に気体を吹き込む気体吹き込み口である、請求項1に記載の流動床反応器。   The fluidized bed reactor according to claim 1, wherein the accumulation preventing means is a gas blowing port for blowing gas into the concave portion. 請求項1乃至5のいずれかに記載の流動床反応器を用いて、前記凹部への触媒堆積を防止しながらアンモ酸化反応を行う、ニトリル化合物の製造方法。   A method for producing a nitrile compound, wherein an ammoxidation reaction is carried out using the fluidized bed reactor according to any one of claims 1 to 5 while preventing catalyst deposition in the recess.
JP2014013321A 2014-01-28 2014-01-28 Fluidized bed reactor and method for producing nitrile compound using the same Active JP6372086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014013321A JP6372086B2 (en) 2014-01-28 2014-01-28 Fluidized bed reactor and method for producing nitrile compound using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014013321A JP6372086B2 (en) 2014-01-28 2014-01-28 Fluidized bed reactor and method for producing nitrile compound using the same

Publications (2)

Publication Number Publication Date
JP2015139736A true JP2015139736A (en) 2015-08-03
JP6372086B2 JP6372086B2 (en) 2018-08-15

Family

ID=53770487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014013321A Active JP6372086B2 (en) 2014-01-28 2014-01-28 Fluidized bed reactor and method for producing nitrile compound using the same

Country Status (1)

Country Link
JP (1) JP6372086B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107998989A (en) * 2017-12-11 2018-05-08 合肥右传媒科技有限公司 A kind of reaction kettle for preparing trifluoromethyl Luization zinc
JP2019126759A (en) * 2018-01-23 2019-08-01 旭化成株式会社 Connection structure and fluid layer reaction device
JP2019182795A (en) * 2018-04-12 2019-10-24 旭化成株式会社 Floating layer reaction device, and manufacturing method of acrylonitrile

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4954326A (en) * 1972-06-02 1974-05-27
JPS6079538U (en) * 1983-11-08 1985-06-03 三井造船株式会社 Gas phase fluidized bed reactor
JP2001081050A (en) * 1999-09-10 2001-03-27 Nippon Shokubai Co Ltd Apparatus and method for handling readily polymerizable compound
JP2001520279A (en) * 1997-10-21 2001-10-30 エクソンモービル リサーチ アンド エンジニアリング カンパニー Slurry hydrocarbon synthesis method with reduced catalyst attrition and deactivation
JP2002529222A (en) * 1998-11-07 2002-09-10 クルップ・ウーデ・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Block flanges such as manhole openings in vortex fluidized bed reactors
JP2002338520A (en) * 2001-05-14 2002-11-27 Nippon Shokubai Co Ltd Method for producing unsaturated carboxylic acid ester
JP2005193172A (en) * 2004-01-08 2005-07-21 Daiyanitorikkusu Kk Fluidized reaction method and method for producing acrylonitrile
JP2006247452A (en) * 2005-03-08 2006-09-21 Daiyanitorikkusu Kk Vapor phase reaction apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4954326A (en) * 1972-06-02 1974-05-27
JPS6079538U (en) * 1983-11-08 1985-06-03 三井造船株式会社 Gas phase fluidized bed reactor
JP2001520279A (en) * 1997-10-21 2001-10-30 エクソンモービル リサーチ アンド エンジニアリング カンパニー Slurry hydrocarbon synthesis method with reduced catalyst attrition and deactivation
JP2002529222A (en) * 1998-11-07 2002-09-10 クルップ・ウーデ・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Block flanges such as manhole openings in vortex fluidized bed reactors
JP2001081050A (en) * 1999-09-10 2001-03-27 Nippon Shokubai Co Ltd Apparatus and method for handling readily polymerizable compound
JP2002338520A (en) * 2001-05-14 2002-11-27 Nippon Shokubai Co Ltd Method for producing unsaturated carboxylic acid ester
JP2005193172A (en) * 2004-01-08 2005-07-21 Daiyanitorikkusu Kk Fluidized reaction method and method for producing acrylonitrile
JP2006247452A (en) * 2005-03-08 2006-09-21 Daiyanitorikkusu Kk Vapor phase reaction apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107998989A (en) * 2017-12-11 2018-05-08 合肥右传媒科技有限公司 A kind of reaction kettle for preparing trifluoromethyl Luization zinc
JP2019126759A (en) * 2018-01-23 2019-08-01 旭化成株式会社 Connection structure and fluid layer reaction device
JP2019182795A (en) * 2018-04-12 2019-10-24 旭化成株式会社 Floating layer reaction device, and manufacturing method of acrylonitrile
JP7094760B2 (en) 2018-04-12 2022-07-04 旭化成株式会社 Fluidized bed reactor and method for producing acrylonitrile

Also Published As

Publication number Publication date
JP6372086B2 (en) 2018-08-15

Similar Documents

Publication Publication Date Title
JP6372086B2 (en) Fluidized bed reactor and method for producing nitrile compound using the same
CN208747627U (en) Reformer tube and reburner
JP2008133175A (en) Trichlorosilane production apparatus
KR20110067090A (en) Production process
KR102356206B1 (en) Corrosion resistant reformer tube with internal heat exchange
WO2015163260A1 (en) Fluid bed reactor and method of producing nitrile compound using same
EP0063555B1 (en) Chlorinator furnace and method for producing tetrachloride of such metals as titanium and zirconium
JP7179011B2 (en) Reactor and method for producing trichlorosilane
US20200247685A1 (en) Tungsten Hexafluoride Production Method
JP7200041B2 (en) Distributor, chlorination furnace, and method for producing metal chloride
JP2005288441A (en) Heat exchange type reactor
JP4829403B2 (en) High temperature melt discharge pipe
JP2015527186A (en) Reactor for carrying out an exothermic reaction in the gas phase
JPWO2019098343A1 (en) Method for producing trichlorosilane
US20180229200A1 (en) Steam methane reformer tube outlet assembly
JP2014025641A (en) Operation method of heat exchange system
JP2006283052A (en) Gas-blowing tuyere
WO2019098348A1 (en) Fluidized bed reactor
JP2007224399A (en) Bottom-blow tuyere to be used in smelting vessel
EA042204B1 (en) CORROSION PROTECTION REFORM TUBE WITH INTERNAL HEAT EXCHANGER
KR20180081111A (en) Method and apparatus for the production of granular polycrystalline silicon
JPS61192338A (en) Reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180515

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180702

R151 Written notification of patent or utility model registration

Ref document number: 6372086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151